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Abstract

The dynamics of a coherently driven two level laser with vacuum reservoir is ana-

lyzed. The combination of interaction Hamiltonian and Langevin equation is pre-

sented to study the quantum properties of light. By using these equations, we have

determined the time evolution of the expectation values of the cavity mode and

atomic operators. With aid of this results, the correlation properties of the noise

operators and the large-time approximation scheme, we calculate the mean pho-

ton number, the quadrature variance and the power spectrum for the cavity light.
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1

Introduction

A two level laser is a quantum optical system in which light is generated by two

level atoms inside a cavity and coupled to vacuum reservoir. A two level laser is a

source of coherent or chaotic light emitted by two level atoms inside a closed cavity

and coupled to vacuum reservoir via single-port mirror[1]. In other model the two-

level atoms available in the cavity are pumped at constant rate to the upper level by

coherent light[2-7]. Some authors are interest to study the properties of light gen-

erated by two level laser [8-13]. In addition, Fesseha [1] has studied the squeezing

and the statistical properties of the light produced by a degenerate two-level laser

with the atoms in a closed cavity and pumped by electron bombardment.

There has been a considerable interest in the analysis of the squeezing and sta-

tistical properties of the light generated by two-level lasers [14-28]. The squeezing

and statistical properties of the light produced by two-level lasers when the atoms

are initially prepared in a coherent superposition of the top and bottom levels or

when these levels are coupled by a strong coherent light have been studied by sev-

eral authors [29-31]. Other authors have found that the quantum optical systems

can generate squeezed light under certain conditions, the properties of the fluores-

1
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cent light emitted by two level atom in a cavity driven by coherent light and coupled

to squeezed vacuum have been studied by several authors [5, 9, 13, 15].

A coherently driven two level atom in closed cavity operating below threshold

chaotic [5, 9, 10, 21, 22, 25]. Moreover, some authors have studied the squeez-

ing and the statistical properties of the light produced by a two-level laser with

the atoms in a closed cavity and pumped by electron bombardment[ 1-10]. The

maximum quadrature squeezing of the light generated by the laser operating below

threshold, is found to be 50% below the vacuum-state level [10,13, 15, 29, 30 ].

In this study we will consider a closed cavity and a two level- laser coupled with vac-

uum reservoir.

This thesis have two parts. In the first part, we wish to study the squeezing and

statistical properties of the light generated by a coherently driven two-level laser

in a closed cavity and coupled to a vacuum reservoir via a single-port mirror. We

carry out our calculation by putting the noise operators associated with the vac-

uum reservoir in normal order. We thus first determine the interaction Hamiltonian

for a coherently driven two-level laser in a closed cavity and coupled to a vacuum

reservoir and the quantum Langevin equations for the cavity mode operators. In

addition, employing the interaction Hamiltonian Langevin equations, Heisenberg

equation and the large-time approximation scheme, we obtain equations of evo-

lution of the expectation values of atomic operators. Moreover, we determine the

solutions of the equations of evolution of the expectation values of the atomic op-

erators and cavity mode operators. Then applying the resulting solutions, we cal-

culate the photon statistics and the quadrature variances of the single-mode cavity
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light beams. Furthermore, applying the same solutions, we determine the quadra-

ture squeezing of the single-mode cavity light.

In the second part of this thesis, we seek to analyze the squeezing and statis-

tical properties of a pair of superposed two-level laser light beams produced by a

coherently driven two-level atom with a closed cavities and coupled to a vacuum

reservoirs. We thus first determine the Q function for two-level laser light beam.

Then using the resulting Q function we obtain the density operator for a pair of

superposed two-level laser light beams. Applying this density operator, we calcu-

late the photon statistics and the quadrature squeezing of the superposed two-level

laser light beams.



2

Operator Dynamics and Cavity Mode Operator

In this chapter, we consider a two-level laser driven by coherent light and with the

cavity modes coupled to a single-mode vacuum reservoir via a single-port mirror.

Figure 2.1: schematic representation of a coherently driven two level laser in a

closed cavity and coupled to a vacuum reservoir .

As clear indicated, in figure. (1), a two level atom with upper and lower energy

eigenstate represented by |a〉 and |b〉 respectively.

4



2.1 The Interaction Hamiltonian 5

2.1 The Interaction Hamiltonian

We consider here the case in which N two- level atoms are available in a cavity.

Then the interaction of the cavity mode with one of the atom can be described at

resonance by Hamiltonian

Ĥ = ig(σ̂†kb̂− b̂†σ̂k) +
iΩ

2
(σ̂†k − σ̂k), (2.1)

where

σ̂k = |b〉kk〈a| (2.2)

is the lowering atomic operator, b̂ is the annihilation operator for the cavity mode

and g is the coupling constant between the atom and the cavity mode and Ω = 2ελ

in which ε is considered to be real and constant in the amplitude of the driving

coherent light and λ is coupling constant between the driving coherent light and

atomic operator.

2.2 Quantum Lagevin Equation

We recall that the laser light is coupled to vacuum reservoir via a single-port mirror.

In addition, we carry out our calculation by putting the noise operator associated

with vacuum reservoir in normal order. Thus the noise operator will not have any

effect on the dynamics of the cavity mode operators [8]. We can then drop the noise

operators and write the quantum Langevin equation for the operator b̂ as

db̂

dt
= −κ

2
b̂− i[b̂, Ĥ], (2.3)



2.2 Quantum Lagevin Equation 6

where κ is cavity damping constant, then in view of Eq. (2.1), we see the quantum

Langevin equation

db̂

dt
= −κ

2
b̂− gσ̂k. (2.4)

The procedure of normal ordering the noise operators renders the vacuum reservoir

to be in noiseless physical entity. We uphold the view point that the predication

mode base on the would turn out to be in agreement with observation, Further-

more, employing the Heisenberg equation

d

dt
〈Â〉 = −i〈[Â, Ĥ]〉. (2.5)

With aid of Eq. (2.1), one can readily obtain

d

dt
〈σ̂k〉 = −i

〈[
σ̂k, ig(σ̂†kb̂− b̂†σ̂k) +

iΩ

2
(σ̂†k − σ̂k)

]〉
.

= A + B, (2.6)

where

A = g

(
[σ̂k, σ̂

†
kb̂]− b̂†[σ̂k, σ̂k]

)
, (2.7)

B = i

〈
[σ̂k,

iΩ

2
(σ̂†k − σ̂k)]

〉
, (2.8)

[σ̂k, σ̂k] = 0, (2.9)

σ̂kσ̂
†
k = σ̂k

b , (2.10)

σ̂†kσ̂k = σ̂k
a . (2.11)
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In view of these results, we have

A =

(
〈σ̂k

b b̂〉 − 〈σ̂k
a b̂〉

)
(2.12)

and

B =
Ω

2

(
〈σ̂k

b 〉 − 〈σ̂k
a〉

)
. (2.13)

Therefore, by adding Eqs. (2.12) and (2.13), one can get

d

dt
〈σ̂k〉 = g(〈σ̂k

b b̂〉 − 〈σ̂k
a b̂〉) +

Ω

2
(〈σ̂k

b 〉 − 〈σ̂k
a〉). (2.14)

Following the same procedure

d

dt
〈σ̂k

a〉 = g(〈σ̂†kb̂〉+ 〈b̂†σ̂k〉) +
Ω

2
(〈σ̂†k〉+ 〈σ̂k〉), (2.15)

d

dt
〈σ̂k

b 〉 = −g(〈σ̂†kb̂〉+ 〈b̂†σ̂k〉)−
Ω

2
(〈σ̂†k〉+ 〈σ̂k〉). (2.16)

Employing large time-approximation of Eq. (2.4), one can obtain

b̂ =
−2g

κ
σ̂k (2.17)

and adjoint of this equation is

b̂† =
−2g

κ
σ̂†k. (2.18)

Therefore, when substitute Eqs. (2.17) and (2.18) into Eq. (2.14), we find

d

dt
〈σ̂k〉 = −γc

2
〈σ̂b〉+

Ω

2
(〈σ̂k

b 〉 − 〈σ̂k
a〉), (2.19)

d

dt
〈σ̂k

a〉 = −γc〈σ̂k
a〉+

Ω

2
(〈σ̂†k〉+ 〈σ̂k〉), (2.20)
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d

dt
〈σ̂k

b 〉 = γc〈σ̂k
a〉 −

Ω

2
(〈σ̂†k〉+ σ̂k〉), (2.21)

where

γc =
4g2

κ
(2.22)

is stimulated emission decay constant.

