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Abstract

More recent literature reviews point out that most galaxies, especially early type galaxies

with Active Galactic Nuclei (AGN), contain Massive Black Holes (MBHs)considered to be

comparable to the masses of high redshift quasars to the evolution of early galaxies. Some

of these sources seem to accrete and eject matter-energy at a very high rate as reported.

As a result it was believed that Electromagnetic(EM) spectrum observations are required

to provide information on black holes in the centers of active galaxies. On the other hand,

Gravitational Wave(GW) observations are considered to provide the complementary infor-

mation about the capture of particles including compact objects like Black Holes(BHs) that

are mostly invisible to EM observations. Thus, the astrophysical study of AGNs in its full

relativistic effect is active and fresh research. For example, the efficient mechanisms to de-

scribe the energy - momentum and jets flow that could be exploited to match observations

are important and open to research. Motivated by this scientific background, We worked

on the dynamics of relativistic jets flow around AGNs by considering full General Relativ-

ity equations of charged fluid in Schwarzschild-de sitter geometry. The relevant dynamical

parameters like pressure were being derived by setting simplifying boundary conditions.

Finally we had work out on numerical analysis of the derived observable quantities to check

their significance. In particular the pressure pB and PΛ in terms of radial distance from

AGN was in agreement with the existing theory. The pressure due to magnetic field was,

the dominant pressure at the surface of black hole horizon, is important for the formation

of relativistic jets around AGN and far from black hole horizon pressure due to cosmology

constant becomes dominant because of the effects of cosmology constant. Finally cosmol-

ogy constant was a significant effects in local gravitating objects geometric structure and

pressure. .
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Introduction

General relativity has a great success in the observation of deflection of light, radar echo

delay,precession of planetary motion and gravitational redshift by gravity are the manifes-

tation of progress in astronomy and astrophysical studies. The discovery of the expanding

universe at an accelerating phase, and the direct confirmation of gravitational wave detec-

tion are other astounding progresses in astronomy and astrophysics [19]. There are great

deals of progress in the subject both theoretically and observationally with direct and indi-

rect detections. It is in this context that one must appreciate Einstein’s GR prediction in

agreement with experimental observation, so that, in 1916 Einstein was interested to find

a static solution of his field equations with the idea of incorporating Mach’s principle, [8].

But Einstein soon noticed that his original field equations yield a non - static solution. As

the consequence, Einstein himself after a year, in 1917 introduced a positive cosmological

constant (Λ) with the belief of constructing a static solution. But at the same year that

Einstein introduced the cosmological term, de Sitter presented solutions to static ”Einstein

universe”,with Tµν = 0 and Λ > 0, which had both static and dynamic features,that allows

a redshift-distance relation [23]. The de Sitter’s prediction is considered as the first step

towards the theoretical discovery of expanding universe. On the other hand, in 1922, 1924

Freidmann constructed a matter dominated expanding universe without a cosmological con-

stant. Moreover, the discovery of expanding universe by Hubble and contemporaries led

Einstein to abandon the idea of a static universe importunately including the cosmological

constant. However, a number of researchers were entailed to construct models with cos-

mological constant to explain measurements of the spectra of spiral nebulae that showed

redshifted to construct an expanding model which originated from such an asymptotically

static state (”static Einstein universe”) in the distant past [17]. Since then, the cosmological

constant has remained with debate where it was being cast out at a time and reintroduced
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at other time. However, a firm considerate of Λ is triggered in the 1960’s when an excess

quasi-stellar objects (QSO’s) near the redshift z ∼= 1.95 were observed [12]. Then a number

of authors for instance [14] emerged with Lemaitre’s models containing the cosmological

constant in explaining the observed QSO’s that was in agreement with the predicted infla-

tionary scenario of the early universe. But the general perception is that owing to its tiny

value, cosmological constant does not lead to any significant observable effects in a local

gravitational phenomenon. However, the contribution of repulsive Λ could be significant

(larger than the second order term) even in a local gravitational phenomenon when kilo-

parsecs to megaparsecs-scale distances are involved, such as the gravitational bending of

light by cluster of galaxies [15] Moreover, the recently confirmed gravitational wave presence

shines on the matter to study high precision astrophysical phenomena at small scale level.

Probably, a local effect of cosmological constant is claimed to be observable from relativis-

tic phenomena around massive BHs which involve distance-scale of the order of hundreds

of parsecs or even more [17] and the references therein. However, the recent discoveries

on astrophysical phenomena favor a Cold Dark Matter with positive cosmological constant

(ΛCDM) model that is consistent with observations. Furthermore, the presence of a repul-

sive cosmological constant (positive) the spacetime geometry exterior to a static spherically

symmetric gravitating system is Schwarzschild-de Sitter (SdS), in a spatially inflated Uni-

verse, rather than Schwarzschild. Motivated by this scientific rationale, we are interested to

study the dynamics of jets around Active Galactic Nuclei (AGN) in Schwarzschild de Sitter

Geometry. The description of important areas of modern astronomy, such as high-energy

astrophysics or gravitational wave astronomy, requires general relativity. Einsteins theory

of gravitation plays a major role in astrophysical scenarios involving compact objects such

as neutron stars and black holes. High-energy radiation is often emitted in regions of strong

gravitational fields near such compact objects [19]. The production of relativistic jets in

active galactic nuclei, explained by either of hydrodynamic or electromagnetic mechanisms,

involves rotating supermassive black holes. We adopt the conventions Throughout Greek

indices run from 0 to 3 and Latin indices from 1 to 3; geometrized units G = c = 1 are

used; G is Newtons gravitational constant and c is the speed of light is used. The outline

of the research is:- Unit one contains introduction about general theory of relativity and

introducing of cosmology constant in Einstein field equation. Unit two contain explanation
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about GRMHD background and derivative of basic equations of GRMHD to describe how

energy extract from SMBH host by AGN during accretion, the pressure and differential

equations of matter conservation. In this unit also we discuss the formation of jets ejected

from AGN. Unit three and four includes result discussion and Summary respectively.

Statement of the problem

The ΛCDM model is more or less consistent with all the current cosmological observations.

Its effect at large scale is well considered. However, its local effect like perihelion shift of the

orbits of gravitationally bound systems, etc. are at debate [16]. On the other hand, there is

a plethora of evidences that claim its effect at the local size. Probably, a local effect of cos-

mological constant is claimed to be observable from relativistic jets dynamics and accretion

phenomena around massive BHs hosted by AGN (or QSO) which involve distance-scale of

the order of hundreds of parsecs or even more [10]. However, a few studies have been carried

out so far to investigate the effect of Λ in astrophysical jet flow paradigm [13, 14]. The obvi-

ous reason is to avoid the complex general relativistic (GR) magnetohydrodynamic (MHD)

equations in a strong gravitational field regime. Owing to the complex and nonlinear char-

acter of the equations in GR regime, analytical/quasi numerical treatment of the problem

is virtually discarded [15]. To this end several early works on motion of objects (including

jet flows) and related phenomena were based on pure Newtonian gravity or alternative GR

theories. However, on the other hand, the recently confirmed gravitational wave presence

shines on the matter to study high precision astrophysical phenomena at small scale level

including cosmological effect. So the current standard ΛCDM model that is consistent with

observation shall be exploited to study the dynamics jets around massive objects like BHs

hosted by AGN.

Research Questions

• How a massive compact object curves space-time around? And how the geometry

influences the dynamics of objects around it?

• What is the significance of cosmological constant in the dynamics and observable of

jets system around massive compact objects?
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• How the ΛCDM model incorporates motion of jets near AGN?

Objectives

General Objective

To study the dynamics of relativistic jets around Active Galactic Nuclei in Schwarzschild-de

Sitter Geometry.

Specific Objectives

• To derive dynamical equations from the GR equations in the SdS background.

• To derive dynamical observable parameters, like momentum, energy of relativistic

jets around AGN with the SdS metric.

• To study the contents of the dynamical observable parameters of relativistic jets

around AGN.

Methodology

The general method is to derive dynamical equations from which relevant dynamical param-

eters such as energy and momentum are being derived from Einstein static field equations.

The analytically derived equations was converted to generate numerical values computa-

tionally with MATHEMATICA. Then, the results discussed and summarized.

The steps are:

• Provide preliminary boundary conditions to derive the relevant set of dynamical equa-

tions from the GR equations in the SdS background.

• Study and examine the effects of the relevant parameters derived from the equations.

• We had numerically generate some theoretical data from the formalism using compu-

tation.

• The result was discussed and Summarized.
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Scope of the study

The scope of the study is limited to theoretical study and analysis where possible observable

parameters are expected to be contained in the analytical equations. The derived equations

are probably to be converted to EMWs or GWs or both spectrums for observational testing.
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Literature Review

The success of general theory of relativity (GR) in the observation of deflection of light,

radar echo delay, precession of planetary motion and gravitational redshift by gravity are

the manifestation of progress in astronomy and astrophysical studies. The discovery of the

expanding universe at an accelerating phase, and the direct confirmation of gravitational

wave detection are other astounding progresses in astronomy and astrophysics. There are

great deals of progress in the subject both theoretically and observationally with direct and

indirect detections [19]. Whilst, there are encouraging past success of GR and the hopes

ahead there is an outstanding debates on GR field equations dated back to their origin.

After completing his theory of GR, Einstein was interested to find a static solution of his

field equations with the idea of incorporating Mach’s principle [8]. But Einstein noticed

that his original field equations:-

Rµν −
1
2
gµνR = KTµν

yields a non - static solution. Where, Rµν is the Ricci curvature tensor, R is the scalar

curvature, gµν is the metric tensor, scalar constant and Tµν is the energy - momentum source

tensor. As the consequence, Einstein himself introduced a positive cosmological constant Λ

with the belief of constructing a static solution. The idea is that, the constant introduces

a repulsive force which can counterbalance the attractive force of gravity leading to the

”static Einstein universe”. The modified Einstein’s field equations with the cosmological

constant is,

Rµν − 1/2gµνR + Λgµν = KTµν

But at the same year that Einstein introduced the cosmological term, de Sitter (1917) pre-

sented solutions to static Einstein universe”, with Tµν=0 and, Λ > 0 which had both static
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and dynamic features, that allows a redshift-distance relation [10]. The de Sitter’s predic-

tion is considered as the first step towards the theoretical discovery of expanding universe.

On the other hand, in 1922 Freidmann constructed a matter dominated expanding universe

without a cosmological constant. Then, the possibility that the universe is expanding led

Einstein to abandon the idea of a static universe including the cosmological constant [19].

However, a number of researchers were entailed to construct models with cosmological con-

stant. For example, Lemaitre constructed an expanding model which originated from such

an asymptotically static state (”static Einstein universe”) in the distant past. Since then,

the cosmological constant has remained with debate where it was being cast out at a time

and reintroduced at other time [3]. A firm considerate of Λ is triggered in the 1960’s when

an excess quasi-stellar objects (QSO’s) near the redshift z ≈ 1.95 were observed. Then

a number of authors, for instance [9]emerged with Lemaitre’s model in explaining the ob-

served QSO’s that was in agreement with the predicted inflationary scenario of the early

universe.

