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Abstract

In this thesis, we have studied the squeezing and statistical properties of the cavity light

beams produced by a coherently driven non degenerate three-level laser with an open

cavity and coupled to a two-mode thermal reservoir via a single-port mirror. Applying

the solutions of the equations of evolution for the expectation values of the atomic op-

erators and the quantum Langavin equations for the cavity mode operators, we have

calculated the mean and variance of the photon number as well as the quadrature

squeezing of the cavity light. We find the maximum quadrature squeezing to be the

same in the presence as well as in the absence of spontaneous emission. The quadra-

ture squeezing when γ = 0 is greater than when γ = 0.2 in the interval 0 < Ω < 0.4545

and the quadrature squeezing when γ = 0 is less than when γ = 0.2 for Ω > 0.4545 .

And the quadrature squeezing when γ = 0 is greater than when γ = 0.1 in the interval

0 < Ω < 0.4242 and the maximum quadrature squeezing when γ = 0 is less than when

γ = 0.1 for Ω > 0.4242. Moreover, the plots in the same figure show that the quadrature

squeezing when γ = 0.1 is greater than when γ = 0.2 in the interval 0 < Ω < 0.5253

and the quadrature squeezing when γ = 0.1 is less than when γ = 0.2 for Ω > 0.5253.

Furthermore, from the same plots the maximum squeezing is found to be 58.08% for

γ = 0.2 (dashed curve), for γ = 0.1 (dotted curve), and for γ = 0 (solid curve) below the

thermal-state level.
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Introduction

Light has played a special role in our attempt to understand nature quantum mechani-

cally. Squeezing is one of the nonclassical features of light that has attracted a great deal

of interest [1-8]. In squeezed light the noise in one quadrature is below the vacuum-

state level at the expense of enhanced fluctuations in the other quadrature, with the

product of the uncertainties in the two quadratures satisfying the uncertainty relation

[7,8]. Squeezed light has potential applications in low-noise optical communications

and weak signal detection [8-11].The squeezing does not exist in single modes but in

the correlated state formed by the two modes. In general, as a result of the strong

correlation between the modes, a two-mode squeezed state violates certain classical

inequalities and hence can be applied in preparing Einstein- Podolsky-Rosen (EPR)-

type entanglement [12]. Quantum entanglement is a physical phenomenon that occurs

when pairs or groups of particles cannot described independently instead, a quantum

state may be given for the system as a whole.

A three level laser may be defined as a quantum optical system in which three level

atoms in a cascade configuration, initially prepared in a coherent superposition of the

top and bottom levels, are injected into a cavity coupled to vacuum reservoir via a

1
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single-port mirror have been studied by different authors [13]. These atoms are re-

moved from the cavity after some time. When three level atoms make a transition from

the top to the bottom level via the intermediate level, two photons are generated. If the

two photons have the same frequency, the quantum optical system is said to be a de-

generate three level atom; otherwise it is called a non degenerate three level atom. The

two photons are highly correlated and this correlation is responsible for the squeezing

of light generated by a three level laser. In a cascade three-level atom the top, intermedi-

ate, and bottom levels are conveniently denoted by |a〉,|b〉, and |c〉 . We hence realize that

a non degenerate three-level laser is a two photon device in which squeezing properties

are expected to occur due to the correlation between these two photons [14-15]. Some

authors have studied the squeezing and statistical properties of the light produced by

three-level laser in which the crucial role is played by the superposition of the top and

bottom levels . Ansari [17] has predicted that such a laser can generate under certain

conditions squeezed light. S . Tesfa has studied the squeezing and statistical proper-

ties of the light generated by a non-degenerate three-level laser coupled to squeezed

vacuum reservoir [18]. Furthermore, Lu and Zhu have considered a non degenerate

three level laser with the atoms initially prepared in coherent superposition of the top

and bottom levels.The coherent superposition of the top and bottom levels of injected

atoms shows that the quantum optical system can generate light in a squeezed state

under certain conditions [19-21]. Moreover, Fesseha [22] has studied the squeezing and

the statistical properties of the light produced by a three-level laser with the atoms in a

closed cavity and pumped by electron bombardment. He has shown that the maximum

quadrature squeezing of the light generated by the laser, operating below threshold, is
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found to be 50% below the vacuum-state level. On the other hand, this study shows

that the local quadrature squeezing is greater than the global quadrature squeezing. He

has also found that a large part of the total mean photon number is confined in a rela-

tively small frequency interval. In addition, Fesseha [22] has studied the squeezing and

the statistical properties of the light produced by a degenerate three-level laser with the

atoms in a closed cavity and pumped by coherent light. He has shown that the maxi-

mum quadrature squeezing is 43% below the vacuum-state level, which is slightly less

than the result found with electron bombardment.

This Msc thesis, we wish to study the squeezing and statistical properties of the light

generated by a coherently driven nondegenerate three-level laser with an open cavity

coupled to a two-mode thermal reservoir via a single-port mirror. We carry out our

calculation by putting the noise operators associated with the thermal reservoir in nor-

mal order. We thus first determine the master equation for a coherently driven nonde-

generate three-level laser in an open cavity coupled to a two-mode thermal reservoir

and the quantum Langevin equations for the cavity mode operators.Then, employing

the master equation and the large-time approximation scheme, we obtain evolution of

the expectation values of atomic operators. Moreover, we determine the solutions of

the equations of evolution of the expectation values of the atomic operators and the

quantum Langevin equations for cavity mode operators. Then applying the resulting

solutions, we calculate the photon statistics and the quadrature variances of the single-

mode cavity light beams. Furthermore, applying the same solutions, we obtain the

mean and variance of the two-mode cavity light. Finally, we determine the quadrature

squeezing of the two-mode cavity light.
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Operator Dynamics

In this chapter we consider a nondegenerate three-level laser driven by coherent light

and with the cavity modes coupled to a two-mode thermal reservoir via a single-port

mirror as shown in Fig. (2.1). We first obtain the master equation for a coherently driven

nondegenerate three-level atom with the cavity modes and the quantum Langevin

equations for the cavity mode operators. In addition, employing the master equation

and the large-time approximation scheme, we drive the equations of evolution of the

expectation values of the atomic oprators. Finally, we determine the steady-state so-

lutions of the resulting equations of evolution. Here we carry out our calculation by

putting the noise operators associated with the thermal reservoir in normal order.

2.1 Master equation

We consider here the case in which N nondegenerate three-level atoms in cascade con-

figuration are available in an open cavity. We denote the top, intermediate, and bottom

levels of the three-level atom by |a〉k, |b〉k, and |c〉k, respectively.As shown in Fig. (2.1)for

nondegenerate cascade configuration, when the atom makes a transition from level

|a〉k to |b〉k and from levels |b〉k to |c〉k two photons with different frequencies are emit-

4
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ωb

|a>k

 |b>k

|c>k

N atoms

ε K
ωa

Thermal
Reservoir

μ

Figure 2.1: Schematic representation of a coherently driven nondegenerate three-

level laser coupled to a two-mode thermal reservoir.

ted. The emission of light when the atoms makes the transition from the top level to

the intermediate level is light mode a and the emission of light when the atoms makes

the transition from the intermediate level to the bottom level is light mode b. We as-

sume that the cavity mode a is at resonance with transition |a〉k → |b〉k and the cavity

mode b is at resonance with the transition |b〉k → |c〉k, with top and bottom levels of

the three-level atom coupled by coherent light. The coupling of the top and bottom

levels of a non degenerate three-level atom by coherent light can be described by the

Hamiltonian

Ĥ3 = ig
[
σ̂†ka â− â†σ̂k

a + σ̂†kb b̂− b̂†σ̂k
b

]
, (2.1)

Ĥ1 =
iΩ

2

[
σ̂†kc − σ̂k

c

]
, (2.2)

Ĥ2 = iε
[
â† − â + b̂† − b̂

]
, (2.3)
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is lowering atomic operator and

Ω = 2µλ. (2.4)

Here µ, considered to be real and constant, is the amplitude of the driving coherent

light and λ is the coupling constant between the driving coherent light and the three-

level atom. In addition, the interaction of a three-level atom with the cavity modes can

be described by the Hamiltonian

Ĥ = Ĥ1 + Ĥ2 + Ĥ3

from which follows

Ĥ = ig
[
σ̂†ka â− â†σ̂k

a + σ̂†kb b̂− b̂†σ̂k
b

]
+

iΩ

2

[
σ̂†kc − σ̂k

c

]
+ iε

[
â† − â + b̂† − b̂

]
(2.5)

where Ĥ is the Hamiltonian of the system , Ĥ3 describes the interaction between atom

and the cavity,Ĥ1 is the Hamiltonian of the coupling of the top and bottom levels of

a non degenerate three-level atom by coherent light and Ĥ2 is the Hamiltonian of the

cavity.

σ̂k
a =|b〉k k〈a|, (2.6)

σ̂k
b = |c〉k k〈b|, (2.7)

σ̂k
c = |c〉k k〈a|, (2.8)

g is the coupling constant between the atom and cavity mode a or b, and â and b̂ are the

annihilation operators for light modes a and b.
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The quantum analysis of the interaction of a system such as a cavity mode or a

three-level atom with the external environment is a relatively complex problem. The

external environment, usually referred to as a reservoir, can be thermal light, ordinary

or squeezed vacuum. We are interested in the dynamics of the system and this is de-

scribable by the master equation, the Fokker-Planck equation, or quantum Langevin

equations. Here, we obtain the above set of dynamical equations for a cavity mode

coupled to a thermal reservoir via a single-port mirror. The resulting equations are eas-

ily adaptable to the case when the external environment is either a thermal or a vacuum

reservoir. We then focus our study when the cavity mode is couple to a thermal reser-

voir. A system coupled with a thermal reservoir can be described by the Hamiltonian

Ĥ = Ĥ1 + Ĥ2 + Ĥ3, (2.9)

Where Ĥ is the Hamiltonian of the system and Ĥ3 describes the interaction between

cavity and the atoms. Suppose χ̂(t) is the density operator for the system and the reser-

voir. Then the equation of evolution of this density operator is given by

d

dt
χ̂(t) = −i

[
ĤS(t) + ĤSR, χ̂(t)

]
. (2.10)

We are interested in the quantum dynamics of the system alone. Hence taking into

account (2.10), we see that the density operator for the system, also known as the the

reduced density operator,

ρ̂(t) = TrRχ̂(t) (2.11)

evolves in time according to

d

dt
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
− iT r

[
Ĥca(t), χ̂(t)

]
, (2.12)
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In which TrR indicates the trace over the reservoirs variables only. On the other hand,

a formal solution of Eq. (2.10) can be written as

χ̂(t) = χ̂(0)− i

∫ t

0

[
ĤS(t′) + ĤSR(t′), χ̂(t′)

]
dt′. (2.13)

In order to obtain mathematically manageable that χ̂(t′) by some approximately valid

expression. Then, in the first place, we would arrange the reservoir in such a way that

its density operator R̂ remains constant in time. This can be achieved by letting a beam

of thermal light (or light in a vacuum state) of constant intensity fall continuously on

the system. Moreover, we decouple the system and reservoirs density operators, so that

χ̂(t′) = ρ̂(t′)R̂. (2.14)

Therefore, with the aid of this, one can rewrite Eq. (2.13) as

χ̂(t′) = ρ̂(t′)R̂−
∫ t

0

[
ĤS(t′) + Ĥca(t

′), ρ̂(t′)R̂
]
dt′. (2.15)

Now on substituting Eq .(2.15) in to Eq. (2.12) there follows

d

dt
ρ̂(t) = −i

[
ĤSR(t), ρ̂(t)

]
− i

[
〈ĤSR(t)〉R, ρ̂(0)

]
−

∫ t

0

[
〈ρ̂SR(t)〉R,

[
ĤS(t′), ρ̂(t′)

]]
dt′

−
∫ t

0

TrR

[
ĤSR(t′),

[
ĤSR(t′), ρ̂(t′)R̂

]]
dt′, (2.16)

where the subscript R indicates that the expectation value is to be calculated using the

reservoirs density operator R̂. Furthermore, the master equation for a system coupled

to a reservoir takes the form

dρ̂(t)

dt
= −iT rA[ĤS, ρ̂AR(t, t′)]− h〈Ĥ2

SRR̂〉Rρ̂(t)

+2hTrR(ĤSRρ̂(t)R̂ĤSR)− hρ̂(t)〈Ĥ2
SRR̂〉R, (2.17)
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A light mode confined in a cavity, usually formed by two mirrors, is called a cavity

mode. A commonly used cavity has a single-port mirror. One side of each cavity is a

mirror through which light can enter or leave the cavity. We now proceed to obtain the

equation of evolution of the reduced density operator, in short the master equation, for

the atoms coupled to a two-mode thermal reservoir via a single port-mirror. We con-

sider the reservoirs to be composed of large number of submodes. Thus, the interac-

tion Hamilitonian for N nondegenerate three-level atoms coupled to thermal reservoir

is written as

Ĥ3 = iλ(σ̂†ka âin − â†inσ̂
k
a + σ̂†kb b̂in − b̂†inσ̂

k
b ), (2.18)

where λ is the coupling constant, âin and b̂in are the annihilation operators of the two-

mode thermal reservoir. By employing Eq. (2.18), we then see that

hTrR(Ĥ2
SRR̂) = hTrR〈(iλ(σ̂†ka âin − â†inσ̂

k
a + σ̂†kb b̂in − b̂†inσ̂

k
b )2〉. (2.19)

