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Abstract
In this thesis, we have analyzed the photon statistic and quadrature fluctua-

tions of the degenerate three level laser coupled to thermal reservoir. We have

found that the mean photon number of the system under consideration de-

creases with η but increases with n. Moreover, the presence of the thermal light

indeed affects the squeezing of the degenerate three level laser.
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1

Introduction

Laser stands for light amplification by the stimulated emission of radiation. Most

people are familiar with the atoms which consists of protons, neutrons, and

electrons. The energies of the electrons are quantized that is the electrons can

only have certain energies. For an electron to move between energy levels it

must either gain or lose energy and there are three processes which are absorp-

tion, spontaneous emission, and stimulated emission [1]. When a three-level

atom in cascade configuration makes a transition from the top to the bottom

level via the intermediate level, two photons are generated. If the two photons

have same frequency, the three-level atom is called degenerate [2]. We consider

a degenerate three-level laser in which three-level atoms in a cascade configu-

ration and initially prepared in a coherent superposition of the top and bottom

levels are injected at a constant rate and removed from the laser cavity after

some time [2]. The interaction of atoms with photons is one of the central prob-

lems in quantum optics. In recent years, a three-level cascade laser has drawn a

considerable attention in connection with its potential as a source of squeezed

light [5-12]. The squeezing feature of emitted photons is due to atomic coher-

ence that can be induced by preparing atoms in a coherent superposition of the

1
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top and bottom levels [5-7]. It has been established that a three level laser un-

der certain conditions generates squeezed light [6-12]. In a cascade three level

laser, three level atoms in a cascade configuration were injected into a cavity

coupled to vacuum reservoir via a single port mirror. The injected atoms may

initially be prepared in a coherent super position of the top and bottom levels. A

three-level laser has been studied by some authors [5-7] and the cavity photons

are found to be in a squeezed state under certain conditions. In addition, the

mean and variance of the photon number for a degenerate three-level cascade

laser have been calculated [16]. It is found that the mean photon number of the

cavity photons increases with the linear gain coefficient and the cavity radiation

exhibits super-Poissonian photon statistics. Ansari [9] has predicted that such

a laser can generate under certain conditions squeezed light. A three level laser

in which the top and bottom levels of the atoms injected into the cavity are cou-

pled by a strong light has also been studied by different authors [7-9]. Anwar.

NA [11] has considered a degenerate three level laser with the atoms initially

in the upper level and with the top and bottom levels of the atoms coupled by

coherent light. Recently, a three-level laser whose cavity contains a paramet-

ric amplifier has been studied [17]. It is found that the parametric amplifier

enhances the degree of squeezing of the cavity radiation. Moreover, the cavity

light of a degenerate three-level cascade laser in which the top and bottom lev-

els are coupled by strong coherent light has been investigated [11-13].

In this thesis, we study the squeezing and the statistical properties of the

light produced by degenerate three level laser coupled to thermal reservoir. We
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first derive the master equation, stochastic differential equations along with the

correlation properties of the noise forces. We then determine the solution of

c-number Langevin equation. We also obtain the anti-normally order charac-

teristics function with the aid of which the Q-function is established. The result-

ing Q-function along with density operator is then used to calculate the mean

photon number, the variance of the photon number, the photon number distri-

bution, power spectrum, and quadrature variance.



2

The Q Function

In the first three sections of this chapter we focus on developing the master

equation, the stochastic differential equations, and the solution of the c-number

Langevin equation. Then in the last two sections, we determine the Q function

and the density operator.

2.1 The master equation

We consider a degenerate three-level laser in which three-level atoms in a cas-

cade configuration and initially prepared in coherent superposition of the top

and bottom levels are injected at a constant rate and removed from the laser

cavity after some time.We denote the top, intermediate, and bottom levels of

a three-level atom by |a〉, |b〉, and |c〉. We assume the cavity mode to be at res-

onance with two tranisition |a〉 → |b〉 and |b〉 → |c〉, with direct transition be-

tween levels |a〉 and |c〉 to be dipole forbidden. We next drive the time evolution

of reduced density operator for a cavity mode coupled to thermal resevoir via a

single port-mirror. The Hamiltonian describing the interaction of a three-level

4



2.1 The master equation 5

Figure 2.1: A schematic representation of a degenerate three level laser coupled

to thermal reservoir.

atom with the cavity mode is expressible as

ĤI = ıg

(
(|a〉〈b|+ |b〉〈c|)â− â†(|b〉〈a|+ |c〉〈b|)

)
, (2.1)

where g is the coupling constant and â is the annihilation operator for the cavity

mode. We take the initial state of a single three-level atom to be

|ψA(0)〉= Ca|a〉+ Cc|c〉 (2.2)

and hence the initial density operator of a single atom is

ρ̂A(0)=ρ(0)
aa |a〉〈a|+ ρ(0)

ac |a〉〈c|+ ρ(0)
ca |c〉〈a|+ ρ(0)

cc |c〉〈c|, (2.3)

where

ρ(0)
aa =C∗aCa, (2.4)

ρ(0)
ac =CaC

∗
c , (2.5)

ρ(0)
ca =CcC

∗
a , (2.6)
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ρ(0)
cc =C∗cCc. (2.7)

Suppose ρ̂AR(t, tj) is the density operator for a single atom plus the cavity mode

at time t, with the atom injected at time tj , such that (t− τ) ≤ tj ≤ t. The density

operator for all atoms in the cavity plus the cavity mode at time t can then be

written as ρ̂AR =
∑

j Nj ρ̂AR(t, tj). Then it follows

ρ̂AR(t)=ra
∑
j

ρ̂AR(t, tj)∆tj, (2.8)

where N = ra∆tj , represents the number of atoms injected into the cavity in a

time ∆tj and ra is the rate at which atoms are injected into the cavity.