In general, according to current understanding a flat low density Cold Dark Matter with

dark energy in the form of cosmological constant (CDM +Λ ) universe with Ωm = 0.3 and

ΩΛ = 0.7, with an approximately flat metric is favored over a wide range of observational

data ranging from large and intermediate angle Cosmic Microwave Background Radiation

(CMBR) anisotropies to observations of galaxy clustering on large scales, for instance see

[6, 10]. In the presence of a repulsive cosmological constant (positive) the spacetime ge-

ometry exterior to a static spherically symmetric gravitating system is Schwarzschild-de

Sitter (SdS), in a spatially inflated Universe, rather than Schwarzschild. But the general

perception is that owing to its tiny value, cosmological constant does not lead to any sig-

nificant observable effects in a local gravitational phenomenon. However, the contribution

of repulsive Λ could be significant (larger than the second order term) even in a local gravi-

tational phenomenon when kiloparsecs to megaparsecs-scale distances are involved, such as

the gravitational bending of light by cluster of galaxies [11].

Probably, a local effect of cosmological constant is claimed to be observable from relativis-

tic accretion phenomena around massive BHs which involve distance-scale of the order of

hundreds of parsecs or even more [12] and the references therein. However, a few studies

have been carried out so far to investigate the effect of Λ in astrophysical jet/accretion flow
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paradigm [13, 14]. So the effect of Λ on the dynamics of kiloparsecs to megaparsecs scale as-

trophysical objects including jets need investigations. So far all the works on the effect of Λ

on accreting systems were carried out under some restricted conditions. The obvious reason

is to avoid the complex general relativistic GR magnetohydrodynamic (MHD) equations in

a strong gravitational field regime. Owing to the complex and nonlinear character of the

equations in GR regime, analytical/quasi numerical treatment of the problem is virtually

discarded; see for example [15] and the references therein. Several early works on accretion

related phenomena were based on pure Newtonian gravity. So the current standard Λ CDM

model that is consistent with observation shall be exploited to study the effect of cosmo-

logical constant on dynamical systems including MHD instabilities around massive objects

like BHs where they are mostly hosted by AGNs.
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Chapter 1

GENERAL THEORY OF
RELATIVITY

1.1 Einstein General

Theory Of Relativity

Einstein’s theory of general relativity is a cornerstone of modern physics. After many years

of investigation Einstein develop his general theory of relativity in 1915, it was published

the following year [7]. The origin of GR can be traced to the conceptual revolutionary that

followed Einstein’s introduction of special theory of relatively in 1905. Newton’s centuries

old gravitational force law is inconsistent with general theory of relativity [19]. It Provides

a relativistic description of the gravitational field exerted by massive objects and its effects

on the geometric structure of the surrounding spacetime. Einstein introducing of relativistic

theory of gravity resulted is not a new force law or a new theory of relativistic gravitational

field, but profound conceptual revolution in our views of space and time. He saws that

the experimental fact that all bodies fall with the same acceleration in a gravitational field

led naturally to an understanding of gravity in terms of the curvature of the four dimen-

sional union of space and time-spacetime [12]. Mass curves spacetime in its vicinity,and

the trajectories along which all masses fall are the straight paths in this curved spacetime.

This differs from the original foundations of Newton’s law of gravitation, where gravity

is an attractive force between two massive objects which interact instantaneously. In this

description, planetary orbits are a consequence of this gravitational pull emanate from the

sun.For example, the sun exerts a gravitational force on the earth and the earth moves
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around the sun in response to the gravitational field interaction. However,in GR point of

view the mass of the sun curves the surrounded spacetime, and the earth moves on straight

path in that curved spacetime. Since gravity is one of the four fundamental interaction and

determine the geometry of spacetime [21]. However, given a certain circumstances Newto-

nian theory provides an accurate description of the gravitational interaction, this include

a weaker gravitational field. This is known as the Newtonian limit in which spacetime is

asymptotically flat. Einstein generalized his theory of general relativity by,

Spacetime tells matter how to move

Matter tells spacetime how to curve

General theory of gravitational is great acceptable theory than Newton theory of gravita-

tional, the later has no longer in agreement with observation.For instance the deflection of

light by the sun and also other applications of GR deviated slight from the prediction of

Newton equation, where as solution in GR had been described successfully in the present

modern astrophysics and astronomy [19].

1.2 Space-Time Geometry in General Relatively

After Riemannaian manifold, Lorentzian manifold from the most important subclass of

pseudo-Riemannaian manifold M,this is equipped with the metric gϕν , which can be used

to determine local geometry such as angry and length. They are important in application of

GR. A principal basis of GR is that spacetime can be modeled as 4-dimensional lorentzian

manifold of signature (3,1) or equivalently (1,3) depending on our signs convention. For the

purposes of this research we will consider a metric tensor with signature of (-+++) for the

discussion of GR unless otherwise stated[19]. The metric gϕν is symmetric and its inverse

will be gϕν , so that

gϕν = gνϕ

and

gϕν = gνϕ

10



where, gνϕ = dig(−1, 1, 1, 1), gϕµgµν = δϕ
ν

gϕµ =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


The line element can be described as ,

ds2 = gϕνdxϕdxν

the quantity ds is an invariant under reasonable arbitrary transformation, i.e all observers

in any arbitrary frame of reference will agreed on the value of ds, is called diffeomorphisms.

1.3 Tensor Analysis In GR

The method is based on an alternative version of the principle of equivalence, known as

the principle of general covariance. It state that a physical equation holds in an arbitrary

gravitational fields. If two necessary conditions are met,

1. The equation holds in the absence of gravity ,i.e.

gµθ = ηµθ and Γα
τν = 0

2. The equation is generally covariant,that is preserve its form under arbitrary general

coordinate transformation x → x′. So that we need to develop the rules that the

”good ”(covariant) objects will obey when we pass from one coordinate system to an

other.Such an objects are said to be a tensor. A tensor is ’something’ that transforms

like a vectors.

1.3.1 Metric Tensor

A metric tensor is such an important object in curved space, that it is given a new symbol

gµν (while ηµν is reserved specially for minkowski metric) There are few restrictions on the
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components of gµν , other than it be a symmetric tensor. It is usually taken to be non-

degenerate,meaning that the determinant g = |gµν | doesn’t vanished. This allow to define

the inverse metric as gµν via

gµλgλν = δµ
ν

The metric tensor is defined as,

gµν =
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ (1.3.1)

The symmetry of gµν implies that gµν is also symmetric metric. It help us to determine

the proper distance/time/ interval between two event with a given infinitesimal coordinate

separation. Proper distance between two event can defined as,

ds2 = gµνdxµdxν

1.3.2 Affain Connection

An invariant third order partial differential equation of metric tensor (gµν). It is a field that

determine the gravitational force and used to representant gravitational potential in GR.

It can be called as christoffel symbol, transform as a tensor only under affain coordinate

changes, which is denoted by either of the three {µν, σ} or {σ
µν} or {Γσ

µν}.
The mathematical definition for affain connection as,

Γσ
µν =

∂xσ

∂ξβ

∂2ξβ

∂xµ∂xν
(1.3.2)

where ξα and ξβ are the local inertial coordinate. Now be taking partial differentiation

of the general metric tensor in equ(1.3.1) at a local gravitational field with respect to an

arbitrary general coordinate system xρ. It shows as,

∂gµν

∂xρ
=

∂

∂xρ
[
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ ]

Now here take differentiation by part,we have

∂gµν

∂xρ
=

∂2ξα

∂xρ

∂ξβ

∂xµ∂xν
ηαβ +

∂ξα

∂xµ

∂2ξβ

∂xρ∂xν
ηαβ (1.3.3)
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Now eqn.(1.3.3) can be written as using(1.3.1)

∂gµν

∂xρ
= Γλ

ρµ

∂ξα

∂xλ

∂ξβ

∂xν
ηαβ + Γλ

ρν

∂ξα

∂xµ

∂ξβ

∂xλ
ηαβ (1.3.4)

Where,

Γλ
ρµ

∂ξα

∂xλ
=

∂2ξα

∂xρ∂xµ

and

Γλ
ρν

∂ξβ

∂xλ
=

∂2ξβ

∂xρ∂xν

Than eqn.(1.3.4) can be set as,

∂gµν

∂xρ
= Γλ

ρµgλν + Γλ
ρνgµλ (1.3.5)

Where,

gλν =
∂ξα

∂xλ

∂ξβ

∂xν
ηαβ

and

gµλ =
∂ξα

∂xµ

∂ξβ

∂xλ
ηαβ

The two Γλ
ρν and Γλ

ρµ are the affain connections.If we considering free falling particles the

affain connection is a field that determines the gravitational force. Now using the symmetric

property of the affain connection with the exchange of lower indices i.e. Γλ
ρµ = Γλ

µρ. To

solve eqn.(1.3.5) for the affain connections it is a matter of adding to eqn.(1.3.5) the same

equation with ρ and µ by interchange and subtract the same equation with ρ and ν by

interchanging. It becomes,

∂gµν

∂xρ
+

∂gρν

∂xµ
−∂gµρ

∂xν
= Γλ

µρgλν+Γλ
ρνgλµ+Γλ

µρgλν+Γλ
µνgλρ−Γλ

µνgρλ−Γλ
νρgλµ = 2Γλ

µρgλν (1.3.6)

From the symmetry property of affain connection, Γλ
µρ and metric tensor, gλν , then

Γλ
µρgλν =

1
2
(
∂gµν

∂xρ
+

∂gρν

∂xµ
− ∂gµρ

∂xν
) (1.3.7)

Now let us define a metric gτν as the inverse of gτν so that,
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gτνgλν = δτ
λ (1.3.8)

Where δτ
λ is called the kroneker delta defined as δτ

λ = 1, for τ = λ and for else. Therefore

applying δτ
λ. And multiply both side by gτν , it shows

Γλ
µρg

τνgλν =
1
2
gτν

(
∂gµν

∂xρ
+

∂gρν

∂xµ
− ∂gµρ

∂xν

)

Γλ
µρδ

τ
λ =

1
2
gτν

(
∂gµν

∂xρ
+

∂gρν

∂xµ
− ∂gµρ

∂xν

)
Now equation(1.3.7) becomes,

Γτ
µρ =

1
2
gτν

(
∂gµν

∂xρ
+

∂gρν

∂xµ
− ∂gµρ

∂xν

)
(1.3.9)

This equation is tell us about affain connection to determine gravitational field.