This can be rewritten as

hTrR(Ĥ2
SRR̂) = −hλ2TrR

[
(σ̂†ka âinσ̂

†k
a âin)R − (σ̂†ka âinâ

†
inσ̂

k
a)R + (σ̂†ka âinσ̂

†k
b b̂in)R

−(σ̂†ka âinb̂
†
inσ̂

k
b )R − (â†inσ̂

k
a â

†kâin)R + (â†inσ̂
k
a â

†
inσ̂

k
a)R − (â†inσ̂

k
a σ̂

†k
b b̂in)R

+(â†inσ̂
k
a b̂
†
inσ̂

k
b )R + (σ̂†kb b̂inσ̂

†k
a âin)R − (σ̂†kb b̂inâ

†
inσ̂

k
a)R + (σ̂†kb b̂inσ̂

†k
b b̂in)R

−(σ̂†kb b̂inb̂
†
inσ̂

k
b )R − (b̂†inσ̂

k
b σ̂

†k
a âin)R + (b̂†inσ̂

k
b â

†
inσ̂

k
a)R − (b̂†inσ̂

k
b σ̂

†k
b b̂in)R

+(b̂†inσ̂
k
b b̂
†
inσ̂

k
b )R

]
. (2.20)

The atomic operators with operators of the reservoir are commute to each other. Then
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we observe that

hTrR(Ĥ2
SRR̂) = −hλ2

[
σ̂†k2

a 〈â2
in〉R − σ̂†ka σ̂k

a〈âinâ
†
in〉R + σ̂†ka σ̂†kb 〈âinb̂in〉R − σ̂†ka σ̂k

b 〈âinb̂
†
in〉R

−σ̂k
a σ̂

†k
a 〈â

†
inâin〉R + σ̂†k2

a 〈â†2in〉R − σ̂k
a σ̂

†k
b 〈â

†
inb̂in〉R + σ̂k

a σ̂
k
a〈â

†
inb̂

†
in〉R

+σ̂†kb σ̂†ka 〈b̂inâin〉R − σ̂†kb σ̂k
a〈b̂inâ

†
in〉R + σ̂†k2

b 〈b̂2
in〉R − σ̂†kb σ̂k

b 〈b̂inb̂
†
in〉R

−σ̂k
b σ̂

†k
a 〈b̂

†
inâin〉R + σ̂k

b σ̂
k
a〈b̂

†
inâ

†
in〉R − σ̂k

b σ̂
†k
b 〈b̂

†
inb̂in〉R + σ̂†k2

b 〈b̂†2in〉R
]
. (2.21)

Now using the density operator of the thermal reservoir

R̂ =
∞∑

n=0

n̄n
th

(1 + n̄th)n+1)
|n〉〈n|, (2.22)

one can easily check that

〈â2
in〉R =

∞∑
n=0

n̄n
th

(1 + n̄th)n+1
TrR(|n〉〈n|â2

in). (2.23)

It then follows that

〈â2
in〉R =

∞∑
n=0

n̄n
th

(1 + n̄th)n+1
〈n|n− 2〉 = 0, (2.24)

where 〈n|n− 2〉 = 0. Following the same procedure, we obtain

〈â2
in〉 = 〈b̂2

in〉 = 〈â†2in〉 = 〈b̂†2in〉 = 0, (2.25)

〈â†inb̂in〉R = 〈âinb̂
†
in〉R = 〈b̂†inâin〉R = 〈b̂inâ

†
in〉R = 0, (2.26)

〈âinb̂in〉R = 〈b̂inâin〉R = 〈b̂†inâ
†
in〉R = 〈â†inb̂

†
in〉R = 0. (2.27)

In addition, applying the commutation relation [âin, â
†
in] = 1, we then note that

〈âin, â
†
in〉 = n̄th + 1, (2.28)

〈â†in, âin〉 = n̄th, (2.29)



2.1 Master equation 11

where n̄a = n̄b = n̄th is the mean photon number for the thermal reservoir. Hence on

account of Eqs. (2.25), (2.26), (2.27), (2.28), and (2.29) into Eq. (2.20), there follows

hTrR(Ĥ2
SRR̂)ρ̂(t) = hλ2[(n̄th + 1)(σ̂†ka σ̂k

a ρ̂ + σ̂†kb σ̂k
b ρ̂) + n̄th(σ̂

k
a σ̂

†k
a ρ̂ + σ̂k

b σ̂
†k
b ρ̂)]. (2.30)

In the same manner, one can readily verify that

hρ̂(t)TrR(Ĥ2
SRR̂) = hλ2[(n̄th + 1)(ρ̂σ̂†ka σ̂k

a + ρ̂σ̂†kb σ̂k
b ) + n̄th(ρ̂σ̂k

a σ̂
†k
a + ρ̂σ̂k

b σ̂
†k
b )]. (2.31)

In addition, one can readily find

2hTrR[ĤSRρ̂(t)R̂ĤSR] = −2hλ2
[
â†ρ̂â†〈â2

in〉R − σ̂†ka ρ̂σ̂k
a〈â

†
inâin〉R + σ̂†ka ρ̂σ̂†kb 〈b̂inâin〉R

−σ̂†ka ρ̂σ̂k
b 〈b̂

†
inâin〉R − σ̂k

a ρ̂σ̂†ka 〈âinâ
†
in〉R + σ̂k

a ρ̂σ̂k
a〈â

†2
in〉R

−σ̂k
a ρ̂σ̂†kb 〈b̂inâ

†
in〉R + σ̂k

a ρ̂σ̂k
b 〈b̂

†
inâ

†
in〉R + σ̂†kb ρ̂σ̂†ka 〈âinb̂in〉R

−σ̂†kb ρ̂σ̂k
a〈â

†
inb̂in〉R + σ̂†kb ρ̂σ̂†kb 〈b̂

2
in〉R − σ̂†kb ρ̂σ̂k

b 〈b̂
†
inb̂in〉R

−σ̂k
b ρ̂σ̂†ka 〈âinb̂

†
in〉R + σ̂k

b ρ̂σ̂k
a〈â

†
inb̂

†
in〉R − σ̂k

b ρ̂σ̂†kb 〈b̂inb̂
†
in〉R

+σ̂†kb ρ̂σ̂k
b 〈b̂

†2
in〉R

]
, (2.32)

So that applying Eqs. (2.25), (2.26), (2.27), (2.28), and (2.29) in Eq. (2.32) leads to

2hTrR[ĤSRρ̂(t)R̂ĤSR] = 2λ2h[n̄th(σ̂
†k
a ρ̂σ̂k

a + σ̂†kb ρ̂σ̂k
a) + (n̄th + 1)(σ̂k

a ρ̂σ̂†ka + σ̂k
b ρ̂σ̂†kb )]. (2.33)

Taking into account Eq. (2.30), (2.31), and (2.33), the expression in Eq. (3.17) takes the

form

d

dt
ρ̂(t) = −i

[
Ĥ, ρ̂(t)

]
+

γ

2
(n̄th + 1)

[
2σ̂k

a ρ̂σ̂†ka − σ̂†ka σ̂k
a ρ̂− ρ̂σ̂†ka σ̂k

a

]
+

γ

2
n̄th

[
2σ̂†ka ρ̂σ̂k

a − σ̂k
a σ̂

†k
a ρ̂− ρ̂σ̂k

a σ̂
†k
a

]
+

γ

2
n̄th

[
2σ̂†kb ρ̂σ̂k

b − σ̂k
b σ̂

†k
b ρ̂− ρ̂σ̂k

b σ̂
†k
b

]
+

γ

2
(n̄th + 1)

[
2σ̂k

b ρ̂σ̂†kb − σ̂†kb σ̂k
b ρ̂− ρ̂σ̂†kb σ̂k

b

]
, (2.34)
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where γa = γb = γ = 2hλ2, considered to be the same for levels |a〉 and |b〉, is the spon-

taneous emission decay constant. In addition, a nondegenerate three-level atom in an

open cavity is coupled to a two-mode thermal reservoir. Therefore, the master equation

for a coherently driven nondegenerate three-level atom in an open cavity and coupled

to a two-mode thermal reservoir, with the aid of (2.17), is found to be

d

dt
ρ̂(t) = g

[
σ̂†ka âρ̂− â†σ̂k

a ρ̂ + σ̂†kb b̂ρ̂− b̂†σ̂k
b ρ̂− ρ̂σ̂†ka â + ρ̂â†σ̂k

a − ρ̂σ̂†kb b̂ + ρ̂b̂†σ̂k
b

]
+ε

[
â†ρ̂− ρ̂â† − âρ̂ + ρ̂â + b̂†ρ̂− ρ̂b̂† − b̂ρ̂ + ρ̂b̂

]
+

Ω

2

[
σ̂†kc ρ̂− σ̂k

c ρ̂− ρ̂σ̂†kc + ρ̂σ̂k
c

]
+

γ

2
n̄th

[
2σ̂†ka ρ̂σ̂k

a − σ̂k
a σ̂

†k
a ρ̂− ρ̂σ̂k

a σ̂
†k
a

]
+

γ

2
(n̄th + 1)

[
2σ̂k

a ρ̂σ̂†ka − σ̂†ka σ̂k
a ρ̂− ρ̂σ̂†ka σ̂k

a

]
+

γ

2
n̄th

[
2σ̂†kb ρ̂σ̂k

b − σ̂k
b σ̂

†k
b ρ̂− ρ̂σ̂k

b σ̂
†k
b

]
+

γ

2
(n̄th + 1)

[
2σ̂k

b ρ̂σ̂†kb − σ̂†kb σ̂k
b ρ̂− ρ̂σ̂†kb σ̂k

b

]
. (2.35)

This is the master equation for a coherently driven nondegenerate three-level atom in

an open cavity and coupled to a two-mode thermal reservoir.

2.2 Quantum Langevin Equations

We recall that the laser cavity is coupled to a two-mode thermal reservoir via a single-

port mirror. In addition, we carry out our calculation by putting the noise operators

associated with the thermal reservoir in normal order. Thus the noise operators will not

have any effect on the dynamics of the cavity mode operators [7,8]. We can therefore

drop the noise operators and write the quantum Langevin equations for the operators

â and b̂ as

dâ

dt
= −κ

2
â− i[â, Ĥ] (2.36)

db̂

dt
= −κ

2
b̂− i[b̂, Ĥ] (2.37)
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where κ is the cavity damping constant. Then in view of eq.(2.35),the quantum

Langevin equations for cavity mode operators â and b̂ turns out to be

dâ

dt
= −κ

2
â + gσ̂k

a + ε, (2.38)

db̂

dt
= −κ

2
b̂ + gσ̂k

b + ε, (2.39)

2.3 Evolutions of the atomic operators

Here we start to derive the equations of evolution of the expectation values of the

atomic oprators by applying the master equation and the large-time approximation

scheme. Moreover, we find the steady-state solutions of the equations of evolution of

the atomic oprators. To this end, employing the relation

d

dt
〈Â〉 = Tr

(
dρ̂

dt
Â

)
(2.40)

Along with the master equation (2.35), one can readily establish that

d

dt
〈σ̂k

a〉 = g[〈η̂k
b â〉 − 〈η̂k

a â〉+ 〈b̂†σ̂k
c 〉] +

Ω

2
〈σ̂†kb 〉

+ε[〈σk
a â

†〉 − 〈â†σ̂k
a〉

+〈âσ̂k
a〉 − 〈σ̂k

a â〉+ 〈σ̂k
a b̂
†〉 − 〈b̂†σ̂k

a〉+ 〈b̂σ̂k
a〉

−〈σ̂k
a b̂〉] + γ[

3

2
n̄th + 1]〈σ̂k

a〉 (2.41)

and

d

dt
〈σ̂k

b 〉 = g[〈η̂k
c b̂〉 − 〈η̂k

b b̂〉+ 〈â†σ̂k
c 〉]

