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Abstract

The absorption coefficient and attenuation of electromagnetic waves are studied an-

alytically and numerically in a nanoellipsoidal metal dielectric composites. The di-

electric constant of nano composite is solved analytically based on quasi-static limit,

which assumes that the incorporated nano-ellipsoidal metal particles are very small

compared to the light wavelength. In this limit, the scattered light is negligible and

absorption is considered. The absorption coefficient of nano ellipsoidal silver in trans-

parent media is studied by varying the geometrical factor and concentration of inclu-

sions. The result shows that the maxima of absorption coefficient shifts towards the

higher energy as value of the geometrical factor increases. However, the magnitude

of the absorption coefficient decreases with an increment of the value of geometrical

factor. Moreover, for a constant geometrical factor the increment in concentration of

the nano ellipsoidal silver particles results with decrement of the magnitude of the

absorption coefficient.
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Chapter 1

General Background

With recent developments of nanoscience and nanotechnology, the correlation of com-

posite properties with nanostructure has become a subject of great interest. As a re-

sult, much of work has been focused on nanocomposite materials [1]. Nanocomposite

materials have attracted tremendous attention due to their potential applications in

photonics, biochemistry, medicine, capacitors, micro fabrications, resonant coupling

devices, fuel cells, and so on.

The integration of modern electronic devices for information processing and sens-

ing is rapidly approaching its fundamental speed and band width limitations, which

has become a series problem that impedes further advance in many areas of modern

science and technology. Replacing the electronic signals by light as information carrier

is believed to be one of the promising solutions [2-3]. However, the diffraction limit

of light in dielectric media does not allow the localization of electromagnetic waves in

nano- scale regions much smaller than the wavelength of light in the medium. In re-

cent years, plasmonic devices, based on propagation of surface Plasmon - polaritions

at a metal dielectric interface, have shown great potential to guide and manipulate

light with metallic nanostructures at deep sub-wavelength scales. The linear and
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nonlinear response of the medium strongly effects on the propagation of electromag-

netic wave in the optical material and can even result in the permanent modification

of its physical properties. Their optical features of the composite materials with

metal nanoparticle structures that strongly depend on size, shape, distribution of

nanoparticles as well as on surrounding dielectric matrix offering an opportunity for

manufacturing are dominated by surface plasma oscillations. The external field drives

the bound charges of the medium apart and induces a collection of dipole moments

[4]. In an optically dense medium, the interaction of the induced dipoles are taken

into account by a local field factor, that relates the macroscopic fields to the local

ones. The light-field is considered by starting from the macroscopic properties of the

medium where the linear polarization P (1) provides an extensive description of the

light-matter interaction when a low radiation intensities are considered. The effec-

tive optical properties of composite materials were first devoted to the analysis of

linear media and were recently extended to the study of materials with one nonlinear

component under very restrictive conditions, that is, very low concentration of the

nonlinear component with nonlinear contributions being treated as purely real and

as low field approximation to the assumed leading linear behavior. Optical proper-

ties of randomly oriented nonlinear spherical metal particles in a dielectric host are

explained by two different Maxwell-Garnet type approximations based on the net

polarization is involved. These two methods lead to quite different spectral density

functions. Moreover, we see that the geometry of the particles has a large influence

or the spectral functions through the depolarization effect on the optical absorption

and nonlinear optical susceptibilities.
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1.1 Statement of the Problem

The optical properties of composite materials have been the subject of numerous

studies in recent years due to their technological potential applications. Because of

their potential uses in optical devices, the most commonly considered materials are

made of nonlinear particles embedded in linear host. Dielectrics containing metallic

nanoparticles are very promising materials for applications optoelectronics due to

their unique linear and non - linear optical properties. These properties are dominated

by the strong surface plasmon resonance of the metal nanoparticles. The surface

plasmon resonance occurs when the electron and light waves couple with each other

at a metal- dielectric interface. These are regarded as the collective oscillation of the

nanoparticle electron. The spectral position of the surface Plasmon resonance in the

compound materials can be designed with in a wide spectral range, from visible to

near inferared, by choice of the electronic properties of the metal and the dielectric

matrix [5, 6]or by manipulation of size [7, 8], shape [9, 10] and spatial distribution

[11]of the metal clusters. This makes the composite materials attractive for some

applications in technology. One of the main issues in this study is, therefore, to

investigate the absorption coefficient with respect to the geometry and concentration

for such materials. Even though different researches were conducted on this area

the absorption coefficient and attenuation of electromagnetic waves as a function of

geometry and concentration were not well understood. So the main focus of this

project is to describe the absorption coefficient and attenuation of electromagnetic

waves in nano-ellipsoidal metal in transparent dielectric host material.
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1.2 Objectives

1.2.1 General objective

The main aim of this project is to understand the absorption coefficient of nano

ellipsoidal metal dielectric composite materials with respect to their geometry and

concentration of nano ellipsoidal metal in host matrix.

1.2.2 Specific objective

• To describe the influence of geometrical factor on absorption coefficient of the

nano ellipsoidal metalic particles in dielectric host media;

• To observe the influence of concentration of identical ellipsoidal metallic nanopar-

ticles on absorption coefficient in transparent dielectric media.

1.3 Significance of the study

The physics of metal-dielectric composites has recently gained increasing interest

because of their unique linear and nonlinear optical properties, and their high ap-

plication potential as nonlinear media and media for optical data storage. These

properties find their application in optics, electronics, optoelectronics and material

science. Thus understanding the optical properties such as absorption coefficient as

a function of geometry and concentration of inclusions is helpful for characteriza-

tion of the composite system. Moreover, knowledge of the features of interaction of

electromagnetic radiation with composite or disperse materials is crucial for further

advances in technology.