1.3.3 Curvature Tensor

We want to construct a tensor out of the metric and its derivatives. If we use only gµν ,

and its first derivative,then no new tensor can be constructed. For any point we can find a

coordinate system in which the first derivatives of the metric vanished,so in this coordinate

system the desired tensor must be equal to one of those that can be constructed out of the

metric tensor along (gµν or, gν and so on) and since this equality between it must be true

in all coordinate system [19]. The Simplest possibilities to construct a tensor out of the

metric tensor and its first and second derivatives. To this,let us recall the transformation

rule for the affain connection, passing from xµ to a different system x′µ, we defined that

Γ′λ
µν =

∂x′λ

∂ξα

∂2ξα

∂x′µ∂x′ν

It can be written as follow,

Γ′λ
µν =

∂x′λ

∂xρ

∂xρ

∂ξα

∂

∂x′µ

[
∂xσ

∂x′ν
∂ξα

∂xσ

]
(1.3.10)

Now taking partial differentiation for bracket terms, it shows
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Γ′λ
µν =

∂x′λ

∂xρ

∂xρ

∂ξα

[
∂xσ

∂x′ν
∂xτ

∂x′µ
∂2ξα

∂xτ∂xσ
+

∂2xσ

∂x′µ∂x′ν
∂ξα

∂xσ

]
and referring back to the notation for affain connection in equation (1.3.2) and kronecker

delta,
∂xρ

∂ξα

∂ξα

∂xσ
= δρ

σ

where, δρ
σ = 1, for, ρ = σ, otherwise zero

Γ′λ
µν =

∂x′λ

∂xρ

∂xτ

∂x′µ
∂xσ

∂x′ν

[
∂xρ

∂ξα

∂2ξα

∂xτ∂xσ

]
+

∂x′λ

∂xρ

[
∂xρ

∂ξα

∂ξα

∂xσ

] [
∂2xσ

∂x′µ∂x′ν

]
(1.3.11)

The transformation equation for affain connection becomes,

Γ′λ
µν =

∂x′λ

∂xρ

∂xτ

∂x′µ
∂xσ

∂x′ν
Γρ

τσ +
∂x′λ

∂xρ

∂2xρ

∂x′νx′µ
(1.3.12)

The first term on the right side in equation (1.3.12) is what we would expect if Γλ
µν were a

tensor according to general coordinate transformation; the second term is inhomogeneous,

and makes it a non-tensor. Now invert and inter change the primed and unprimed coordinate

terms of equation (1.3.12). It shows,

Γλ
µν =

∂xλ

∂x′τ

∂x′ρ

∂xµ

∂x′σ

∂xν
Γ′τ

ρσ +
∂xλ

∂x′τ
∂2x′τ

∂xν∂xµ

It is the inhomogeneous term on the right side that keeps Γλ
µν from being a tensor, so let

us isolate this term,

∂2x′τ

∂xν∂xµ
=

∂x′τ

∂xλ
Γλ

µν −
∂x′ρ

∂xµ

∂x′σ

∂xν
Γ′τ

ρσ (1.3.13)

Now, take partial differentiation on both side of the above equation (1.3.13) with respect

to xk gives,

∂

∂xk

(
∂2x′τ

∂xν∂xµ

)
=

∂

∂xk

(
∂x′τ

∂xλ
Γλ

µν −
∂x′ρ

∂xµ

∂x′σ

∂xν
Γ′τ

ρσ

)
Take differentiation by part for right side,

∂3x′τ

∂xk∂xν∂xµ
=

∂2x′τ

∂xk∂xλ
Γλ

µν+
∂x′τ

∂xλ

∂Γλ
µν

∂xk
− ∂2x′ρ

∂xk∂xµ

∂x′σ

∂xν
Γ′τ

ρσ−
∂x′ρ

∂xµ

∂2x′σ

∂xk∂xν
Γ′τ

ρσ−
∂x′ρ

∂xµ

∂x′σ

∂xν

∂Γ′τ
ρσ

∂xk

(1.3.14)
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Now here, using the relations we develop in equation (1.3.13) one can be write the following

possibilities,

∂2x′τ

∂xk∂xλ
=

∂x′τ

∂xη
Γη

kλ −
∂x′ρ

∂xk

∂x′σ

∂xλ
Γ′τ

ρσ

∂2x′ρ

∂xk∂xµ
=

∂x′ρ

∂xη
Γη

kµ −
∂x′η

∂xk

∂x′ξ

∂xµ
Γ′ρ

ηξ

∂2x′σ

∂xk∂xν
=

∂x′σ

∂xη
Γη

kν −
∂x′η

∂xk

∂x′ξ

∂xν
Γ′σ

ηξ

Now, substitute the above possible equation into equation (1.3.14). It shows,

∂3x′τ

∂xk∂xν∂xµ
= (1.3.15)

(
∂x′τ

∂xη
Γη

kλ −
∂x′ρ

∂xk

∂x′σ

∂xλ
Γ′τ

ρσ)Γλ
µν +

∂x′τ

∂xλ

∂Γλ
µν

∂xk

−∂x′σ

∂xν

(
∂x′ρ

∂xη
Γη

kµ −
∂x′η

∂xk

∂x′ξ

∂xµ
Γ′ρ

ηξ

)
Γ′τ

ρσ

−∂x′ρ

∂xµ

(
∂x′σ

∂xη
Γη

kν −
∂x′η

∂xk

∂x′ξ

∂xν
Γ′σ

ηξ

)
Γ′τ

ρσ −
∂x′ρ

∂xµ

∂x′σ

∂xν

∂Γ′τ
ρσ

∂xk

Now, collect similar terms and juggling indices a bit,

∂3x′τ

∂xk∂xν∂xµ
=

∂x′τ

∂xλ

(
∂Γλ

µν

∂xk
+ Γη

µνΓ
λ
kη

)
(1.3.16)

−∂x′ρ

∂xµ

∂x′σ

∂xν

∂x′η

∂xk

(
∂Γ′τ

ρσ

∂x′η
− Γ′τ

ρλΓ′λ
ησ − Γ′τ

λσΓ′λ
ηρ

)
−Γ′τ

ρσ

∂x′σ

∂xλ

(
Γλ

µν

∂x′ρ

∂xk
+ Γλ

kν

∂x′ρ

∂xµ
+ Γλ

kµ

∂x′ρ

∂xν

)
Now, after subtracting the same equation with ν and κ inter changing (i.e ν → κ), we find

that all term involving the product of Γ and Γ′ are drop out, leaving equation (1.3.16) as,

0 =
∂x′τ

∂xλ

(
∂Γλ

µν

∂xk
−

∂Γλ
kµ

∂xν
Γη

µνΓ
λ
kη − Γη

kµΓλ
µη

)
−∂x′ρ

∂xµ

∂x′σ

∂xν

∂x′η

∂xk

(
∂Γ′τ

ρσ

∂x′η
−

∂Γ′τ
ρη

∂x′σ
− Γ′τ

σλΓ′λ
ηρ + Γ′τ

ληΓ
′λ
σρ

)

R′τ
ρση =

∂x′τ

∂xλ

∂xµ

∂x′ρ
∂xν

∂x′σ
∂xk

∂x′η
Rλ

µνκ (1.3.17)

Now, let us define the term in the left side of in the bracket in equation(1.3.16) using the

transformation rule of the curvature tensor notion in equation (1.3.17).

16



Rλ
µνκ = Γλ

µν,κ − Γλ
µκ,ν + Γη

µνΓ
λ
κη − Γη

µκΓλ
νη (1.3.18)

From equation (1.3.17) we can say that Rλ
µνκ is a tensor, and it is called Riemann-christoffel

curvature

The Riemann curvature measure how much the space would have been curved. It is derived

directly from second order partial derivative of the metric tensor and plays an important

role in determining the geometry of spacetime in GR and also it is physical significant to

determine gravitational tidal force. In minkowski(flat) spacetime geometry genuinely the

Riemann curvature vanished everywhere.

Its fully covariant form of Riemann curvature tensor can be written instead of Rλ
µνκ as,

Rλµνκ = gλσRσ
µνκ

Here, by referring back to equation (1.3.9) for affain connection, the Riemann curvature

tensor can be written us directly in terms of general spacetime metric tensor,

Rλµνκ = gλσ(Γσ
µν,κ − Γσ

µκ,ν + Γη
µνΓ

σ
κη − Γη

µκΓσ
νη)

Rλµνκ =
1
2
gλσ

∂

∂xκ
gσρ (gρµ,ν + gρν,µ − gµν,ρ)− (1.3.19)

1
2
gλσ

∂

∂xν
gσρ (gρµ,κ + gρκ,µ − gµκ,ρ) + gλσ

(
Γη

µνΓ
σ
κη − Γη

µκΓσ
νη

)
Again referring back to equation (1.3.8) for kronicker delta notation,

δη
λ = 1, forη = λ, else zero.and,

gλσ
∂

∂xκ
gσρ = −gσρ ∂

∂xκ
gλσ

= −gσρ(Γη
κλgησ + Γη

κσgηλ)

After certain manipulation using kronicker delta notation we will obtain Riemann curvature

tensor by canceling the most ΓΓ terms appearing in the equation(1.3.19), so that,

Rλµνκ =
1
2

[gλν,κµ − gµν,κλ − gλκ,νµ + gµκ,νλ] + gησ

[
Γη

νλΓσ
µκ − Γη

κλΓσ
µν

]
(1.3.20)

Therefore, equation (1.3.20) is called covariant form of Riemann curvature tensor.

The algebraic property of the covariant curvature tensor are;
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1. symmetry in the first two pair of indices

Rλµνκ = Rνκλµ

2. Antisymmetry in first pair of indices

Rλµνκ = −Rµλνκ

3. Antisymmetry in second pair of indices

Rλµνκ = −Rλµκν

4. Cyclic permutation symmetry(first Bianchi identity)

Rλµνκ + Rλκµν + Rλνκµ = 0

Therefore, Riemann curvature tensor will have 20 total number of independent components

for situation having a 4-dimensional spacetime geometry[19]. So that a general formula-

tion for computing the total number of independent component in a given N-dimensional

spacetime geometry will have;
N2(N2 − 1)

12

Ricci Tensor and Ricci Scalar

Ricci tensor: is a component of Einstein field equation obtained from a Riemann curvature

tensor by contracting over two indices.

Rµκ = Rλ
µλκ = gλνRλµνκ (1.3.21)

Using equation (1.3.18) and equation (1.3.21), shows that,

Rµκ = Γλ
µλ,κ − Γλ

µκ,λ + Γη
µλΓλ

κη − Γη
µκΓλ

λη

And also one can be write in other form as, using equation (1.3.20) and equation (1.3.21)

as,
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Rµκ =
1
2
gλν [gλν,κµ − gµν,κλ − gλκ,νµ + gµκ,νλ] + gλν

[
Γη

νλΓσ
µκ + Γη

κλΓσ
µν

]
Using the property of Riemann curvature tensor, we can find the property of Ricci tensor

its symmetry property,

Rµκ = Rκµ

Ricci Scalar:- is obtained by further contraction of the remaining two indices of the Ricci

tensor with the contra-variant components of the metric, is also called curvature scaler.

R = gµκRµκ

= gλνgµκRλµνκ

= Rµ
µ

Einstein Field tensor:- can be construct from Riemann curvature tensor and metric

Gµν = Rµν −
1
2
gµνR

Where Gµν is a linear combinations of first and second order partial differential equation

of metric. Since Ricci tensor and metric tensor are symmetric, so that Einstein field tensor

also symmetric.

Gµν = Gνµ

1.3.4 The Bianchi Identities

The Riemann curvature tensor obeys important differential identities, in addition to the

algebraic identities. These can be most easily derived at a given point x, by adopting

a locally inertial coordinate system xη, in which a term containing Γ, in the Riemann

curvature tensor, vanished but not its derivative.