−Ω

2
〈σ̂†ka 〉+ ε[〈σk

b â
†〉 − 〈â†σ̂k

b 〉

+〈âσ̂k
b 〉 − 〈σ̂k

b â〉

+〈σ̂k
b b̂
†〉 − 〈b̂†σ̂k

b 〉+ 〈b̂σ̂k
b 〉 − 〈σ̂k

b b̂〉] + γ[
3

2
n̄th +

1

2
]〈σ̂k

b 〉, (2.42)
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d

dt
〈σ̂k

c 〉 = g[〈σ̂k
b â〉 − 〈σ̂k

a b̂〉] +
Ω

2

[
〈η̂k

c 〉 − 〈η̂k
a〉

]
−γ[n̄th +

1

2
)]〈σ̂k

c 〉+ ε[〈σ̂k
c â

†〉,−〈â†σ̂k
c 〉+ 〈âσ̂k

c 〉 − 〈σ̂k
c â〉

+〈σ̂k
c b̂
†〉 − 〈b̂†σ̂k

c 〉+ 〈b̂σ̂k
c 〉 − 〈σ̂k

c b̂〉], (2.43)

d

dt
〈η̂k

a〉 = g[〈σ̂†ka â〉+ 〈â†σ̂k
a〉] +

Ω

2

[
〈σ̂k

c 〉

+〈σ̂†kc 〉
]
− γ[n̄th + 1]〈η̂k

a〉

+ε[〈η̂k
a â

†〉,−〈â†η̂k
a〉+ 〈âη̂k

a〉 − 〈η̂k
a â〉

+〈η̂k
a b̂
†〉 − 〈b̂†η̂k

a〉+ 〈b̂η̂k
a〉 − 〈η̂k

a b̂〉], (2.44)

d

dt
〈η̂k

b 〉 = g[〈σ̂†kb b̂〉+ 〈b̂†σ̂k
b 〉 − 〈σ̂†ka â〉 − 〈â†σ̂k

a〉]

+γ(2n̄th + 1)[〈η̂k
a〉 − 〈η̂k

b 〉] + ε[〈η̂k
b â

†〉 − 〈â†η̂k
b 〉

+〈âη̂k
b 〉 − 〈η̂k

b â〉+ 〈η̂k
b b̂
†〉

−〈b̂†η̂k
b 〉+ 〈b̂η̂k

b 〉 − 〈η̂k
b b̂〉], (2.45)

Where

η̂k
a = a〉k k〈a|, , (2.46)

η̂k
b = |b〉k k〈b|, , (2.47)

η̂k
c = |c〉k k〈c|. (2.48)

We see that Eqs. (2.41)-(2.45) are nonlinear differential equations and hence it is not

possible to find exact time-dependent solutions of these equations. We intend to over-

come this problem by applying the large-time approximation [7,8]. Therefore, employ-

ing this approximation scheme, we get from Eqs. (2.38) and (2.39) the approximately
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valid relations

â =
2gσκ

a

κ
+

2ε

κ
, (2.49)

b̂ =
2gσκ

b

κ
+

2ε

κ
(2.50)

Evidently, these turn out to be exact relations at steady-state. Now introducing Eqs.

(2.49) and (2.50) into Eqs. (2.41) - (2.45), the equations of evolution of the atomic oper-

ators take the form

d

dt
〈σ̂k

a〉 = −(γ + γc)(
3

2
n̄th + 1)〈σ̂k

a〉+
Ω

2
〈σ̂†kb 〉, (2.51)

d

dt
〈σ̂k

b 〉 = −1

2
(γ + γc)(3n̄th + 1)〈σ̂k

b 〉 −
Ω

2
〈σ̂†ka 〉, (2.52)

d

dt
〈σ̂k

c 〉 = −1

2
(γ + γc)(2n̄th + 1)〈σ̂k

c 〉+
Ω

2

[
〈η̂k

c 〉 − 〈η̂k
a〉

]
, (2.53)

d

dt
〈η̂k

a〉 = −(γ + γc)(n̄th + 1)〈η̂k
a〉+

Ω

2

[
〈σ̂k

c 〉+ 〈σ̂†kc 〉
]
, (2.54)

d

dt
〈η̂k

b 〉 = −(γ + γc)(2n̄th + 1)[〈η̂k
b 〉 − 〈η̂k

a〉], (2.55)

where

γc =
4g2

κ
(2.56)

Is the stimulated emission decay constant.

We next sum Eqs. (2.51) -(2.55) over the N three-level atoms, so that

d

dt
〈m̂a〉 = −(γ + γc)(

3

2
n̄th + 1)〈m̂a〉+

Ω

2
〈m̂†

b〉, (2.57)

d

dt
〈m̂b〉 = −1

2
(γ + γc)(3n̄th + 1)〈m̂b〉 −

Ω

2
〈m̂†

a〉, (2.58)

d

dt
〈m̂c〉 = −1

2
(γ + γc)(2n̄th + 1)〈m̂c〉+

Ω

2

[
〈N̂c〉 − 〈N̂a〉

]
, (2.59)

d

dt
〈N̂a〉 = −(γ + γc)(n̄th + 1)〈N̂a〉+

Ω

2

[
〈m̂c〉+ 〈m̂†

c〉
]
, (2.60)

d

dt
〈N̂b〉 = −(γ + γc)(2n̄th + 1)[〈N̂b〉 − 〈N̂a〉], (2.61)
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in which

m̂a =
N∑

k=1

σ̂k
a , (2.62)

m̂b =
N∑

k=1

σ̂k
b , (2.63)

m̂c =
N∑

k=1

σ̂k
c , (2.64)

N̂a =
N∑

k=1

η̂k
a , (2.65)

N̂b =
N∑

k=1

η̂k
b , (2.66)

N̂c =
N∑

k=1

η̂k
c , (2.67)

with the operators N̂a, N̂b, and N̂c representing the number of atoms in the top, in-

termediate, and bottom levels, respectively. In addition, employing the completeness

relation

η̂k
a + η̂k

b + η̂k
c = Î , (2.68)

we easily arrive at

〈N̂a〉+ 〈N̂b〉+ 〈N̂c〉 = N. (2.69)

Furthermore, using the definition,

σ̂k
a = |b〉〈a|, (2.70)

we have

m̂a = N |b〉〈a|, (2.71)
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following the same procedure, one can also easily establish that

m̂b = N |c〉〈b|, (2.72)

m̂c = N |c〉〈a|, (2.73)

N̂a = N |a〉〈a|, (2.74)

N̂b = N |b〉〈b|, (2.75)

N̂c = N |c〉〈c|. (2.76)

Using the definition

m̂ = m̂a + m̂b, (2.77)

and taking into account Eqs. (2.71)-(2.77)

m̂†m̂ = N(N̂a + N̂b), (2.78)

m̂m̂† = N(N̂b + N̂c), (2.79)

m̂2 = Nm̂c. (2.80)

In the presence of N three-level atoms, we rewrite Eqs. (2.38) and (2.39)

dâ

dt
= −κ

2
â + λm̂a + ε, (2.81)

db̂

dt
= −κ

2
b̂ + βm̂b + ε, (2.82)

In which λ and β are constants whose values remain to be fixed. We note that the steady-

state solutions of Eqs.(2.49) and (2.50) are

â =
2g

κ
σ̂k

a +
2ε

κ
(2.83)

b̂ =
2g

κ
σ̂k

b +
2ε

κ
. (2.84)
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Now employing Eqs. (2.83) and (2.84), the commutation relations for the cavity mode

operators are found to be

[â, â†]k =
γc

κ

[
η̂k

b − η̂k
a

]
, (2.85)

[b̂, b̂†]k =
γc

κ

[
η̂k

c − η̂k
b

]
, (2.86)

and on summing over all atoms, we have

[â, â†] =
γc

κ

[
N̂b − N̂a

]
, (2.87)

[b̂, b̂†] =
γc

κ

[
N̂c − N̂b

]
, (2.88)

where

[â, â†] =
N∑

k=1

[â, â†]k, (2.89)

[b̂, b̂†] =
N∑

k=1

[b̂, b̂†]k. (2.90)

We note that Eqs. (2.89) and Eqs. (2.90) stand for the commutators â and â†, and for b̂

and b̂† when the light modes a and b are interacting with all the N three-level atoms. On

the other hand, using the steady-state solutions of Eqs. (2.81) and (2.82), one can easily

verify that

[â, â†] = N

(
2λ

κ

)2(
N̂b − N̂a

)
(2.91)

and

[b̂, b̂†] = N

(
2β

κ

)2(
N̂c − N̂b

)
. (2.92)

Thus on account of Eqs. (2.87) and, we see that

λ = ± g√
N

. (2.93)
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Similarly, inspection of Eqs. (2.88) and shows that

β = ± g√
N

. (2.94)

Hence in view of these two results, the equations of evolution of the light modes a and

b operators given by Eqs. (2.83) and (2.84) can be written as

dâ

dt
= −κ

2
â +

g√
N

m̂a + ε (2.95)

db̂

dt
= −κ

2
b̂ +

g√
N

m̂b + ε. (2.96)

Now adding Eqs. (2.83) and (2.84) as well as Eqs. (2.77),(2.78) and (2.80), we get

[ĉ, ĉ†] =
γc

κ

[
N̂c − N̂a

]
, (2.97)

dĉ

dt
= −κ

2
ĉ +

g√
N

m̂ + 2ε, (2.98)

in which

ĉ = â + b̂. (2.99)

We next proceed to obtain the expectation value of the cavity mode operators. One

can rewrite Eq. (2.57) and the adjoint of (3.56) as

d

dt
〈m̂a(t)〉 = −(γ + γc)(

3

2
n̄th + 1)〈m̂a(t)〉+

Ω

2
〈m̂†

b(t)〉 (2.100)

and

d

dt
〈m̂†

b(t)〉 = −Ω

2
〈m̂a(t)〉 −

1

2
(γ + γc(3n̄th + 1)〈m̂†

b(t)〉. (2.101)

To solve the coupled differential equations (2.100) and (2.101), we write the single-

matrix equation

d

dt

 〈m̂a(t)〉

〈m̂†
b(t)〉

 = M

 〈m̂a(t)〉

〈m̂†
b(t)〉

 , (2.102)
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with

M =

 −(γ + γc)(
3
2
n̄th + 1) Ω

2

−Ω
2

−1
2
(γ + γc)(3n̄th + 1)

 . (2.103)

In order to solve Eq. (2.103), we need the eigenvalues and eigenvectors of M such that

MVi = λiVi, (2.104)

with i = 1, 2, and the eigenvectors

Vi =

 xi

yi

 , (2.105)

subject to the normalization condition

x2
i + y2

i = 1. (2.106)

The eigenvalue equation (2.103) has nontrivial solution, provided that

det(M − λI) = 0, (2.107)

so that applying Eq. (2.107), the eigenvalues are found to be

λ1 = −3

4
(γ + γc)(2n̄th + 1) +

1

2
p (2.108)

and

λ2 = −3

4
(γ + γc)(2n̄th + 1)− 1

2
p, (2.109)

where

p =

√
1

4
(γ + γc)2 − Ω2. (2.110)



2.3 Evolutions of the atomic operators 21

We next seek to obtain the eigenvectors of M . To this end, the eigenvector corre-

sponding to λ1 is expressible as

V1 =

 x1

y1

 . (2.111)

Then employing Eqs. (2.103) and (2.104), we write the matrix equation

M =

 −(γ + γc)(
3
2
n̄th + 1) Ω

2

−Ω
2

−1
2
(γ + γc)(3n̄th + 1)


 x1

y1

 = λ1

 x1

y1

 (2.112)

Taking into account this equation and the normalization condition

x2
1 + y2

1 = 1, (2.113)

we get

V1 =
1√

Ω2

4
+ (λ1 + γ + γc)2

 Ω
2

λ1 + γ + γc

 . (2.114)

The eigenvector corresponding to λ2 can also be established following a similar proce-

dure that

V2 =

 x2

y2

 =
1√

Ω2

4
+ (λ2 + γ + γc)2

 Ω
2

λ2 + γ + γc

 . (2.115)

Finally, we construct a matrix V consisting of the eigenvectors of the matrix M as col-

umn matrices

V =


Ω
2√

Ω2

4
+(λ1+γ+γc)2

Ω
2√

Ω2

4
+(λ2+γ+γc)2

λ1+γ+γc√
Ω2

4
+(λ1+γ+γc)2

λ2+γ+γc√
Ω2

4
+(λ2+γ+γc)2

 . (2.116)
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We next proceed to determine the inverse of the matrix V . To this end, it can be readily

verified that the characteristic equation

det(V − λI) = 0 (2.117)

Has explicit form

λ2 −
[ Ω

2√
Ω2

4
+ (λ1 + γ + γc)2

+
λ2 + γ + γc√

Ω2

4
+ (λ2 + γ + γc)2

]
λ

−
Ω
2
(λ1 − λ2)√

Ω2

4
+ (λ1 + γ + γc)2

√
Ω2

4
+ (λ2 + γ + γc)2

I = 0. (2.118)

Thus applying the Cayley-Hamilton theorem that a matrix satisfies its own characteris-

tic equation, we have

V 2 −
[ Ω

2√
Ω2

4
+ (λ1 + γ + γc)2

+
λ2 + γ + γc√

Ω2

4
+ (λ2 + γ + γc)2

]
V

−
Ω
2
(λ1 − λ2)√

Ω2

4
+ (λ1 + γ + γc)2

√
Ω2

4
+ (λ2 + γ + γc)2

I = 0. (2.119)