.
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Chapter 2

Literature Review

2.1 Introduction

Since the inception of lasers, nonlinear optics has been a rapidly growing field of

research in recent decades. It is based on the study of effects and phenomena related

to the interaction of intense coherent light radiation with matter. In other words,

nonlinear optics is the branch of optics that describes behavior of light in nonlinear

media, that is, the media in which the dielectric polarization responds nonlinearly to

the electric field of light. This non linearity is typically and only observed at very

high light intensities. Such high powers of light made it possible to change the optical

properties of the medium and also the light itself affected by change. The beginning

of the field of nonlinear optics is taken to be the discovery of second - harmonic

generation by Fraken et al. in 1961 [12] shortly after the demonstration of the first

working laser by Maiman in 1960 [13]. The non linearities reside in the constitute

relationships of Maxwell’s equations. This enables us to adopt a macroscopic approach

to the problem of determining absorption coefficient.
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2.1.1 Electromagnetic Radiation in vacuum

The electric and magnetic fields are in phase and mutually perpendicular as a result

of Maxwell’s equations [14, 15]. Physically, Electric field results from electric charges

or from time dependent magnetic fields, while magnetic fields result from electric

currents or time - dependent electric field. Maxwell’s equations can be manipulated

to give classical wave equations from the time and space dependence of the electric

and magnetic field. A major achievement of this picture was the relation derived

between the speed of light and the product of the electric permittivity and magnetic

permeability of free space:

µ0ε0 =
1

c2
(2.1.1)

Maxwell’s equation are basic electromagnetic equations, that predict about the phys-

ical property of light. In vacuum,they are:

∇. ~E = 0 (2.1.2)

∇. ~B = 0 (2.1.3)

∇× ~E =
−∂ ~B

∂t
(2.1.4)

∇× ~B = µ0ε0
∂ ~E

∂t
(2.1.5)

Where,ε0 = 8.854× 10−12C2m−1J−1, and µ0 = 4π × 10−7 N
A2

After some manipulation Maxwell’s equation can be recast in the following form

to give classical wave equation:

∇2 ~E = ε0µ0
∂2vecE

∂t2
(2.1.6)
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∇2vecB = ε0µ0
∂2 ~B

∂t2
(2.1.7)

From the symmetrical relation ship between the magnetic and electric field, there are

two quantities the scalar potential φ and the vector potential ~A from which ~E and ~B

can be derived:

~E = −∇φ− ∂ ~A

∂t
(2.1.8)

~B = ∇× ~A (2.1.9)

Hence the vector potential also obeys the classical wave equation,

∇2 ~A = µ0ε0
∂2 ~A

∂t2
(2.1.10)

2.1.2 Electro magnetic radiation in material media.

The macroscopic aspects of the static and dynamics of the electromagnetic field of

the material media are described by Maxwell’s equation:

∇. ~D = ρf (2.1.11)

∇. ~B = 0 (2.1.12)

∇× ~E = −∂ ~B

∂t
(2.1.13)

∇× ~H = Jf +
∂ ~D

∂t
(2.1.14)
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Where the electromagnetic properties of material media may be taken in to account

through relations, ~D = ε ~E, ~B = µ ~H and ~J = σ ~E known as constitutive relations.

When an external electric field is applied to an insulator, the matter responds

with an induced polarization that partially cancels the field due to out side charges.

Although the charges in an insulator are not mobile as they are in conductor, an

external field has the ability to displace the charges in length of polar bonds [14, 15].

The resulting net dipole moment per unit volume is called the polarization, and in

linear electric materials it is proportional to the electric field. If there are N such

molecules per unit volume the macroscopic polarization ~P is given by:

~P = N~p (2.1.15)

~P = ε0χe
~E (2.1.16)

~D = ε0(1 + χe) ~E (2.1.17)

Similarly, when ordinary matter is placed in an external magnetic field, induced

magnetization, ~M , the magnetic dipole moment per unit volume, results. Unlike the

polarization ~P , the magnetization can either reinforce or oppose the applied field.

The bound and free charges in electric polarization are analogous to the bound and

free currents in magnetic polarization. The magnetic field ~H is given by:

~H =
~B

µ0

− ~M (2.1.18)

The bound currents are those due to the induced magnetic moments and the align-

ment of permanent moments, possessed by the atoms molecules that comprise the

10



sample.

~M = χm
~H (2.1.19)

~B = µ0(1 + χm) ~H (2.1.20)

Applying the curl operation to both sides of Equation (13), we obtain

∇× (∇× ~E) = −∇× ∂ ~B

∂t
= − ∂

∂t

(
∇× ~B

)
(2.1.21)

∇× (∇× ~E = ∇(∇. ~E)−∇2 ~E (2.1.22)

∇(∇. ~E)−∇2 ~E = −µ0
∂2

∂t2

(
ε0

~E + ~P

)
(2.1.23)

∇2 ~E −∇(∇. ~E)− 1

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P

∂t2
(2.1.24)

for transverse fields (some times called solenoidal or radiation fields) satisfy,

∇. ~E = 0 (2.1.25)

Transverse equations therefore satisfy the inhomogeneous wave equation,

∇2 ~E − 1

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P

∂t2
(2.1.26)