Now converting the summation into integration in the time ∆tj → 0, we

have

ρ̂AR(t)=ra

∫ t

t−τ
ρ̂AR(t, t′)dt′ (2.9)

and on differentiating with respect to t, there follows

d

dt
ρ̂AR(t)=ra[ρ̂AR(t)− ρ̂AR(t, t− τ)] + ra

∫ t

t−τ

∂

∂t
ρ̂AR(t, t′)dt′. (2.10)

We observe that ρ̂AR(t, t′) is the density operator for the cavity mode plus an

atom injected at time t. This operator can thus be expressed as

ρ̂AR(t)= ρ̂A(t)ρ̂(t), (2.11)

with ρ̂(t) being the density operator for the cavity mode alone. We also note that

ρ̂AR(t, t− τ) represents the density operator for an atom plus the cavity mode at

time t, with the atom being removed from the cavity at this time. This operator

can also be put in the form

ρ̂AR(t, t− τ)= ρ̂A(t− τ)ρ̂(t). (2.12)
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Now in view of Eqs. (2.11) and (2.12), one can rewrite Eq. (2.10) as

d

dt
ρ̂AR(t)=ra[ρ̂A(t)− ρ̂A(t− τ)]ρ̂(t) + ra

∫ t

t−τ

∂

∂t
ρ̂AR(t, t′)dt′. (2.13)

In the absence of damping of the cavity mode by a vaccum reservoir, the density

operator ρ̂AR(t, t′) evolves in time according to

∂

∂t
ρ̂AR(t, t′)=−i[ĤI , ρ̂AR(t, t′)], (2.14)

so that using this relation and taking into account Eq. (2.9), one can put Eq.

(2.13) in the form

d

dt
ρ̂AR(t)=ra[ρ̂A(t)− ρ̂A(t− τ)]ρ̂(t)− i[ĤI , ρ̂AR(t)]. (2.15)

Now tracing Eq. (2.15) over the atomic variables, we observe that

d

dt
ρ̂(t)=−iT rA[ĤI , ρ̂AR(t)]. (2.16)

Taking into account the damping of the cavity mode by a thermal reservoir, we

found

dρ̂

dt
=−ıT rA[ĤI , ρ̂AR(t)]− hTrR(Ĥ2

SRR̂)ρ̂

−hρ̂TrR(Ĥ2
SRR̂) + 2hTrR(ĤSRρ̂R̂ĤSR). (2.17)

The interaction of a cavity mode with a reservoir can be described by the Hamil-

tonian

ĤSR= ıλ(a†âin − a†inâ), (2.18)

where λ is the coupling constant, â is the annihilation operator for the cavity

mode and âin is the annihilation operator for the thermal reservoir. Applying
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the fact [âin, â] = 0, we observe that

TrR(Ĥ2
SRR̂)=−λ2

[
â†2〈â2

in〉R − â†â〈âinâ
†
in〉R

−ââ†〈â†inâin〉R + ââ†〈â†inâin〉R
]
. (2.19)

We recall that density operator for a light in a chaotic state is given by

ρ̂=
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉〈n|. (2.20)

Employing this density operator, one can easily calculate the mean photon num-

ber of the thermal reservoir, we thus see that

〈â†inâin〉=
∞∑
n=0

n̄n

(n̄+ 1)n+1
Tr

(
|n〉〈n|â†inâin

)
, (2.21)

from which follows

〈â†inâin〉R= n̄. (2.22)

Following the same proceder, we get

〈â2
in〉R= 〈â†2in〉R = 0, (2.23)

〈âinâ†in〉R= n̄+ 1, (2.24)

where the commutation relation [âin, â
†
in] = 1.

In view of Eq. (2.22), (2.23), and (2.24) along with (2.19), we have

TrR(Ĥ2
SRR̂)=−λ2

[
− (n̄+ 1)â†â− n̄ââ†

]
. (2.25)

Similarly, one can readily obtain

TrR(ĤSRρ̂R̂ĤSR)=−λ2

[
− n̄(â†ρ̂â)− (n̄+ 1)(âρ̂â†)

]
. (2.26)
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Now combination of Eqs. (2.25), (2.26), and (2.17) yields

dρ̂

dt
=−ıT rA[ĤI(t), ρ̂AR(t)] +

1

2
κ(n̄+ 1)(2âρ̂â† − â†âρ̂− ρ̂â†â)

+
1

2
κn̄(2â†ρ̂â− ââ†ρ̂− ρ̂ââ†), (2.27)

in which

κ=2hλ2, (2.28)

is the cavity dampying constant.

Moreover, employing Eq. (2.1), the master equation for the degenerate three-

level atom in a cavity coupled to thermal reservoir, can be put in the form

dρ̂

dt
=g(ρabâ

† − â†ρab + ρbcâ
† − â†ρbc

+âρba − ρbaâ+ âρcb − ρcbâ)

+
1

2
κ(n̄+ 1)(2âρ̂â† − â†âρ̂− ρ̂â†â)

+
1

2
κn̄(2â†ρ̂â− ââ†ρ̂− ρ̂ââ†), (2.29)

in which the matrix element ραβ is defined by

ραβ = 〈α|ρ̂AR|β〉, (2.30)

with α, β = a, b, c.

On the other hand , we see from Eq. (2.15) that

dραβ
dt

=[ra〈α|ρ̂A(0)|β〉 − ra〈α|ρ̂A(t− τ)|β〉]ρ̂(t)

−i[〈α|ĤI ρ̂AR|β〉 − 〈α|ρ̂ARĤI |β〉]− γραβ, (2.31)

where the last term is included to account for the decay of atoms due to spon-

taneous emission. Here γ, considerered to be the same for all the three-levels,



2.1 The master equation 10

is the atomic decay constant. We assume that the atoms are removed from the

cavity after they have decayed to a level other than the middle or bottom level.

We then see that

〈α|ρ̂A(t− τ)|β〉]=0 (2.32)

and hence Eq. (2.31) reduces to

dρ̂αβ
dt

=ra〈α|ρ̂A(0)|β〉ρ̂(t)− i[〈α|ĤI ρ̂AR|β〉 − 〈α|ρ̂ARĤI |β〉]− γραβ. (2.33)

Applying this equation and taking into acount Eqs. (2.1) and (2.3), we can read-

ily obtain

dρab
dt

=g(ρ(0)
ac â

† + âρ
(0)
bb − ρ

(0)
aa â)− γρab, (2.34)

dρbc
dt

=g(âρ(0)
cc − ρ

(0)
bb â− â

†ρ(0)
ac )− γρbc, (2.35)

dρaa
dt

=raρ
(0)
aa ρ̂+ g(ρ

(0)
ab â

† + âρ
(0)
ba )− γρaa, (2.36)

dρbb
dt

=g(ρ
(0)
bc â

† + âρ
(0)
cb − â

†ρ
(0)
ab − ρ

(0)
ba â)− γρbb, (2.37)

dρac
dt

=raρ
(0)
ac ρ̂+ g(âρ

(0)
bc − ρ

(0)
ab â)− γρac, (2.38)

dρcc
dt

=raρ
(0)
cc ρ̂− g(â†ρ

(0)
ba + ρ

(0)
cb â)− γρcc. (2.39)

Thus upon dropping the g-terms and applying the large-time approximation

scheme, we get from Eqs. (2.36) - (2.39) that

ρaa=
raρ

(0)
aa

γ
ρ̂(t), (2.40)