We next Eqs. (2.19)-(2.21) sum over the N two-two level atoms, so that

d

dt
〈m̂〉 = −γc

2
〈m̂〉+

Ω

2

[
〈Nb〉 − 〈Na〉

]
, (2.23)

d

dt
〈Na〉 = −γc〈Na〉+

Ω

2

[
〈m̂†〉+ 〈m̂〉

]
, (2.24)

d

dt
〈Nb〉 = γc〈Na〉 −

Ω

2

[
〈m̂†〉+ 〈m̂〉

]
, (2.25)

where

m̂a =
N∑

k=1

σ̂k
a , (2.26)

m̂b =
N∑

k=1

σ̂k
b , (2.27)

m̂ =
N∑

k=1

|b〉kk〈a| = N |b〉〈a|, (2.28)

N̂a =
N∑

k=1

η̂a, (2.29)

N̂b =
N∑

k=1

η̂b. (2.30)
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with the operator N̂a and N̂b representing the number of atom in the top and bottom

levels respectively. In addition, employing the completeness relation.

η̂a + η̂b = I. (2.31)

Sum over N of the above equation results in

〈N̂a〉+ 〈N̂b〉 = N. (2.32)

Furthermore, Using the definition given by Eq. (2.2) and adjoint, setting for any k

σ̂k = |b〉〈a|, (2.33)

from a which follows

m̂ = N |b〉〈a|. (2.34)

Following the same procedure, one can find

N̂a = N |a〉〈a|, (2.35)

N̂b = N |b〉〈b|, (2.36)

m̂†m̂ = NN̂a, (2.37)

m̂m̂† = NN̂b, (2.38)

m̂2 = 0. (2.39)

In the presence of N two-level atoms, we can rewrite Eq. (2.4) as

d

dt
b̂ = −κ

2
b̂ + λm̂. (2.40)
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where λ is constant and whose value remains to be fixed. Employing Eq. (2.17) and

(2.18), the commutation relation for the cavity mode operator are found to be

[b̂, b̂†] =
4g2

κ2
(σ̂kσ̂

†
k − σ̂†kσ̂k). (2.41)

With aid of Eq. (2.10) and (2.11), one can readily obtain

[b̂, b̂†] =
γc

κ
(σ̂k

b − σ̂k
a). (2.42)

and on summing over all atoms, we have

[b̂, b̂†] =
γc

κ
(Nb −Na), (2.43)

where

[b̂, b̂†] =
N∑

k=1

[b̂, b̂†]k (2.44)

stands for the commutation of b̂ and b̂†, when the cavity mode is interacting with

all the N two level atoms. On the other hand, using the steady-state solution of Eq.

(2.40), one can easily verify that.

[b̂, b̂†] = N

(
2λ

κ

)2(
〈N̂b〉 − 〈N̂a〉

)
. (2.45)

Thus on account of Eqs. (2.43) and (2.45), we see that

λ = ± g√
N

. (2.46)

Hence in veiw of this result the equation of evolution of the cavity operator given by

Eq. (2.40), can be rewritten as

d

dt
b̂ = −κ

2
b̂ +

g√
N

m̂. (2.47)
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2.3 Solution of the expectation value of the cavity and atomic

mode operators

In order to determine the mean photon number and the variance of the photon

number and the quadrature squeezing of the single mode cavity light in any fre-

quency interval at steady state, we first need to calculate the solution of the equa-

tion of evolution of the expectation value of the atomic and the cavity mode oper-

ator. To this end the expectation value of the solution of Eq. (2.47) is expressible

as

〈b̂(t)〉 = 〈b̂(0)〉e
−κt
2 +

g√
N

e
−κt
2

∫ t

0

dt′e
−κt′

2 〈m̂(t′)〉. (2.48)

We next wish to obtain the expectation value of expression of m̂(t) that in Eq. (2.48).

Thus applying the large time approximation scheme of Eqs. (2.23) and (2.24) to find

d

dt
〈m̂〉 = −1

2
(
γ2

c + 2Ω2

γc

)〈m̂(t)〉+
Ω

2
N. (2.49)

Upon setting , µ = γ2
c +2Ω2

γc
, Eq. (2.49) reduce to

d

dt
〈m̂〉 = −µ

2
m̂(t) +

Ω

2
N. (2.50)

Following that from steady state solution of Eq. (2.50), we obtain

〈m̂(t)〉 =
Ω

µ
N. (2.51)

Now substituting Eq. (2.51) into Eq. (2.48), One can get

〈b̂(t)〉 = 〈b̂(0)〉e
−κt
2 +

g√
N

e
−κt
2

∫ t

0

dt′e
−κt′

2 (
Ω

µ
N)
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= 〈b̂(0)〉e
−κt
2 − g√

N
e
−κt
2 (

Ω

µ
N)

∫ t

0

dt′e
−κt′

2

= 〈b̂(0)〉e
−κt
2 − g√

N
e
−κt
2 (

Ω

µ
N)(− 1

κt
)[e

−κt′
2 ]|t0

= 〈b̂(0)〉e
−κt
2 +

g√
N

e
−κt
2 (

2Ω

µκ
N)[e

−κt
2 − 1]

= 〈b̂(0)〉e
−κt
2 +

g√
N

(
2Ω

µκ
N)[e−κt − e

−κt
2 ].

and at steady-state

〈b̂(t)〉 = 0. (2.52)

Therefore, in view of the linear equation described by expressions of Eq. (2.47) with

Eq. (2.52), we claim that 〈b̂(t)〉 is Gaussian variable with zero mean. We finally seek

to determine the solution of expectation value of the atomic operator at steady -

state. Moreover, the steady state solution of Eqs. (2.23)- (2.25), yield

〈m̂〉 =

[
Ωγc

γ2
c + 2Ω2

]
N, (2.53)

〈N̂a〉 =

[
Ω2

γ2
c + 2Ω2

]
N, (2.54)

〈N̂b〉 =

[
γ2

c + Ω2

γ2
c + 2Ω2

]
N, (2.55)

From commutation relation of the cavity operator, one can get

λ =

(
γcN

κ

)(
γ2

c

γ2
c + 2Ω2

)
. (2.56)

Upon setting η = Ω
γc

into Eqs. (2.53) (2.54), (2.55) and (2.56), one can obtain

〈m̂〉 =

[
η

1 + 2η2

]
N, (2.57)
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〈N̂a〉 =

[
η2

1 + 2η2

]
N, (2.58)

〈N̂b〉 =

[
1 + η2

1 + 2η2

]
N, (2.59)

λ =
γc

κ
N

[
1

1 + 2η2

]
. (2.60)

Intially (when η = 0), all the atom are on the lower level i.e 〈Nb〉=N while the number

of atoms on the upper energy level is zero and if η →∞, 〈N̂a〉 = 1
2

N and 〈N̂b〉 = 1
2

N



3

Photon statistics

In this chapter, we seek to study the statistical properties of the light produced by a

coherently driven two level laser in closed cavity and coupled to a vacuum reservoir.

Applying the solution of the equation of evaluation of the expectation value of the

atomic operator and the quantum Langavian equation for cavity mode operator, we

obtain the global and local for mean and variance of photon numbers statistics of

cavity light.

3.1 Mean photon number

In this section we seek to obtain the global mean and variance of photon numbers,

as well as the local mean and variance of the photon number.