In view of this, we obtain

V −1 =
1

λ1 − λ2

 −(λ2+γ+γc)
Ω
2

√
Ω2

4
+ (λ1 + γ + γc)2

√
Ω2

4
+ (λ1 + γ + γc)2

(λ1+γ+γc)
Ω
2

√
Ω2

4
+ (λ2 + γ + γc)2 −

√
Ω2

4
+ (λ2 + γ + γc)2

 . (2.120)

Using the fact that V V −1 = I, Eq. (2.116) can be rewritten as

d

dt
〈Û(t)〉 = V V −1MV V −1〈Û(t)〉, (2.121)

in which

〈Û(t)〉 =

 〈m̂a(t)〉

〈m̂†
b(t)〉

 . (2.122)
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Multiplying Eq. (2.122) by V −1 from the left, we get

d

dt
(V −1〈Û(t)〉) = DV −1〈Û(t)〉, (2.123)

where

D = V −1MV =

 −β 0

0 −β

 , (2.124)

in which β = γ + γc. The formal solution of Eq. (2.124) can be written as

V −1〈Û(t)〉 = eDtV −1〈Û(0)〉, (2.125)

from which follows

〈Û(t)〉 = V eDtV −1〈Û(0)〉. (2.126)

In view of the fact that D is diagonal, we have

eDt =

 e−βt 0

0 e−βt

 . (2.127)

Therefore, on account of Eq. (2.126) along with (2.122), and (2.127) we obtain

V eDtV −1〈Û(0)〉 =

 e−βt〈m̂a(0)〉 0

0 e−βt〈m̂†
b(0)〉

 , (2.128)

In view of Eqs. (2.122) and (2.127) along with (2.128), we see that 〈m̂a(t)〉

〈m̂†
b(t)〉

 =

 〈m̂a(0)〉e−βt 0

0 〈m̂†
b(0)〉e−βt

 . (2.129)

It then follows that

〈m̂a(t)〉 = 〈m̂a(0)〉e−βt (2.130)
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and

〈m̂†
b(t)〉 = 〈m̂†

b(0)〉e−βt. (2.131)

Furthermore, the adjoint of Eq. (2.131) can be written as

〈m̂b(t)〉 = 〈m̂b(0)〉e−βt. (2.132)

With the atoms considered to be initially in the bottom level, Eqs. (2.130) and (2.131)

reduce to

〈m̂a(t)〉 = 0 (2.133)

and

〈m̂b(t)〉 = 0. (2.134)

The expectation value of the solution of Eq. (2.38) is expressible as

〈â(t)〉 = 〈â(0)〉e−κt/2 +
g√
N

∫ t

0

eκt′/2〈m̂a(t
′)〉dt′ + 2ε

∫ t

0

eκt′/2dt′ (2.135)

With the help of Eq. (2.133) and the assumption that the cavity light is initially in a

vacuum state, Eq. (2.135) turns out to be

〈â(t)〉 =
2ε

κ
, (2.136)

Following a similar procedure, one can readily obtain the expectation value of the solu-

tion of Eq. (2.39) to be

〈b̂(t)〉 =
2ε

κ
, (2.137)
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Now with the aid of Eqs. (2.136) and (2.137) togather with (2.99), we have

〈ĉ(t)〉 =
4ε

κ
(2.138)

Finally, we seek to determine the steady-state solutions of the expectation values

of the atomic operators. We note that the steady-state solutions of Eqs. (2.59) and

(2.60)are given by

〈m̂c〉 =

(
Ω

γ + γc(2n̄th + 1
)

) [
〈N̂c〉 − 〈N̂a〉

]
, (2.139)

〈N̂a〉 =
1

2

(
Ω

γ + γc(n̄th + 1)

) [
〈m̂c〉+ 〈m̂†

c〉
]
, (2.140)

〈N̂b〉 = 〈N̂a〉. (2.141)

Furthermore, with the help of Eq. (2.69) togather with (2.141), we see that

〈N̂c〉 = N − 2〈N̂a〉. (2.142)

With the aid of Eq. (2.142) and Eq. (2.139) can be written as

〈m̂c〉 =

(
Ω

γ + γc(2n̄th + 1)

) [
N − 3〈N̂a〉

]
(2.143)

and in view of Eq. (2.60), we observe that

〈m̂c〉 = 〈m̂†
c〉. (2.144)

Now taking into consideration this result, Eq. (2.140) can be put in the form

〈N̂a〉 =

(
Ω

γ + γc(n̄th + 1)

)
〈m̂c〉. (2.145)

Using Eqs. (2.140) and (2.143), one readily gets

〈N̂a〉 =

[
Ω2

(γc + γ)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
N. (2.146)
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Substitution of Eq. (2.58) into Eqs. (2.59), (2.60), and (2.66) results in

〈N̂b〉 =

[
Ω2

(γc + γ)2(n̄th1)(2n̄th + 1) + 3Ω2

]
N, (2.147)

〈N̂c〉 =

[
(γc + γ)2(n̄th + 1)(2n̄th + 1) + Ω2

(γc + γ)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
N, (2.148)

〈m̂c〉 =

[
Ω(γc + γ)(n̄th + 1)

(γc + γ)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
N. (2.149)

These equations represent the steady-state solutions of the equations of evolution of

the atomic operators. Furthermore, upon setting γ = 0, for the case in which sponta-

neous emission is absent, the steady-state solutions described by Eqs. (2.146)-(2.149)

take the form

〈N̂a〉 =

[
Ω2

γ2
c (n̄th + 1)(2n̄th + 1) + 3Ω2

]
N, (2.150)

〈N̂b〉 =

[
Ω2

γ2
c (n̄th + 1)(2n̄th + 1) + 3Ω2

]
N, (2.151)

〈N̂c〉 =

[
γ2

c (n̄th1)(2n̄th + 1) + Ω2

γ2
c (n̄th + 1)(2n̄th + 1) + 3Ω2

]
N, (2.152)

〈m̂c〉 =

[
Ωγc(n̄th + 1)

γ2
c (n̄th + 1)(2n̄th1) + 3Ω2

]
N. (2.153)

The results described by Eqs. (2.146)-(2.149) are exactly the same as those obtained In

addition, we note that forΩ >> γc Eqs. (2.150)-(2.153) reduce to

〈N̂b〉 =
1

3
N, (2.154)

〈N̂b〉 =
1

3
N, (2.155)

〈N̂c〉 =
1

3
N, (2.156)

〈m̂c〉 = 0 (2.157)
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Photon statistics

In this chapter we proceed to study the statistical properties of the light produced by

the coherently driven nondegenerate three-level laser with an open cavity and coupled

to a two-mode thermal reservoir via a single-port mirror. Applying the solutions of evo-

lution of the expectation values of the atomic operators and the quantum Langavin

equations for the cavity mode operators, we obtain the global photon statistics for light

modes a and b. olso, we determine the global photon statistics of the two-mode cavity

light.

3.1 Single-mode photon statistics

In this section we find the global mean and variance of the photon numbers for light

modes a and b.

3.2 Global mean photon number

Here we start to calculate the global mean photon numbers of light modes a and b pro-

duced by the coherently driven non degenerate three level laser with an open cavity

and coupled to a two mode thermal reservoir.

27
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3.2.1 Global photon number of light mode a

we know start to find the mean photon number of light mode a in the entire frequency

interval.The mean photon number of light mode a,represented by the operators â and

â†, is defined by

na = 〈â†â〉 (3.1)

we note that the steady-state solution of Eq.(2.95),

â =
2g

κ
√

N
m̂a +

2ε

κ
, (3.2)

â† =
2g

κ
√

N
m̂†

a +
2ε

κ
(3.3)

so that introducing eq(3.2) and eq.(3.3) into (3.1), we see that

na =
[ 2g

κ
√

N
m̂†

a +
2ε

κ

][ 2g

κ
√

N
m̂a +

2ε

κ

]
, (3.4)

na =
4g2

κ2N
〈m̂†

am̂a〉+
4ε2

κ2
(3.5)

with the help of eq.(2.71), Eq.(3.4) can be expressed as

na =
γc

κ

[ Ω2

(γ + γc)2(2n̄th + 1)(n̄th + 1) + 3Ω2

]
N +

4ε2

κ2
(3.6)

in view of Eq.(3.6),there follows

na =
γcN

κ

[ Ω2

(γ + γc)2(2n̄th + 1)(n̄th + 1) + 3Ω2

]
+

4ε2

κ2
(3.7)

This is the steady-state mean photon number of light mode a. moreover, we consider

the case in which spontaneous emission is absent(γ=0).Then the mean photon number

of light mode a for this case has the form

na =
γc

κ

[ Ω2

(γc)2(2n̄th + 1)(n̄th + 1) + 3Ω2

]
N +

4ε2

κ2
(3.8)
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Figure 3.1: The plots of the mean photon number of light mode a [Eq. (3.7)] versus Ω

for γc = 0.4,κ = 0.8, N = 50,n̄th=5, and for different values of γ.
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Figure 3.2: The plots of the mean photon number of light mode a [Eq. (3.7)] versus γ for

γc = 0.4,κ = 0.8, N = 50,n̄th=5, and for different values of Ω

.
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Figure 3.3: The plots of the mean photon number of light mode a [Eq. (3.7)] versus

mean photon number for the thermal reservoir for γc = 0.4,κ = 0.8, N = 50,Ω=2, and for

different values of γ

.
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The plots in Fig. (3.1) show that the steady-state mean photon number of light mode

a in the absence of spontaneous emission when (γ = 0) is greater than in the presence

of spontaneous emission (when γ 6= 0). Moreover, the mean photon number of light

mode a decreases when γ increases.

3.2.2 Global photon number of light mode b

we know proceed to obtain the mean photon number of light mode b in the entire fre-

quency interval.the mean photon number of light mode b,represented by the operators

b̂ and â†, is defined by

nb = 〈b̂†b̂〉 (3.9)

we note that the steady-state solution of Eq.(2.96)

b̂ =
2g

κ
√

N
m̂b +

2ε

κ
(3.10)

b̂† =
2g

κ
√

N
m̂†

b +
2ε

κ
(3.11)

so that introducing eq(3.10) and eq.(3.11) into (3.9), we see that

nb =
[ 2g

κ
√

N
m̂†

b +
2ε

κ

][ 2g

κ
√

N
m̂b +

2ε

κ

]
, (3.12)

nb =
4g2

κ2N
〈m̂†

bm̂b〉+
4ε2

κ2
(3.13)

with the help of eq.(2.72), Eq.(3.13) can be expressed as

nb =
γc

κ

[ Ω2

(γ + γc)2(2n̄th + 1)(n̄th + 1) + 3Ω2

]
N +

4ε2

κ2
(3.14)

in view of Eq.(3.14),there follows

nb =
γcN

κ

[ Ω2

(γ + γc)2(2n̄th + 1)(n̄th + 1) + 3Ω2

]
+

4ε2

κ2
(3.15)
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Figure 3.4: plots of the mean photon number of light mode b [Eq. (3.15)] versus Ω for γc

= 0.4,κ = 0.8, N = 50,n̄th = 5, and for different values of γ

.

this is the steady-state mean photon number of light mode b. moreover, we consider the

case in which spontaneous emission is absent(γ=0).Then the mean photon number of

light mode b for this case has the form

nb =
γc

κ

[ Ω2

(γc)2(2n̄th + 1)(n̄th + 1) + 3Ω2

]
N +

4ε2

κ2
(3.16)

The plots in Fig. (3.4) show that the steady-state mean photon number of light mode

b in the absence of spontaneous emission (when γ = 0) is greater than in the presence

of spontaneous emission (when γ 6= 0). Moreover, the mean photon number of light
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mode b decreases when γ increases.

3.3 Local mean photon number

Here we seek to determine the local mean photon numbers of of light modes a and

b,produced by the coherently driven nondegenerate three level laser with open cavity

and coupled to a two mode thermal reservoir.