ρbb=0, (2.41)
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ρac=
raρ

(0)
ac

γ
ρ̂(t), (2.42)

ρcc=
raρ

(0)
cc

γ
ρ̂(t). (2.43)

Now combination of Eqs. (2.34), (2.35), (2.40), (2.41), (2.42), and (2.43) leads to

dρab
dt

=
gra
γ

(ρ(0)
ac ρ̂â

† − ρ(0)
aa ρ̂â)− γρab, (2.44)

dρbc
dt

=
gra
γ

(ρ(0)
cc âρ̂− ρ(0)

ac â
†ρ̂)− γρbc. (2.45)

Using once more the large -time approximation scheme, we easily find

ρab=
gra
γ2

(ρ(0)
ac ρ̂â

† − ρ(0)
aa ρ̂â), (2.46)

ρbc=
gra
γ2

(ρ(0)
cc âρ̂− ρ(0)

ac â
†ρ̂). (2.47)

Finally, on account of Eqs. (2.44) and (2.45), the master equation for the cav-

ity mode produced by degenerate three-level laser coupled to thermal reservoir

takes the form

dρ̂

dt
=

1

2
(Aρ̂(0)

aa + κn̄)(2â†ρ̂â− ââ†ρ̂− ρ̂ââ†)

+
1

2
(Aρ̂(0)

cc + κ(n̄+ 1))(2âρ̂â† − â†âρ̂− ρ̂â†â)

+
1

2
Aρ̂(0)

ac (â†2ρ̂+ ρ̂â†2 − 2â†ρ̂â†)

+
1

2
Aρ̂(0)

ca (â2ρ̂+ ρ̂â2 − 2âρ̂â), (2.48)

where

A=
2rag

2

γ2
, (2.49)

is linear gain coefficient.
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2.2 Stochastic differential equations

In this section, we obtain the stochastic differential equations with the aid of

master equation described by Eq. (2.48). Then empolying the relation

d

dt
〈â〉=Tr

(
dρ̂

dt
â

)
, (2.50)

one can write

d

dt
〈â〉= 1

2

(
Aρ̂(0)

aa + κn̄

)
Tr(2â†ρ̂ââ− ââ†ρ̂â− ρ̂ââ†â)

+
1

2

(
Aρ̂(0)

cc + κ(n̄+ 1)

)
Tr(2âρ̂â†â− ρ̂â†â2 − â†âρ̂â)

+
1

2
Aρ̂(0)

ac Tr(ρ̂â
†2â+ â†2ρ̂â− 2â†ρ̂â†â)

+
1

2
Aρ̂(0)

ca Tr(ρ̂â
3 + â2ρ̂â− 2âρ̂â2). (2.51)

Applying the cyclic property of the trace operation and the commutation rela-

tion

[â, â†]=1, (2.52)

we get

d

dt
〈â〉= 1

2

(
Aρ(0)

aa − Aρ(0)
cc − κ

)
〈â〉. (2.53)

Following the same procedure, it can also be verfied that

d

dt
〈â2〉=

(
Aρ(0)

aa − Aρ(0)
cc − κ

)
〈â2〉+ Aρ(0)

ac , (2.54)

d

dt
〈â†â〉=

(
Aρ(0)

aa − Aρ(0)
cc − κ

)
〈â†â〉+ Aρ(0)

aa + κn̄. (2.55)

We note that the c-number equations corresponding to Eqs. (2.53), (2.54), and

(2.55) in the normal order are

d

dt
〈α(t)〉= 1

2

(
Aρ(0)

aa − Aρ(0)
cc − κ

)
〈α(t)〉, (2.56)
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d

dt
〈α2(t)〉=

(
Aρ(0)

aa − Aρ(0)
cc − κ

)
〈α2(t)〉+ Aρ(0)

ac , (2.57)

d

dt
〈α∗(t)α(t)〉=

(
Aρ(0)

aa − Aρ(0)
cc − κ

)
〈α∗(t)α(t)〉+ Aρ(0)

aa + κn̄. (2.58)

On the basis of Eq. (2.56), one can write

d

dt
α(t)=−1

2
µα(t) + fα(t), (2.59)

where µ = Aρ
(0)
cc −Aρ(0)

aa + κ and fα(t) is a noise force whose correlation property

remains to be determined. We now proceed to determine the correlation prop-

erties of the noise force. Taking the expectation value of Eq. (2.59), we observe

that

d

dt
〈α(t)〉=−1

2
µ〈α(t)〉+ 〈fα(t)〉. (2.60)

We note that Eqs. (2.56) and (2.60), will have the same form if

〈fα(t)〉=0. (2.61)

Applying the relation

d

dt
〈α2(t)〉= 〈α(t)(

d

dt
α(t)))〉+ 〈( d

dt
α(t))α(t)〉, (2.62)

along with Eq. (2.59), we obtain

d

dt
〈α2(t)〉=−µ〈α2(t)〉+ 〈α(t)fα(t)〉+ 〈fα(t)α(t)〉. (2.63)

Comparison of Eqs. (2.57) and (2.63) shows that

〈α(t)fα(t)〉= 1

2
Aρ(0)

ac . (2.64)

The formal solution of Eq. (2.59) can be written as

α(t)=α(0)e−
1
2
µt +

∫ t

0

e−
1
2
µ(t−t′)fα(t′)dt′. (2.65)
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Thus employing this formal solution, we can express Eq. (2.64) as

〈α(0)fα(t)〉e−
1
2
µt +

∫ t

0

e−
1
2
µ(t−t′)〈fα(t′)fα(t)〉dt′= 1

2
Aρ(0)

ac . (2.66)

Taking into account Eq. (2.61) and the fact that a noise force at some time does

not affects the cavity mode variables at earlier time, we see that

〈α(0)fα(t)〉= 〈α(0)〉〈fα(t)〉 = 0, (2.67)

in view of which Eq. (2.66) becomes

∫ t

0

e−
1
2
µ(t−t′)〈fα(t′)fα(t)〉dt′= 1

2
Aρ(0)

ac . (2.68)

Applying the relation

∫ t

0

e−
1
2
a(t−t′)〈f(t)g(t′)〉dt′=D, (2.69)

we assert that

〈f(t)g(t′)〉=2Dδ(t− t′). (2.70)

We therefore, see from Eq. (2.68) that

〈fα(t′)fα(t)〉=Aρ(0)
ac δ(t− t′). (2.71)

