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Abstract

The increasing interest in optical properties of the composite media is dictated by

the fact that small particles, which are randomly embedded in a linear dielectric host

matrix, can be manufactured with the help of modern technology with desirable prop-

erties[1]. It is known that the particles with metal covering can considerably enhance

the refractive index of the incident electromagnetic waves and reduce the group veloc-

ity if their frequency approaches to the frequency of the metal surface plasmon’s[2].

In this work in comparison with no interfacial layer factor we have shown the effects of

interfacial layer on the refractive index, and propagation of waves in metal/dielectric

composite separated by interfacial layers which is randomly embedded in a linear

dielectric host matrix. The corresponding theoretical, and numerical descriptions are

in terms of the interfacial factor (I) by making use of the Drude model. Finally, both

the interfacial layer property and the percentage of the volume fraction of the metal-

lic particles in the composite has a nonlinear optical response which strongly effect

on the refractive index, and propagation of waves of the composite when the dielec-

tric functions of the interfacial layer is more metal-like property than dielectric-like

property.

Key Words: dielectric function, propagation of waves, optical properties, refrac-

tive index, interfacial layer.

i



Acknowledgements

First of all I would like to thank Almighty GOD. Only due to His blessings that I

could accomplish every activity.

Next I would like to thank to my advisor Dr. Sisay Shewamare. I would like to

express my gratefulness, gratitude and sincere appreciation to him for his guidance,

valuable advise and kindness throughout this study.

Next, I would like to thank my dearest wife W/o, Zertihun Beyene Ribi for giv-

ing me love, material, and moral supports, and also, my lovely son’s Moybon and

Natina’el.

I thank to my friend, Lamesa Amante Goboto for his material and technical sup-

ports during this study. Without their help this work would not have been possible.

Lastly, I would like to thank (BBO) Oromiya Educational Bureau for giving me

sponsorship.

Dessalegn Kenate Tuge

June, 2014

ii



Chapter 1

Introduction

1.1 Back ground of the study

The nonlinear optical properties in disordered metal/dielectric composites have re-

ceived much attention because of their potential application to optical correlator

device and phase-conjugator[3]. A typical system is composed of nonlinear (or lin-

ear) metallic particles randomly embedded in a linear (or nonlinear) dielectric host.

Detailed analysis of the dielectric properties of such composite reveals the existence

of many phenomena such as nonlinear microscopy[4], ultrafast laser systems[5], opti-

cal routing and switching based on optically induced bistability both on networks[6],

and on chips[7]. Many authors have studied the nonlinear optical response of such

composite media[3]. But in this paper we are interested to study the theoretically the

effects of interfacial layers on the refractive index, and propagation of waves in small

spherical metal/dielectric composite separated by interfacial layer which is randomly

embedded in a linear dielectric host.

As far as interfacial layer is concerned, the refractive index and propagation of

waves of such composite are discussed analytically and numerically. The contribution

of the interfacial layer on the linear and nonlinear response of the medium strongly

1
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effects on the propagation of electromagnetic wave, and refractive index in the optical

material and can even result in the permanent modification of its physical properties.

In turn, the linear and nonlinear optical features of composite materials with metal

nanostructures are dominated by surface plasma oscillations. The fact that the surface

plasmon (SP) strongly depends on size, shape, distribution of metal nanoparticles as

well as on surrounding dielectric host offers an opportunity for manufacturing of new

promising nonlinear materials, nanodevices, and optical elements. Metals have a fast

and strong nonlinear response[8] and may be good candidates for nonlinear optical

applications if they are combined with dielectrics[9]. Combining metals and dielectrics

has two main purposes: One allowing light to enter more deeply into metals, and the

other is achieving light localization which in turn leads to an enhanced nonlinear

response.

The velocity of propagation of light in a material system can be controlled and

modified to a large extent, (vg << c), superluminal light (Vg >> c), and (vg) neg-

ative have been reported[5]. The pioneering demonstrations of slow and fast light

were all based on the exploitation of narrow spectral resonances, mainly created

by electromagnetically-induced transparency[5] or coherent population oscillation[10].