3.3.1 Local mean photon number of light mode a

we now proceed to obtain the mean photon number of light mode a in a given fre-

quency interval.To determine the local mean photon number of light mode a, we need

to consider the power spectrum of light mode a.the power spectrum of light mode a

with central frequency ω0 is expressible as [22]

pa(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ωo)τ 〈â†(t)â(τ + t)〉ss (3.17)

upon integrating both sides of Eq (3.17) over ω,we readily get

∫ ∞

−∞
Pa(ω)dω = na (3.18)

In which na is the steady- state mean photon number of light mode a.From this re-

sult,we observe that Pa(ω)dω is the steady- state mean photon number of light mode a

in the frequency interval between ω and ω+dω we now proceed to determine the total

correlation function that appears in Eq.(3.17). To this end, we realize that the solution

of Eq.(2.71)

â(t + τ) = â(t)e−κ τ
2 +

g√
N

e−κ τ
2

∫ ∞

0

eκ τ ′
2 m̂a(t + τ ′)dτ ′ + ε

∫ ∞

0

eκ τ ′
2 dτ ′ (3.19)
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on the basis of Eq.(2.76)and Eq.(2.77), we see that

d

dt
m̂a(t) = −(γ + γc)(

3

2
n + 1)ma(t) +

Ω

2
m̂†

b(t) + F̂a(t) (3.20)

and

d

dt
m̂†

b(t) = −Ω

2
m̂a(t)−

1

2
(γ + γc(3n + 1)m̂†

b(t) + F̂b(t). (3.21)

where F̂a(t) and F̂b(t) are noise force operators of the two light mode. to solve the cou-

pled differential equations (3.21),we write the single matrix equation

d

dt
Û(t) = MÛ(t) + F̂ (t), (3.22)

in which

Û(t) =

 m̂a(t)

m̂†
b(t)

 , (3.23)

F̂ (t) =

 F̂a(t)

F̂ †
b (t)

 (3.24)

and M is given Eq.(2.79).using the fact that V V −1=I, Eq.(3.22)can be rewritten as

d

dt
Û(t) = V V −1MV V −1Û(t) + F̂ (t) (3.25)

multiplying this equation by V −1 from the left, we get

d

dt
(V −1Û(t) = DV −1Û(t) + V −1F̂ (t) (3.26)

where D is given by Eq.(2.100).Now the formal solution of Eq.(3.26) can be rewritten as

V −1Û(t + τ) = eDτV −1U(t) +

∫ τ

0

e(τ−τ ′)F̂ (t + τ ′)dτ ′ (3.27)
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from which follows

Û(t + τ) = V eDτV −1U(t) +

∫ τ

0

V e(τ−τ ′)F̂ (t + τ ′)dτ ′ (3.28)

in view of the fact that D is diagonal, we have

eDτ =

 eλ1τ 0

0 eλ2τ

 . (3.29)

and

eDτ−τ ′
=

 eλ1τ−τ ′
0

0 eλ2τ−τ ′

 . (3.30)

therefore, on account of Eq.(3.28)along with (3.23),(3.24),(2.92), (2.96), (3.28), and

(3.29), we obtain

V eDτV −1Û(τ) =

 p1(τ)m̂a(τ) p1(τ)m̂†
b(τ)

p2(τ)m̂a(τ) p2(τ)m̂†
b(τ)

 . (3.31)

∫ τ−τ ′

0

V −1F̂ (t + τ ′)dτ ′ =


∫ τ

0
p1(τ − τ ′)F̂a(t + τ ′)dτ ′

∫ τ

0
q1(τ − τ ′)F̂ †

b (t + τ ′)dτ ′∫ τ

0
q2(τ − τ ′)F̂a(t + τ ′)dτ ′

∫ τ

0
p2(τ − τ ′)F̂ †

b (t + τ ′)dτ ′

 .(3.32)
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where

p1(τ) =
λ1 + γ + γc

λ1 − λ2

eλ2τ − λ2 + γ + γc

λ1 − λ2

eλ1τ , (3.33)

p2(τ) =
λ1 + γ + γc

λ1 − λ2

eλ1τ − λ2 + γ + γc

λ1 − λ2

eλ2τ , (3.34)

q1(τ) =
Ω
2
(eλ1τ − eλ2τ )

λ1 − λ2

, (3.35)

q2(τ) = −
Ω
2
(eλ1τ − eγ2τ )

λ1 − λ2

, (3.36)

p1(τ − τ ′) =
λ1 + γ + γc

λ1 − λ2

eλ2(τ−τ ′) − λ2 + γ + γc

λ1 − λ2

eλ1(τ−τ ′) (3.37)

p2(τ − τ ′) =
λ1 + γ + γc

λ1 − λ2

eλ1(τ−τ ′) − λ2 + γ + γc

λ1 − λ2

eλ2(τ−τ ′), (3.38)

q1(τ − τ ′) =
Ω
2
(eλ1(τ−τ ′) − eγ2(τ−τ ′))

λ1 − λ2

, (3.39)

q2(τ − τ ′) =
−Ω

2
(eλ1(τ−τ ′) − eγ2(τ−τ ′))

λ1 − λ2

(3.40)

finally, application of Eqs. (3.31),(3.32) into (3.28) results in

m̂a(t + τ) = p1(τ)m̂a(t) + q1(τ)m̂†
b(t) + G1(t + τ) (3.41)

and

m̂†
b(t + τ) = p2(τ)m̂†

b(t) + q2(τ)m̂a(t) + G2(t + τ) (3.42)

Where

G1(t + τ) =

∫ τ

0

[p2(τ − τ ′)F̂ †
b (t + τ ′) + q1(τ − τ ′)F̂a(t + τ ′)]dτ ′ (3.43)

and

G2(t + τ) =

∫ τ

0

[p1(τ − τ ′)F̂a(t + τ ′) + q1(τ − τ ′)F̂ †
b (t + τ ′)]dτ ′ (3.44)

we now proceed to determine the two-time correlation function that appears in

Eq.(3.17).to this end,we realize that the solution of Eq.(2.71)can be written as

â(t + τ) = â(t)e−κ τ
2 +

g√
N

e−κ τ
2

∫ ∞

0

eκ τ ′
2 m̂a(t + τ ′)dτ ′ + ε

∫ ∞

0

eκ τ ′
2 dτ ′ (3.45)
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so that on introducing Eq.(3.41)into Eq.(3.45),there follows

â(t + τ) = â(t)e−κ τ
2 +

g√
N

m̂a(t)(λ1 + γ + γc)

(λ2 + κ
2
)(λ1 − λ2

[eλ2τ − e−κ τ
2 ]

− g√
N

[ m̂a(t)

λ1 + κ
2

][(λ2 + γ + γc)

λ1 − λ2

][
eλ1τ − e−κ τ

2

]
+

g√
N

[ m̂†
b(t)

λ1 + κ
2

][ Ω
2

λ1 − λ2

][
eλ1τ − e−κ τ

2

]
− g√

N

[ m̂†
b(t)

λ1 + κ
2

][ Ω
2

λ1 − λ2

][
eλ2τ − e−κ τ

2

]
+

g√
N

e−κ τ
2

{ ∫ τ

0

dτ ′
∫ τ

0

[(λ1 + γ + γc

λ1 − λ2

)
e(κ τ ′

2
)τ ′−λ2τ ′′

−
(λ1 + γ + γc

λ1 − λ2

)
e(κ τ ′

2
+λ1)τ ′−λ1τ ′′]

F̂a(t + τ ′′)dτ ′′
}

+
g√
N

[ Ω
2

λ1 − λ2

] ∫ τ

0

dτ ′
∫ τ ′

0

[
e(κ τ ′

2
+λ1)τ ′−λ1τ ′′ − e(κ τ ′

2
+λ2)τ ′−λ2τ ′′]

×F̂ †
b (t + τ ′′)dτ ′′ (3.46)

Now multiplying on the left by â†(t) and taking the expectation value of the resulting

expression, we have

〈â†(t)â(t + τ)〉 = 〈â†(t)â(t)〉e−κ τ
2 +

g√
N

〈â†(t)m̂a(t)〉(λ1 + γ + γc)

(λ2 + κ
2
)(λ1 − λ2

[eλ2τ − e−κ τ
2 ]

− g√
N

[〈â†(t)m̂a(t)〉
λ1 + κ

2

][(λ2 + γ + γc)

λ1 − λ2

][
eλ1τ − e−κ τ

2

]
+

g√
N

[〈â†(t)m̂†
b(t)〉

λ1 + κ
2

][ Ω
2

λ1 − λ2

][
eλ1τ − e−κ τ

2

]
− g√

N

[〈â†(t)m̂†
b(t)〉

λ1 + κ
2

][ Ω
2

λ1 − λ2

][
eλ2τ − e−κ τ

2

]
+

g√
N

e−κ τ
2

{ ∫ τ

0

dτ ′
∫ τ

0

[(λ1 + γ + γc

λ1 − λ2

)
e(κ τ ′

2
)τ ′−λ2τ ′′

−
(λ1 + γ + γc

λ1 − λ2

)
e(κ τ ′

2
+λ1)τ ′−λ1τ ′′]〈â†(t)F̂a(t + τ ′′)〉dτ ′′

}
+

g√
N

[ Ω
2

λ1 − λ2

] ∫ τ

0

dτ ′
∫ τ ′

0

[
e(κ τ ′

2
+λ1)τ ′−λ1τ ′′ − e(κ τ ′

2
+λ2)τ ′−λ2τ ′′]

×〈â†(t)F̂ †
b (t + τ ′′)〉dτ ′′ (3.47)
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since a noise operator at a certain time should not affect a light mode operator at an

earlier time , we note that

〈â†(t)F̂ †
a (t + τ ′′)〉 = 〈â†(t)F̂ †

b (t + τ ′′)〉 = 0 (3.48)

It then follows that

〈â†(t)â(t + τ)〉 = 〈â†(t)â(t)〉e−κ τ
2 +

g√
N

〈â†(t)m̂a(t)〉(λ1 + γ + γc)

(λ2 + κ
2
)(λ1 − λ2

[eλ2τ − e−κ τ
2 ]

− g√
N

[〈â†(t)m̂a(t)〉
λ1 + κ

2

][(λ2 + γ + γc)

λ1 − λ2

][
eλ1τ − e−κ τ

2

]
+

g√
N

[〈â†(t)m̂†
b(t)〉

λ1 + κ
2

][ Ω
2

λ1 − λ2

][
eλ1τ − e−κ τ

2

]
− g√

N

[〈â†(t)m̂†
b(t)〉

λ1 + κ
2

][ Ω
2

λ1 − λ2

][
eλ2τ − e−κ τ

2

]
(3.49)

applying the large- time approximation scheme,one get from Eq.(2.95)

â(t) =
2g

κ
√

N
m̂a(t) +

2ε

κ
(3.50)

so that in view of this result, we get

m̂a(t) =
κ
√

N

2g
(â(t)− 2ε

κ
) (3.51)

similarly,applying the large- time approximation scheme,one get from Eq.(2.96)

b̂(t) =
2g

κ
√

N
m̂b(t) +

2ε

κ
(3.52)

and

b̂†(t) =
2g

κ
√

N
m̂†

b(t) +
2ε

κ
, (3.53)

m̂†
b(t) =

κ
√

N

2g
(b̂†(t)− 2ε

κ
) (3.54)
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on account of Eqs(3.51)and (3.54), we get

〈â†(t)â(t + τ)〉 = 〈â†(t)â(t)〉[Re−
λτ
2 + Seλ2τ − Teλ1τ ]

〈â†(t)b̂†(t)〉[Ae−
λτ
2 −Beλ2τ + Ceλ1τ ] (3.55)

in which

R =
κ
2
(κ

2
+ λ1 + λ2 + γ + γc)

(κ2 + λ1)(κ2 + λ2)
, (3.56)

S =
κ
2
(λ1 + γ + γc)

(κ
2

+ λ1)(λ1 − λ2)
, (3.57)

T =
κ
2
(λ2 + γ + γc)

(κ
2

+ λ1)(λ1 − λ2)
, (3.58)

A =
(κ

2
)(Ω

2
)

(κ
2

+ λ1)(
κ
2

+ λ2)
, (3.59)

B =
(κ

2
)(Ω

2
)

(κ
2

+ λ2)(λ1 − λ2)
, (3.60)

C =
(κ

2
)(Ω

2
)

(κ
2

+ λ1)(λ1 − λ2)
, (3.61)

At steady-state, we have

〈â†(t)â(t + τ)〉ss = na[Re−
κτ
2 + Seλ2τ − Teλ1τ ] +

γc

κ
〈m̂c〉[Ae−

κτ
2 −Beλ2τ + Ceλ1τ ] (3.62)

To determine the total mean photon number of light mode a,we need to consider the

power spectrum of mode a.the power spectrum of light mode a with central frequency

ω0 is expressible as [22]

pa(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ωo)τ 〈â†(t)â(τ + t)〉ss (3.63)
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Thus on combining Eq.(3.62) with equation (3.63),the power spectrum of light mode a

with central frequency ω0 is expressible as

pa(ω) =
[naR

π

]
Re

∫ ∞

0

dτe−[κ
2
−i(ω−ωo)]τ

+[
nas

π
]Re

∫ ∞

0

dτe−[λ2−i(ω−ωo)]τ

−[
naT

π
]Re

∫ ∞

0

dτe−[λ1−i(ω−ωo)]τ

+[
A

π

γc

κ
〈m̂c〉]Re

∫ ∞

0

dτe−[−κ
2
−i(ω−ωo)]τ

−[
B

π

γc

κ
〈m̂c〉]Re

∫ ∞

0

dτe−[λ2−i(ω−ωo)]τ

+[
C

π

γc

κ
〈m̂c〉]Re

∫ ∞

0

dτe−[λ1−i(ω−ωo)]τ (3.64)

So that on carrying out the integration, we readily arrive at

pa(ω) = na

(
R[

κ
2
π

[κ
2
]2 + (ω − ωo)2

] + S
[ λ2

π

λ2
2 + (ω − ωo)2

]
− T

[ λ1

π

λ2
1 + (ω − ωo)