Futhermore, applying the relation

d

dt
〈α∗(t)α(t)〉=(〈α(t)

d

dt
α∗(t)〉) + 〈α∗(t) d

dt
α(t)〉), (2.72)

along with Eq. (2.59) and its complex conjugate, we have

d

dt
〈α∗(t)α(t)〉=−µ〈α∗(t)α(t)〉

+〈α∗(t)fα(t)〉+ 〈α(t)f ∗α(t)〉. (2.73)
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Comparison of this equation with Eq. (2.58) indicates that

〈α∗(t)fα(t)〉+ 〈α(t)f ∗(t)〉=Aρ(0)
aa + κn̄. (2.74)

Now applying Eq. (2.65) and its complex conjugate in Eq. (2.74), we get

Aρ(0)
aa + κn̄=(〈α∗(0)fα(t)〉+ 〈α(0)f ∗α(t)〉)e−

1
2
µ(t−t′)

+

∫ t

0

e−
1
2
µ(t−t′)[〈f ∗α(t′)fα(t)〉+ 〈f ∗α(t′)fα(t)〉]dt′. (2.75)

In view the relation 〈α∗(0)fα(t)〉 = 〈α(0)f ∗α(t)〉 = 0, we can put Eq. (2.75) in the

form

∫ t

0

e−
1
2
µ(t−t′)[〈f ∗α(t′)fα(t)〉+ 〈f ∗α(t)fα(t′)〉]dt′=Aρ(0)

aa + κn̄ (2.76)

and assuming that

〈f ∗α(t′)fα(t)〉= 〈f(t′)f ∗(t)〉, (2.77)

we have

∫ t

0

e−
1
2
µ(t−t′)〈f ∗α(t′)fα(t)〉]dt′= 1

2
(Aρ(0)

aa + κn̄). (2.78)

It then follows that

〈f ∗(t′)f(t)〉=
(
Aρ(0)

aa + κn̄

)
δ(t− t′). (2.79)

In view of Eq. (2.77), we note that

〈fα(t′)f ∗α(t)〉=
(
Aρ(0)

aa + κn̄

)
δ(t− t′). (2.80)

The results described by Eqs. (2.61), (2.71), and (2.79) represents the corre-

lation properties of noise forces associated with normal ordering.
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We next proceed to determine the solution Eq. (2.59). We then define a new

variable

α±(t)=α∗(t)± α(t) (2.81)

and using Eq. (2.59) along with its complex conjugate, we find

d

dt
α±=−1

2
µα± + f ∗α(t)± fα(t), (2.82)

where we have used

µ=A(ρ(0)
cc − ρ(0)

aa ) + κ. (2.83)

The solution Eq. (2.82) can be written in the form

α±(t)=α±(0)e−
1
2
µt +

∫ t

0

e−
1
2
µ(t−t′)[f ∗α(t′)± fα(t′)]dt′, (2.84)

so that with the aid of Eqs. (2.81) and (2.84), we readily find

α(t)=E+(t)α(0) + E−(t)α∗(0) + F (t), (2.85)

where

E±(t)=
1

2
(e−

1
2
µ(t−t′) ± (e−

1
2
µ(t−t′)), (2.86)

F (t)=

∫ t

0

[E+(t)f(t′) + E−(t)f ∗(t′)]dt′. (2.87)

2.3 The Q function

We now proceed to obtain the Q function for the cavity mode coupled to ther-

mal reservoir. The Q function for a single-mode light can be expressed in terms

of the antinormally ordered characteristic function as

Q(α∗, α, t)=
1

π

∫
d2z

π
Φa(z

∗, z, t)ez
∗α−zα∗ , (2.88)
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where Φa(z
∗, z, t) is defined in the Heisenberge picture by

Φa(z
∗, z, t)=Tr(ρ̂(0)e−z

∗â(t)ezâ
†(t)). (2.89)

Apply the relation

eÂeB̂ =eB̂eÂe[Â,B̂], (2.90)

which holds for [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0, Eq. (2.89) can be rewritten as

Φa(z
∗, z, t)=e−z

∗zTr(ρ(0)ezâ
†(t)e−z

∗â(t)). (2.91)

We note that Eq. (2.91) can be expressed in terms of c-number variables associ-

ated with the normal ordering as

Φa(z
∗, z, t)=e−z

∗z〈ezα∗(t)e−z∗α(t)〉. (2.92)

On the basis of Eq. (2.85) and assuming that the cavity mode is initially in

vaccum state thus we observe that α(t) is a Gaussian variable with zero mean.

On account of this, Eq. (2.92) can be put in the form [2].

Φa(z
∗, z, t)=e−z

∗zexp〈1
2

(zα∗(t)− z∗α(t))2〉. (2.93)

Then leads to

Φa(z
∗, z, t)=e−

∗zexp

[
− z∗z〈α∗(t)α(t)〉+

1

2
z2〈α∗2(t)〉+

1

2
z∗2〈α2(t)〉

]
. (2.94)

We now proceed to obtain the expectation value of c-number variables appear-

ing in Eq. (2.94). Taking into account the fact that a noise force at a given instant

does not affect the cavity mode variable at earlier time, we find

〈α∗(t)α(t)〉= 〈F ∗(t)F (t)〉, (2.95)
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so that using Eq. (2.86), we have

〈α∗(t)α(t)〉=
∫ t

0

dt′dt′′
[
(E+(t− t′)E+(t− t′′)〈f ∗(t′)f(t′′)〉

+E−(t− t′)E−(t− t′′)〈f ∗(t′′)f(t′)〉

+E+(t− t′)E−(t− t′′)〈f ∗(t′)f ∗(t′′)〉

+E−(t− t′)E+(t− t′′)〈f(t′)f(t′′)〉
]
. (2.96)

With the aids of Eqs. (2.71) and (2.79), we get

〈α∗(t)α(t)〉=
∫ t

0

dt′
[
(E2

+(t− t′) + E2
−(t− t′)[Aρ(0)

aa + κn̄]

+E+(t− t′)E−(t− t′)[A(ρ(0)
ac + ρ∗(0)

ac )

]
(2.97)

and employing Eq. (2.86), we have

〈α∗(t)α(t)〉= 1

4

∫ t

0

dt′
[
(A[ρ(0)

ac + ρ∗(0)
ac + 2ρ(0)

aa ] + 2κn̄)e−µ−(t−t′)

−(A[ρ(0)
ac + ρ∗(0)

ac − 2ρ(0)
aa ]− 2κn̄)e−µ+(t−t′)

]
. (2.98)

It then follows that

〈α∗(t)α(t)〉= 1

4µ−

(
A[ρ(0)

ac + ρ∗(0)
ac + 2ρ(0)

aa ] + 2κn̄)(1− e−µ−t
)