Than at a given point x equation (1.3.20) becomes

Rλµνκ,η =
1
2

∂

∂xη
(gλν;κµ − gµν;κλ − gλκ;µν − gµκ;νλ) (1.3.22)

All other terms being at least of first order in Γ. By permuting ν, κ and η cyclically. We

obtain the Bianchi identities.

19



Rλµνκ;η + Rλµην;κ + Rλµκη;ν = 0 (1.3.23)

Therefore, these equation are manifestly general covarient, so since they hold in general

inertial system. We shall be particularly concerned with the contraction form of equation

(1.3.23),recalling covarient derivatives of gλν also vanished, We find on contraction of λ

with ν

gλν(Rλµνκ;η + Rλµην;κ + Rλµκη;ν) = 0

Rµκ;η −Rµη;κ + Rν
µκη;ν = 0

Contraction one more µ with κ or using gµκ, gives as

R;η −Rµ
η;µ −Rν

η;ν = 0

it becomes, (
Rµ

η −
1
2
δµ
η R

)
;µ = 0

an equivalent but more familiar form is,

(
Rµν − 1

2
gµνR

)
;µ = 0

1.3.5 Energy-Momentum

A tensor quantities in physics that describe the density, flux of energy and momentum in

4-dimensional space and is a conserved quantities. Sometimes generalized to stress-energy

denoted by Tµν . The energy-momentum tensor is the source of the gravitational field in

the Einstein field equations of general relativity, just as mass density is the source of such

a field in Newtonian gravity [19]. A great many macroscopic physical systems, including

perhaps the universe itself, may be approximately regarded as a perfect fluid. A perfect

fluid is defined as having at each point a velocity V, such that an observer moving with
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this velocity sees the fluid around him as isotropic. This will be the cases if the mean free

path between collision is small compared with the length used by the observe. Now we

shall translate the above definition of a perfect fluid in to a statement about the energy-

momentum tensor. First supposed that we are in a frame of reference (distinguished by

tide) in which the fluid is at rest at some particular position and time. At this space-time

point, the perfect fluid hypothesis tells us that energy-momentum tensor take the form

characteristic of spherical symmetry:

T̃ ij = Pδij

T̃ i0 = T̃ 0i = 0

T̃ 00 = ρ

The coefficient ρ and p are called proper energy density and pressure, respectively. Now

go into a reference frame at rest in the laboratory, and suppose that the fluid in this frame

appear to be moving with velocity v. The connection between the comoving coordinate x̃β

and the lab coordinate xα is than,

xα = Λα
β(v)x̃β

with Λα
β(v) ”boost” defined [19]. But Tαβ is tensor, so in the lab frame it is

Tαβ = Λα
γ (v)Λβ

δ (v)T̃ γδ

or explicitly

T ij = pδij + (p + ρ)
vivj

1− v2

T i0 = (ρ + p)
vi

1− v2

T 00 =
ρ + pv2

1− v2

Now combine the above T ij ,T i0 and T 00 in to single equation to check that Tαβ is a tensor.so

that,

Tαβ = pηαβ + (ρ + p)UαUβ

In the case the absence of gravity the energy-momentum tensor for perfect fluid similar to
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the above equation.

Tαβ = pηαβ + (ρ + p)UαUβ (1.3.24)

Since Uα is a 4-velocity vectors, defined by

Uα =
dxα

dτ
(1.3.25)

Uβ =
dxβ

dτ

For line element

dτ2 = ηαβdxαdxβ (1.3.26)

Now, using equation (1.3.25) and equation (1.3.26) we have,

ηαβUαUβ = 1

Now here using the above consequently equation, the energy-momentum of perfect fluid

than take the following form in its rest frame.

Tαβ =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 (1.3.27)

In general Tαβ is a 4-dimensional symmetric tensor. It is strictly the description of energy

- momentum have been useful in a practical applications to define the structure of stellar

and the study of cosmology.

In the presence of gravity, energy - momentum tensor for perfect fluid given by from

equation (1.3.24) becomes,

Tµν = Pgµν + (P + ρ) UµUν (1.3.28)

is also symmetric Tµν = T νµ, and from Normalization conditions we can arrive to,

gµνU
νUµ = −1

Moreover, the conservation of energy - momentum tensor can be defined by,

Tµν ;µ = 0

22



1.4 Einstein Field Equation

The stage is now set for deriving and understanding Einstein field equation. In newto-

nian gravity, the rest mass(matter) generate gravitational effect. Moreover gravity can only

exist where there exist a matter around space. However in GR, we recognized that the

rest mass(matter) is just one form of energy, and that the mass and energy are equivalent.

Therefore, we should expect that in GR all source of both energy and momentum contri-

butions to generate space-time curvature. This mean that in GR, the energy-momentum

tensor is the source for space-time curvature, in the same sense that the mass density ρ is

the source for the gravitational potential (φ) [19]. This motivate Einstein to make a con-

clusion that gravity is not only create by the presence of matter, it is in fact the product of

the presence of energy. therefore, GR must present appropriate analogues of the two parts

of dynamical picture:-( 1) how particles moves in response to gravity; and (2) how particles

generate gravitational effect. The first part was answered when we derived the geodesic

equation as the analogue of the Newton second Law.The second part required finding of the

analogue of the poisson equation [11].

∇2φ(x) = 4πGρ(x)

Which specifies how matter curves space - time.

In a weak static field produced by non-relativistic mass density ρ, the time - time component

of the metric tensor is approximately given by,

g00 ' −(1 + 2φ) (1.4.1)

Now , here φ is the Newton potential; determined by poisson equation, that is

∇2φ = 4πGρ (1.4.2)

Further more, the energy density T00 for non-relativistic matter is just equal its mass density.

T00 = ρ (1.4.3)

by taking both side ∇2 in equation (1.4.1), it shows that

∇2g00 = −8πGρ
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using equation (1.4.3) the above equation becomes,

∇2g00 = −8πGT00 (1.4.4)

This field equation is suppose to hold for which static field generated by non-relativistic

matter, and is not even lorentz invariant as it stand. However, equation (1.4.4) lead us to

guess that the weak - field equation for a general distribution of matter Tαβ of energy and

momentum take the form,

Gαβ = ∇2gαβ

Gαβ = 8πGTαβ (1.4.5)

Where Gαβ is a linear combination of the metric and its first and second derivative. It

follows than from the principle of equivalence that the equations which govern gravitational

field of arbitrary strength take the form;

Gµν = 8πGTµν (1.4.6)

Where Gµν is a tensor which reduce to Gαβ for weak field and formed from the metric

tensor of it’s derivatives. Now let review some property of left side of equation (1.4.6).

1. by definition, Gµν is a tensor

2. By assumption, Gµν consists only of terms with N=2 derivative of the metric ;that

is Gµν contain only terms that are either linear in the second derivative or quadratic

in the first derivative of the metric.

3. Since Tµν is symmetric, Gµν

4. Since Tµν is conserved (in the sense of covariant differentiation) so in Gµν :

Gµ
ν;µ = 0

5. For a weak stationary field produce by non-relativistic matter the 00 component

equation (1.4.5) must reduce to (1.4.6), so in this limit;

G00 ' ∇2g00 (1.4.7)
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The property are all we will need to find Gµν . The most general way of contracting a field

satisfying (1) and (2) is by contracting of the curvature tensor. Hence (1) and (2) required

Gµν to take the form ;

Gµν = C1Rµν + C2gµνR (1.4.8)

Where C1 and C2 are constant. This is automatically symmetric so property (3) satisfy.

Now using the above relations it follow that,

gµτGµν = gµτC1Rµν + C2g
µτgµνR

than,

Gτ
ν = C1R

τ
ν + C2δ

τ
νR (1.4.9)

Now take the covariant divergence of equation (1.4.9)

Gτ
ν;τ = C1R

τ
ν;τ + C2δ

τ
νR;τ (1.4.10)

Since δτ
ν 6= 0, for τ = ν and use Rτ

ν = 1
2δτ

νR;τ

Gτ
ν;τ =

(
1
2
C1 + C2δ

τ
ν

)
R;τ

It becomes

Gτ
ν;τ =

(
1
2
C1 + C2

)
R;τ (1.4.11)

Using property (4) for the conservation of Gµν , we have Gτ
ν;τ = 0 and than the above

equation becomes,

(
1
2
C1 + C2)R;τ = 0

The is true if and only if,

C2 = −1
2
C1

So,equation (1.4.8) becomes,

Gµν = C1(Rµν −
1
2
gµνR) (1.4.12)

To fix the constant C1 a non-relativistic system always has |Tij | � |T00|, so we are concerned

here with a case where |Gij | � |G00|,

|Gij | ∼= 0
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So that equation (1.4.12) becomes,

Rij
∼=

1
2
gijR

For weak field limit, gαβ
∼= ηαβ , moreover gij

∼= ηij , the above equation becomes ,

Rij
∼=

1
2
ηijR

Now using the property of metric tensor i.e ηij = 1, for i = j = 1,2,3 and it brings the above

equation,

Rij
∼=

3∑
i=j

1
2
ηijR

Rij
∼=

3
2
R

In general

Rkk
∼=

3
2
R

The curvature scalar therefore given by,

R ∼= Rkk −R00
∼=

3
2
R−R00

R ∼= 2R00 (1.4.13)

Now using the condition for weak field limit, we see that equation (1.4.12) becomes for 00

component,

G00
∼= C1(R00 −

1
2
g00R)

G00
∼= C1(R00 −

1
2
g00(2R00))

The above equation becomes,

G00 = C1(2R00) (1.4.14)

To calculate R00 for weak field limit, we use the linear part of curvature tensor by ignoring

ΓΓ part. By recalling back equation (1.3.20),

Rλµνκ =
1
2

(gλν;κµ − gµν;κλ − gλκνµ + gµκ;νλ)
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Since the field is static all time derivative vanished and the components becomes,

R0000
∼= 0

and

Ri0j0
∼=

1
2
g00;ij

∼=
1
2
∇2g00

where g00;ij = ∇2g00

The above equation for the non vanished term of curvature tensor can be written as,

Rλ0ν0
∼=

1
2
g00;λν

∼= ∇2g00 (1.4.15)

Now by contracting over two indices of the non-vanishing curvature in the above equation

(1.4.15)

R00
∼= gλνRλ0ν0

R00
∼= Ri0j0 −R0000 (1.4.16)

Insert the equation developed from equation (1.4.15) and equation (1.4.16) in to equation

(1.4.14) becomes,

G00
∼= 2C1(Ri0j0 −R0000) ∼= 2C1(

1
2
∇2g00)

it becomes,

G00 = C1∇2g00 (1.4.17)

Finally, compare equation (1.4.18), with equation (1.4.7) the relations satisfied if and only

if C1 = 1, therefore we can arrived to ,

G00 = ∇2g00

So, from equation (1.4.6) and equation (1.4.12) for Gµν can be written as,

Gµν = Rµν −
1
2
gµνR = 8πGTµν (1.4.18)