In classical physics Newton’s second law describes the motion of particle. For charged

particles in electromagnetic field the force referred to in Newton’s second law is the

Lorentz force [15],

~F = e( ~E + ~V × ~B) (2.1.27)
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In equation (2.1.27), the magnetic contribution to the Lorentz force is dropped. Be-

cause optical phenomena do not normally involve relativistic particle velocities, we

can safely disregard the magnetic force. Under the influence of electromagnetic field

the electron experiences a Lorentz force, and the equation of the force with out con-

sidering the damping force is,and the equation of motion is,

m
d2~x

dt2
= e ~E(~r, t)−Ks~x (2.1.28)

When a field is applied, each atoms electron is displaced by some ~x from its original

position. Thus each atom has a dipole moment,

~p = e~x (2.1.29)

If the density of atoms is denoted by N, then the density of dipole moment is,

~P = N~p = Ne~x (2.1.30)

The Maxwell equation (2.1.26) tells us how the electric field ~E depends up on the

dipole moment density ~P of the medium. Newton’s equation (2.1.27) tells us how the

electron displacement ~x depends upon the ~E . Equation (2.1,30) connects these basic

equations by relating ~P to ~x . The electron oscillator model thus ties together the

Maxwell equation with Newton’s law of motion. Solutions of these coupled equations

will provide the model’s predictions about the mutual interaction of light and matter.

For linearly polarized wave the electric field at the position of the atom has the form,

~E(z, t) = ε̂E0 cos(ωt− kz) (2.1.31)

If the electric field in equation (2.1.31) is to be a solution of coupled Maxwell-Newton

equations, it must be the driving field in the Newton equation (2.1.28),

d2~x

dt2
+ ω2

0~x = ε̂
e

m
E0 cos(ωt− kz) (2.1.32)

12



This equation has the solution,

~x = ε̂

( e
m

E0

ω2
0 − ω2

)
cos(ωt− kz) (2.1.33)

The polarization can also be described by polarizablity ,

~p = e~x = β(ω) ~E (2.1.34)

Relating equations (2.1.32), (2.1.33) and (2.1.34) the polarizablity is given by,

β(ω) =
e2

m

1

ω2
0 − ω2

(2.1.35)

Thus the dipole moment density is,

~P = ε̂

( Ne2

m

ω2
0 − ω2

)
E0 cos(ωt− kz) (2.1.36)

This solution for the polarization provides the source term on the right hand side of

the Maxwell equation (2.1.26),(
− k2 +

ω2

c2

)
ε̂E0 cos(ωt− kz) = −Nβ(ω)ω2

ε0c2
ε̂E0 cos(ωt− kz) (2.1.37)

To satisfy this equation k must satisfy a more general dispersion relation

k2 =
ω2

c2

(
1 +

Nβ(ω)

ε0

)
=

ω2

c2
n2(ω) (2.1.38)

The index of refraction with the absence of damping force is real and becomes,

n(ω) =

(
1 +

Ne2

mε0

ω2
0 − ω2

) 1
2

(2.1.39)

In the presence of damping force equation (2.1.32) can be modified as,

d2~x

dt2
− γ

dx

dt
+ ω2

0~x = ε̂
e

m
E0

[
cos(ωt− kz)− j sin(ωt− kz)

]
(2.1.40)

13



Where γ in equation (2.1.40) is the damping constant.

~x(t) = <ε̂
e
m

E0e
−j(ωt−kz)

ω2
0 − ω2 − jγω

(2.1.41)

The polarizablity in damping case is complex and given by,

β(ω) =
e2

m

ω2
0 − ω2 − jγω

(2.1.42)

The complex nature of polarizablity leads to the complexity of the index of refraction.

n2(ω) = 1 +
Ne2

mε0

ω2
0 − ω2 − jγω

= [n<(ω) + jn=(ω)]2 (2.1.43)

The electric field is given by,

~E = ε̂E0e
−j(ωt−kz) (2.1.44)

But the wave vector is,

k =
ω

c
[n<(ω)− jn=(ω)] (2.1.45)

Then,

~E = ε̂E0e
−ω
c

n=(ω)ze−j[ωt−ωz
c

n<(ω)] (2.1.46)

The intensity is proportional to the square of the amplitude of the electric field and

given by

I(ω) = I0e
−σ(ω)z (2.1.47)

σ(ω) is the absorption coefficient or extinction coefficient, and given by,

σ(ω) = 2[n=(ω)]
ω

c
=

Ne2

ε0mc

γω2

(ω2
0 − ω2)2 + γ2ω2

(2.1.48)
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2.2 Nonlinear Optics and polarization

2.2.1 The origins of polarization, oscillator model

Here we will take a simple classical approach to gain some interaction about polariza-

tions, similar discussion may be applied to derivation of magnetization, where instead

of E -dipoles we can take about magnetic dipoles. The ion electron dipole are con-

stantly oscillating (electrons have thermal velocity that allows them to move away

from the ions but then they are pulled back by the Coulomb force). Then electrons

bound to ions would be pushed in the direction opposite to the applied field orienting

the ion electron dipoles in the direction of the field . The electric field will act as a

driving force applied to our oscillating dipoles. Then we can describe the distance

between the electron and ion using the oscillatory equation

d2x

dt2
+ ω2

ox =
F

m
(2.2.1)

Where ωo is natural frequency. But what happens when we add the external electro-

magnetic field? In a simplest case the EM wave propagate through the material. Its

wavelength is significantly larger than the lattice constant or the size of the atoms so

locally we can approximate electric field altering in space with a field that is locally

constant in that space. In order to account for local field effect on the optical prop-

erties of a material, one needs to apply a proper model relating the model strongly

depends on the medium. For example, local field in a homogeneous medium can

be related local field to its macroscopic counterparts, namely, the average field and

polarization [2-4,7,9-10]

Eloc = LE (2.2.2)
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Where L is the local field correction factor. The local field acting on a typical dipole of

the medium, one surrounds the dipole of interest with an imaginary spherical cavity

of radius much larger than the distance between the dipoles and much smaller than

.λop The contributions to the local field from the dipole situated within the spherical

cavity are accounted for exactly, while the dipoles outside the cavity are treated as

uniformly distributed, characterized by some average polarization as shown in Fig. 2.