− 1

4µ+

(
A([ρ(0)

ac + ρ∗(0)
ac − 2ρ(0)

aa ]− 2κn̄

)
(1− e−µ+t)

)
. (2.99)

Following a similar proceeder, we easily find

〈α2(t)〉= 1

4µ−

(
A[ρ(0)

ac + ρ∗(0)
ac + 2ρ(0)

aa ] + 2κn̄

)
(1− e−µ−t

)
+

1

4µ+

(
A([ρ(0)

ac + ρ∗(0)
ac − 2ρ(0)

aa ]− 2κn̄

)
(1− e−µ+t

)
+

A

µ− + µ+

(
ρ(0)
ac − ρ∗(0)

ac

)
(1− e−(µ−+µ+) t

2

)
(2.100)
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and

〈α∗2(t)〉= 1

4µ−

(
A[ρ(0)

ac + ρ∗(0)
ac + 2ρ(0)

aa ] + 2κn̄

)
(1− e−µ−t

)
+

1

4µ+

(
A([ρ(0)

ac + ρ∗(0)
ac − 2ρ(0)

aa ]− 2κn̄

)
(1− e−µ+t

)
− A

µ− + µ+

(
ρ(0)
ac − ρ∗(0)

ac

)
(1− e−(µ−+µ+) t

2

)
. (2.101)

In view of Eq. (2.94), we see that

Φa(z
∗, z, t)=exp

[
− az∗z +

1

2
(b∗z2 + bz∗2)

]
, (2.102)

in which

a=1 + 〈α∗(t)α(t)〉, (2.103)

b= 〈α2(t)〉, (2.104)

b∗= 〈α∗2(t)〉. (2.105)

It proves to be more convenient to introduce a new parameter defined by

ρ(0)
aa =

1− η
2

, (2.106)

so that in view of the fact that

ρ(0)
aa + ρ(0)

cc =1 (2.107)

and

|ρ(0)
ac |2 =ρ(0)

aa ρ
(0)
cc , (2.108)

one easily finds

ρ(0)
cc =

1 + η

2
, (2.109)
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|ρ(0)
ac |=

1

2
(1− η2)

1
2 , (2.110)

and

ρ(0)
cc − ρ(0)

aa =η. (2.111)

With the aid of Eqs. (2.111) and (2.83), we see that

µ=Aη + κ. (2.112)

Upon setting

ρ(0)
ac = |ρ(0)

ac |eiθ, (2.113)

we have

ρ(0)
ac + ρ∗(0)

ac =
√

1− η2 cos θ. (2.114)

On account of Eqs. (2.99), (2.100), and (2.101) along with Eqs.(2.103), (2.104),

and (2.105), we observe that

a=1 +

(
(A[1− η +

√
1− η2 cos θ] + 2κn̄)(1− e−(Aη+κ)t)

)
4(Aη + κ)

+

(
(A[1− η −

√
1− η2 cos θ] + 2κn̄)(1− e−(Aη+κ)t)

)
4(Aη + κ)

, (2.115)

b=

(
(A[1− η +

√
1− η2 cos θ] + 2κn̄)(1− e−(Aη+κ)t)

)
4(Aη + κ)

−

(
(A[1− η −

√
1− η2 cos θ] + 2κn̄)(1− e−(Aη+κ)t)

)
4(Aη + κ)

+

iA
√

1− η2 sin θ

(
1− e−(Aη+κ)t

)
2(Aη + κ)

, (2.116)
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b∗=

(
(A[
√

1− η2 cos θ + (1− η)] + 2κn̄)(1− e−(Aη+κ)t)

)
4(Aη + κ)

−

(
(A[
√

1− η2 cos θ − (1− η)] + 2κn̄)(1− e−(Aη+κ)t)

)
4(Aη + κ)

−
iA
√

1− η2 sin θ

(
1− e−(Aη+κ)t

)
2(Aη + κ)

. (2.117)

Hence applying Eq. (2.102) in Eq. (2.88) and upon carrying out the integration

with the aid of the relation

∫
d2α

π
e−aα

∗α+bα+cα∗+Bα2+Cα∗2 =

[
1

a2 − 4BC

] 1
2

exp

[
abc+Bc2 + Cb2

a2 − 4BC

]
, a > 0

(2.118)

the Q function is found to be

Q(α∗, α, t)=
(u2 − v∗v)

1
2

π
exp

[
− uα∗α +

1

2
(v∗α2 + vα∗2)

]
, (2.119)

where

u=
a

(a2 − b∗b)
, (2.120)

v=
b

(a2 − b∗b)
(2.121)

and

v∗=
b∗

(a2 − b∗b)
. (2.122)

This represents the Q function for the degenerate three level laser coupled to

thermal reservoir.
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2.4 The densty operator

We seek to determine the densty operator for the cavity mode. Suppose ρ̂(â†, â)

is density operator for a certain lihgt beam. The normally-ordered density op-

erator can be expressed as

ρ̂l(t)=
∑
kl

Cklâ
†kâl. (2.123)

Now we recall the completeness relation for coherent state as [2]

1

π

∫
d2|α〉〈α|= Î . (2.124)

On the other hand, the expectation value of an operator function Â(â†, â, t) can

be put in the form

〈Â(â†, â, t)〉=Tr(ρ̂(â†, â, t)Â(0)). (2.125)

To this end, using then completeness relation given by Eq. (2.123) twice; we

have

ρ̂(â†, â, t)=

∫
d2α

π

d2β

π
|α〉〈α|ρ̂(â†, â, t)|β〉〈β|. (2.126)

This can be rewriten as in the form

ρ̂(â†, â, t)=
1

π

∫
d2αd2βQ(α∗, β, t)〈α|β〉|α〉〈β| (2.127)

in which

Q(α∗, β, t)=
1

π
〈α|ρ̂(â†, â, t)|β〉. (2.128)
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Therefore, in view of Eq. (2.125) and (2.127), the expectation value of a given

operator function Â(â†, â, t) is expressible as

〈Â(â†, â, t)〉= 1

π

∫
d2αd2βQ(α∗, β, t)exp

[
− α∗α− β∗β + β∗α− α∗β

]
An(α, β∗),

(2.129)

whereAn(α∗, β) is c-number function corresponding to the Â(â†, â, t) in the nor-

mal order. Then the expectation value of a given operator function Â(â†, â, t)

can be rewritten as

〈Â(â†, â, t)〉=[u2 − v∗v]
1
2

∫
d2α

π

d2β

π
exp

[
− uα∗β

+
1

2
(vα∗2 + v∗β2)− α∗α− β∗β + β∗α + α∗β

]
An(α, β∗). (2.130)

This is the expectation value of operator Â(â†, â, t) for the degenerate three-level

coupled to thermal light in whichAn(α, β∗) is c-number function corresponding

to the operator variables in the normal order.