3.1.1 Global mean photon number

Here we seek to determine the mean photon number of cavity light in the entire

frequency interval produced by the system under consideration. The mean photon

number represented by the operators b̂ and b̂† is defined by

n = 〈b̂†b̂〉. (3.1)

14
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We note that the steady-state solution of Eq. (2.47) is

b̂ =
2g

k
√

N
m̂, (3.2)

so that introducing Eq. (3.2) and its adjoint into Eq. (3.1), we get

n =
γc

κ
〈Na〉. (3.3)

Now substitute Eq. (2.55) in to (3.3), one can get

n =
γc

κ

[
Ω2

γ2
c + 2Ω2

]
N. (3.4)

Figure 3.1: The 3D plots of Eq.(3.4) Mean photon number vs Ω and γc, for γc = 0.4,

Ω = 2, κ = 0.8 and N=50
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This is the steady - state mean photon number produced by a coherently driven

two level laser in closed cavity and coupled to a vacuum reservoir and when multi-

plying Eq. (3.4) by 1
γ2

c
on both nominator and denominator.

n =
γc

κ

[ Ω2

γ2
c

γ2
c

γ2
c

+ 2( Ω
γc

)2

]
N, (3.5)

Setting Ω
γc

= η

Figure 3.2: The plots of Eq.(3.6) Mean photon number vs η for γc = 0.4, κ = 0.8 and

N=50

n =
γc

κ

[
η2

1 + 2η2

]
N. (3.6)

It is not difficult to see, for η � 1, that

n =
γc

2κ
N. (3.7)
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3.1.2 Local mean photon number

We seek to determine the mean photon number in a given frequency interval. Em-

ploying the power spectrum of single mode cavity light with central common fre-

quency ωo defined as

P (ω) =
1

π
Re

∫ ∞

0

dτei(ω−ωo)τ 〈b̂†(t)b̂(t + τ)〉ss. (3.8)

Next we seek to calculate the two- time correlation function for single mode cavity

light. To this end, we realize that the solution of Eq. (2.48) can written as

b̂(t + τ) = 〈b̂(t)〉e
−κτ

2 +
g√
N

e
−κτ

2

∫ τ

0

dτ ′e
−κτ ′

2 m̂(t + τ ′). (3.9)

On other hand, one can put Eq. (2.50) in the form

d

dt
〈m̂〉 = −µ

2
m̂(t) +

Ω

2
N + F̂m(t), (3.10)

in which F̂m is the noise operator with zero mean,the solution is expressible as

m̂(t + τ) = m̂(t)e−
µτ
2 + e−

µτ ′
2

∫ τ

0

dτ ′(
Ω

µ
)N(t′ + τ ′)

+e−
µτ
2

∫ τ

0

dτ ′e−
µτ
2 F̂m(t′ + τ ′). (3.11)

Substituting Eq. (3.12) into (3.9), one can obtain

b̂(t + τ) = b̂(t)e−
κτ
2 +

g√
N

e−
κτ
2

∫ τ

0

dτ ′e−
κτ ′
2 m̂(t)e−

µτ ′
2

+e−
µτ ′
2

∫ τ ′

0

dτ ′′
Ω

µ
N(t + τ ′′)

+e−
µτ ′
2

∫ τ ′

0

+e−
µτ ′τ

2 F̂m(t + τ ′′). (3.12)
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On multiplying both sides on the left by b̂†(t) and taking expectation value of the

resulting equation, we get

〈b̂†(t)b̂(t + τ)〉 = 〈b̂†(t)b̂(t)〉sse−
κτ
2 +

g√
N

e+κτ
µ

∫ τ

0

dτ ′e−
(κ−µ)τ ′

2 〈b̂†(t)m̂(t)〉

+
g√
N

e−
κτ
2

∫ τ

0

dτ ′e
(κ−µ)τ ′

2

∫ τ ′

0

dτ ′′(
Ω

µ
)

×
[
〈b̂†(t)(t + τ ′′)〉+ 〈b̂†(t)F̂m(t + τ ′′)〉

]
. (3.13)

Moreover, applying the large-time approximation scheme to Eq. (2.48), we can ob-

tain

m̂(t) =
κ
√

N

2g
b̂(t). (3.14)

Since the cavity mode operator and noise operator of atomic mode are not corre-

lated, we see that

〈b̂(t)F̂m(t + τ ′′)〉 = 0. (3.15)

Hence introducing Eq. (3.14) and Eq. (3.17) into Eq. (3.13), one can readily find

〈b̂†(t)b̂(t + τ)〉ss = n

[
κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

µτ
2

]
, (3.16)

where

n = 〈b̂†(t)b̂(t)〉ss. (3.17)

On introducing Eq. (3.16) into Eq. (3.8) and carrying out the integration, we see that

P (w) = n

{
κ

κ− µ

[ µ
2π

(µ
2
)2 + (ω − ωo)2

]
− µ

κ− µ

[ κ
2π

(κ
2
)2 + (ω − ωo)2

]}
. (3.18)
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The mean photon number in the frequency interval between ω′ = −λ and ω′ = +λ

is expressible as

n±λ =

∫ +λ

−λ

P (ω′)dω′, (3.19)

in which ω′ = ω − ωo. Thus upon substituting Eq. (3.18) into Eq. (3.19) we find

n±λ =

[
κn

κ− µ

] ∫ +λ

−λ

[ µ
2π

(ω − ωo)2 + (µ
2
)2

]
dω′

−
[

µn

κ− µ

] ∫ λ

−λ

[ κ
2π

(ω − ωo)2 + (κ
2
)2

]
dω′. (3.20)

And on carrying out the integration over ω′ by applying the relation

∫ +λ

−λ

dx

x2 + a2
=

2

a
tan−1

(
λ

a

)
(3.21)

we arrive at

n±λ = z(λ)n, (3.22)

where

z(λ) =

[ 2κ
π

κ− µ

]
tan−1

(
2λ

µ

)
−

[ 2µ
π

κ− µ

]
tan−1

(
2λ

κ

)
. (3.23)

We can see from of Eq. (3.23) that z(0.5)=0.9611 z(1)=0.9764 and z(2)=0.9833, then

from combination of these result with Eq.(3.23), yields n±0.5 = 0.9611n, n±1 =

0.9764n and n±2 = 0.9833n. From these results one can easily observe that large part

of the total mean photon number is confined in relative small frequency interval.
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Figure 3.3: plot of Eq.(3.23) z(λ) vs λ, for γc = 0.8, Ω = 8, and κ = 0.05.

3.2 variance of photon number

Here we seek to determine the global and Local variance of photon number of the

cavity produced by a coherently driven two-level laser in closed cavity and coupled

to vacuum reservoir.

3.2.1 Global photon number variance

Here we seek to obtain the variance of photon number in the entire frequency mode

interval. The variance of photon number is defined as

(∆n)2 = 〈(b̂†b̂)2〉 − 〈b̂†b̂〉2. (3.24)

Applying the fact that b̂ is a Gaussian variable with zero mean, we arrive at

(∆n)2 = 〈b̂†b̂〉〈b̂†b̂〉+ 〈b̂b̂†〉〈b̂†b̂〉 − 〈b̂†b̂〉2 + 〈b̂†2〉〈b̂2〉, (3.25)
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from which follows

(∆n)2 = 〈b̂†b̂〉〈b̂b̂†〉+ 〈b̂†2〉〈b̂2〉. (3.26)

In view of the steady state solution of Eq. (2.47) along Eqs, (2.37)-(2.40), we see that

〈b̂2〉 = 0, (3.27)

〈b̂†b̂〉 =
γc

κ
〈Na〉, (3.28)

〈b̂b̂†〉 =
γc

κ
〈Nb〉. (3.29)

Introducing Eqs. (3.27)-(3.29) into Eq. (3.26), results in

(∆n)2 =

(
γc

κ

)2

〈Na〉〈Nb〉. (3.30)

Since with aid of Eq. (3.3) and (3.25), we get

(∆n)2 = nλ + n2. (3.31)

and by substitute Eqs. (2.56) and (3.4) into (3.31), we can find

(∆n)2 =

[
γc

κ
N

]2{[
Ωγc

γ2
c + 2Ω2

]2

+

[
Ω2

γ2
c + 2Ω2

]2}
, (3.32)

By setting η = Ω
γc

, we have

(∆n)2 =

[
γc

κ
N

]2{[
η

1 + 2η2

]2

+

[
η2

1 + 2η2

]2}
. (3.33)
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Figure 3.4: The 3D plots of Eq.(3.32) ∆n2 vs Ω and γc, for κ = 0.8 and N=50

This is is the global photon number variance of cavity light produced by the coher-

ently driven two-level laser with a closed cavity and coupled to vacuum reservoir.