2

])
+

γc

κ
〈m̂c〉

(
A

[ κ
2π

[κ
2
]2 + (ω − ω0)2

]
−B

[ λ2

π

λ2
2 + (ω − ωo)2

]
+ C

[ λ1

π

λ2
1 + (ω − ωo)2

])
(3.65)

We realize that the mean photon number of light mode a in the interval between ω′=-λ

and ω′=λ is expressible [13]

na+λ =

∫ λ

−λ

Pa(ω
′)dω′ (3.66)

In which ω′=ω-ωo. Therefore, upon substituting Eq. (3.65) into Eq.(3.66) and carrying

out the integration by employing the relation

∫ λ

−λ

dx

x2 + a2
=

2

a
tan−1

(λ

a

)
(3.67)

The local mean photon number of light mode a produced by the coherently driven non-

degenerate three level laser with an open cavity and coupled to a two-mode thermal



3.3.2 Local mean photon number of light mode b 42

reservoir is found to be

na+λ = naza(λ) +
γc

κ
〈m̂c〉z′a(λ) (3.68)

Where

za(λ) =
[2R

π

]
tan−1

(2λ

κ

)
+

[2S

π

]
tan−1

( λ

λ2

)
+

[2T

π

]
tan−1

( λ

λ1

)
(3.69)

and

z′a(λ) =
[2A

π

]
tan−1

(2λ

κ

)
−

[2B

π

]
tan−1

( λ

λ2

)
+

[2C

π

]
tan−1

( λ

λ1

)
(3.70)

we see from Eq.(3.68) along with the plot of za that na+λ increase with λ until it reaches

the maximum value of the global mean photon number

3.3.2 Local mean photon number of light mode b

We now proceed to obtain the mean photon number of light mode b in a given fre-

quency interval produced by the system consideration.To determine the local mean

photon number of light mode b, we need to consider the power spectrum of light mode

b. The power spectrum of light mode b with central frequency ω0 is expressible as

pb(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ωo)τ 〈b̂†(t)b̂(τ + t)〉ss (3.71)

Upon integrating both sides of Eq (3.71) over ω,we readily get

∫ ∞

−∞
Pb(ω)dω = nb (3.72)

In which nb is the steady- state mean photon number of light mode b.From this result,we

observe that Pb(ω)dω is the steady- state mean photon number of light mode a in the fre-

quency interval between ω and ω+dω we now proceed to determine the total correlation
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function that appears in Eq.(3.71). To this end, we realize that the solution of Eq.(3.71)

b̂(t + τ) = b̂(t)e−κ τ
2 +

g√
N

e−κ τ
2

∫ τ

0

eκ τ ′
2 m̂b(t + τ ′)dτ ′ + ε

∫ ∞

0

eκ τ ′
2 dτ ′ (3.73)

in view of Eq.(3.43) can be put in the form

m̂b(t + τ) = p2(τ)m̂b(t) + q2m̂
†
a(t) + Ĝ†

2(t + τ) (3.74)

so that on introducing this into Eq. (3.73),we have

b̂(t + τ) = b̂(t)e−κ τ
2 +

g√
N

e−κ τ
2 m̂b(t)

∫ τ

0

p2(τ
′)eκ τ ′

2 dτ ′

+
g√
N

e−κ τ
2

∫ τ

0

eκ τ ′
2

[
m̂†

a(t)q2(τ
′) + Ĝ†

2(t + τ)
]
dτ ′ (3.75)

Thus on carrying out the first two integrations, we arrive at

b̂(t + τ) = b̂(t)e−κ τ
2 +

g√
N

m̂b(t)
[ λ1 + γ + γc

(λ2 + κ
2
)(λ1 − λ2)

][
eλ2τ − e−κ τ

2

]

− g√
N

m̂b(t)
[ λ2 + γ + γc

(λ1 + κ
2
)(λ1 − λ2)

][
eλ1τ − e−κ τ

2

]

− g√
N

m̂†
b(t)

[ Ω
2

(λ1 + κ
2
)(λ1 − λ2)

][
eλ2τ − e−κ τ

2

]

+
g√
N

m̂†
b(t)

[ Ω
2

(λ2 + κ
2
)(λ1 − λ2)

][
eλ2τ − e−κ τ

2

]

+
g√
N

e−κ τ
2

{ ∫ τ

0

dτ ′
∫ τ ′

0

[(λ1 + γ + γc

λ1 − λ2

)
e(κ τ ′

2
)τ ′−λ1τ ′′

−
(λ2 + γ + γc

λ1 − λ2

)
e(κ τ ′

2
+λ2)τ ′−λ2τ ′′]

F̂b(t + τ ′′)dτ ′′
}

− g√
N

[ Ω
2

λ1 − λ2

] ∫ τ

0

dτ ′
∫ τ ′

0

[
e(κ τ ′

2
+λ1)τ ′−λ1τ ′′ − e(κ τ ′

2
+λ2)τ ′−λ2τ ′′]
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× F̂ †
b (t + τ ′′)dτ ′′ (3.76)

Now multiplying on the left by b̂†(t) and taking the expectation value of the resulting

expression, we have

〈b̂†(t)b̂(t + τ)〉 = 〈b̂†(t)b̂(t)〉e−κ τ
2 +

g√
N
〈b̂†(t)m̂b(t)〉

[ λ1 + γ + γc

(λ2 + κ
2
)(λ1 − λ2)

][
eλ2τ − e−κ τ

2

]

− g√
N
〈b̂†(t)m̂b(t)〉

[ λ2 + γ + γc

(λ1 + κ
2
)(λ1 − λ2)

][
eλ1τ − e−κ τ

2

]

− g√
N
〈b̂†(t)m̂†

b(t)〉
[ Ω

2

(λ1 + κ
2
)(λ1 − λ2)

][
eλ2τ − e−κ τ

2

]

+
g√
N
〈b̂†(t)m̂†

b(t)〉
[ Ω

2

(λ2 + κ
2
)(λ1 − λ2)

][
eλ2τ − e−κ τ

2

]

+
g√
N

e−κ τ
2

{ ∫ τ

0

dτ ′
∫ τ ′

0

[(λ1 + γ + γc

λ1 − λ2

)
e(κ τ ′

2
)τ ′−λ1τ ′′

−
(λ2 + γ + γc

λ1 − λ2

)
e(κ τ ′

2
+λ2)τ ′−λ2τ ′′]

F̂b(t + τ ′′)dτ ′′
}

− g√
N

[ Ω
2

λ1 − λ2

] ∫ τ

0

dτ ′
∫ τ ′

0

[
e(κ τ ′

2
+λ1)τ ′−λ1τ ′′ − e(κ τ ′

2
+λ2)τ ′−λ2τ ′′]

× 〈b̂†(t)F̂ †
b (t + τ ′′)〉dτ ′′ (3.77)

And taking account the fact that

〈b̂†(t)F̂ †
b (t + τ ′′)〉 = 〈b̂†(t)F̂ †

a (t + τ ′′)〉 = 0 (3.78)

we arrive at

〈b̂†(t)b̂(t + τ)〉 = 〈b̂†(t)b̂(t)〉e−κ τ
2 +

g√
N
〈b̂†(t)m̂b(t)〉

[ λ1 + γ + γc

(λ2 + κ
2
)(λ1 − λ2)

][
eλ2τ − e−κ τ

2

]
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− g√
N
〈b̂†(t)m̂b(t)〉

[ λ2 + γ + γc

(λ1 + κ
2
)(λ1 − λ2)

][
eλ1τ − e−κ τ

2

]

− g√
N
〈b̂†(t)m̂†

b(t)〉
[ Ω

2

(λ1 + κ
2
)(λ1 − λ2)

][
eλ2τ − e−κ τ

2

]

+
g√
N
〈b̂†(t)m̂†

b(t)〉
[ Ω

2

(λ2 + κ
2
)(λ1 − λ2)

][
eλ2τ − e−κ τ

2

]
(3.79)

In view of the adjoint of Eqs.(3.52) and (3.54), we see that

〈b̂†(t)b̂†(t)〉
[
Ke−

λτ
2 + Meλ2τ −Neλ1τ ] (3.80)

where

K =
λ1λ2 − κ

2
(γ + γc)

(κ
2

+ λ1)(
κ
2

+ λ2)
(3.81)

M =
κ
2
(λ1 + γ + γc)

(κ
2

+ λ2)(λ1 − λ2)
(3.82)

N =
κ
2
(λ2 + γ + γc)

(κ
2

+ λ1)(λ1 − λ2)
(3.83)

therefore, at the steady-state, Eq.(3.80)takes the form

〈b̂†(t)b̂(t + τ)〉ss = nb

[
Ke−

κτ
2 + Meλ2τ −Neλ1τ

]
(3.84)

Thus on combining Eq.(3.80) with equation (3.71),the power spectrum of light mode b

with central frequency ω0 is takes the form

pb(ω) =
[nbK

π

]
Re

∫ ∞

0

dτe−[κ
2
−i(ω−ωo)]τ

+[
nbM

π
]Re

∫ ∞

0

dτe−[−λ2−i(ω−ωo)]τ
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− [
nbN

π
]Re

∫ ∞

0

dτe−[−λ1−i(ω−ωo)]τ (3.85)

So that on carrying out the integration, we readily arrive at

pb(ω) = nb

(
K[

κ
2π

[κ
2
]2 + (ω − ωo)2

] + M
[ λ2

π

λ2
2 + (ω − ωo)2

]
−N

[ λ1

π

λ2
1 + (ω − ωo)

2

]
big) (3.86)

we realize that the mean photon number of light mode b in the interval between ω′=-λ

and ω′=λ is expressible [22]

nb+λ =

∫ λ

−λ

Pb(ω
′)dω′ (3.87)

In which ω′=ω-ωo. Therefore, upon substituting Eq. (3.86) into Eq.(3.87) and carrying

out the integration by employing the relation given by (3.67),the local mean photon

number of light mode b is found to be

nb+λ = nbzb(λ) (3.88)

where

zb(λ) =
[2K

π

]
tan−1

(2λ

κ

)
+

[2M

π

]
tan−1

( λ

λ2

)
+

[2N

π

]
tan−1

( λ

λ1

)
(3.89)

3.4 Two-mode photon number

In this section, applying the steady-state solution of the equations of evolution of the

expectation value of the atomic operators and the quantum langavin equations for the

cavity mode operators, we seek to obtain the mean photon numbers for two mode light

beam.
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3.4.1 Two mode mean photon number

Here we seek to calculate the steady-state mean photon numbers two mode light cavity

light beam.The mean photon numbers two mode light cavity light beam, represented

by the operators ĉ and ĉ†, is defined by

n = 〈ĉ†ĉ〉 (3.90)

The steady state solution of Eq.(2.99)

ĉ =
2g

κ
√

N
m̂ +

4ε

κ
(3.91)

ĉ† =
2g

κ
√

N
m̂† +

4ε

κ
(3.92)

n = 〈 2g

κ
√

N
m̂† +

4ε

κ
〉〈 2g

κ
√

N
m̂ +

4ε

κ
〉 (3.93)

Hence at steady state the mean photon number goes over into

n =
γc

κ
[〈Na〉+ 〈Nb〉] +

16ε2

κ2
(3.94)

n =
γc

κ
[2〈Na〉] +

16ε2

κ2
(3.95)

〈N̂a〉 =

[
Ω2

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
N, (3.96)

n =
γc

κ
(N)

[
2Ω2

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
+

16ε2

κ2
(3.97)

The plots in Fig. (3.5) show that the steady-state mean photon number of light beam

in the absence of spontaneous emission (when γ = 0) is greater than in the presence

of spontaneous emission (when γ 6= 0). Moreover, the mean photon number decreases

when γ increases.
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Figure 3.5: Plots of the mean photon number Eq. (3.97) versus Ω for γc = 0.4,κ = 0.8,

N = 50,n̄th = 5, and for different values of γ. The sum of the mean photon numbers of

the separate single-mode light beams
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Figure 3.6: Plots of the mean photon number.Eq. (3.97) versus γ for γc = 0.4,κ = 0.8,

N = 50,n̄th = 5, and for different values of Ω. The sum of the mean photon numbers of

the separate single-mode light beams

.
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3.5 Photon number correlation

The photon number correlation for two modes of a radiation can be defined as

g2(â,b̂ )(0) =
〈â†âb̂†b̂〉
〈â†â〉〈b̂†b̂〉

, (3.98)

in which

〈nanb〉 = 〈â†âb̂†b̂〉, (3.99)

g2(â,b̂ )(0) = 1 +
〈b̂â〉〈â†b̂†〉
〈â†â〉〈b̂†b̂〉

, (3.100)

â =
2gma

κ
√

N
+

2ε

κ
, (3.101)

b̂ =
2gmb

κ
√

N
+

2ε

κ
, (3.102)

â† =
2gm†

a

κ
√

N
+

2ε

κ
, (3.103)

b̂† =
2gm†

b

κ
√

N
+

2ε

κ
, (3.104)

g2(â, b̂)
(0) = 1 +

〈m̂c〉2 + 16e4

κ4

〈Na〉〈Nb〉+ 16e4

κ4

, (3.105)

thus on combining Eq.(2.146) and equation (2.149),with Eq.(2.141)

g2(â, b̂)
(0) = 1 +

(γcN
κ

)2
( [

Ω(γc+γ)(n̄th+1)(2n̄th+1)
(γc+γ)2(n+1)(2n̄th+1)+3Ω2

] )2
+ 16e4

κ4

(γcN
κ

)2
( [

Ω2

(γc+γ)2(n̄th+1)(2n̄th+1)+3Ω2

] )2
+ 16e4

κ4

. (3.106)

The plots in Fig. (3.7) show that The photon number correlation for two modes of

a radiation in the absence of spontaneous emission (when γ = 0) is greater than in

the presence of spontaneous emission (when γ 6= 0). Moreover,The photon number

correlation for two modes of a radiation decreases when γ increases.
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Figure 3.7: Plot of the g2(a, b)(0) of the two-mode cavity light versus Ω for γc = 0.4,κ = 0.8,

N = 50,n̄th = 5, and for different values of γ

.
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Quadrature Squeezing

In this chapter we seek to study the quadrature variance and the quadrature squeezing

of the light produced by the coherently driven non degenerate three-level laser with an

open cavity and coupled to a two-mode thermal reservoir via a single-port mirror. Ap-

plying the steady-state solutions of the equations of evolution of the expectation values

of the atomic operators and the quantum Langevin equations for the cavity mode op-

erators, we obtain the global quadrature variances for light modesa and b. In addition,

we determine the global quadrature squeezing of the two-mode cavity light.