3

Photon Statistics

It would be helpful to classify the photon statistics of light modes based on the

relation between the variance and mean of the photon number. Hence the pho-

ton statistics of a light mode for which ∆n2 = n̄ is referred to as Poissonian and

the photon statistics of light mode for which ∆n2 > n̄ is called super-Poissonian.

Otherwise, the photon statistics is said to be sup-Poissonian. Here we wish to

calculate the mean photon number, variance of photon number, power spec-

trum, and the photon number distribution.

3.1 The mean photon number

The mean photon number can be expressed as

〈â†(t)â(t)〉=
∫
d2αQ(α∗, α, t)Aa(α

∗, α). (3.1)

It then follows that

〈â†(t)â(t)〉=
∫
d2αQ(α∗, α, t)(α∗α− 1), (3.2)

where

Aa(α
∗, α)=α∗α− 1, (3.3)

24
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is the c-number function corresponding to operator function â†(t)â(t) in the

antinormally order.

Taking in to account Eq. (2.119), the mean photon number can be written as

〈â†(t)â(t)〉=(u2 − v∗v)
1
2

∫
d2α

π
exp

[
− uα∗α +

1

2
(v∗α2 + vα∗2)

]
(α∗α− 1), (3.4)

this can be put in the form

〈â†(t)â(t)〉=(u2 − v∗v)
1
2

d2

dndm

∫
d2

π
exp

[
− uα∗α + nα

+mα∗ +
1

2
(v∗α2 + vα∗2)

]
n=m=0

− 1,

(3.5)

so that upon carrying out the integration using the relation described by Eq.

(2.118), and applying the condition n=m=o, we get

〈â†(t)â(t)〉= u

u2 − v∗v
− 1. (3.6)

Now in view of Eqs. (2.120), (2.121), and (2.122) along with Eq. (2.115), we can

write

〈â†(t)â(t)〉=a− 1, (3.7)

then follows that

〈â†(t)â(t)〉= (A[1− η +
√

1− η2 cos θ] + 2κn̄)

4(Aη + κ)
(1− e−(Aη+κ)t)

+
(A[1− η −

√
1− η2 cos θ] + 2κn̄)

4(Aη + κ)
(1− e−(Aη+κ)t) (3.8)

and this can be rewritten as

〈â†(t)â(t)〉= (2A[1− η] + 4κn̄)

4(Aη + κ)

(
1− e−(Aη+κ)t

)
. (3.9)

This represents the mean photon number for the degenerate three-level laser
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Fig. 3.1: plot of the mean photon number n̄ versus η for A = 25, n̄ = 20, and

κ = 0.8

coupled to themal reservoir. The result described by Eq. (3.9) at steady state can

be put in the form

〈â†(t)â(t)〉ss=
A(1− η)

2(Aη + κ)
+

κn̄

Aη + κ
. (3.10)

We immediatly see that the mean photon number of the system under consider-

ation does not happens to be the sum of the mean photon number of the laser

and the thermal light. We clearly observe from fig. 3.1 that the mean photon

number decreases with η.

Moreover, upon setting n̄ = 0, we easily get

〈â†(t)â(t)〉ss=
A(1− η)

2(Aη + κ)
. (3.11)

This is the mean photon number of the the degenerate three level laser coupled

to vacuum reservoir.
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3.2 The variance of the photon number

The variance of the photon number can be expressed as

(∆n)2 = 〈n̂2〉 − 〈n̂〉2. (3.12)

The photon number variance for the cavity mode can be rewritten as

(∆n)2 = 〈â2(t)â†2(t)〉 − 3〈â†(t)â(t)〉 − 〈â†(t)â(t)〉2 − 2, (3.13)

where 〈â†(t)â(t)〉 is the meam photon number for the laser plus the thermal

light. Thus employing the Q function, we see that

〈â2(t)â†2(t)〉=
∫
d2αQ(α∗, α, t)α∗2α2. (3.14)

This can be put in the form

〈â2(t)â†2(t)〉=(u2 − v∗v)
1
2

d4

dη2dz2

∫
d2α

π
exp

[
− uα∗α + ηα + zα∗

+
1

2
(v∗α2 + vα∗2)

]
η=z=0

.

(3.15)

Upon carrying out the intgration using Eq. (2.118), we get

〈â2(t)â†2(t)〉= d4

dη2dz2
exp

[
uzη +

1

2
vz2 +

1

2
v∗η2

]
η=z=0

, (3.16)

so that carrying out the differentiation and applying the condition z = η = 0,we

readily find

〈â2(t)â†2(t)〉= 2u2 + v∗v

(u2 − v∗v)2
. (3.17)

On account of Eqs. (2.120), (2.121), and (2.122), we easily obtain

〈â2(t)â†2(t)〉=2a2 + b∗b. (3.18)



3.2 The variance of the photon number 28

Now with the aid of Eqs. (3.7) and (3.18), Eq. (3.13) can be put in the form

(∆n)2 =a2 + b∗b− a. (3.19)

Finally, in view of Eqs. (2.115), (2.116), and (2.117), the variance of the photon

number for the degenerate three level laser coupled to thermal reservoir has the

form

(∆n)2 =2

[
A[1 +

√
1− η2 cos θ] + κn̄

4(Aη + κ)
(1− e−(Aη+κ)t)

]2

+2

[
A[1−

√
1− η2 cos θ] + κn̄

4(Aη + κ)
(1− e−(Aη+κ)t)

]2

+
A2(1− η2) sin2 θ

4(Aη + κ)
(1− e−(Aη+κ)t)2

−
[
A[1 +

√
1− η2 cos θ] + 2κn̄

4(Aη + κ)
(1− e(Aη+κ))

+
A[1−

√
1− η2 cos θ] + 2κn̄

4(Aη + κ)
(1− e−(Aη+κ)t)

]
. (3.20)

Then the variance of the photon number at steady state is expressible as

(∆n)2 =2

[
A[1 +

√
1− η2 cos θ] + κn̄

4(Aη + κ)

]2

+ 2

[
A[1−

√
1− η2 cos θ] + κn̄

4(Aη + κ)

]2

+

[
A2(1− η2) sin2 θ

4(Aη + κ)

]
−
[
A[1 +

√
1− η2 cos θ] + 2κn̄

4(Aη + κ)

]
+

[
A[1−

√
1− η2 cos θ] + 2κn̄

4(Aη + κ)

]
. (3.21)

On comparing Eq. (3.10) and Eq. (3.21) that the photon statistics is super-

Poissonian.