For (η � 1), we see that

(∆n)2 =
1

4

(
γc

κ
N

)2

= n2, (3.34)

where n is given by (3.7).
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Figure 3.5: plots of Eq.(3.33) (∆n)2 vs η, for γc = 0.4, κ = 0.8 and N=50

3.2.2 The local variance of photon number

Here we wish to obtain the variance of photon number in a given frequency inter-

val. Employing the spectrum of photon number fluctuation for the superposition

of light of central common frequency of ωo, this spectrum of the photon number

fluctuation can be expressed as

Γ(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ωo)τ 〈n̂(t), n̂(t + τ)〉ss, (3.35)
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where

n̂(t) = b̂†(t)b̂(t), (3.36)

and

n̂(t + τ) = b̂†(t + τ)b̂(t + τ). (3.37)

Applying the relation [11],

〈n̂(t), n̂(t + τ)〉 = 〈n̂(t)n̂(t + τ)〉 − 〈n̂(t)〉〈n̂(t + τ)〉, (3.38)

and with aid of Eqs. (3.36) and (3.37) we obtain

〈n̂(t), n̂(t + τ)〉 = 〈b̂†(t)b̂†(t + τ)〉〈b̂(t)b̂(t + τ)〉

+〈b̂(t)b̂†(t + τ)〉〈b̂†(t + τ)〉. (3.39)

Introducing Eq. (3.39) into Eq. (3.35), the photon number fluctuation can be ex-

pressed as

Γ(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ωo)τ

[
〈b̂†(t)b̂†(t + τ)〉〈b̂(t)b̂(t + τ)〉

+〈b̂(t)b̂†(t + τ)〉〈b̂(t)b̂†(t + τ)〉
]
. (3.40)

By using Eq.(3.12) and multiply b̂(t) from the left on both side, one can obtain

〈b̂(t)b̂(t + τ)〉 = 〈b̂2〉e−
κτ
2 +

g√
N

e−
κτ
2

∫ ∞

0

dτe
κτ ′
2 〈b̂(t)m̂(t)〉e−

µτ ′
2

+e−
µτ ′
2

∫ ∞

0

dτ ′′(−Ω

2
)〈b̂(t)N(t + τ ′′)〉

+e−
µτ ′
2

∫ ∞

0

dτ ′′e−
µτ ′′
2 〈b̂(t)F̂m(t + τ ′′)〉. (3.41)
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Since the cavity mode operator at earlier time does not affect the noise operator and

atomic operator at later time, we have

〈b̂(t)N(t + τ ′)〉 = 〈b̂(t)F̂m(t + τ ′′)〉 = 0. (3.42)

Using Eq. (3.14) and Eq. (3.41), we have

〈b̂(t)b̂(t + τ)〉ss = 〈b̂2(t)〉e−
κτ
2 +

g√
N

e−
κτ
2

∫ ∞

0

dτe
κτ ′
2 〈b̂(t)b̂(t)〉κ

√
N

2g
e−

µτ ′
2 ,(3.43)

from which follows

〈b̂(t)b̂(t + τ)〉ss = 〈b̂2(t)〉
[

κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

κτ
2

]
. (3.44)

Following a similar procedure, we see that

〈b̂†(t)b̂(t + τ)〉ss = 〈b̂(t)b̂(t)〉
[

κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

κτ
2

]
, (3.45)

〈b̂†(t)b̂†(t + τ)〉ss = 〈b̂†2(t)〉
[

κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

κτ
2

]
, (3.46)

〈b̂(t)b̂†(t + τ)〉ss = 〈b̂(t)b̂†(t)〉ss
[

κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

κτ
2

]
. (3.47)

Upon introducing Eqs. (3.44)- (3.47) into (3.40) and on carrying out the integration

over τ , the spectrum of the photon number fluctuation for single mode cavity light

is found to be

Γ(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ωo)τ

[
〈b̂†b̂〉〈b̂b̂†〉+ 〈b̂2〉〈b̂†2〉

]

×
[

κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

κτ
2

]
. (3.48)

Now introducing Eq. (3.26) into (3.48), one can obtain
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Γ(ω) = (∆n)2

{[
κ2

(κ− µ)

][ µ
2π

(ω − ωo)2 + (µ
2
)2

]
+

[
µ2

(κ− µ)

][ κ
π

(ω − ωo)2 + (κ
2
)2

]

−
[

2κµ

(κ− µ)2

][ κ+µ
2π

(ω − ωo)2 + (κ+µ
2

)2

]}
. (3.49)

Upon integrating both sides of Eq. (3.49) over ω, we can easily that

∫ ∞

−∞
Γ(ω)dω = (∆n)2

ss. (3.50)

On the basis of Eq. (3.50), we observe that Γ(ω)dω represent the steady-state vari-

ance of the photon number for the single- mode cavity light in the interval between

ω and ω + dω, we thus realize that the photon number variance in the interval be-

tween ω′ = −λ and ω′ = +λ

(∆n)2
±λ =

∫ +λ

−λ

Γ(ω)dω, (3.51)

in which ω′ = ω − ω. Thus on substituting Eq. (3.49) into Eq. (3.51) and on carrying

out the integration over ω′ by applying the relation described in Eq. (3.21) we readily

get

(∆n)2
±λ = (∆n)2z′(λ), (3.52)

where

z′(λ) =

[ 2κ2

π

(κ− µ)2

]
tan−1

(
λ

µ

)
+

[ 2µ2

π

(κ− µ)2

]
tan−1

(
λ

κ

)

−
[ 4κµ

π

(κ− µ)2

]
tan−1

(
2λ

κ + µ

)
. (3.53)
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Figure 3.6: plot of Eq.(3.53)z′(λ)vsλ,for γc = 0.4, Ω = 6 and κ = 0.08.

One can readily observe from figure. (3.4) that z′(0.5) = 0.8991 z′(1) = 0.9495 and

z′(2) = 0.9746. Then combination of these results with Eq.(3.53) yields (∆n)2
±0.5 =

0.8991(∆n)2, (∆n)2
±1 = 0.9495(∆n)2 and (∆n)2

±2 = 0.9746(∆n)2. Therefore, a large

part of total variance of photon number is confined in relative small frequency in-

terval.
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Quadrature Squeezing

Applying the steady-state solutions of the equations of evolution of the expectation

values of the atomic operators and the quantum Langevin equations for the cavity

mode operators, we obtain the global quadrature variance of cavity light. In addi-

tion, we determine the Local quadrature squeezing of the single-mode cavity light.

4.1 Quadrature variance

In this section, we obtain the quadrature variance of light in the entire frequency

interval produced by the system under consideration.

4.1.1 Global quadrature variance

Here we wish to calculate the quadrature variance of the cavity light in the entire

frequency interval. The squeezing properties of the cavity light are described by

two quadrature operators

b̂+ = b̂† + b̂ (4.1)

and

b̂− = i(b̂† − b̂), (4.2)

28



4.1 Quadrature variance 29

where b̂+ and b̂− are hermitian operators representing physical quantities called

plus and minus quadrature respectively while b̂† and b̂ are the creation and anni-

hilation operators for light mode. With help of Eq. (4.1) and Eq. (4.2), we can show

that the two quadrature operators satisfy commutation relation.

[b̂−, b̂+] = b̂−b̂+ − b̂+b̂− (4.3)

and we note that

b̂−b̂+ = i(b̂†
2

+ b̂†b̂− b̂b̂† − b̂2), (4.4)

b̂+b̂− = i(b̂†
2 − b̂†b̂ + b̂b̂† − b̂2). (4.5)

On account of these results, we see that

[b̂−, b̂+] = −2λi. (4.6)

It then follows that

[b̂−, b̂+] = 2i
γc

κ
(〈Nb〉 − 〈Na〉). (4.7)

In view of this result and using the relation

∆A∆B ≥ 1

2
|〈[A, B]〉|,

the uncertainty relation for the plus and minus quadrature operator is expressible

as

∆b+∆b− ≥
1

2
|〈[b+, b−]〉|

≥ 1

2
|2i〈λ〉|
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≥ |〈λ〉|.

With aid of Eq. (2.43), we have

∆b+∆b− ≥
γc

κ
|〈Nb〉 − 〈Na〉|. (4.8)

Now introducing Eqs. (2.54) and (2.55) into (4.8), one can get

∆b+∆b− ≥
γc

κ
N

∣∣∣∣ γ2
c

γ2
c + 2Ω2

∣∣∣∣, (4.9)

Moreover, we consider the case in which the driving coherent light is absent, thus

upon setting Ω = 0 in Eq. (4.9), we readily get

∆b+∆b− ≥
γcN

κ
. (4.10)

Therefore, we notice that the product of the uncertainties in the two quadratures

satisfies the minimum uncertainty relation in a vacuum state.