For material with linear optical response the local field determines the microscopic

polarizationP (ω), expressed as:

P (ω) = β(ω)Eloc(ω) (2.2.3)

Where a single microscopicβ(ω)is the polarizability,which implies that

P (ω) = Nβ(ω)E (2.2.4)

Where N is the density of microscopic constituents.

neR =
N

v
(2.2.5)

Where N the number of electrons per unit volume and Ne is the number of electrons

per elementary constituents of the medium. The polarization can be expressed in

terms of the external EM- field as follows:

P (ω) = χeff (ω)E(ω) (2.2.6)

Hence, in order to express the effective susceptibility in terms of the microscopic

polarizability, we have to express the local E-field in terms of the external electric-

field. We have that the local electric-field can be expressed as [15-17]

(2.2.7)
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For the local electric field Eloc in terms of the average macroscopic polarization P.

We further derive the Lorentz-Lorentz = Clasuis-Mossoti, relation for the dielectric

permittivity ε and microscopic polarizability β. The polarizability describes the dis-

tortion of the dipole field on an atomic scale induced by the interaction with the

external oscillating field. Let us assume for now that the medium is lossless and

dispersion less. We represent the dipole moment induced in a typical molecule (or

atom) of the medium as

P = βEloc (2.2.8)

The macroscopic polarization of the material is given by

P = Nex = N~p (2.2.9)

Where N denotes molecular (or atomic) number density. p = exis known as electric

dipole moment. Using equations (2.2.7) through (2.2.8) we find that the polarization

and macroscopic field are related by:

P = Nβ(E +
4π

3
p) (2.2.10)

We assume the polarization P to be linear in the average field:

p = χ(1)E (2.2.11)

Where χ(1) is the linear susceptibility of the medium. Substituting the expression

(2.2.10) into (2.2.11), solving for χ(1) , and eliminating the field E, we find that

χ(1) =
Nβ

1− 4π
3

Nβ
(2.2.12)

Expressing the optical susceptibility of the medium

χ(1) =
(ε(1) − 1

4π
(2.2.13)
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(ε1) is the dielectric permittivity of the medium).we obtain the well-known Lorentz-

Lorentz or Clausius-Mossoti relation

ε(1)−1

ε(1)+2
=

4π

3
N (2.2.14)

Through rearrangements of equation (2.2.14) we can express the linear susceptibility

as:

χ(1) =
ε(1) + 2

3
Nβ (2.2.15)

With the substitutions and rearrangements, we obtain the equation relating the local

field to the average field:

Eloc =
ε(1) + 2

3
E (2.2.16)

Where

L =
ε(1) + 2

3
(2.2.17)

is known as the Lorentz local-field correction factor i.e., which is valid in the case

of homogeneous media, where all the particles (molecules or atoms) are of the same

sort. It is also valid in materials where the emitters enter as inclusions that do not

influence the correlation between the host molecules or atoms [18- 20]. In order to

describe more precisely what we mean by an optical non linearity, let us consider how

the dipole moment per unit volume (polarization) of a material system depends on

of an applied optical-field. In the case of linear (conventional) optics, the induced

polarization linearly depends on E-field strength in a manner that can be described

below; In linear optics, the polarization density depends linearly on the electric field

strength in a manner that can often be described by the relationship,

P = εoχE (2.2.18)
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Where εo is the permittivity of free space and χ is the electric susceptibility

of the medium. As the magnitude of the applied electric field increases, the linear

relationship between P and E breaks down and we enter the realm of nonlinear optics.

Then, the resulting polarization can be expressed as a series in increasing powers of

the electric field. Mathematically, such a series can be expressed as,

P (t) = χo[χ
(1)E(1)(t) + χ(2)E(2) + χ(3)E(3) + .. (2.2.19)

Where we can ignore the vector nature of the fields as well as dispersion, for

simplicity. The expansion coefficients, χ(1) andχ(2) etc., are identified as linear and

nonlinear susceptibilities, respectively. In general, the nonlinear susceptibilities de-

pend on the frequencies of the applied fields, but under our present assumption of

instantaneous response, we take them to be constants. We shall refer to P = χ(2)E(2)

as the second-order nonlinear polarization and P = χ(3)E(3) as the third-order nonlin-

ear polarization. The second order nonlinear optional interactions can occur only in

noncentrocymmetric crystals-that is, in crystals that do not display inversion symme-

try. . Since liquids, gases , amorphous solids such as glasses and even many crystals

display an inversion symmetry , χ(2) vanishes identically for such media , and conse-

quently such material cannot produce the second order nonlinear optical interactions.