For the case in which n̄=0

(∆n)2 =2

[
A[1 +

√
1− η2 cos θ]

4(Aη + κ)

]2

+ 2

[
A[1−

√
1− η2 cos θ]

4(Aη + κ)

]2

+

[
A2(1− η2) sin2 θ

4(Aη + κ)

]
−
[
A[1 +

√
1− η2 cos θ]

4(Aη + κ)

]
+

[
A[1−

√
1− η2 cos θ]

4(Aη + κ)

]
. (3.22)
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This is the variance of the photon number for the degenerate three-level laser

coupled to vacuum reservoir.

3.3 The power spectrum

It is now interesting to consider the power spectrum of the cavity light. The

power spectrum of a single-mode light with centeral frequency ω0 is expressible

as [2]

P (ω)=
1

π
Re

∫ ∞
0

dτei(ω−ω0)τ 〈â†(t)â(t+ τ)〉ss. (3.23)

We now proceed to calculate the two-time correlation function that appears in

Eq. (3.23) for the cavity light. To this end, we realize that the formal solution of

Eq. (2.65) can be written as

α(t+ τ)=α(t)e
−µτ

2 +

∫ τ

0

e
−µ
2

(τ−τ ′)
2 f(t+ τ ′)dτ ′. (3.24)

Then multiplying both sides on the left by α∗(t) and taking the expectation value

of the resulting equation, we have

〈α∗(t)α(t+ τ)〉= 〈α∗(t)α(t)〉e
−µτ

2 +

∫ τ

0

e
−µ
2

(τ−τ ′)
2 〈α∗(t)f(t+ τ ′)〉dτ ′, (3.25)

so that in view of the fact that

〈α∗(t)f(t+ τ ′)〉= 〈α∗(t)〉〈f(t+ τ ′)〉 = 0, (3.26)

it then follows

〈α∗(t)α(t+ τ)〉ss= 〈α∗(t)α(t)〉sse
−1
2
µτ . (3.27)

Substitution of Eq. (3.27) into (3.23) and carryingout the integration employing

the relation

1

π
Re

∫ ∞
0

dτe−[ Γ
2
−i(η−η0)]τ =

Γ
2π

(η − η0)2 + (Γ
2
)2
, (3.28)
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we arive at

P (ω)= 〈α∗(t)α(t)〉ss
µ
2π

(ω − ω0)2 + (µ
2
)2
. (3.29)

Upon integrating both sides of Eq. (3.29) over ω, we readily get

∫ +∞

−∞
P (ω)dω= 〈â†(t)â(t)〉ss, (3.30)

in which

〈â†(t)â(t)〉ss=
A(1− η)

2A(η + κ)
+

κn̄

Aη + κ
, (3.31)

is the steady-state mean photon number of the cavity light produced by degen-

erate three-level laser coupled to thermal reservoir. From this result, we observe

that P (ω)dω is the steady-state mean photon number in the interval between ω

and ω + dω.

We next seek to calculate the mean photon number in a given frequency inter-

val. We thus realize that the steady-state mean photon number in the interval

between ω′ = −λ and ω′ = λ can be written as

〈â†(t)â(t)〉±λ=

∫ +λ

−λ
P (ω′)dω′, (3.32)

wher ω′ = ω − ω0. Therefore, using Eq. (3.29) and the fact that

∫ +λ

−λ

dω′

ω2 + a2
=

2

a
tan−1(

λ

a
), (3.33)

we readily obtain

〈â†(t)â(t)〉±λ= 〈â†(t)â(t)〉ssz(λ), (3.34)

where

z(λ)=
2

π
tan−1(

2λ

µ
). (3.35)
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Fig. 3.2: Plot for z(λ) versus λ for η = κ = 0.2 and A=2.

One can easily get from Fig. 3.2 that z(0.15)=0.295, z(0.61)=0.709, z(1.36)=0.822,

z(2.72)=0.93, z(6.76)=0.97. The combonation of this results with Eq. (3.34) yields

〈â†(t)â(t)〉±0.15 =0.295〈â†(t)â(t)〉, (3.36)

〈â†(t)â(t)〉±0.61 =0.709〈â†(t)â(t)〉, (3.37)

〈â†(t)â(t)〉±1.36 =0.822〈â†(t)â(t)〉, (3.38)

〈â†(t)â(t)〉±2.72 =0.93〈â†(t)â(t)〉, (3.39)

〈â†(t)â(t)〉±6.76 =0.97〈â†(t)â(t)〉. (3.40)

We immediatly see that a large part of the total mean photon number is con-

fined in a relatively small frequency interval.
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3.4 The photon number distribution

We wish here to obtain an explict expression of the photon number distribution

employing the Q function for single-mode light.

The photon number distribution for a single-mode light defined by

P (n, t)= 〈n|ρ̂(â†, â, t)|n〉. (3.41)

Introducing Eq. (2.127) in (3.41), we see that

P (n)=
1

π2

∫
d2zd2ηQ(z∗, η, t)〈n|z〉〈η|n〉〈z|η〉. (3.42)

Now using the Q function described by Eq. (2.119), Eq. (3.42), can be rewritten

as

P (n)=
[u2 − v∗v]

1
2

n!π

∂2n

∂α∂α∗n

∫
d2z

π
exp

[
− z∗z +

v

2
z∗2 + α∗z

]
∫
d2η

π
exp

[
− η∗η +

v∗

2
η2 − uz∗η + αη∗ + z∗η

]∣∣∣∣
α∗=α=0

, (3.43)

where

〈z|η〉=e−
z∗z
2
− η
∗η
2

+z∗η, (3.44)

〈n|z〉=e
−z∗z

2
zn√
n!
, (3.45)

and

〈η|n〉=e
−η∗η

2
η∗n√
n!
. (3.46)

Upon carry out the integration, we readily obtain

P (n)=
(u2 − v∗v)

1
2

n!

∂2n

∂α∗n∂αn
exp

[
(1− u)α∗α +

v

2
α∗2 +

v∗

2
α2

]
α∗=α=0

. (3.47)
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Now expanding the exponential functions using of the power series, we have

P (n, t)=
(u2 − v∗v)

1
2

n!

∑
l,k,p

(−1)(k+p)(1− u)lv∗kvp

2k+pl!k!p!