Next we produced to calculate quadrature variance of the plus and minus

quadrature operator are defined by

(∆b±)2 = 〈b̂2
±〉 − 〈b̂±〉2. (4.11)

One can also write

(∆b+)2 = 〈b̂2
+〉 − 〈b̂+〉2 (4.12)

and

(∆b−)2 = 〈b̂2
−〉 − 〈b̂−〉2. (4.13)

With aid of Eqs. (4.1) and (4.12), can be expressed in terms of creation and annihi-

lation operator

(∆b+)2 = λ + 2〈b̂†b̂〉+ 〈b̂†2〉+ 〈b̂2〉 − 〈b̂〉2 − 〈b̂†〉2 − 2〈b̂〉〈b̂†〉. (4.14)
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In addition, on account of Eqs. (4.2) and (4.13), we get

(∆b−)2 = λ + 2〈b̂†b̂〉 − 〈b̂†2〉 − 〈b̂2〉+ 〈b̂〉2 + 〈b̂†〉2 − 2〈b̂〉〈b̂†〉. (4.15)

The combination of Eqs. (4.14) and (4.15) gives

(∆b±)2 = λ + 2〈b̂†b̂〉 ± 〈b̂†2〉 ± 〈b̂2〉 ∓ 〈b̂〉2 ∓ 〈b̂†〉2 − 2〈b̂〉〈b̂†〉. (4.16)

Employing Eqs. (3.29)- (3.31) into (4.16), one can readily obtain

(∆b±)2 =

(
γc

κ
N

)(
2Ω2 + γ2

c

γ2
c + 2Ω2

)
. (4.17)

Figure 4.1: The plots of Eq.(4.17) n vs Ω and γc, for κ = 0.8 and N=50
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Thus upon Setting η = Ω
γc

on Eq. (4.17), we see that

(∆b±)2 =

(
γc

κ
N

)(
2η2 + 1

1 + 2η2

)
. (4.18)

From this result, we can conclude that,

(∆b+)2 = (∆b−)2 =

(
γc

κ
N

)(
2η2 + 1

1 + 2η2

)
. (4.19)

In addition, we note that for Ω � γc Eq. (4.17) reduce

(∆b±)2 =
γc

κ
N. (4.20)

With aid Eq. (3.7) this can be expressed as

(∆b±)2 = 2n, (4.21)

where n is the mean photon number given by Eq. (3.7).

We see that Eq. (4.20) Moreover, we consider the case in which the driving coherent

light is absent or vacuum state. Thus upon setting Ω = 0 and Eq. (4.17) become

(∆b+)2
v = (∆b−)2

v = (
γc

κ
N), (4.22)

which is normally ordered quadrature variance of single mode cavity vacuum state.

We note that for Ω = 0 the uncertainty in plus and minus quadratures are equal and

satisfy the minimum uncertainties relation.

4.2 Quadrature squeezing

In this section, we seek to study the local quadrature squeezing for the light pro-

duced by the system under consideration.
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4.2.1 Local quadrature squeezing

Here we wish to obtain the quadrature squeezing of single mode cavity light in a

given frequency interval. To this end, we first obtain the spectrum fluctuation of

the superposition of light mode. We define this spectrum fluctuation of the single

mode cavity light,

S±(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ωo)τ 〈b̂±(t), b̂±(t + τ)〉, (4.23)

where

b̂+(t + τ) = b̂†(t + τ) + b̂(t + τ), (4.24)

b̂−(t + τ) = i(b̂†(t + τ)− b̂(t + τ)), (4.25)

and ωo is the central frequency. In view of Eq. (2.52), we obtain

〈b̂±(t), b̂±(t + τ)〉 = 〈b̂±(t)b̂±(t + τ)〉. (4.26)

On account of Eqs. (4.1), (4.2), (4.24) and (4.25), one can write Eq. (4.26), as

〈b̂±(t), b̂±(t + τ)〉 = 〈b̂†(t)b̂(t + τ)〉+ 〈b̂(t)b̂†(t + τ)〉 ± 〈b̂†(t)b̂†(t + τ)〉

±〈b̂(t)b̂(t + τ)〉. (4.27)

Upon substituting of Eqs. (3.44)-(3.47) into Eq. (4.26), we arrive at

〈b̂±(t), b̂±(t + τ)〉 =

[
〈〈b̂†(t)b̂(t + τ)〉+ 〈b̂(t)b̂†(t + τ)〉 ± 〈b̂†(t)b̂†(t + τ)〉

±〈b̂(t)b̂(t + τ)〉
][

κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

κτ
2

]
, (4.28)
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from which follows

〈b̂±(t), b̂±(t + τ)〉 = (∆b±)2

[
κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

κτ
2

]
, (4.29)

where

(∆b±)2 = 〈b̂†(t)b̂(t + τ)〉+ 〈b̂(t)b̂†(t + τ)〉 ± 〈b̂†(t)b̂†(t + τ)〉

±〈b̂(t)b̂(t + τ)〉. (4.30)

It then follows that

〈b̂+(t), b̂+(t + τ)〉 = (∆b+)2

[
κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

κτ
2

]
(4.31)

and

〈b̂−(t), b̂−(t + τ)〉 = (∆b−)2

[
κ

κ− µ
e−

µτ
2 − µ

κ− µ
e−

κτ
2

]
. (4.32)

Now introducing Eq. (4.32) into (4.23) and carrying out integration over τ , we find

the spectrum of the minus quadrature fluctuation for a single mode cavity light as

S−(ω) = (∆b−)2
ss

{
κ

κ− µ

[ µ
2π

(µ
2
)2 + (ω − ωo)2

]
− µ

κ− µ

[ κ
2π

(κ
2
)2 + (ω − ωo)2

]}
(4.33)

Upon integration both side of Eq. (4.33), over ω we get

∫ ∞

−∞
S−(ω)dω = (∆b−)2. (4.34)

On the basis of Eq. (4.34), we observe that S−(ω)dω is the steady-state quadrature

variance in the interval between ω and ω + dω. Thus, we realize that the variance of

the minus quadrature in the interval between ω′ = −λ and ω′ = +λ is expressible as

(∆b±)2
±λ =

∫ +λ

−λ

S−(ω′)dω′, (4.35)
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in which ω − ωo = ω′. On introducing Eq. (4.33) into Eq. (4.35) and carrying out the

integration over ω′, employing relation described by Eq. (3.21), we find

(∆b−)2
±λ = (∆b−)2z(λ), (4.36)

where z(λ) is give by Eq. (3.23), we define the quadrature squeezing of a cavity in

the interval of λ± by

S±λ = 1−
(∆b−)2

±λ

(∆b−)2
v±λ

. (4.37)

Furthermore, upon setting η = 0, in Eq. (4.36), we seek that the local quadrature

variance of of single mode cavity in vacuum state in the same frequency is found to

be

(∆b−)2
v±λ = (∆b)b

vzv(λ), (4.38)

by setting µ = γ2
c +2Ω2

γc
, in Eq.(3.23) and consider in vacuum state, one can get

zv(λ) =

[ 2κ
π

κ− γc

]
tan−1

(
2λ

γc

)
−

[ 2γc

π

κ− γc

]
tan−1

(
2λ

κ

)
. (4.39)

BY introducing Eqs. (4.36) and and (4.38) into (4.37), one can readily obtain

S±(λ) =
[zv(λ)− z(λ)]

zv(λ)
, (4.40)

now in the view of Eqs. (3.23) and (4.39) into (4.40), one can readily get

S±(λ) =

{
1−

[
2κ/π
κ−µ

]
tan−1(2λ

µ
)−

[
2µ/π
κ−µ

]
tan−1(2λ

κ
)[

2κ/π
κ−γc

]
tan−1(2λ

γc
)−

[
2γc/π
κ−γc

]
tan−1(2λ

κ
)

}
. (4.41)

This is the local quadrature squeezing.
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Figure 4.2: A plots of Eq.(4.41) Local quadrature squeezing versus λ for γc = 0.4,

Ω = 2 and κ = 0.8.

The the plots in figure 4.2 shows that the maximum local quadrature squeezing is

83.33% below vacuum level. This occurs in the frequency interval λ± = 0.01. In

additions, we note that the local quadrature squeezing increase as λ increase.
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Superposed Two Level Laser Light Beams

In this chapter we seek to study the squeezing and statistical properties of a pair of

superposed laser light beams produced by a coherently driven superposed two level

laser and coupled to a vacuum reservoir via a single-port mirror. We thus first ob-

tain the Q function, with the aid of the antinormally-ordered characteristic function

defined in the Heisenberg picture for laser light beams. Then using the resulting Q

function, we determine the density operator for the pair of superposed laser light

beams. Applying this density operator, we calculate the global photon statistics and

quadrature squeezing.