4.1 Single-mode quadrature variance

In this section we obtain the global quadrature variances of light modes a and b, pro-

duced by the system under consideration.

4.1.1 Global quadrature variance of light mode a

We now proceed to calculate the quadrature variance of light mode a in the entire fre-

quency interval. The squeezing properties of light mode a are described by two quadra-

52
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ture operators

â+ = â† + â (4.1)

â− = i(â† − â) (4.2)

where â+ and â− are Hermitian operators representing physical quantities called plus

and minus quadratures, respectively, while â† and â are the creation and annihilation

oprators for light mode a . With the help of Eqs. (4.1) and (4.2), we can show that the

two quadrature operators satisfy the commutation relation

[â−, â+] = 2i
γc

κ

[
N̂a − N̂b

]
(4.3)

In view of this result, the uncertainity relation for the plus and minus quadrature oper-

ators of mode a is expressible as

4â+4â− ≥ 1

2

∣∣〈|â+, â−|〉
∣∣

≥
∣∣〈|ââ†〉+ 〈â†â〉

∣∣ (4.4)

so that using Eqs. (3.2) and (3.3), there follows

4â+4â− ≥
γc

κ

∣∣〈N̂a〉 − 〈N̂b〉
∣∣ (4.5)

On account of Eq. (2.141), the uncertainity relation for the quadrature operators can be

put in the form

4â+4â− ≥ 0 (4.6)

Next we proceed to calculate the quadrature variance of light mode a. The variance of

the plus and minus quadrature operators are defined by

(4â+)2 = 〈â2
+〉 − 〈â+〉2 (4.7)
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and

(4â−)2 = 〈â2
−〉 − 〈â−〉

2 (4.8)

With the aid of Eq. (4.1), Eq. (4.7) can be expressed in terms of the creation and annihi-

lation operators as

(4â+)2 = 〈ââ†〉+ 〈â†â〉+ 〈â2
+〉+ 〈â†2+ 〉 − 〈â2

+〉 − 〈â
†2
+ 〉 − 2〈â〉〈â†〉 (4.9)

In addition, on account of Eqs. (4.2) and (4.8), we get

(4â−)2 = 〈ââ†〉+ 〈â†â〉 − 〈â2
+〉 − 〈â

†2
+ 〉 − 〈â2

+〉+ 〈â†2+ 〉+ 2〈â〉〈â†〉 (4.10)

so that inspection of Eqs. (4.9) and (4.10) shows that

(4â+)2 = 〈ââ†〉+ 〈â†â〉+〈â2
+〉+〈â

†2
+ 〉+〈â2

+〉+〈â
†2
+ 〉+2〈â〉〈â†〉 (4.11)

Moreover, with the help of Eqs. (3.2) and (3.3), we have

(4â+)2 = 〈ââ†〉+ 〈â†â〉 (4.12)

and in view of Eqs. (3.2) and (3.3), there follows

(4â+)2 =
γc

κ
[〈N̂a〉+ 〈N̂b〉] +

8ε2

κ2
(4.13)

On account of Eq. (2.141), we see that

(4â+)2 =
2γc

κ
[〈N̂a〉] +

8ε2

κ2
(4.14)

Now substitution of Eq. (2.146) into Eq. (4.14) results in

(4â+)2 =
(γcN

κ

)[ 2Ω2

(γ + γc)2(2n̄th + 1)(n̄th + 1) + 3Ω2

]
+

8ε2

κ2
(4.15)
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This represents the quadrature variance of light mode a, produced by the coherently

driven nondegenerate three-level laser with an open cavity and coupled to a two-mode

vacuum reservoir. Furthermore,we consider the case in which spontaneous emission

is absent γ = 0 Then the quadrature variance for this case takes the form

(4â+)2 =
(γcN

κ

)[ 2Ω2

γ2
c (2n̄th + 1)(n̄th + 1) + 3Ω2

]
+

8ε2

κ2
(4.16)

In addition, we note that for Ω >> γcEq. (4.16) reduces to

(4â+)2 =
(γcN

κ

)
(
2Ω2

3Ω2
) +

8ε2

κ2
(4.17)

(4â+)2 =
2γcN

3κ
+

8ε2

κ2
(4.18)

In view of Eq. (3.7), this can be expressed as

(4â+)2 = 2na (4.19)

4.1.2 Global quadrature variance of light mode b

Here we wish to calculate the quadrature variance of light mode b in the entire fre-

quency interval, produced by the system under consideration. The squeezing prop-

erties of light mode b are described by two quadrature operators

b̂+ = b̂† + b̂ (4.20)

b̂− = i(b̂† − b̂) (4.21)

where b̂+ and b̂− are Hermitian operators representing physical quantities called plus

and minus quadratures, respectively, while b̂† and b̂ are the creation and annihilation
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oprators for light mode b. With the help of Eqs. (4.20) and (4.21), we can show that the

two quadrature operators satisfy the commutation relation

[b̂−, b̂+] = 2i
γc

κ

[
N̂b − N̂c

]
, (4.22)

〈N̂b〉 =

[
Ω2

(γc + γ)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
N, (4.23)

〈N̂c〉 =

[
(γc + γ)2(n̄th + 1)(2n̄th + 1) + Ω2

(γc + γ)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
N, (4.24)

In view of this result, the uncertainity relation for the plus and minus quadrature oper-

ators of mode b is expressible as

4b̂+4b̂− ≥ 1

2

∣∣〈|b̂+, b̂−|〉
∣∣

≥
∣∣〈|b̂b̂†〉 − 〈b̂†b̂〉∣∣ (4.25)

so that using Eqs. (3.10) and (3.11), there follows

4b̂+4b̂− ≥
γc

κ

∣∣〈N̂b〉 − 〈N̂c|〉
∣∣ (4.26)

On account of Eqs. (4.23) and (4.24), the uncertainity relation of the quadrature opera-

tors can be put the form

4b̂+4b̂− ≥
γcN

κ

∣∣ (γ + γc)
2(n̄th + 1)(2n̄th + 1)

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2

∣∣ (4.27)

Now setting γ = 0, one finds

4b̂+4b̂− ≥
γcN

κ

∣∣ γ2
c (2n̄th + 1)

γ2
c (2n̄th + 1) + 3Ω2

∣∣ (4.28)

Moreover, we consider the case in which the deriving coherent light is absent. Thus

upon setting Ω = 0 in Eq. (4.28), we readily get

4b̂+4b̂− ≥
γcN(n̄th + 1)(2n̄th + 1)

κ(n̄th + 1)(2n̄th + 1)
(4.29)
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We therefore notice that the product of the uncertainties in the two quadratures sat-

isfies the minimum uncertainty relation. Next we proceed to calculate the quadrature

variance of light mode b. The variance of the plus and minus quadrature operators for

light mode b are defined by

(4b̂+)2 = 〈b̂2
+〉 − 〈b̂+〉

2
(4.30)

and

(4b̂−)2 = 〈b̂2
−〉 − 〈b̂−〉

2
(4.31)

On account of Eq. (4.20), Eq. (4.21) can be expressed in terms of the creation and anni-

hilation operators as

(4b̂+)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉+ 〈b̂2
+〉+ 〈b̂†2+ 〉 − 〈b̂2

+〉 − 〈b̂
†2
+ 〉 − 2〈b̂〉〈b̂†〉 (4.32)

In addition, on account of Eqs. (4.21), we get

(4b̂−)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 − 〈b̂2
+〉 − 〈b̂

†2
+ 〉 − 〈b̂2

+〉+ 〈b̂†2+ 〉+ 2〈b̂〉〈b̂†〉 (4.33)

so that inspection of Eqs. (4.32) and (4.33) shows that

(4b̂+)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉+〈b̂2
+〉+〈b̂

†2
+ 〉+〈b̂2

+〉+〈b̂
†2
+ 〉+2〈b̂〉〈b̂†〉 (4.34)

Moreover, with the aid of Eqs. (4.20) and (4.21), we get

(4b̂+)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 (4.35)

and in view of Eqs. (3.10) and (3.11), there follows

(4b̂+)2 =
γc

κ

[
N̂b + N̂c

]
, (4.36)
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Now on account of Eqs. (4.23) and (4.24), the quadrature variance of light mode b takes,

at steady-state, the form

(4b̂+)2 =
(γcN

κ

)[(γ + γc)
2(n̄th + 1)(2n̄th + 1) + 2Ω2

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
+

8ε2

κ2
(4.37)

This represents the quadrature variance of light mode b, produced by the coherently

driven nondegenerate three-level laser with an open cavity and coupled to a two-mode

thermal reservoir. Furthermore,we consider the case in which spontaneous emission is

absent γ = 0. Then the quadrature variance for this case has the form

(4b̂+)2 =
(γcN

κ

)[γ2
c (n̄th + 1)(2n̄th + 1) + 2Ω2

γ2
c (n̄th + 1)(2n̄th + 1) + 3Ω2

]
+

8ε2

κ2
(4.38)

Furthermore,we consider the case in which spontaneous emission is absent Ω � γc

Then the quadrature variance for this case has the form

(4b̂+)2 =
2γcN

3κ
+

8ε2

κ2
(4.39)

In view of Eq. (3.15), this can be expressed as

(4b̂+)2 = 2nb (4.40)

which is the normally ordered quadrature variance for chaotic light.

4.2 Two-mode quadrature squeezing

In this section we proceed to study the quadrature variance and the quadrature squeez-

ing of the two-mode light beam produced by the coherently driven nondegenerate

three-level laser with an open cavity and coupled to a two-mode thermal reservoir.