× ∂2n

∂α∗n∂αn
(α∗l+2kαl+2p)α∗=α=0. (3.48)

Thus performing the differentiation, employing the relation

∂m

∂αm
xn=

∞∑
s

n!

(n−m)!
xn−m, (3.49)

we notice that

∂2n

∂α∗n∂αn
α∗l+2kαl+2p=

(l + 2k)!α∗l+2k−n

(l + 2k − n)!

(l + 2p)!αl+2p−n

(l + 2p− n)!
. (3.50)

Then the combination Eq. (3.47) and (3.50) leads to

P (n, t)=
(u2 − v∗v)

1
2

n!

∑
l,k,p

(−1)(k+p)(1− u)lv∗kvp(l + 2k)!(l + 2p)!

2k+pl!k!p!(l + 2k − n)!(l + 2p− n)!

×(α∗(l+2k−n)α(l+2p−n))α∗=α=0. (3.51)

Imposing the condition α∗ = α = 0,we see that

P (n, t)=
(u2 − v∗v)

1
2

n!

∑
l,k,p

(−1)(k+p)(1− u)lv∗kvp(l + 2k)!(l + 2p)!

2k+pl!k!p!(l + 2k − n)!(l + 2p− n)!

×δl+2k,nδl+2p,n. (3.52)

Finally, in view of the fact that p = k and l = n − 2k, the photon number distri-

bution can put in form

P (n)=(u2 − v∗v)
1
2

[n]∑
k=0

n!(1− u)n−2k(v∗v)k

22k(k!)2(n− 2k)!
, (3.53)

where [n] = n
2

for even n and [n] = (n− 1
2
) for odd. From this result, we note that

there is a finite probability to find number of photons inside the cavity.
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Quadrature Fluctuations

In this chapter we seek to calculate the quadrature Fluctuations of the light pro-

duced by degenerate three-level laser coupled to thermal reservoir.

4.1 Quadrature variance

The quadratue variance of a single-mode light can be defined as

(∆a±)2 =1± 〈: â±(t), â±(t) :〉, (4.1)

where

â+ = â† + â (4.2)

and

â−= i(â† − â), (4.3)

with â+ and â− are the plus and minus quadratue operators and :: stands for

normal ordering.

We note that the c-number equation corresponding to Eq. (4.1) is

(∆a±)2 =1± 〈: α±(t), α±(t) :〉. (4.4)

34
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Then Eq. (4.4) can be rewritten as

(∆a±)2 =1± 〈: α2
±(t)〉 ∓ 〈α±(t) :〉2, (4.5)

where α±(t) = α∗(t)± α(t). Using Eq. (2.84), one can write

〈α±(t)〉= 〈α±(0)〉e−µ
t
2 +

∫ t

0

e−µ
t−t′

2 [〈f ∗(t′)± 〈f(t′)〉]dt′. (4.6)

Taking into account Eq. (2.61) and assumming the cavity mode to be initially a

vaccum state, we have

〈α±(t)〉=0. (4.7)

Furthermore, employing Eq. (2.65) along with Eq. (2.61) and the fact that a noise

force at a certain instant does not affect the cavity mode variables at earlier time,

one can write

〈α2
±〉=

∫
dt′dt′′

[
〈f ∗(t′)f ∗(t′′)〉+ 〈f(t′)f(t′′)〉+ 〈f ∗(t′)f(t′′)〉

±〈f(t′)f ∗(t′′)〉
]
e−µ

(2t−t′−t′′)
2 . (4.8)

Applying Eq. (2.71) and (2.80) and carrying out the integration, we obtain

〈α2
±〉=

[A(ρ
(0)
ac + ρ

∗(0)
ac ± 2ρ

(0)
aa )± 2κn̄]

µ
(1− e−µt). (4.9)

Hence using Eq. (4.9), we finally obtain that

〈: α±(t), α±(t) :〉= [A(ρ
(0)
ac + ρ

∗(0)
ac ± 2ρ

(0)
aa )± 2κn̄]

µ
(1− e−µt). (4.10)

Now employing Eqs. (2.106), (2.112), and (2.114), we put Eq. (4.10) in the form

〈: α±(t), α±(t) :〉=

(
A[
√

1− η2 cos θ ± (1− η)]± 2κn̄

)
Aη + κ

(1− e−(Aη+κ)t), (4.11)
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Figure 4.1: Plot for (∆a+)2 versus n (Eq. 4.13) for κ = 0.8, A=5, η = 0.5, and θ = 00

.

Figure 4.2: Plot for (∆a−)2 versus n̄ and η (Eq. 4.14) for κ = 0.8, A = 75, and

θ = 00.
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Figure 4.3: Plot of the quadratue variance (∆a−)2 versus η [Eq. 4.15] for κ = 0.8,

A = 75, and θ = 00.

so that Eq. (4.4) becomes

(∆a±)2 =1±

[
A

(√
1− η2 cos θ ± (1− η)

)
± 2κn̄

]
Aη + κ

(1− e−(Aη+κ)t). (4.12)

Then the plus and minus quadrature variance of the cavity mode at the steady

state can be put in the form

(∆a+)2 =
A[1 +

√
1− η2 cos θ] + κ(1 + 2n̄)

Aη + κ
(4.13)

and

(∆a−)2 =
A[1−

√
1− η2 cos θ] + κ(1− 2n̄)

Aη + κ
. (4.14)

We clearly observe from fig. 4.1 and 4.2 that the quadrature squeezing of the

laser light indeed is affected by the thermal light and squeezing does not occur

in all values of η. The quadratue variance of cavity mode coupled to a vaccum

reservoir can be written as

(∆a±)2 =
A[1±

√
1− η2 cos θ] + κ

Aη + κ
. (4.15)
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Fig. 4.3 clearly indicates that the cavity mode is in the squeezed state for all

values of η between zero and one.



5

Conclussion

In this thesis, we have studied the quadrature flactuations and photon statistics

of the light produced by degenerate three level laser coupled to thermal reser-

voir. We have obtained the master equation together with stochastic differential

equations. Applying the solutions of the resulting c-number Langevin equation,

we have determined the Q function and the density operator. Then with the aid

of the Q function along with the density operator, we have calculated the mean

photon number, the variance of the photon, the power spectrum, the photon

number distribution, and the quadrature variance. We have seen that the mean

photon number of the system under consideration does not happens to be the

sum of the mean photon number of the laser and the thermal light. We also

clearly indicated that the mean photon number decreases with η but increases

with n. Furthermore, we have shown that a large part of the mean photon num-

ber is confined in a relatively small frequency interval. Moreover, the presence

of the thermal light indeed affects the squeezing of the degenerate three level

laser.
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