5.1 The number and coherent state

We seek here to determine various relation, involving the number and coherent

state, which hold for arbitrary commutation relation of the annihilation and cre-

ation operators, we shall later see some application of these relation in the quantum

analysis of laser light. We now consider a light mode represented by the operators b̂

and b̂† subject to the commutation relation,

[b̂, b̂†] = λ, (5.1)

37
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where λ is constant c-number using this commutation relation, one can readily ver-

ify that

b̂|n〉 =
√

n|n− λ〉. (5.2)

and

b̂†|n〉 =
√

n + λ|n + λ〉. (5.3)

With aid of Eq. (5.3), we can also easily established that

b̂†n|0〉 =
√

λnn!|λn〉. (5.4)

We next proceed to obtain an expression for the coherent state |α〉, in terms of num-

ber state. Thus applying Eq. (5.1), one can put this coherent states in the form

|α〉 = e−(λα∗α)/2eαb̂†|0〉, (5.5)

so that expanding in power series the second exponential function function and

taking into account Eq. (5.4), we get

|α〉 = e−(λα∗α)

n=∞∑
n=0

αn

√
n!

√
λn|λn〉. (5.6)

Now with aid of Eq. (5.6), one can write

〈α|α〉 = e−(λα∗α)
∑
m,n

α∗m√
m!

√
λm+n〈λm|λn〉. (5.7)

On assuming that

〈λm|λn〉 = δmn, (5.8)
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we readily arrive at 〈α|α〉 = 1. Since a set of orthonormal eigenstates is complete,

we can express the identity operator in the form

I =
n=∞∑
n=0

|λn〉〈λn|. (5.9)

In addition, employing Eqs. (5.6) and (5.8), one can verify that

〈λn|α〉 = e−(λα∗α)/2 αn

√
n!

√
λn (5.10)

and

〈α|β〉 = exp[λ(α∗β − 1

2
α∗α− 1

2
β∗β)]. (5.11)

Using Eq. (5.1), we also easily established that

D(α)|β〉 = exp[
1

2
λ(αβ∗ − α∗β)]|α + β〉. (5.12)

We now proceed to obtain the completeness relationes for coherent states. To this

end,we note that

∫
d2β〉〈β =

∑
n,m

∫
d2β|λn〉〈λn|β〈β|λm〉〈λm|

=
∑
n,m

|λn〉〈λm|
√

λn+m

√
n!m!

∫
d2βe−λβ∗ββnβ∗m. (5.13)

One can write

∫
d2βe−λβ∗ββnβ∗m =

∂n

∂an

∂m

∂bm

∫
d2βexp[−λβ∗β + aβ + bβ∗]a=b=0. (5.14)

It then follows that

∫
d2βe−λβ∗ββnβ∗m =

π

λ

∂n

∂an

∂m

∂bm
eab/λ

∣∣∣∣
a=b=0
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=
π

λ

∑
l

1

l!

∂n

∂an

∂m

∂bm

[
albl

λl

]
a=b=0

. (5.15)

Moreover, using the identity given by Eq. (5.11) and applying the condition a = b =

0, one finds

∫
d2βe−λβ∗ββnβ∗m =

π

λ

∑ 1

l!

1

λl

1

(1− n)!

1

(1−m)!
δlnδlm

=
π

λ

1

λn

n!

(n−m)!
δnm. (5.16)

Now in the view of Eq. (5.13) and (5.16), there follows

∫
d2β|β〉〈β| =

π

λ

∑
n,m

|λn〉〈λm|
√

λn+m

√
n!m!

n!

(n−m)!λn
δnm,

=
π

λ

∞∑
n=0

|λn〉〈λm|,

=
π

λ
Î. (5.17)

We then see that

Î =
λ

π

∫
d2β|β〉〈β|. (5.18)

This represent the completeness relation for coherent states subject to the commu-

tation relation given by Eq. (5.1).

We next seek to obtain some useful commutation relations. To this end, expand-

ing the operator function f(b̂, b̂†) in the antinormal order, one can write

[
b̂, f(b̂, b̂†)

]
=

∑
lm

clmb̂l

[
b̂, b̂+m

]
, (5.19)

so that in view of the identity

[
b̂, b̂+m

]
= λ

∂

∂b̂†
b̂†m, (5.20)
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we have

[
b̂, f(b̂, b̂†)

]
= λ

∂

∂b̂†
f(b̂, b̂†). (5.21)

One also show in similar manner that

[
b̂†, f(b̂, b̂†)

]
= −λ

∂

∂b̂
f(b̂, b̂†). (5.22)

Now using Eq. (5.21), we easily find

[b̂, D(α)] = λαD(α), (5.23)

where

D(α) = exp(αb̂† − α∗b̂) (5.24)

is the usual displacement operator. Applying Eq.(5.23), we get

b̂D̂(α) = D̂(α)(b̂ + λα), (5.25)

and up on multiplying on the right by |0〉, we have

b̂D̂(α)|0〉 = D(α)(b̂ + λα)|0〉. (5.26)

It then follows that

b̂|α〉 = λα|α〉. (5.27)

Furthermore, we that

∂

∂β∗

(
|β〉〈β|

)
=

(
∂

∂β∗
D̂(β)|0〉

)
〈β|+ |β〉

(
〈0| ∂

∂β∗
D̂(−β)

)
. (5.28)
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Applying displacement operator D̂(β) in the antinormal order, one can readily ver-

ify that

∂

∂β∗
D̂(β) = D̂

(
1

2
λβ − b̂

)
D̂(β). (5.29)

In addition, employing the displacement operator D̂(−β) in the normal order, we

easily get

∂

∂β∗
D̂(−β) = D̂

(
− 1

2
λβ + b̂

)
. (5.30)

Hence on substituting Eq. (5.29) and (5.30) into Eq. (5.28), we have

∂

∂β∗

(
|β〉〈β|

)
=

(
1

2
λβ − b̂

)
|β〉〈β|+ |β〉〈β|

(
− 1

2
λβ + b̂

)
. (5.31)

from which follows

|β〉〈β|b̂ =

(
λβ +

∂

∂β∗

)
|β〉〈β|. (5.32)

5.2 The Q function

With aid of the completeness relation given by Eq. (5.18), the antinormally ordered

characters function,

Φa(z) = Tr

(
ρ̂e−z∗b̂ezb̂†

)
, (5.33)

can be rewrite as

Φa(z) =
λ

π

∫
d2βTr

(
ρ̂e−z∗b̂|β〉〈β|ρ̂e+z∗b̂

)
, (5.34)

so that on account of Eq. (5.27), we get

Φa(z) =

∫
d2βλQ(λβ)exp(zλβ∗ − z∗λβ), (5.35)
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where Q(λβ) is the Q function. Introducing the variable α = λβ, we easily find

Φa(z) =

∫
d2α

Q(α)

λ
exp(zα∗ − z∗α), (5.36)

since Q(α)
λ

is the inverse fourier transform of the characteristic function, we see that

Q(α) =
λ

π2

∫
d2αΦa(z)exp(zα∗ − z∗α). (5.37)

Upon integrating both side of Eq. (5.37), over α and taking into account the fact that

1

π2

∫
d2αexp(zα∗ − z∗α), = δ2(z), (5.38)

we arrive at

∫
d2αQ(α) = λ

∫
d2zTr(ρ̂ezb̂e−zb̂†)δ2(z), (5.39)

from which follows

∫
d2αQ(α) = λ. (5.40)

This shows that the Q function is normalized to λ.

We now proceed to obtain the explicit from the antinormally ordered charac-

teristic function of a two level laser. Upon replacing the atomic operator that pear

in Eq. (2.45), by the expectation values of the commutation relation for the light

generated by the two level laser can be write as

[b̂, b̂†] = λ, (5.41)

in which

λ =
γc

κ

[
〈Nb〉 − 〈Na〉

]
. (5.42)
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Thus applying the Baker-Haudroff identity along with Eq. (5.41), one can put Eq.