The Einstein field equations (EFE; also known as Einstein’s equations) is the set of 10

equations in Albert Einstein’s general theory of relativity that describes the fundamental

interaction of gravitation as a result of spacetime being curved by mass and energy
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1.5 Introducing Of Cosmology Constant into Ein-

stein Field Equation

After completing his theory of GR, Einstein was interested to find a static solution of his

field equations with the idea in cooperated with Mach’s principle, [19]. As the consequence,

Einstein himself introduced, ”Cosmological Considerations in the General Theory of Rela-

tivity” in 1917, is rightly regarded as the first step in modern theoretical cosmology. Einstein

included the cosmological constant as a term in his field equations for general relativity be-

cause he was dissatisfied that otherwise his equations did not allow, apparently, for a static

universe: gravity would cause a universe that was initially at dynamic equilibrium to con-

tract. To counteract this possibility, Einstein added the cosmological constant [7]. Perhaps

the most striking novelty introduced by Einstein was the very idea of a cosmological model,

an exact solution to his new gravitational field equations that gives a global description of

the universe in its entirety. Moreover, Einstein also point out that the introduced a positive

cosmological constant with the belief of constructing a static solution. The idea is that,

the constant introduces is a repulsive force which can counterbalance the attractive force

of gravity leading to the ”static Einstein universe” [19]. Therefore the modified Einstein’s

field equations with the cosmological constant is,

Rµν −
1
2
gµνR + Λgµν = 8πGTµν (1.5.1)

where Λ is a new free parameter, the cosmological constant. Indeed, the left-hand side of

equation (1.5.1) is the most general local, coordinate-invariant, divergence less, symmetric,

two-index tensor we can construct solely from the metric and its first and second deriva-

tives.where R and g describe the structure of spacetime, T pertains to matter and energy

affecting that structure. When Λ is zero, this reduces to the original field equation of general

relativity. When T is zero, the field equation describes empty space (the vacuum). In fact,

adding the cosmological constant to Einstein’s equations does not lead to a static universe

at equilibrium because the equilibrium is unstable: if the universe expands slightly, then

the expansion releases vacuum energy, which causes yet more expansion. Schwarzschild

de-Sitter at the same year in 1917 presented exact solutions to ”static Einstein universe”,

which had both static and dynamic character, that allows a redshift-distance relation [19].

The de-Sitter’s prediction is considered as the first step towards the theoretical discovery
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of expanding universe. Recent observational data and results in modern cosmology re-

vealed that the dark energy which is described in majority by the cosmological constant is

of dominant importance in the dynamics of our Universe [7]. Measurements conducted by

Wilkinson Microwave Anisotropic Probe (WMAP) indicate that almost three fourth of total

mass-energy in the Universe is Dark Energy and the leading theory of dark energy is based

on the cosmological constant characterized by repulsive pressure which was introduced by

Einstein in 1917 to obtain a static cosmological model [27]. Later on Zeldovich interpreted

this quantity physically as a vacuum energy of quantum fluctuation whose size is of the

order of ∼ 3 ∗ 10−56cm−2.

Einstein’s introducing cosmological constant inspired a small group of theorists to study

cosmological models using his new gravitational theory, and the ideas developed during these

early days have been a crucial part of cosmology ever since [19]. We can understated the

physical properties of these models and their possible connections to astronomical observa-

tions was the central problem facing relativistic cosmology in the 20s [27]. By the early 30s,

there was widespread consensus that a class of models describing the expanding universe

was in at least rough agreement with astronomical observations. But this achievement was

certainly not what Einstein had in mind in introducing the first cosmological model [19].

Einstein’s was not simply a straightforward application of his new theory to an area where

one would expect the greatest differences from Newtonian theory. Instead, Einstein’s foray

into cosmology was a final attempt to guarantee that a version of ”Mach’s principle” holds

[29]. The Mach idea that inertia is due only to matter shaped Einstein’s work on a new

theory of gravity, but he soon realized that this might not hold in his ”final” theory on

November 1915. The 1917 paper should thus be read as part of Einstein’s ongoing struggle

to clarify the conceptual foundations of his new theory and the role of Mach’s principle,

rather than treating it only as the first step in relativistic cosmology. Einstein’s work in

cosmology illustrates the payoff of focusing on foundational questions such as the status

of Mach’s principle. In the course of an exchange with the Dutch astronomer Willem De

Sitter, Einstein came to insist that on the largest scales the universe should not evolve over

time-in other words, that it is static. Although he originally treated this as only a simpli-

fying assumption, Einstein later brandished the requirement that any reasonable solution
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must be static to rule out an anti-Machian cosmological model discovered by De Sitter.

Thus Einstein’s concern with Mach’s principle led him to introduce the first cosmological

model, but he was also blind to the more dramatic result that his new gravitational theory

naturally leads to dynamical models [2]. Even when expanding universe models had been

described by Alexander Freidmann in 1922 constructed a matter dominated expanding uni-

verse without a cosmological constant. Then, the possibility that the universe is expanding

led Einstein to abandoned,with Einstein calling it the ”biggest blunder [he] ever made”,

the idea of a static universe including the cosmological constant, and Georges Lemâitre

constructed an expanding model which originated from such an asymptotically static state

(”static Einstein universe”) in the distant past [19]. However, Einstein rejected them as

physically unreasonable. Einstein’s work in cosmology was also not informed by a thor-

ough understanding of contemporary empirical work. The shift in theoretical cosmology

brought about by Einstein’s work occurred at the same time as a shift in the observational

astronomer’s understanding of the nature of spiral nebulae and large scale structure of the

cosmos. Others with greater knowledge of contemporary astrophysics, including Arthur

Eddington, De Sitter, Lemâitre, and Richard Tolman, made many of the more productive

contributions to relativistic cosmology.
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Chapter 2

General Relativity
Magnetohydrodynamic In
Schwarzschild-de Sitter Space-time

2.1 Introduction

In this thesis, we apply magnetohydrodynamics (MHD), which is an extension of fluid dy-

namics (i.e., additional terms are added into the equations of fluid dynamics), to study

phenomena in the universe. Magnetohydrodynamics (MHD) studies the dynamics of an

electrically conducting fluid under the influence of a magnetic field. If there is no magnetic

field present, the problem reduces to traditional fluid dynamics. However, in most astro-

physical settings, the fluids are highly conductive and observed to be magnetized [21]. Mag-

netohydrodynamic shock waves in the near relativistic regime have been obtained with the

Columbia University Plasma Laboratory Electromagnetic High-Energy Shock Tube (Gross,

1971; Taussig, 1973). The theoretical analysis of these experiments is rather difficult and

has been obtained by numerical simulation in a nonrelativistic framework (Liberman and

Velikovich, 1985) [13]. A small increase in the attained speed would require a proper rela-

tivistic magneto-fluid dynamical calculation. The simplest model for a relativistic medium is

that of a relativistic fluid. When the medium interacts electromagnetically and is electrically

highly conducting the simplest description is in terms of relativistic magneto-fluid dynam-

ics. From the mathematical viewpoint relativistic fluid dynamics (RFD) and magneto-fluid

dynamics (RMFD) have mainly been treated in the framework of general relativity, that
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is, as describing possible sources of the gravitational field. This means that both the RFD

and RMFD equations have been studied in conjunction with Einstein’s equations. General

Relativity (GR) is a beautiful scheme for describing the gravitational field. This theory is

believed to apply to all forms of interactions, especially between large scale gravitational

structures. It has been proven that black holes exist on the basis for to study the effects

they exert on their surroundings. They greatly affect the surrounding plasma medium with

their enormous gravitational fields. Since all compact objects have strong gravitational

fields near their surfaces [1], it is important to study the general relativistic effects on phys-

ical processes, like electromagnetic processes taking place in their vicinity. The GRMHD

equations help us to study stationary configurations and dynamic evolution of a conducting

fluid in a magnetosphere. Moreover, a relativistic jets flow have been discovered in several

different classes of objects including AGN (pearson and Zensus 1987; Bitetta, Sparks, and

Macchetto 1999), micro-quarsars (mirabel and Rodriquez 1994; Tingay et al. 1995) [10], and

gamma-ray bursts(Kulkarni et al. 1999). It is believed that a rapidly spinning black hole

exist at the center of each of these objects and that the violent phenomena that occur near

the hole is responsible for the jets formation. Dynamics of magnetized plasma around black

hole is one of the most promising candidate of the process exist [8]. In order to understand

the basic physics of dynamics of magnetize plasma fluid around SMBH hosted by AGN

.Now here, we are going to develop a analytical method of a GRMHD equation demanded

in the background of SdS geometry. The method is based on the GR formulation of the law

of particle number conservation, energy-momentum conservation, max-well equation and

ohm’s law with zero electrical resistance (ideal MHD condition) on curved space-time. It is

concerned with the dynamic of relativistic, electronically-conducting fluid (plasma) in the

presence of a magnetic field. Here, we concentrate on purely ideal GRMHD, by neglecting

the presence of viscosity and heat conduction in the limit of infinite conductivity,i.e., the

fluid is assumed to be a perfect conductor.

2.2 Metrics

The metric (gµν) with cosmology constant is a geometric tool that relates distances in space-

time, a kind of generalized pythagorean theorem where the time coordinate is included as
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well. The underlying physics is more important than the relative coordinates, so all equa-

tions are written in the invariant language of tensors, or multi-indexed objects. The Einstein

summation convention shortens the notation by assuming an implied sum over repeated in-

dices.In fact, the Lorentzian form of the metric, or the (-+++) signature asymmetry of

time with space, helps to explain the presence of a gravitational force in curved spacetime.