Now we seek to determine the quadrature variances of the two-mode light beam. The
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squeezing properties of the two-mode cavity light are described by two quadrature op-

erators

ĉ+ = ĉ† + ĉ (4.41)

and

ĉ− = i(ĉ† − ĉ) (4.42)

whereĉ+ and ĉ− are Hermitian operators representing the physical quantities called plus

and minus quadratures, respectively while ĉ† and ĉ are the creation and annihilation

oprators of the two-mode cavity light. With the aid of Eqs. (4.41) and (4.42), we show

that the two quadrature operators satisfy the commutation relation

[ĉ−, ĉ+] = 2i
γc

κ

[ ˆ
Na − ˆ

cN
]

(4.43)

N̂a = (
Ω2

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2
)N (4.44)

and

N̂c = (
Ω2 + (γ + γn)2(n̄th + 1)(2n̄th + 1)

(γ + γn)2(n̄th + 1)(2n̄th + 1) + 3Ω2
)N (4.45)

In view of this result, the uncertainity relation for the plus and minus quadrature oper-

ators of the two-mode cavity light is expressible as

4ĉ+4ĉ− ≥
1

2

∣∣〈ĉ+, ĉ−〉
∣∣

≥
∣∣〈|ĉĉ†〉 − 〈ĉ†ĉ〉∣∣ (4.46)

and

4ĉ+4ĉ− ≥
γc

κ

∣∣〈N̂a〉 − 〈N̂c〉
∣∣ (4.47)
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On account of Eqs. (4.44) and (4.45), the uncertainity relation for the plus and minus

quadrature operators is found to be

4ĉ+4ĉ− ≥
γcN

κ

∣∣ (γ + γc)
2(n̄th + 1)(2n̄th + 1)

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2

∣∣ (4.48)

In addition, we consider the case in which spontaneous emission is absent γ = 0.Then

the uncertainity relation for this case takes the form

4ĉ+4ĉ− ≥
γcN

κ

∣∣ γ2
c (n̄th + 1)(2n̄th + 1)

γ2
c (n̄th + 1)(2n̄th + 1) + 3Ω2

∣∣ (4.49)

Moreover, we consider the case in which the deriving coherent light is absent. Thus

upon setting Ω = 0 in Eq. (4.49), we readily get

4ĉ+4ĉ− ≥
γcN

κ
(4.50)

which is the minimum uncertainty relation for the two-mode cavity thermal state. We

therefore notice that the uncertainties in the two quadratures are equal and their prod-

uct satisfies the minimum uncertainty relation. Next we calculate the quadrature vari-

ance of the two-mode cavity light. The variance of the plus and minus quadrature op-

erators of the two-mode cavity light are defined by

(4ĉ+)2 = 〈ĉ2
+〉 − 〈ĉ+〉2 (4.51)

and

(4ĉ−)2 = 〈ĉ2
−〉 − 〈ĉ−〉

2 (4.52)

On account of Eqs. (4.41) and (4.51), the plus quadrature variance can be expressed in

terms of the creation and annihilation operators as

(4ĉ+)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉+ 〈ĉ2
+〉+ 〈ĉ†2+ 〉 − 〈ĉ2

+〉 − 〈ĉ
†2
+ 〉 − 2〈ĉ〉〈ĉ†〉 (4.53)
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and with the help of Eqs. (4.42) and (4.52), we get

(4ĉ−)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 − 〈ĉ2
+〉 − 〈ĉ

†2
+ 〉 − 〈ĉ2

+〉+ 〈ĉ†2+ 〉+ 2〈ĉ〉〈ĉ†〉 (4.54)

so that inspection of Eqs. (4.53) and (4.54) shows that

(4ĉ+)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉+〈ĉ2
+〉+〈ĉ

†2
+ 〉+〈ĉ2

+〉+〈ĉ
†2
+ 〉+2〈ĉ〉〈ĉ†〉 (4.55)

and

(4ĉ+)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉+〈ĉ2
+〉+〈ĉ

†2
+ 〉 (4.56)

ĉ =
2gm̂

κ
√

N
+

4ε

κ
(4.57)

ĉ† =
2gm̂†

κ
√

N
+

4ε

κ
(4.58)

where

m̂ = m̂a + m̂b, (4.59)

m̂†m̂ = N(N̂a + N̂b), (4.60)

m̂m̂† = N(N̂b + N̂c), (4.61)

m̂2 = Nm̂c, (4.62)

N̂a = (
Ω2

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2
)N (4.63)

N̂c = (
Ω2 + (γ + γn)2(n̄th + 1)(2n̄th + 1)

(γ + γn)2(n̄th + 1)(2n̄th + 1) + 3Ω2
)N (4.64)

N̂b = (
Ω2

(γ + γc)2(n̄th1)(2n̄th + 1) + 3Ω2
)N (4.65)

m̂c = (
Ω(γ + γc)(n̄th + 1)

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2
)N (4.66)

expression (4.56) goes over into

(4ĉ+)2 =
γc

κ
[〈N̂a〉+ 2〈N̂b〉+ 〈N̂c〉+〈m̂c〉+〈m̂†

c〉] (4.67)
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Figure 4.1: the quadrature variance of the two-mode cavity light versus Ω for γc = 0.4,κ

= 0.8, N = 50,n̄th = 5, and for different values of γ

.

Now using N̂a = N̂band N̂a + N̂b+̂Nc = N , the quadrature variance of the two-mode

cavity light is found to be

(4ĉ+)2 =
γc

κ
[N + 〈N̂b〉+2〈m̂c〉] (4.68)

Finally, on account of Eqs. (4.63) - (4.66), the quadrature variance of the two-mode

cavity light takes, at steady-state, the form

(4ĉ+)2 =
γcN

κ

[(γ + γc)
2(n̄th + 1)(2n̄th + 1) + 4Ω2 + 2Ω(γ + γc)

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
(4.69)

This represents the quadrature variance of the two-mode cavity light produced by the
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coherently driven nondegenerate three-level laser with an open cavity and coupled to a

two-mode thermal reservoir. Furthermore,we consider the case in which spontaneous

emission is absent γ = 0. Thus the quadrature variance for this case has the form

(4ĉ+)2 =
γcN

κ

[γ2
c + 4Ω2 + 2Ωγc

γ2
c + 3Ω2

]
(4.70)

In addition, we note that for Ω >> γc Eq. (4.70) reduces to

(4ĉ+)2 =
4γcN

3κ

γ2
c

γ2
c

(4.71)

(4ĉ+)2 =
4γcN

3κ
(4.72)

This can be rewritten as

(4ĉ+)2 = 2n (4.73)

where n is given by Eq. (3.97). We see that Eq. (4.73) represents the normally ordered

quadrature variance for chaotic light. Moreover, we consider the case in which the de-

riving coherent light is absent. Thus upon setting Ω = 0 in Eq. (4.49), we get

(4ĉ+)2
therm = (4ĉ−)2

therm =
γcN

κ
(4.74)

which is the normally ordered quadrature variance of the two-mode cavity thermal

state. We note that for Ω = 0 the uncertainty in the plus and minus quadratures are

equal and satisfy the minimum uncertainty relation. The plots in Fig. (4.1) show that

the minimum value of the quadrature variance for γ = 0.2, γ = 0.1, and γ = 0 is

(∆c−)2 = 0.3943 and occur at Ω = 0.4242, Ω = 0.4646 and Ω = 0.5354, respectively.

Next we proceed to calculate the quadrature squeezing of the two-mode cavity light in
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the entire frequency interval relative to the quadrature variance of the two-mode ther-

mal state. We then define the quadrature squeezing of the two-mode cavity light

S =
(4ĉ−)2

therm − (4ĉ−)2

(4ĉ−)2
therm

(4.75)

It then follows that

S = 1− (4ĉ−)2

(4ĉ−)2
therm

(4.76)

In view of Eqs. (4.69) and (4.74), the quadrature squeezing of the two-mode cavity light

takes, at steady-state, the form

S =
[ 2Ω(γ + γc)− Ω2

(γ + γc)2(n̄th + 1)(2n̄th + 1) + 3Ω2

]
(4.77)

This represents the quadrature squeezing of the two-mode cavity light produced by the

coherently driven nondegenerate three-level laser with an open cavity and coupled to a

two-mode thermal reservoir. We observe from this equation that unlike the mean pho-

ton number and the quadrature variance, the quadrature squeezing does not depend

on the number of atoms. This implies that the quadrature squeezing of the two-mode

cavity light is independent of the number of photons. Applying Eqs. (3.2) and (3.10), we

find

〈b̂â〉 =
γc

κ
〈m̂c〉+

4ε2

κ2
(4.78)

The two-mode light can be used in experiments involving entangled light modes. In

addition, we consider the case in which spontaneous emission is absent γ = 0. Then

the quadrature squeezing for this case takes the form

S =
[ 2Ωγc − Ω2

γ2
c (2n̄th + 1)(n̄th + 1) + 3Ω2

]
(4.79)
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This represents the quadrature squeezing of the two-mode cavity light produced by the

coherently driven non degenerate three-level laser with an open cavity and coupled to a

two-mode thermal reservoir From the plots in Fig. (4.2), we find the maximum quadra-

Figure 4.2: Plot of the quadrature squeezing versus Ω for γc = 0.4,κ = 0.8, N = 50,n̄th = 5

and for different values of γ

.

ture squeezing to be the same in the presence as well as in the absence of spontaneous

emission. This plots show that the quadrature squeezing when γ = 0 is greater than

when γ = 0.2 in the interval 0 < Ω < 0.4545 and the quadrature squeezing when γ = 0

is less than when γ = 0.2 for Ω > 0.4545 . And the quadrature squeezing when γ = 0 is

greater than when γ = 0.1 in the interval 0 < Ω < 0.4242 and the maximum quadrature
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squeezing when γ = 0 is less than when γ = 0.1 for Ω > 0.4242. Moreover, the plots in

the same figure show that the quadrature squeezing when γ = 0.1 is greater than when

γ = 0.2 in the interval 0 < Ω < 0.5253 and the quadrature squeezing when γ = 0.1 is

less than when γ = 0.2 for Ω > 0.5253. Furthermore, from the same plots the maxi-

mum squeezing is found to be 58.08% for γ = 0.2 (dashed curve), for γ = 0.1 (dotted

curve), and for γ = 0 (solid curve) below the vacuum-state level. These occur when the

three-level laser is operating at Ω = 0.3838, γ = 0.4848, and γ = 0.5758, respectively.
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Entanglement

To this end, we prefer to analyze the entanglement of photon-states in the laser cavity.

Quantum entanglement is a physical phenomenon that occurs when pairs or groups

of particles cannot described independently instead, a quantum state may be given for

the system as a whole. Measurements of physical properties such as position, momen-

tum, spin, polarization, etc. performed on entangled particles are found to be appro-

priately correlated. A pair of particles is taken to be entangled in quantum theory, if

its states cannot be expressed as a product of the states of its individual constituents.

The preparation and manipulation of these entangled states that have nonclassical and

properties lead to a better understanding of the basic quantum principles. It is in this

spirit that this section is devoted to the analysis of the entanglement of the two-mode

photon states. In other words, it is a well-known fact that a quantum system is said

to be entangled, if it is not separable. That is, if the density operator for the combined

state cannot be described as a combination of the product density operators of the con-

stituents , in this section we seek to study the entanglement condition of the two modes

67
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in the cavity.

ρ̂ 6=
∑

ρ̂
(1)
j

⊗ ˆ
ρ

()2
j (5.1)

On the other hand, a maximally entangled continuous variable state can be expressed

as a coeigenstate of a pair of EPR-type operators [19]such as X̂a−X̂b and p̂a+p̂b. The total

variance of these two operators reduces to zero for maximally entangled continuous

variable states. But according to the criteria set by Duan et al. [20]quantum states of

the system are entangled if the sum of the variances of a pair of EPR-like operators

û = X̂a − X̂b (5.2)

v̂ = p̂a + p̂b (5.3)

whereX̂a = (1/
√

2)(â + â†),X̂b = (1/
√

2)(b̂ + b̂†),p̂a = (i/
√

2)(â† − â), p̂b = (i/
√

2)(b̂† − b̂)

are quadrature operators for mode a and b, satisfy

4u2 +4v2 < 2 (5.4)
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Furthermore, the variance of these quadrature operators can be put, in terms of the c

number variables associated with the normal ordering, in the form

4u2 = 1− 〈â†â〉+ 〈b̂†b̂〉 − 2〈âb̂〉, (5.5)

â =
2g

κ
√

N
ma +

2ε

κ
, (5.6)

â† =
2g

κ
√

N
ma

† +
2ε

κ
, (5.7)

b̂ =
2g

κ
√

N
mb +

2ε

κ
, (5.8)

b̂† =
2g

κ
√

N
mb

† +
2ε

κ
, (5.9)

4u2 = 1− γc

κ
[Na + Nb], (5.10)

4u2 = 1− γc

κ
(2Na), (5.11)

4u2 = 1− γc

κ
N

( 2Ω2

(γ + γc)2(2n̄2
th + 3n̄th + 1) + 3Ω2

)
, (5.12)

4u2 = 4v2 (5.13)

4u2 +4v2 = 1− γc

κ
N

( 2Ω2

(γ + γc)2(2n̄2
th + 3n̄th + 1) + 3Ω2

)
+1− γc

κ
N

( 2Ω2

(γ + γc)2(2n̄2
th + 3n̄th + 1) + 3Ω2

)
(5.14)

4v2 +4u2 = 2− γc

κ
N

( 4Ω2

(γ + γc)2(2n̄2
th + 3n̄th + 1) + 3Ω2

)
(5.15)
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Figure 5.1: Plots of 4u2 + 4v2 of the cavity radiation at steady state versus Ω for γc =

0.4,κ = 0.8, N = 50,n̄th = 5, and for different values of γ

.
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Conclusion

In this research ,we have studied the squeezing and statistical properties of the light

produced by the coherently driven nondegenerate three-level laser with an open cavity

and coupled to a two-mode thermal reservoir via a single-port mirror. Applying the so-

lutions of the equations of evolution for the expectation values of the atomic operators

and the quantum Langavin equations for the cavity mode operators, we have deter-

mined the mean and variance of the photon number as well as the quadrature squeez-

ing. We have found that the global mean photon number of light mode a is equal to the

global mean photon number of light mode b. We have seen that the mean and variance

of the photon numbers of light modes a and b. Moreover, we have shown that the mean

photon number of the two-mode light beam is the sum of the mean photon numbers

of the separate single-mode light beams.

We have found that the light generated by the three-level laser is in a squeezed state

and the squeezing occurs .From the plots in Fig. (4.2), we find the maximum quadra-

ture squeezing to be the same in the presence as well as in the absence of spontaneous

emission. Unlike the mean photon number and the quadrature variance, the quadra-

ture squeezing does not depend on the number of atoms.
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