(5.33), in the form

Φa(z, t) = e−(λz∗z)/2

〈
ezb̂†(t)−z∗b̂(t)

〉
, (5.43)

since b̂(t) is a Gaussian variable with zero mean, we can rewrite Eq. (5.43) as

Φa(z, t) = e−(λz∗z)/2exp

[
1

2
〈(zb̂†(t)− z∗b̂(t))2〉

]
. (5.44)

It then follows that

Φa(z, t) = e−(λz∗z)/2exp

[
1

2

〈
z2b̂†

2

(t) + z∗
2

b̂2(t)

−z∗zb̂†(t)b̂(t)− z∗zb̂(t)b̂†(t)

〉]
. (5.45)

On account of

〈b̂†b̂〉 =
γc

κ
〈Na〉 (5.46)

and

〈b̂b̂†〉 =
γc

κ
〈Nb〉, (5.47)

the antinormally ordered characteristic function can be put in the form

Φa(z, t) = exp

[
− 1

2
z∗z[λ +

γc

κ
(〈Na〉+ 〈Nb〉)]

]
, (5.48)

so that with aid of Eq. (5.42), we have

Φa(z, t) = e−az∗z, (5.49)

where

a =
γc

κ
〈Nb〉. (5.50)
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Finally, upon the introducing Eqs. (5.49) and (5.37) and carrying out integration, we

see that

Q(α) =
λ

πa
exp

(
−α∗α

a

)
. (5.51)

Our interest is to calculate the photon statistics and quadrature variance for a

pair of superposed light beams produced by a coherently driven two level atom.

5.3 Density operator

We now seek to drive the density operator for a pair of superposed two level laser

light beams, we consider the case in which the commutation relation for the an-

nihilation and creation operator for the two light beams is given by Eq. (5.1). Let

ρ̂(b̂†, b̂) be the density operator for one of the light beams. The upon expanding this

density operator in the normal order and employing the completeness relation for

coherent states given by Eq. (5.18), one easily finds

ρ̂′ =
λ

π

∫
d2β

∑
kl

Ckl(λβ∗)k|β〉〈β|b̂l (5.52)

and on account of the relation

|β〉〈β|b̂l = (λβ +
∂

∂β∗
)l|β〉〈β|, (5.53)

there follows

ρ̂′ = λ

∫
d2βQ(λβ∗, λβ +

∂

∂β∗
)|β〉〈β|. (5.54)

This expression for density operator can be put in the form

ρ̂′ = λ

∫
d2βQ(λβ∗, λβ +

∂

∂β∗
)D̂(β)|0〉〈0|D̂(−β). (5.55)
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We now realize that the density operator for the superposition of the first light

beams and another one is expressible as

ρ̂ = λ

∫
d2γQ(λγ∗, λγ +

∂

∂γ∗
)D̂(γ)γ̂′D̂(−γ), (5.56)

on that in view of Eq. (5.56), we have

ρ̂ = λ

∫
d2βd2γQ(λβ∗, λβ +

∂

∂β∗
)×Q(λγ∗, λγ +

∂

∂γ∗
)|β + γ〉〈γ + β|. (5.57)

This is density operator for the superposed two laser light beams.

5.4 Photon statics

In this section, we wish to calculate the mean and variance of the photon number

for the superposed laser light beams under the consideration. Employing Eq. (5.54),

the expectation value of a given operator function A(b̂†, b̂) can be written as

〈A〉 =

∫
d2α

λ
Q(α∗, α + λ

∂

∂α∗
)An(α∗, α), (5.58)

in which

Q(α∗, α + λ
∂

∂α∗
) =

1

π

∑
lm

Clm(α∗)l(α + λ
∂

∂α∗
)m, (5.59)

An(α∗, α) is the c-number function corresponding to Â in the normal ordered and

α = λβ.
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Light-1

Light-2

Superposed
Light beams

Beam splitter

Figure 5.1: The superposed laser light beams, with κ = 1 and κ = 0 for the upper

and lower surfaces of the beam splitter.

5.4.1 The mean photon number

Suppose â and â† represent the superposed laser beams. Then applying the density

operator by given by Eq. (5.57), then mean photon number of the superposed laser

beams can be put in the form

ns = λ4

∫
d2βd2γQ(λβ∗, λβ +

∂

∂β∗
)Q(λγ∗, λγ +

∂

∂γ∗
)

×(β∗β + γ∗γ + β∗γ + βγ∗). (5.60)
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Now introducing the variable α1 = λβ and α2 = λγ, Eq. (5.59) can be rewrite as

ns =
1

λ2

∫
d2α1d

2α2Q(α∗1, α1 + λ
∂

∂α∗1
)Q(α∗2, α2 + λ

∂

∂α∗2
)

×(α∗1α1 + α∗2α2 + α∗1α2 + α1α
∗
2), (5.61)

from which follows

ns =
1

λ

∫
d2α1Q(α∗1, α1 + λ

∂

∂α∗1
)α∗1α1

+
1

λ

∫
d2α2Q(α∗2, α2 + λ

∂

∂α∗2
)α∗2α2

+
1

λ

∫
d2α1Q(α∗1, α1 + λ

∂

∂α∗1
)α∗1

×1

λ

∫
d2α2Q(α∗2, α2 + λ

∂

∂α∗2
)α2

+
1

λ

∫
d2α1Q(α∗1, α1 + λ

∂

∂α∗1
)α1

×1

λ

∫
d2α2Q(α∗2, α2 + λ

∂

∂α∗2
)α∗2. (5.62)

Now on account of Eq. (5.58), we see that

ns = 〈â†1â1〉+ 〈â†2â2〉+ 〈â1〉〈â†2〉+ 〈â†1〉〈â2〉 (5.63)

in which

[â1, â
†
1] = [â2, â

†
2] = λ. (5.64)

In view of the fact that the Q function of the identical laser light beams have exactly

the same form, we observe that

〈â†2â2〉 = 〈â†1â1〉 (5.65)
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and

〈â2〉 = 〈â1〉. (5.66)

Hence the mean photon number of the superposed laser light beam is expressible

as

ns = 2〈â†1â1〉+ 2〈â†1〉〈â1〉. (5.67)

We next proceed to evaluate the expectation value involved in the expression.

Thus with aid of Eq. (5.58), along with Eq. (5.51) one can write

〈â1〉 =
1

πa

∫
d2α1e

−1
a

α∗
1α1e

−λ
a

α∗
1

∂
α∗1 α1. (5.68)

On taking into account the fact that α1 and α∗1 are independent variable, we easily

find

〈â1〉 = 0. (5.69)

Moreover, applying Eq. (5.58) together with Eq. (5.51), the expectation value of â†1â1

can be put in the form

〈â†1â1〉 =
1

πa

∫
d2α1e

−1
a

α∗
1α1e

−λ
a

α∗
1

∂
α∗1 α∗1α1. (5.70)

Hence in view of identity

e
a∂
∂z f(z) = f(z + a), (5.71)

we have

〈â†1â1〉 =
a− λ

πa2

∫
d2α1e

−1
a

α∗
1α1α∗1α1, (5.72)
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so that on carrying the integration, we get

〈â†1â1〉 = a− λ. (5.73)

Now in view of Eq. (5.68) and Eq. (5.72), substitute into Eq.(5.66) takes the form

ns = 2(a− λ). (5.74)

Finally, with aid of Eq. (5.42) and Eq. (5.50), the mean photon number is expressible

as

ns =
2γc

κ
〈Na〉. (5.75)

5.4.2 Variance of photon number

Here we calculate the variance of photon number for the superposed two-level laser

light beams. We can put an arbitrary function of â and â† in the normal order by

making use of the commutation relation

[â, â†] = 2λ, (5.76)

which hold for the superposed laser light beams. Applying Eq. (5.76), the photon

number variance can be expressed as

(∆n)2
s = 〈â†2 â2〉+ 2λn− n2. (5.77)

Thus employing density operator described by Eq. (5.57), we readily get

〈â†2 â2〉 = λ6

∫
d2βd2γQ(λβ∗, λβ +

∂

∂β∗
)Q(λγ∗, λγ +

∂

∂γ∗
)

×
(

β∗
2

β2 + β∗
2

γ2 + β2γ∗
2

+ 2β∗
2

βγ + 2βγ∗
2

γ
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+2β∗β2γ∗ + 2β∗γ∗γ2 + 4β∗βγ∗γ + γ∗
2

γ2

)
. (5.78)

Using the variable α1 = λβ and α2 = λγ, Eq. (5.78) can put the form

〈â†2 â2〉 =
1

λ2

∫
d2α1d

2α2Q(α∗1, α1 + λ
∂

∂α∗1
)Q(α∗2, α2 + λ

∂

∂α∗2
)