Narrow spectral resonances induce an anomalous situation for the optical propaga-

tion, since any sharp spectral change in the medium transmission results in a steep

linear variation of the effective refractive index along wavelength. This in turn results

in a strong group velocity change at the exact center of the resonance[11].
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1.2 Statement of the Problem :

The problem is to find the contribution of the interfacial layer effect on the refrac-

tive index, and propagation of wave of small spherical metal/dielectric composite

separated by interfacial layer which is randomly embedded in a linear dielectric host

matrix.

1.3 Objectives of the Study:

1.3.1 General Objectives:

The general objective of this study is: To analyze and describe the contribution of

the interfacial layer effects on the propagation of wave and refractive index in small

spherical metal/dielectric composite separated by interfacial layer which is randomly

embedded in a linear dielectric host analytically and numerically.

1.3.2 Specific Objectives:

1/ To study the interfacial layer effect on the refractive index of small spherical par-

ticles of metal/dielectric composite separated by interfacial layer which is embedded

in a linear dielectric host matrix, analytically and numerically.

2/ To study the interfacial layer effect on the propagation of waves of small spher-

ical particle for metal/dielectric composite separated by interfacial layer which is

randomly embedded in a linear dielectric host matrix, analytically and numerically.
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1.4 Significance of the study:

The contribution of the linear and nonlinear response of the interfacial layer on the

refractive index and propagation of waves in small sphericalmetal/dielectric composite

materials needs to improve the optical properties of different materials by changing

the properties of the interfacial layer factor, their size, and shape.



Chapter 2

Review Literature

2.1 The Maxwell Equations

The solution of the electromagnetism equations can be expressed by the Maxwell

equation. Maxwell’s hypothesis was confirmed in 1887 by Hertz who was able to

produce and to detect electromagnetic waves[8].

The Maxwell equations relate the space and time derivatives of the electric and

magnetic fields to each other throughout the continuous medium.If we adopt Gaus-

sian units, next we present the Maxwell equations in a material medium [8].

∇ ·D(r, t) = 4πρ(r, t), (2.1.1)

∇ ·B(r, t) = 0. (2.1.2)

∇× E(r, t) = −1

c

∂B(r, t)

∂t
, (2.1.3)

∇×H(r, t) =
4π

c
J(r, t) +

1

c

∂D(r, t)

∂t
, (2.1.4)

5
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where r is the 3-dimensional coordinate vector, t is time D(r, t) is electric displace-

ment, ρ(r, t) is the charge density, B(r, t) is the magnetic induction, E(r, t) is the

electric field, H(r, t) is the magnetic field, and J(r, t) is the current density. The

electric displacement and the magnetic induction are connected to the electric and

magnetic field, respectively, as

D(r, t) = E(r, t) + 4πP(r, t), (2.1.5)

B(r, t) = H(r, t) + 4πM(r, t) (2.1.6)

where P(r, t), and M(r, t) are the polarization and magnetization of the medium

respectively. These quantities describe the electromagnetic response of the medium.

The current density is given by the following equation;

~J = σ~E, (2.1.7)

where σ is the conductivity of the medium.

At optical frequencies the materials are usually non-magnetic, so µ = 1. Therefore,

the magnetization can be omitted. Based on this approximation, the optical response

of a medium to an electromagnetic perturbation is completely described only by the

relation between the polarization and the electric field inducing it.

2.2 Nonlinear Optics

In order to describe an optical nonlinearity, we consider how polarization P(t), of a

material depends on an applied optical filed E(t). In the case of linear optics the
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induced polarization depends linearly on the electric filed strength described by

the relationship,

P(t) = χ(1)E(t), (2.2.1)

where, χ(1) is the linear susceptibility. In nonlinear optics, the optical response can

be described by generalizing equation (2.2.1) as a power series in the field strength

E(t) as

P(t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ... (2.2.2)

The quantities χ(2)and χ(3) are known as the second- and third-order nonlinear

optical susceptibilities, respectively. The applied filed E is of the order of the char-

acteristics of atomic electric filed as shown in ref[11]. Eat = e
4πεoa2

o
, where, ao is Bohr

radius of Hydrogen atom. Numerically, Eat = 5.14 × 1011v/m. Thus, nonlinear po-

larization induced in the media by propagating monochromatic electromagnetic wave

is responsible for optical harmonic generation. By considering the Maxwell equations

given from equations (2.1.1−2.1.4) the electromagnetic wave equation can be derived

as follow,

∇×∇× E +
4π

c2
σ

∂E

∂t
+

1

c2

∂2E

∂t2
+ 4π

∂2P

∂t2
= 0 (2.2.3)