With this in mind, the Schwarzschild-de sitter metric for a spherically symmetric vacuum

spacetime (valid outside a star or black hole),in coordinates (t, r, θ, φ).The general metric

with cosmology constant can be defined by,

gµν =


−e2Φ 0 0 0

0 (1− 2Gm
r − r2Λ

3 )−1 0 0

0 0 r2 0

0 0 0 r2sin2θ

 (2.2.1)

Moreover, gµνgµν = 1, so that inverse line element becomes

gµν =


−e−2Φ 0 0 0

0 (1− 2Gm
r − r2Λ

3 ) 0 0

0 0 r−2 0

0 0 0 r−2sin−2θ


2.3 Schwarzschild-de sitter metric

It describes the, spherically symmetric vacuum solution to the Einstein field equations with

a positive cosmological constant, Since it is a static cosmological model mode of isotopic and

homogenous by removing all matter from the universe. The resulting expanding universe

had the density of matter will eventual becomes negligible and the expanding universe will

approach to the schwarzschild-de sitter universe. For a vanishing cosmological constant the

Schwarzschild solution follows, for vanishing matter the metric gives the de Sitter cosmology.

ds2 = gµνdxµdxν

ds2 = gttdt2 + grrdr2 + gθθdθ2 + gϕϕdφ2

Using the components of the metric tensor in equ(2.2.1), the above equation become,

ds2 = −(1− 2GM

r
− r2Λ

3
)dt2 + (1− 2GM

r
− r2Λ

3
)−1dr2 + r2dθ2 + r2sin2θdφ2 (2.3.1)
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we can re-write this in the form of some potential, Φ as,

ds2 = −e2Φdt2 +
(

1− 2GM

r
− r2Λ

3

)−1

dr2 + r2dθ2 + r2sin2θdφ2

Due to spherical symmetry and no time dependence, we only have the r component of

the metric and therefore the pressure P and the energy-density ε will only depend on this

component, and thus a calculation of this component is required, let start calculating using

equation (SdS) and equation (affine). Then the non-vanished christopher symbol Γ using

equation (1.3.9)

Γr
tt =

(
1− 2

m

r
r2 λ

3

)
Φ
′
e2Φ, Γr

rr =
λr
3 −

m
r2 + rm′

r2

1− 2m
r −

r2λ
3

Γr
θθ = −r(1− 2

m

r
− r2λ

3
)

Γr
φφ = −r

(
1− 2

m

r
− r2λ

3

)
sin2 θ, Γt

rt = Φ
′

Γφ
θφ = cot θ,

Γθ
φφ = − cos θ sin θ, Γφ

rφ = Γθ
rθ =

1
r

2.3.1 Ricci tensor and Ricci Scalar

Now using the mathematical formation designed in the previous chapter for Ricci tensor

and Ricci scalar, it is possible to calculate the non-vanishing components for each of them

are (Rtt, Rrr, Rθθ, Rφφ). Now by using,

Rµκ = Γλ
µλ,κ − Γλ

µκ,λ + Γη
µλΓλ

κη − Γη
µκΓλ

λη

Rtt = Γλ
tt,r + Γλ

tλ,t + Γt
ttΓ

λ
tλ − Γt

tλΓλ
tt (2.3.2)

+Γλ
tt,r + Γλ

tλ,t + Γr
ttΓ

λ
rλ − Γr

tλΓλ
rt

+Γλ
tt,r + Γλ

tλ,t + Γθ
ttΓ

λ
θλ − Γθ

tλΓλ
θt

+Γλ
tt,r + Γλ

tλ,t + Γφ
ttΓ

λ
φλ − Γφ

tλΓλ
φt
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Now, after a certain mathematics manipulation for λ = t, r, θ, φ. Then

Rtt = Γr
tt;r + Γr

tt[Γ
t
rt + Γr

rr + Γθ
rθ + Γφ

rφ]− [Γt
trΓ

r
tt + Γr

ttΓ
t
rt]

For simplicity K = (1− 2
mr − Λr2

3 )

and insert the non-vanishing chistoffel symbol then, Rtt becomes

Rtt =
d

dr

(
KΦ

′
e2Φ
)

+ KΦ′e2Φ

[
Φ′ + (

Λr
3 − m

r2 + m′r
r2

1− 2m
r − Λr2

3

) +
2
r

]
−
[
2KΦ′2e2Φ

]

= k′Φ′e2Φ + KΦ”e2Φ + KΦ′(e2Φ)′ + KΦ′e2Φ[Φ′ + (
Λr
3 − m

r2 + m′r
r2

1− 2m
r − Λr2

3

) +
2
r
]− [2KΦ′2e2Φ]

Use, (e2φ)′ = 2φ′e2φ k′ = 2(m−r′m
r2 − λr

3 ), then

= 2φ′e2φ

(
m− r′m

r2
− λr

3

)
+KΦ”e2Φ+2φ′2Ke2φ+KΦ′e2Φ

[
Φ′ + (

Λr
3 − m

r2 + m′r
r2

1− 2m
r − Λr2

3

) +
2
r

]
−
[
2KΦ′2e2Φ

]
after rearrange,

=
(
Φ” + Φ′2)Ke2Φ + 2Φ′e2Φ(

m− r′m

r2
− λr

3
) + KΦ′e2Φ

(
2
r

+ (
Λr
3 − m

r2 + m′r
r2

k
)

)

=
(
φ” + φ′2)Ke2Φ + Φ′e2Φ(2

m−m′r

r2
− λr

3
) + KΦ′e2Φ

(
2
r

+ (
Λr
3 − m

r2 + m′r
r2

k
)

)

=
(
Φ” + Φ′2)Ke2Φ + Φ′e2Φ

(
m

r
− m′r

r2
− λr

3
+

2
r
(1− 2m

r
− λr2

3
)
)

= (Φ” + Φ′2)Ke2Φ + Φ′e2Φ(
−3m

r2
− m′r

r2
− λr +

2
r
)

Rtt = e2Φ

[
(Φ” + Φ2)(1− 2

m
r − Λr2

3
) + φ′(

2r − 3m−m′r

r2
− λr)

]
(2.3.3)

Using the same technique we will investigate the rest components of Ricci tensor

For Rrr

Rrr = −Γt
rt;r − Γθ

rθ;r − Γφ
rφ;r + Γr

rr

[
Γt

rt + Γθ
rθ + Γφrφ

]
−
[
Γt

rtΓ
t
rt + Γθ

rθΓ
θ
rθ + Γφ

rφΓφ
rφ

]

= −dΓt
rt

dr
−

dΓθ
rθ

dr
−

dΓφ
rφ

dr
+ Γr

rr

[
Γt

rt + Γθ
rθ + Γφrφ

]
−
[
(Γt

rt)2 + (Γθ
rθ)

2 + (Γφ
rφ)2

]
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=
−d

dr

(
Φ′)− d

dr

(
1
r

)
− d

dr

(
1
r

)
+

( ∧
r

3 − m
r2 + m′r

r2

1− 2m
r − r2Λ

3

)
(Φ′ +

1
r

+
1
r
)−

(
Φ′2 +

1
r2

+
1
r2

)

= Φ” +
2
r2

+
(

1− 2m

r
− Λr2

3

)−1
(

Λr3
3 −m + m′r

r2

)
(
rΦ′ + 2

r
)−

(
Φ′2 +

2
r2

)

Rrr =
(

1− 2m

r
− Λr2

3

)−1
[

(Λr3

3 −m + m′r)(rΦ′ + 2)
r3

]
− (Φ” + Φ′2) (2.3.4)

For Rθθ,

Rθθ = Γr
θθ;r − Γφ

φθ;θ + Γr
θθ[Γ

θ
rθ + Γt

rt + Γφ
rφ + Γr

rr]− [Γθ
rθΓ

r
θθ + Γr

θθΓ
r
rθ + Γφ

θφΓφ
φϑ]

=
d

dr

[
−r − 2m− Λr3

3

]
− d

dθ
[cot θ]+[−rK]

[
2
r

+ Φ′ +

(
Λr
3 − m

r2 + m′r
r2

1− 2m
r − Λr2

3

)]
−
[
−2K + cot2 θ

]
= −1 + 2m′ + Λr2 +

1
sin2 θ

− 2K − rΦ′K − r

[
Λr

3
− m

r2
+

m′r

r3

]
+ 2K − cot2 θ

= 2m′ −m′ + r2Λ− r2Λ
3

+
m

r
+ Φ′

[
−r + 2m +

r3Λ
3

]

Rθθ = m′ +
m

r
+

2Λr2

3
+ Φ′

[
−r + 2m +

r3Λ
3

]
(2.3.5)

For Rφφ

Rφφ = Γθ
φφ;θ + Γr

φφ;r + Γr
φφ

[
Γt

rtΓ
r
rr + Γθ

rθ + Γφ
rφ

]
− 2Γr

φφ − Γθ
φφΓφ

θφ

after certain manipulation, we have

= sin2 θ−cos2 θ−K sin2 θ−rK sin2 θ−rKΦ sin2 θ−r

[
rΛ
3
− m

r2
+

m′

r

]
sin2 θ−2K sin2 θ+2K sin2 θ+cos2 θ

Cancel similar terms,

Rφφ = sin2 θ −K sin2 θ − rKΦ sin2 θ − r

[
rΛ
3
− m

r2
+

m′

r

]
sin2 θ − rKΦ sin2 θ

= sin2 θ[1−
[
K + rK + r

(
rΛ
3
− m

r2
+

m′

r

)]
− rKΦ sin2 θ

Use the value of K and expand

Rφφ = sin2 θ

[
1− (1− 2m

r
− Λr2

3
+ r − 2m− Λr3

3
+

Λr2

3
− m

r
+ m′)

]
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−r

[
1− 2m

r
− Λr2

3

]
Φ sin2 θ

again cancel terms,

Rφφ = sin2 θ

[
m′ +

m

r
+

2Λr2

3

]
−
[
r − 2m− Λr3

3

]
Φ sin2 θ

= sin2 θ

[
m′ +

m

r
+

2Λr2

3
+ Φ′(−r + 2m +

r3Λ
3

)
]

Rφφ = sin2 θ

[
m′ +

m

r
+

2Λr2

3
+ Φ′(−r + 2m +

r3Λ
3

)
]

Rφφ = sin2 θRθθ (2.3.6)

Now the Ricci scalar can be obtain by using equ(2.3.3), equ(2.3.4), equ(2.3.5), equ(2.3.6),

it’s definition

R = gµκRµκ

R = gttRtt + grrRrr + gθθRθθ + gφφRφφ

= −e−2Φe2Φ

[
(Φ” + Φ2)

(
1− 2

m
r − Λr2

3

)
+ φ′

(
2r − 3m−m′r

r2
− λr

)]
+

(1− 2m

r
− r2Λ

3
)
(

1− 2m

r
− Λr2

3

)−1
[

(Λr3

3 −mm′r) (rΦ′ + 2)
r3

]
− (Φ” + Φ′2)+

r−2

[
m′ +

m

r
+

2Λr2

3
+ Φ′

(
−r + 2m +

r3Λ
3

)]
+

r−2 sin−2 θ sin2 θ

[
m′ +

m

r
+

2Λr2

3
+ Φ′(−r + 2m +

r3Λ
3

)
]

= −(Φ” + Φ′2)
(

1− 2m

r
− Λr2

3

)
−Φ′

(
2r −m′r − 3m

r2
− rΛ

)
+

( r2Λ
3 −m + m′r)(rΦ′ + 2)

r3

Collect similar terms, we have

= −2−
(
Φ” + Φ′2) (1− 2m

r
− Λr2

3
) + Φ′

(
2Λr +

2m′r

r2
+

6m

r2
− 4m′

r2

)
+

4m′

r2
+ 2Λ

R = 2
[
2m′

r2
+ Λ + Φ′

(
m′r + 3m− 2r

r2
+ Λr

)
− (Φ′′ + Φ′2)(1− 2m

r
− Λr2

3
)
]

(2.3.7)
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2.4 General Relativity Energy-Momentum Tensor

with cosmology constant

2.4.1 Hydrodynamic

The stress energy-momentum tensor Tµν of a perfect fluid is given in terms of pressure P

and the energy-density ε of a given stellar object and is defined by;

T fluid
µν = Pgµν + (ε + p) UµUν (2.4.1)

where uµ is the four-velocity vector of the fluid, ε is the energy density in the co-moving

frame, and p is the thermal pressure of the fluid, also measured by the co-moving observer.

A fluid described by the above equation is commonly know as perfect fluid, and is widely

used to model the properties of isolated rotating relativistic stars, and to study the fluid

dynamics around compact objects.