On the other hand, third order nonlinear optical interactions i.e. those described by

χ(3)susceptibilities can occur for both centro-symmetric and non centro-symmetric

media. We shall see in later sections of this paper how to calculate or describe the

numerical values of the nonlinear susceptibilities for various physical mechanisms

that lead to optical nonlinearities[1] For the present, we shall make a simple order of

magnitude, estimate the size of these quantities for the common case in which the

nonlinearities is electronic in origin [Armstrong et al 1962][17] One might expect that
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the lowest order correction term P (2) would be compensated to the linear response

P (2) when the amplitude of the applied field (E) is of the order of the characteristic

atomic E-field strength

Eat = e/4πεoa
2
o (2.2.20)

Where e is the charge of the electron and ao = εoh
2/me2π is the Bohr radius of the

hydrogen atom. Numerically, we find that Eat = 5.14 × 1011v/m We thus expect

under conditions of non-resonant excitation the second order susceptibilityχ(1) will

be the order ofχ(1)/Eat For condensed matter χ(1)is the order of unity, and we hence

expectχ(2) will be the order of 1/Eat or thatχ(2) = 1.94× 10−12v/m

Similarly, we expect χ(3) to be the order of

χ(3) = χ(1)/E2
at = 3.78× 10−24m2/v2 (2.2.21)

This result can be justified either as an empirical fact or more rigorously noting

that is the product of the atomic number density N and atomic polarizability. The

number density N of condensed matter is of the order of (a0)
−3, and the nonresonant

polarizability is of the order of (a0)
3 . We thus deduce that is the order of unity [3].

We then find that and

χ(2) ≈ (4πεo)
3~4/m2e5 (2.2.22)

We emphasize that polarization is macroscopic quantity, which derives from a suitably

defined small scale spatial average of the corresponding microscopic quantity, the

polarizability. [14, 16,19, 13]. The ratio between the polarization and polarizability is

simply the number of the elementary components of the medium per unit volume. The

E-field inducing the polarization is not the macroscopic external field of the incoming

radiation, which is introduced by Lorentz. The constitute Eqn. that includes the
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response of the material to the applied EM- field is written as:

D = εoE + P (2.2.23)

The term εo represents the vacuum contribution caused by the external E-field and

P is the electrical polarization of the matter. The macroscopic polarization created

by the dipoles adds to the vacuum contribution and sums up to the displacement ~D .

For different frequencies, different types of oscillators will dominate the response and

the strength E of this response, the polarization P and the electric displacement D in

a pure dielectric and in a linear approximation are related by

P = χ(1)E (2.2.24)

2.2.2 Lorentz model

Lorentz model is a theory in which electrons and ions in materials were treated as

harmonic oscillators which are under the influence of deriving local electric field and

certain damping force . Based on this consideration the expression for dielectric

function of the particle can be obtained as [24];

ε1 = 1 + χ1 = ε∞ +
ω2

p

ω2
0 − ω2 − iγω

(2.2.25)

where ω is the frequency of the applied field, ω0 is resonance frequency of the oscillator

and ωp =
√

Ne2

mε0
is the plasma frequency, m is electron effective mass, γ is the damping

parameter and ε∞ is dielectric function when oscillation is at much higher frequencies.

2.2.3 Drude model

This is a theory which modifies the Lorenz model to free electrons by letting zero the

value of the force constant to the Lorentz oscillator so ω0 = 0 in equation (2.2.25)

21



gives the Drude dielectric function for free electron [25].

ε1 = ε∞ +
ω2

p

ω2 − iγω
(2.2.26)

With real and imaginary parts

ε
′
= 1−

ω2
p

ω2 + γ2
(2.2.27)

ε
′′

= 1−
ω2

pγ

ω(ω2 + γ2)
(2.2.28)

2.2.4 Nonlinear metal dielectric composites and optical con-
stants

The relation between the optical constants: the index of refractions and permittivities

with real and imaginary parts (n, k) and (ε′, ε”) are described here. One can use either

the complex refractive index or the permittivity depending on the purpose. There

is a better intuitive understanding of n and k (real and imaginary parts of index of

refractions) because they are related to the phase velocity and attenuation of plane

waves in matter. Metals like silver, copper, aluminum and gold in their molecular

micro geometric or nanostructured level embedded in the host with proper radii ratio

for these composites. These sets are given by: N = n + ik where n is the real part of

the index of refraction and k is the imaginary part of the complex refractive index.

And ε = ε′ + iε”,where ε′ is the real part of the dielectric constant and ε” is the

imaginary part.

2.2.5 The Maxwell-Garnett effective medium theory

Effective medium theories are models which describe composite heterogeneous materi-

als through effective material properties determined based on certain approximations
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and applying statistical averaging method to the microscopic Maxwell equations.