×
(

α∗
2

1 α2
1 + α∗

2

1 α2
2 + α2

1α
∗2
1 + 2α∗

2

1 α1α2 + 2α1α
∗2
2 α2

+2α∗1α
2
1α

∗
2 + α∗1α

∗
2α

2
2 + 4α∗1α1α

∗
2α2 + α∗

2

2 α2
2

)
. (5.79)

From which follows

〈â†2 â2〉 =
1

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α

∗2
1 α2

1

+
1

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α

∗2
1 α2

2

+
1

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α

2
1

+
1

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α

∗2
2

+
2

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α

∗2
1

×1

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α1

×1

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α2

+
2

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α1

×λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α

∗2
2

×1

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α2

+
2

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α

∗
1

×2

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α

2
1
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×2

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α

∗
2

+
2

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α

∗
1

×1

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α

∗
2

×1

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α

2
2

+
4

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α

∗
1

×1

λ

∫
d2α1Q(α∗1, α1 + ∂λ/∂α∗1)α1

×1

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α

∗
2

×1

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α2

+
1

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α

∗2
2

×1

λ

∫
d2α2Q(α∗2, α2 + ∂λ/∂α∗2)α2 (5.80)

Now in the basis of Eq. (5.59), we can put Eq. (5.79), in the form

〈â†2 â2〉 = 〈â†
2

1 â2
1〉+ 〈â†

2

1 〉〈â2
2〉+ 〈â2

1〉〈â
†2
2 〉

+2〈â†
2

1 â1〉〈â2〉+ 2〈â1〉〈â†
2

2 â2〉+ 2〈â†1â2
1〉〈â

†
2〉

+2〈â†1〉〈â
†2
2 â2

2〉+ 4〈â†1â1〉〈â†2â2〉+ 〈â†
2

2 â2
2〉. (5.81)

We note that

〈â†
2

2 â2
2〉 = 〈â†

2

1 â2
1〉 (5.82)

and

〈â2
2〉 = 〈â2

1〉. (5.83)



5.5 Quadrature squeezing 53

Hence on account of Eqs. (5.65), (5.82) and (5.83) along with Eq. (5.69), find

〈â†2 â2〉 = 2〈â†
2

1 â2
1〉+ 2〈â†

2

1 〉〈â2
1〉+ 4〈â†1â1〉2. (5.84)

Furthermore, applying Eq. (5.58) together with Eq. (5.51), we easily find

〈â2
1〉 = 0. (5.85)

In addition, with the aid of Eq. (5.58) along with (5.51) and (5.71), one can readily

verify that

〈â†
2

1 â2
1〉 =

1

2
n2

s, (5.86)

where n is given by Eq. (5.75). Consequently we see that

〈â†2 â2〉s = 2n2, (5.87)

one can easily check that

λns =
2γcn

κ
〈Nb〉 −

γc

κ
Nn. (5.88)

Finally, in view of Eqs. (5.77), (5.87) and (5.88) the variance of the photon number

for superposed cavity light beams is expressible laser light beams can be write as

(∆n)2
s = 2n2 + 2λn− n2,

from which follows

(∆n)2
s = n2 + 2λn. (5.89)

5.5 Quadrature squeezing

In this section, we obtain the global quadrature variance and the local quadrature

squeezing for the superposed laser light beams.
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5.5.1 Quadrature variance

We finally wish to established the connection under which the superposed laser

light beams are in a coherent state. To this end, we first determine the uncertainty

relation for superposed laser light beams. We define the quadrature operator for

superposed laser light beams by

â+ = â† + â (5.90)

â− = i(â† − â). (5.91)

Then using Eq. (5.79) together with (5.42), one can readily verify that

[â−, â+] = 4i
γc

κ
(〈Na〉〈Nb〉). (5.92)

Now in view of this result, we see that

∆a+∆a− =
2γc

κ

∣∣∣∣〈Na〉〈Nb〉
∣∣∣∣. (5.93)

Employing the commutation relation given by Eq. (5.76), the quadrature variance

of the superposed cavity light beams is expressible as

(∆a±)2 = 2λ + 2〈â†â〉 ± 〈â†2〉 ± 〈â2〉 ∓ 〈â〉2 ∓ 〈â†〉2 − 2〈â†〉〈â〉. (5.94)

We can established that

〈â〉 = 〈â1〉+ 〈â2〉. (5.95)

Then in view of Eq. (5.66) along with (5.69), follows

〈â〉 = 0. (5.96)
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One can also check that

〈â2〉 = 〈â2
1〉+ 〈â1〉2. (5.97)

Hence combination of Eqs. (5.69), (5.85) and (5.95) leads to

〈â2〉 = 0. (5.98)

Now account of Eq. (5.96) and (5.98), into (5.94) takes the form

(∆a±)2
s = 2λ + 2ns (5.99)

by compering Eq. (4.16) with Eq. (5.94) and with aid of Eq.(5.75) one can readily get

(∆a±)2
s = 2(∆b±)2. (5.100)

5.5.2 Local superposed quadrature squeezing

In this section, we define the local quadrature squeezing for superposed laser light

beams by.

(S±λ)s =

[
1−

(∆a−)2
±λ

(∆a−)2
v±λ

]
s

. (5.101)

From Eq.(5.100) and (4.16) we have

(∆a±)2
s = 2

γc

κ

(
〈Nb〉+ 〈Na〉

)
(5.102)

and

(∆b±)2 =
γc

κ

(
〈Nb〉+ 〈Na〉

)
. (5.103)
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From Eq. (5.101) and (5.102), it shows

(∆a±)2 = 2(∆b±)2. (5.104)

With aid of Eq. (5.101) and (5.104) we get

(S±λ)s =

[
1−

(∆b−)2
±λ

(∆b−)2
v±λ

]
s

. (5.105)

Now with account of Eq. (4.36) and (4.38), we get

(S±λ)s =

[
1− z(λ)

zv(λ)

]
s

, (5.106)

follows Eq. (3.23) and (4.39), one can find

(S±λ)s =

{
1−

[
2κ/π
κ−µ

]
tan−1(2λ

µ
)−

[
2µ/π
κ−µ

]
tan−1(2λ

κ
)[

2κ/π
κ−γc

]
tan−1(2λ

γc
)−

[
2γc/π
κ−γc

]
tan−1(2λ

κ
)

}
s

. (5.107)

This show that local quadrature squeezing of single mode cavity light is equal to

local quadrature squeezing superposed light beams.



6

Conclusion

In this thesis we have studied the squeezing and statistical properties of the light

produced by a coherently driven superposed two-level laser and coupled to vacuum

reservoir via a single-port. The steady-state analysis of the squeezing and statistical

properties of the light produced by two-level laser with closed cavity and coupled

to vacuum reservoir is presented.

We have carried out our calculation by putting the noise operator associated with

the vacuum reservoir in normal order. Applying the interaction Hamiltonian, Lan-

gavin and Heisenberg equation we have obtained the solution of the equation of ex-

pectation value of atomic operator and cavity mode operator, using these equation,

we have determined the global and Local mean photon number and the variance of

photon number, as well as, the quadrature squeezing.

We observe that the variance of photon number is the greater than the mean of pho-

ton number and hence the light produced by two-level laser has super-poissonian

photon statistics.

Our result show that a large part of the total mean photon number and variance of

photon number is confined in relatively small frequency interval.

57
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We have found from fig 4.2, that the maximum local quadrature squeezing is

83.33% below vacuum level for γc = 0.4, Ω = 2 and κ = 0.8. This occurs in the fre-

quency interval λ± = 0.01. In additions, we note that the local quadrature squeez-

ing increase as λ increase. Furthermore, we put out that unlike photon number and

variance of photon number, the local quadrature squeezing does not depends on

the number of atoms. This implies that quadrature squeezing of cavity light is inde-

pendent number of atoms.

On the other hand, employing the density operator for a pair of superposed two

level laser light beams together with the Q functions, we have calculated the mean

and variance of the photon number as well as the quadrature variance and the

quadrature squeezing. We have found that both the mean photon number and the

quadrature variance for the pair of superposed two level laser light beams is the

sum of the mean photon numbers and the quadrature variances of the constituent

two level laser light beams. However, the variance of the photon number of the pair

of superposed two-level light beams is not the sum of the variances of the photon

numbers of the constituent two level laser light beams.

We observe that the local quadrature squeezing of a pair of superposed light

beams is exactly equal to that of quadrature squeezing of the separate light beams.
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