Note that:- A perfect fluid is defined by the property that, in the local rest frame, it allows

no energy fluxes and no anisotropic stresses. Therefore, at a given space-time point, in the

local rest frame,[11]Uµ = (1, 0, 0, 0).Moreover,

ε = (ρc2 + ε)

From Normalization conditions we have,

gµνU
νUµ = −1 (2.4.2)

Using equ.(2.2.1),equ.(2.4.1) and equ.(2.4.2). The matrix element of Tµν , becomes

T fluid
µν =


−e2Φε 0 0 0

0 p(1− 2M
r − r2Λ

3 )−1 0 0

0 0 pr2 0

0 0 0 pr2 sin2 θ

 (2.4.3)

Moreover, the inverse will be

Tµν
fluid =


−e−2Φε 0 0 0

0 p(1− 2M
r − r2Λ

3 ) 0 0

0 0 pr−2 0

0 0 0 pr−2 sin−2 θ


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2.4.2 Electromagnetic

The energy-momentum tensor of the electromagnetic field is given by the following expres-

sion,

Tµν
em =

1
µ0

(Fµ
γ F νγ − 1

4
FγδF

γδgµν) (2.4.4)

where Fµν electromagnetic field strength tensor. This tensor can be decomposed in terms

of the electric field Eµ, and the magnetic field, Bµ, measured by the comoving observer, as

Fµν = Eµuν − Eνuµ +
1
2
εµναβ(uαBβ − uβBα)

On the other hand, according to the Ohm’s law, jµ = σEµ, where the conduction current,

jµ, is related to the electric field through the constitutive relation, jµ = σEµ, where σ is

the conductivity. Now, if we suppose that the material is a perfect conductor, then σ →∞,

and the only way to have a finite conduction current is that Eµ = 0. This approximation

is the basis for the ideal magnetohydrodynamics, which is very useful to describe highly

conducting astrophysical fluids where the effect of the magnetic field cannot be neglected,

such as neutron stars, accretion fluids, magnetized winds, etc [27]. As a consequence of this

approximation,

Eµ = Fµνuν = 0

(i.e. the electric field measured by the comoving observer is zero) in order to keep the current

finite.; so it is possible to write the energy-momentum tensor in equ(2.4.4) as, [27, 28]

Tµν
em =| b |2 uµuν +

1
2
| b |2 gµν − bµbν (2.4.5)

| b |2= bµbµ

and

bµ =
Bµ

√
4π

. (2.4.6)

Moreover, the 4-vector bµ is spacelike and satisfies the property bµuµ = 0. The tensor Tµν
em

describes the energy and the momentum of the magnetic field in a well-conductor fluid.
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2.5 General Relativity Magnetohydrodynamic Equa-

tions

2.5.1 Energy-momentum tensor of a magnetized perfect fluid

It can be written as the sum of energy-momentum tensor of a perfect fluid and the electro-

magnetic field tensor part. Now here we adopt the ideal magnetohydrodynamic limits and

assume infinite conductivity (flux-freezing condition), where the electric field in the rest

frame is vanished,

Tµν = Tµν
fluid + Tµν

em

The latter can be expressed solely in terms of the magnetic field bµ measured by a comoving

observer. In this case,

Tµν = Pgµν + (ε + p) UµUν+ | b |2 uµuν +
1
2
| b |2 gµν − bµbν (2.5.1)

which is the total energy-momentum tensor for a perfect magneto-fluid. Now by using

equ.(2.4.2),equ(2.4.6) and equ(2.5.1), we can find each component of Tµν and its inverse,

Tµν

Tµν =


e2Φ(ε + 3B2

8π ) 0 0 0

0 (p− B2

8π )(1− 2M
r − r2Λ

3 )−1 0 0

0 0 (p− B2

8π )r2 0

0 0 0 (p− B2

8π )r2 sin2 θ


(2.5.2)

,and the inverse

Tµν =


e−2Φ(ε + 3B2

8π ) 0 0 0

0 (p− B2

8π )(1− 2M
r − r2Λ

3 ) 0 0

0 0 (p− B2

8π )r−2 0

0 0 0 (p− B2

8π ) r−2

sin2 θ


2.5.2 Tolmn-Oppenheimer-Volkoff Equations

In spirit of completion, we now present the TOV equation with the schwarzschild-de sitter

geometry background, we began by using Einstein equation that is completely to determine
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the structure of a spherical symmetric body of isotopic material which is in static gravita-

tional, so that it is possible to determine the upper bound limit of the stars mass and size.

Now we need two parameters that useful to describe the structure of an object itself. Now

here we used a perfect fluid as a model for the distribution of matter. A perfect fluid is

completely characterized by its rest mass density (ρ) and isotopic pressure (p). Therefore

the object can be described in the rest (local) frame by these two essential parameters. Real

fluid are ”sticky” and conduct heat. But a perfect fluid are idealized model in which these

possibilities are neglected specifically [39]. So that, in perfect fluid have no share-stress,

viscosity and heat conducting. Now by using Einstein field equation state above,

For tt-component

Rtt −
1
2
gttR + Λgtt = 8πTtt

Now by using equ(2.2.1), equ(2.3.3), equ(2.3.7) and equ(2.5.2)

8π

(
ε +

3B2

8π

)
e2Φ = e2Φ

[
(Φ” + Φ2)

(
1− 2

m
r − Λr2

3

)
+ φ′(

2r − 3m−m′r

r2
− λr)

]
+

1
2
2
[
2m′

r2
+ Λ + Φ′(

m′r + 3m− 2r

r2
+ Λr)−

(
Φ′′ + Φ′2) (1− 2m

r
− Λr2

3
)
]

e2Φ + Λe2Φ

8π

(
ε +

3B2

8π

)
=

2m′

r2

4π(ε +
3B2

8π
) =

dm

r2dr

dm

dr
= 4πr2

(
ε +

3B2

8π

)
(2.5.3)

From the above equation can determine the structural distribution matter.

For rr-component,

Rrr −
1
2
grrR + Λgrr = 8πTrr

Now by using equ(2.2.1), equ(2.3.4), equ(2.3.7) and equ(2.5.2)

8π

(
p− B2

8π

)
(1−2m

r
−r2Λ

3
)−1 = (1−2m

r
−Λr2

3
)−1

[
(Λr3

3 −m + m′r)(rΦ′ + 2)
r3

]
−(Φ”+Φ′2)−

1
2
2
[
2m′

r2
+ Λ + Φ′(

m′r + 3m− 2r

r2
+ Λr)−

(
Φ′′ + Φ′2) (1− 2m

r
− Λr2

3
)
]

(1− 2m

r
− r2Λ

3
)−1
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+Λ(1− 2m

r
− r2Λ

3
)−1

8π(p− B2

8π
) = Φ′(

Λ′r

3
− Λr

4m

r2

2
r
) +

2Λ
3
− 2m

r3

2Φ′(
r − 2m

r2
− Λr

3
) = 8π(p− B2

8π
) +

2m

r3
− 2Λ

3

Φ′ =
4πr3(p− B2

8π ) + m− Λr3

3

r(r − 2m− Λr3

3 )

dΦ
dr

=
4πr3(p− B2

8π ) + m− Λr3

3

r(r − 2m− Λr3

3 )
(2.5.4)

From the above equation one can determine the gravitational potential energy by using

appropriate boundary condition.

Another relevant issue arises from the conservation equation, ∇νT
µν = 0, ∇ν(ρUν) = 0,

which is useful for the evolution of a magnetized fluid is to be determined. Moreover it

relates the pressure gradient in the radial direction to the fluid density and magnetic field.

Choose µ = r

∇νT
µν = 0

∇νT
µν =

∂Tµν

∂xν
+ TΛνΓµ

Λν + TΛµΓν
Λν (2.5.5)

∂T rr

∂r
+ T ttΓr

tt + T rrΓr
rr + T θθΓr

θθ + T φφΓr
φφ + T rr[Γt

tr + Γr
rr + Γθ

θr + Γφ
φr] = 0

d

dr

(
(p− B2

8π
)(1− 2m

r
− Λr2

3
)
)

+ Φ′e2Φ(1− 2m

r
− Λr2

3
)e−2Φ(ε +

3B2

8π
)

+(p− B2

8π
)(1− 2m

r
− Λr2

3
)(

Λr
3 − m

r2 + m′r
r2

1− 2m
r − Λr2

3

)− (r)(1− 2m

r
− Λr2

3
)r−2(p− B2

8π
)

−(p−B2

8π
)r−2 1

sin2 θ

(
r(1− 2m

r
− Λr2

3
)
)

sin2 θ+(p−B2

8π
)(1−2m

r
−Λr2

3
)

(
Φ′ +

2
r

+ (
Λr
3 − m

r2 + m′r
r2

1− 2m
r − Λr2

3

)

)
= 0

(1− 2m

r
− Λr2

3
)

d

dr
(p− B2

8π
) + Φ′(ε +

3B2

8π
+ p− B2

8π
)(1− 2m

r
− Λr2

3
) = 0

d

dr

(
p− B2

8π

)
= −

(
ε +

B2

4π
+ p

)
Φ′
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by using equ(2.5.4) the above equation become,

d

dr

(
p− B2

8π

)
= −

(
ε +

B2

4π
+ p

)
4πr3(p− B2

8π ) + m− Λr3

3

r(r − 2m− Λr3

3 )
(2.5.6)

Then the TOV equation summarized using(2.5.3)(2.5.4)(2.5.6),

dm

dr
= 4πr2

(
ε +

3B2

8π

)
dΦ
dr

=
4πr3(p− B2

8π ) + m− Λr3

3

r(r − 2m− Λr3

3 )

d

dr

(
p− B2

8π

)
= −

(
ε +

B2

4π
+ p

)
4πr3(p− B2

8π ) + m− Λr3

3

r(r − 2m− Λr3

3 )
(2.5.7)

Recall that in the case of a relativistic star with ρ = ρ̄ , it is not necessary to use the

unrealistic notion of an incompressible fluid. One can think of the fluids with pressure

growing as radius decreases, having a composition that varies from one radius to another.