Maxwell - Garnett effective medium approximation is the easiest and widely used

model for calculating effective dielectric quantities of composite materials consisting

many components [21-23] . And in this model the embedding or background material

is considered as host medium or matrix and the embedded components are considered

as inclusions. The Maxwell - Garnett approximation is applicable to linear medium

with inclusions whose size is very small compared to the wavelength of light waves

in the effective medium so that the electric field in the inclusions is assumed to be

uniform and the inclusions are separated by large distances in other words their con-

centration is very dilute so the particles are assumed to be non interacting. For a

medium composed of a single type or identical ellipsoidal inclusions embedded ran-

domly in a host material Maxwell-Garnett formula for the effective dielectric function

is given by [24]

εeff =
(1− f)εh + fβεi

1− f + fβ
(2.2.29)

β =
1

3

∑
λk (2.2.30)

λk =
εh

εh + Lk(εi − εh)
(2.2.31)

where k = 1, 2, 3 represent the three principal axis of the ellipsoidal inclusions, Lk is

geometrical factor of the ellipsoids to the kth principal axes of the ellipsoids, β is the

polarizability εi and εh are respectively the dielectric functions of the inclusions and

the host material.
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2.2.6 Absorption coefficient

When a particle is illuminated by a beam of light with specified characteristics ,the

amount and angular distribution of the light scattered by the particle, as well as the

amount absorbed ,depends in a detailed way on the nature of the particle that is its

shape, size, and the materials of which it is composed. Absorption is a process by

which the excited elementary charges transform part of the incident electromagnetic

energy in to other forms (thermal energy for example ) when the matter is illuminated

by electromagnetic wave. Interaction between light and metals takes place between

the optical electric field and the conduction band electrons of the metals. Some of the

light energy transferred to the lattice in the form of heat via collisions. Hence ,the

properties of metals can be characterized by two optical constants: refractive index

n and extinction coefficient, k, that result in the complex refractive index, ,where:

ñ = n + ik (2.2.32)

The refractive index is defined as the ratio of phase velocity of light in vacuum to the

phase velocity of light in the given medium . The extinction coefficient is related to the

exponential decay of the wave it passes through the medium. Both of the constants

vary with wavelength and temperature. Hence , the expression for an electromagnetic

wave in an absorbing medium contains both of these parameters and can be expressed

as follow:

~E = E0e
−2πkx

λ0 e
i( 2πnx

λ0
−ωt)

(2.2.33)

where E0 is the amplitude of the wave measured at the point x = 0 in the medium,

E is the instantaneous value of the electric vector measured at a distance x from the

first point and at some time t , ω is the angular frequency of the source, and λ0is
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the wavelength in vacuum. The absorption coefficient is related to the extinction

coefficient by:

α =
4k

λ0

(2.2.34)

The complex dielectric constant ε for metals is given by:

ε = ε1 + iε2 (2.2.35)

where the dielectric constants are related to the optical constants by:

ε1 = n2 − k2, ε2 = 2nk (2.2.36)

2.2.7 Mie theory

When Gustav Mie wrote his classic paper on light scattering by dielectric absorbing

spherical particles in 1908 he was interested in explaining the colorful effects connected

with colloidal Gold solutions. Nowadays, the interest in Mie’s theory is much broader.

Interests range from areas in physics problems involving interstellar dust, near-field

optics and plasmonics to engineering subjects like optical particle characterization.

Mie theory is still being applied in many areas because scattering particles or objects

are often homogeneous isotropic spheres or can be approximated in such a way that

Mie’s theory is applicable.

2.2.8 Bruggeman’s modern formula

Without any loss of generality, we should consider the study of conductivity for

a system made up of spherical multi component inclusions with different arbitrary

conductivities. Then the Bruggeman’s formula takes the form. For circular and
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spherical inclusions [18-21] ∑
σi

σi − σe

σ + (n− 1)σe

= 0 (2.2.37)

Where σi and σe are respectively the fraction and the conductivity of each compo-

nent of the medium n is an arbitrary number of components the sum over σi(
∑

σi = 1)

is unity. For Elliptical and ellipsoidal inclusions

1

n
δβ +

(1− σ)(σm − σe)

σ + (n− 1)σe

= 0 (2.2.38)

For randomly oriented inclusions,

β =
1

n

n∑
j=1

σ − σe

σe + Lj(σ − σe)
(2.2.39)

Where β is the polarizability, and Lj denotes the appropriate doublet or triplet of

depolarization factors which is governed by the ratios between the axis of the ellipse

/ ellipsoid. In the case of sphere

L1 =
1

3
, L2 =

1

3
, L3 =

1

3
(2.2.40)

The sum overLj is unity. Let us consider the crosshatched volume of conductivity

σ1 take it as sphere of volume V and assume it is embedded in a uniform medium

with effective conductivity σe. If the electric field far from the inclusion is E0, then

elementary considerations lead to a dipole moment associated with the volume.

P v v
σ1 − σe

σi − 2σ
E0 (2.2.41)

This polarization produces a deviation from E0, if the average deviation is to

vanish, the total polarization summed over the two types of inclusion must vanish.

Thus

σ1
σ1 − σe

σi − 2σe

+ σ2
σ2 − σe

σi − 2σe

= 0 (2.2.42)

26



Where σ1 and σ2 are respectively the volume fraction of material 1 and 2. This

can be easily extended to a system of dimension n that has an arbitrary number

components. All cases can be combined to yield equation (2.5.1) In Maxwell Garnett

Approximation, the effective medium consists of a matrix medium and inclusion with

the Maxwell Garnett equation reads, [12]

(
εeff − εm

εeff + 2εm

) = σ(
εi − εm

εi + 2εm

) (2.2.43)

Where εeff the effective dielectric constant of the medium is, εiis the one of the

inclusions and εm the one of the matrix is the volume fraction of inclusions. The

Maxwell Garnett equation is solved by

εeff = εm
2σi(εi − εm) + εi + 2εm

2εm + εi + σi(εm − εi)
(2.2.44)

so long as the denominator does not vanish. For the derivation of the Maxwell

equation we start with an array of polarizable particles. .By using the Lorentz local

field concept, we obtain the Clasius- Mossoti relation:

ε− 1

ε + 2
=

4π

3

∑
Njβj (2.2.45)

As the model of Maxwell Garnett is composition of a matrix medium with inclusion,

we enhance the equation.