Assuming, ρ = ρ̄ we can integrate the structure equations analytically.

m =
4π

3
R3

(
ρ +

3B2

8π

)
(2.5.8)

we obtain from the mass formula (2.5.3), At the surface of the star (r = R), we get the total

mass of a star,

M =
4π

3
R3

(
ρ +

3B2

8π

)
(2.5.9)

Now ,we can easily rearrange the radial component of the metric tensor using equ.(2.6.13)

(1− 2m

r
− Λr2

3
) = (1− r2

β2
) (2.5.10)

where we have introduced a new parameter, β by the relation

1
β2

=
1
3
(8πρ + Λ) (2.5.11)

At the surface of the star ,there

(1− 2M

R
− ΛR2

3
) = (1− R2

β2
) (2.5.12)

and, we can see immediately that the radial metric coefficient of the interior spacetime is

smoothly matched to the corresponding metric coefficient of the exterior Schwarzschild-de
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Sitter spacetime of the mass parameter M = m(R). If ρ = ρ̄, the modified TOV equation

(2.5.7) became,
d(p− B2

8π )

(ρ + P + B2

4π )(3P + ρ− 3B2

8π )
= −4π

3
rdr

(1− r2

β2 )
(2.5.13)

dp

(ρ + P + B2

4π )(3P + ρ− 3B2

8π )
= −

[
4π

3
r

(1− r2

β2 )
+

B2

8π

]
dr (2.5.14)

Since B is the magnetic field part of MHD, assumed constant in plasma fluid. Now, which

have to be integrated from the surface of the star (black hole) (R = r), where P(R) = 0,

down to the center of the star at r = 0. For a non-zero cosmological constant we find the

pressure at a radius r to be give by the relation,

P (r) =
ρ(ρ− Λ

4π −
3B
8π )

[
(1− r2

β2 )
1
2 − (1− R2

β2 )
1
2

]
3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π −
3B
8π )(1− r2

β2 )
1
2

+
B2r

8π
− B2R

8π
(2.5.15)

The maximum pressure at the center of the star, where r = 0

P (r = 0) =
ρ(ρ− Λ

4π −
3B
8π )

[
1− (1− R2

β2 )
1
2

]
3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π −
3B2

8π )
− B2R

8π
(2.5.16)

Finally, we can determine the gravitational potential energy that is necessary for jets for-

mation around active galactic nuclei. using the relationship between potential energy and

pressure in TOV’s equations(2.5.7), given as

dΦ
dr

=
4πr3(p− B2

8π ) + m− Λr3

3

r(r − 2m− Λr3

3 )
(2.5.17)

dΦ
dr

=

4πr3

(
ρ(ρ− Λ

4π
− 3B

8π
)
[
(1− r2

β2 )
1
2−(1−R2

β2 )
1
2

]
3ρ(1−R2

β2 )
1
2−(ρ− Λ

4π
− 3B

8π
)(1− r2

β2 )
1
2

+ B2r
8π − B2R

8π − B2

8π

)
+ m− Λr3

3

r(r − 2m− Λr3

3 )
(2.5.18)

Φ(r) =
∫ 4πr

(
ρ(ρ− Λ

4π
− 3B

8π
)
[
(1− r2

β2 )
1
2−(1−R2

β2 )
1
2

]
3ρ(1−R2

β2 )
1
2−(ρ− Λ

4π
− 3B

8π
)(1− r2

β2 )
1
2

+ B2r
8π − B2R

8π − B2

8π

)
+ 4πr

3 (ρ− Λ
4π )

(1− r2

β2 )
dr

(2.5.19)
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To this end to develop angular momentum,

ρu.∇u = −∇p− ρ∇ΦG + µ0J∇.L

L =
1

µ0J

[
ρu

du

dr
+

dp

dr
+ ρ

dΦ
dr

]
dr

Where u is velocity, to determine the other dynamical parameter such as called angular

momentum with a prefer boundary condition from,

L =
1

µ0J

ρu
du

dr
+

dp

dr
+

4πr3ρ

[
ρ(ρ− Λ

4π
− 3B

8π
)
[
(1− r2

β2 )
1
2−(1−R2

β2 )
1
2

]
3ρ(1−R2

β2 )
1
2−(ρ− Λ

4π
− 3B

8π
)(1− r2

β2 )
1
2

+ B2r
8π − B2R

8π − B2

8π

]
+ 4πr

3 (ρ− Λ
4π )

r(r − 2m− Λr3

3 )

 dr

2.6 Jet Formation Mechanism

An active galaxy is a galaxy that has a very small core of extremely high powered emissions

emanating from the center of the galaxy. The core is very bright and may be highly variable

compared to the rest of the galaxy. Some active galaxies have jets emanating from two sides

of the center [5]. It is believed that almost all galaxies have super-massive black holes at

their centers. ”Active” galaxies have an Active Galactic Nucleus (AGN) and are often

referred to as ”AGN” galaxies. But, not all galaxies have an ”active” super-massive black

hole. For example, the black hole in our Milky Way Galaxy is not active. To be active, the

galaxy must have a source of gas, dust, and/or other debris that the super-massive black

hole can readily consume. As a galaxy ages, its black hole eventually runs out of local

consumable materials and the black hole becomes ”dormant” (but not dead). If a fresh

supply of material is devored, a dormant super-massive black hole can begin to emit high

powered jets again. This happens from time to time when two galaxies collide, or a star

or nebula (cloud of gas) gets pulled into the gravity domain of a super-massive black hole.

There is an accretion disk around the black hole which accelerates the materials to close

to light speed and some Jet of the material is ejected out of the disk in the form of jets

[5]. All AGN galaxies exhibit the same basic processes. Namely, a super-massive ”active”

black hole at the center and an accretion disk around the black hole. They all have a bright

central core fed by local gas and/or a nearby star. They differ mainly in intensity of input.

The more intense the galactic center, the higher the radiation energy it emits [30]. While
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Figure 2.1: Active Galaxy Overview(To watch the movie, please go to the online
version of this review article at http://www.livingreviews.org/lrr-2008-7.)

it is still not fully understood ”exactly” how jets are formed, most astro-physicists believe

that jet’s power comes from the accretion disc. Accretion discs around some other stellar

objects are still produce jets, but the jets around black holes are by far the most active and

approach the speed of light. So, that the jet speed is about the same speed as the escape

velocity from the accretion disk [31]. This makes the speed of a jet from a black hole disk

near the speed of light, while jets from newly born stars are much slower. When matter

is ejected at speeds approaching the speed of light, these jets are called ”relativistic” jets.

The most popular jet formation hypothesis is that the twisting of magnetic fields in the

accretion disk collimate the outflow of plasma along the rotating axis of the black hole so

that jets emerge from each face of the disk [5]. Some accretion discs produce jets of twin,

highly collimated, and fast outflows that emerge in opposite directions from close to the

disc [11]. The direction of the jet ejection is determined either by the angular momentum

axis of the accretion disc or the spin axis of the black hole. The jet production mechanism

and indeed the jet composition on small scales are able to understood at present due to the
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Figure 2.2: Active Galactic Nuclei(To watch the movie, please go to the online version
of this review article at http://www.livingreviews.org/lrr-2008-7.)

resolution of astronomical instruments.
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Chapter 3

Result and Discussion

The influence of the repulsive cosmological constant on the black-hole space-time structure

can be properly represented by the dimensionless cosmological parameter y = ΛR2

3 . For SdS

black holes admitting existence of stable circular geodesics,i.e., existence of accretion discs.

For astrophysical relativistic SdS BH, the strong gravity near black hole horizon rbh = 3.1M

weak with distance grow and at r >> M was described by Newtonian theory, however, the

Newtonian theory loose its validity near the so called static radius, where the repulsive

effect of the cosmology constant start to be relevance up to the strong gravitating region

near the cosmological horizon rc ∼ y
−1
2 R. Therefore the cosmology constant has relevance

influence on the geometry structure of gravitating compact objects around active galactic

nuclei

. Now here by settings an appropriate boundary condition tried to get the potential energy

released during the accretion. But theoretical strong gravitational energy most probably

nearly at block hole horizon. The energy extracted from a rotating black hole if particles and

field penetrate its ergo-sphere (region between event horizon and static limit for rotation).

As can be seen dΦ
dr it tell us that, a more promising way to extract energy from rotating

block hole via the existence of strong magnetic field.

Interpretation of the derived
General Relativity Magnetohydrodynamic equation

We have derived the GRMHD equation from TOV equation for an accretion of massive

objects like AGN usually possessing SMBHs from EFE. Accordingly, we did derived the
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analytical equation for pressure, distributed of particles and gravitational potential energy,

under very limited boundary condition such as considering mean density, etc.

Numerical analysis:

Eq. (2.6.21) can be linearized to give

P (r) = Pt + PB + PΛ + PΛB,

where Pt: is the pure thermal pressure, which is the dominant one due to high density.This

pressure is purely due to gravitational collapse and build as thermal pressure. ” On the

other hand, PB is the magnetic pressure. As we observe from the linearization it varies

inversely with r i.e

PB ∼
1
r
.

PΛ is the pressure contributed from cosmological constant. It is given by

PΛ ≈
ρr2Λ
12

While PΛB is the pressure resulted from the field and cosmology constant coupling. It is

of second order that we neglect here. To give an insight to what extent the magnetic term

and the cosmological constant term pressures contribute in drifting or dragging jets (jets

flow) AGNs here we present our numerical data generated by Mathematica (version 7) as

in table 3.1 below and graphs 3.1 respectively. The assumed boundary condition is the SdS

geometry, i.e., between the black hole horizon and cosmological horizon.

r(pc) 12 13 14 15 16 17 18 19 20
pB(µpascal) 105 104 103 102 10 1 10−1 10−2 10−3

pΛ(µpascal) 10−9 10−7 10−5 10−3 10−1 10 103 105 107

Figure 3.1: Table shows the Magnetic pressure and cosmological pressure with radius
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Figure 3.2: It shows the Magnetic pressure and cosmological pressure versus radius.
Bold line represents Magnetic pressure (PB) and Broken line represents Cosmological
pressure (PΛ)
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Chapter 4

Conclusion

General theory of relativity is the theory of gravitation and geometry of spacetime. It gen-

eralizes the spacial theory of relativity and Newton law of universal gravitation. The matter

and geometry of spacetime are related by the Einstein field equations (Rµν + 1
2gµνR+gµνΛ =

8πGTµν), where Gµν is Einstein field tensor that described the geometry of spacetime where

as Tµν is energy-momentum tensor that is described the distribution of matter. The energy-

momentum tensor for magnetized fluid was found from the sum of hydrodynamic and elec-

tromagnetic tensor, that is important to study the distribution of stellar structure, i.e.

Tµν = Pgµν + (P + ρ)UµUν+ | b |2 uµuν + 1
2 | b |2 gµν − bµbν . Generally, the spacetime

geometry and gravitation are described by tensors specially second rank (0; 2) tensors like

Metric tensor,Riemann curvature tensor, Ricci tensor, Ricci scalar, Einstein field tensor

and energy-momentum tensor in addition to Affine connections. Using schwarzschild-de

sitter space-time metric. we derived the basic TOV’s equations, by using Einstein field

equation, by considering ρ = ρ̄0 = ρmean, the dynamically parameters such as pressure,

gravitational potential energy are analytical derived and generated numerically value by

using mathematica version 7. From the numerical result, We concluded that the source of

energy for the formation relativistic jets ejected from black hole horizon comes due to the

existence of strong magnetic pressure around SMBH host by AGN. In AGN, relativistic jets

are thought to be formed as the result of accretion onto SMBH in the presence of accretion

disk. Moreover, the magnetic pressure is the dominant pressure at the surface of black hole

horizon but, far from black hole horizon the pressure due to cosmology constant becomes

dominant. This pressure is termed as cosmological pressure. Therefore, I concluded that
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cosmology constant had observable effects on the dynamics of relativistic jets around AGN

and the pressure in agreement with theoretical perception. Also the influence of cosmol-

ogy constant on the geometrical structure of gravitating compact objects (SMBHs) around

AGN was observed in the metric tensor (gµν).
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