εeff − εm

εeff + 2εm

= σi(
εi − εm

εeff + 2εm

) (2.2.46)

Validity: In general terms the Maxwell Garnett EMA is expected to be valid at low

volume fraction σi since it is assumed that the domains are spatially separated[20,21].
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Chapter 3

Materials and Methodology

3.1 Materials

The study is purely theoretical. An intensive survey of literature from published

articles, books, thesis and dissertation will be carried out based on the project title.

MATLAB and MATHEMATICA software’s and computers are additional instruments

used to accomplish this project

3.2 Methodology

3.2.1 Analytical

In this thesis one of the method or approach used to solve the problem is analytical

method. That is the absorption coefficient of the composite(nano ellipsoidal metal

inclusions in non absorbing dielectric host) is solved analytically.

3.2.2 Computational (graphical)

To interpret the result and to observe the effect of geometrical factor and the concen-

tration of nano ellipsoidal metal in the non absorbing host media computational and

graphical methods are employed.
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Chapter 4

Absorption Coefficient and
attenuation of electromagnetic
waves in nano ellipsoidal metal
dielectric composite

4.1 Introduction

The reduction in the intensity of electromagnetic radiations as it propagates with in

the material media is called attenuation. Any process that results in a reduction in the

electromagnetic intensity measured after propagation through a material contributes

to the observed optical attenuation. Since the optical properties of metal nano par-

ticles are governed by surface plasmon resonance (SPR), they are strongly depend

on the nano particles size, shape, concentration and spatial distribution as well as on

the properties of the surrounding matrix. Control over these parameters enables such

metal dielectric nano composite to become promising media for the development of

novel nonlinear materials, nano devices and optical elements. In this study we are

interested to describe a composite material with identical nano ellipsoidal metalic
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particles are aligned uniformly in a transparent dielectric host material. This mate-

rial share in common two important features. First in metals the delocalized valence

electrons find them selves confined in regions much smaller than their natural de-

localization length. This drastically modifies their quantum motion as proposed by

optical beams; second because the size of the metal is much smaller than the wave-

length and their dielectric constant very different from that of transparent dielectric.

The distribution of of the electric field that acts on and polarizes the changes inside

these crystallites can be vastly different from the macroscopic Maxwell’s fields in the

composite. The absorption coefficient of this nano ellipsoidal metal dielectric com-

posite is determined from the dielectric function. Another physical quantity which is

crucial for determining the dielectric function is the polarizability of the nano ellip-

soidal metal particle and it can be obtained from the electrical potential distribution

in the inner and outer of the ellipsoidal particles.

In treating this system the dipole-dipole interaction between the particles is con-

sidered very small assuming dilute concentration of nano ellipsoidal particle in the

host matrix. Moreover, the electric field ~E0 is applied parallel to one of the axis of

ellipsoidal, (that is ~E0 ‖ b for a > c > b). The potentials due to the applied field are

[21]

φI = Pφ0, P =
εh

εh + L3(εm − εh)
(4.1.1)

φh = Qφ0, Q =
abc

2

(
εh

εh + L3(εm − εh)

) ∫ ∞

ξ

dq

(c2 + q2)f(q)
(4.1.2)

where εm and εh are the dielectric constant of the metal and the host matrix, φ0 φI ,

and φh are the potentials of the external field, inside the metalic particle and the host
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matrix respectively. Where,

φ0 = −E0

(
(b2 + ξ)(b2 + η)(b2 + δ)

(a2 − b2)(c2 − b2)

)
(4.1.3)

with
∫∞

ξ
dq

(c2+q2)f(q)
= 2L

abc
and as the result,

P =
εh

εh + L(εm − εh)
, Q =

εh − εm

εh + L(εm − εh)
(4.1.4)

4.2 Extiniction and absorption coefficients

The presence of nano ellipsoidal particles in the transparent host media has resulted

in the extiniction of incident beam. If the medium in which the particles are embed-

ded is non absorbing the incident beam can either be absorbed with in the particle or

scattered by the particle. Attenuation of electromagnetic waves in a strictly homoge-

nous medium is the result of absorption which is accounted for quantitatively by the

imaginary part of the complex refractive index. The absorption coefficient of the nano

ellipsoidal particle is related to the absorption cross-section Cabs and is proportional

to the particle volume, V . Therefore; for aggregated small absorbing Rayleigh parti-

cles extiniction is determined mostly by absorption, αext = αabs = NCabs, where N is

the particle concentration. The absorption cross-section for an ensemble of randomly

oriented nano ellipsoid in the transparent host matrix is

Cabs =
1

3
kV Im

[
εh − εm

εh + L1(εm − εh)
+

εh − εm

εh + L2(εm − εh)
+

εh − εm

εh + L3(εm − εh)

]
(4.2.1)

The absorption coefficient is given by:

αabs = NCabs = NkV =β (4.2.2)

where β, is the dipole polarizability, εm is the dielectric function of the metalic ellip-

soidal nano particle and εh is the dielectric function of the host material. V = 4π
3

abc,
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and k is the wave number. For metalic nano particles the dielectric function is gov-

erned by Drude model. The dielectric function of the host material εh is considered

to be positive and has real value. According to Drude model, with respect to dimen-

sionless variables the real and imaginary part of the dielectric constant of the metal

are given by:

εmr = ε∞ −
1

z2 − δ2
, εmi =

δ

z(z2 − δ2)
(4.2.3)

with z = ω
ωp

and δ = τ
ωp

where τ is the damping frequency due to electrons collisions.

βr =
1

L

(
1− εh(εh + L(εmr − εh))

| L2(ε2
mr + ε2

mi) + 2Lεhεmr(1− L) + ε2
h(1− L)2 |

)
(4.2.4)

βi =
Lεhεmi

| L2(ε2
mr + ε2

mi) + 2Lεhεmr(1− L) + ε2
h(1− L)2 |

(4.2.5)

The inspection of the real and imaginary part of the polarizability shows that both

real and imaginary part of the polarizability depends on the geometrical factor. The

components of the polarizability decreases with an increment of geometrical factor.

The resonance condition is achieved at εh + L(εmr − εh) = 0, assuming taht the

imaginary dielectric constant of the metal is much smaller than the real part of the

dielectric constant. As the result the real part of the nano ellipsoidal metalic particle

is

εmr =

(
L− 1

L

)
εh (4.2.6)

The effective dielectric function of this system in terms of polarizability of the nano

ellipsoidal metal particle can be obtained from the Maxwell-Garnet equations:

fβ =
εh − εm

εh + L(εm − εh)
(4.2.7)
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with f = N 4π
3

abc is the volume fraction. N is the number of particles in the volume.

With this, the real and imaginary parts of the effective dielectric function of the

composite is:

εr =

(
1 +

fβr

1− 2fLβr

)
εh (4.2.8)

εi =
fβiεh

1− 2fLβr

(4.2.9)

4.3 Absorption coefficient of the composite system

In the vicinity of the resonance the dielectric constant of the composite may be written

as

ε = εr + iεi (4.3.1)

The refractive index n and absorption coefficient α(ω) are deduced from the complex

dielectric constant ε in the usual manner, using n2 − k2 = εr, 2nk = εi, and α = 2ωk
c

.

Relating these physical quantities one obtain

n =

[
1

2
(εr +

√
ε2
r + ε2

i )

] 1
2

(4.3.2)

k =

[
1

2
(
√

ε2
r + ε2

i − εr)

] 1
2

=
εi

2
[

1
2
(εr +

√
ε2
r + ε2

i )
] 1

2

(4.3.3)

α(ω) =
2ω

c

[
1

2
(
√

ε2
r + ε2

i − εr)

] 1
2

=
ωεi

c
[

1
2
(εr +

√
ε2
r + ε2

i )
] 1

2

(4.3.4)
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4.4 Numerical calculation of the absorption coef-

ficient of the composite

The variation of the absorption coefficient with geometrical factor and concentration

of nano ellipsoidal metal inclusions is graphically or numerically obtained using equa-

tions (4.2.3-4.3.4) when the inclusions are uniformly oriented in the non absorbing

dielectric host media. The calculation is made using the following optical parameters

ε∞ = 4.5, εh = 2.5, δ = 0.0115, ωp = 1.4× 1016s−1 considering silver nano ellipsoidal

particles.

Figure 4.1 shows the variation of the absorption coefficient of the composite for

different values of geometrical factors. It is observed that the maximum of the absorp-

tion coefficient shifts toward the higher frequency as the geometrical factor increases.

Moreover, we want to observe the influence of geometrical factor and concentration

nano ellipsoidal inclusions. Figure 4.2 and 4.3 describe the spectra for different val-

ues of geometrical factor and volume fraction concentration of nano ellipsoidal metal

inclusions.It is observed that the magnitude of the absorption coefficient increases,

as the number of ellipsoidal metal particles increases in the host matrix. Figure

4.4: shows the spectra of absorption coefficient for fraction of nan ellipsoidal metal

concentration for f=0.002, 0.004, and 0.006 for a given constant geometrical factor.

The numerical calculation shows that the magnitude of the absorption coefficients in-

creases as the concentration of metals increases with in the host media. This clearly

reveals that one can vary the magnitude of absorption coefficient by varying the

geometrical factor concentration of the metal inclusions. This makes the compos-

ite system a novel material for developing various optical devices and technological

applications.
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Figure 4.1: Absorption coefficient of the nano ellipsoidal particle inclusions in the
host matrx as a function of geometry
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Figure 4.2: Absorption coefficient of the nano ellipsoidal particle inclusions in the
host matrx as a function of geometry and concentration
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Figure 4.3: Absorption coefficient of the nano ellipsoidal particle inclusions in the
host matrx as a function of geometry and concentration
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Figure 4.4: Absorption coefficient of the nano ellipsoidal particle inclusions in the
host matrx as a function of geometry and concentration
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Chapter 5

Conclusion

In this study I focused on composite medium consisting identical which are nanoellip-

soidal metal embedded in transparent dieclectric material. The effects on the absorp-

tion coefficient and attenuation of electromagnetic wave in the composite due to the

changes in geometrical factor and concentration of the inclusions computed and ana-

lyzed in the figures 4.1-4.4. As we seen in this study the maximum of the absorption

coefficient shift toward the higher frequency as the geometrical factor increased. We

have also seen in this study the absorption coefficient increase as the concentration

of the nanoellipsoidal inclusion in the composite increases for the given geometrical

factor (L=0.2). Nanoellipsoidal metal dieclectric composites are needed for different

applications which require a frequency range for operation and attenuation of light.

These important properties are obtained by properly designing the nano particles

composition, size, concentration, orientation and the nature of embedding material.
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