In principle, one now requires a full microscopic theory of the optical response of a

particular material to relate the macroscopic electric field E to the polarization P,

By substituting equations (2.1.1) and (2.1.2) into equation (2.1.3) ,we have

∇×∇× E +
4π

c2
σ

∂E

∂t
+

1 + χ(1)

c2

∂2E

∂t2
+ 4π

∂2PNL

∂t2
= 0 (2.2.4)

For weak incident optical field the nonlinear component of polarization can be

omitted, and equation (2.2.4) becomes,

∇×∇× E +
4π

c2
σ

∂E

∂t
+

1 + χ(1)

c2

∂(2)E

∂t2
= 0 (2.2.5)
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the well known ordinary wave equation[12].

2.3 Lorentz local Field

The concept of a local field was originally introduced by Lorentz[13]. The response

of a medium to an external electric field cannot be explained exactly by means of

the macroscopic electric fields[14]. The external field drives the bound charges of the

medium apart and induces a collection of dipole moments[7]. In an optically dense

medium, the interaction of the induced dipoles is taken into account by a local field

factor, which relates the macroscopic fields to the local ones. For example, local field

in a homogeneous medium can be related to the macroscopic average field according

to

ELoc = LE (2.3.1)

Where L is the Lorentz local-field correction factor, and E is the macroscopic average

field. To find the local field acting on a typical dipole moment of the medium, one

surrounds the dipole of interest with an imaginary spherical cavity of radius, r << λ.

For material with linear optical response, the local field determines the microscopic

polarization which is given as,

p = αEloc (2.3.2)

The macroscopic polarization of the medium is obtained by averaging equation (2.3.2)

over the integrated volume V as follows[15].

p =
1

v

∫
v

pdv = NαE, (2.3.3)
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where dv is the unit volume for integration and N is the density of microscopic

constituents.

The polarization in terms of the external electromagnetic field is,

P = χ(1)E. (2.3.4)

In order to express linear susceptibility in terms of microscopic polarization, we ex-

press Eloc in terms of Eext as

ELoc = E +
4π

3
P (2.3.5)

The dipole moment induced in a single molecule (or atom) of the medium is,

p = α Eloc (2.3.6)

The macroscopic polarization of the material is,

P = Np (2.3.7)

By substituting equation (2.3.4) into (2.3.5), and the result obtained into equation

(2.3.6), and then the obtained expression into equation (2.3.7), we have

P = Nα[E +
4π

3
χ(1)E] (2.3.8)

And again by equating equation (2.3.4) with equation (2.3.8) we have an expression

for the linear susceptibility

χ(1) =
Nα

1− 4π
3

Nα
. (2.3.9)

To define optical susceptibility in terms of dielectric function, we know the electric

field displacement D is εD = E + 4πp , where linear polarization p = χ(1)E and by

eliminating the field E, we find that

χ(1) = (ε(1) − 1)/4π. (2.3.10)
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where, ε1 is the dielectric permittivity of the medium, by equating equations(2.3.9),

and (2.3.10), we obtain the well-known Lorentz-Lorenz (or Clausius-Mossotti) rela-

tion.

ε(1) − 1

ε(1) + 2
=

4π

3
Nα. (2.3.11)

By rearranging equation (2.3.11) we can describe the linear susceptibility as,

χ(1) = (
ε(1) + 2

3
)Nα. (2.3.12)

The Lorentz local electric field can be obtained by substituting equation (2.3.12) into

equation (2.3.4) and then relating the result obtained with equation (P = NαELoc)

we have,

ELoc = (
ε(1) + 2

3
)E. (2.3.13)

By equating equation (2.3.1) with equation (2.3.13), the Lorentz local field correc-

tion factor (L) depends on the macroscopic electric field as wheel as the dielectric

properties of the medium as,

L =
ε(1) + 2

3
(2.3.14)

therefor, equation (2.3.13), is the Lorentz local-field correction factor [1]. Equation

(2.3.14) for the local-field correction factor is valid in the case of homogeneous me-

dia[7].

2.4 Refractive Index

The development of nanostructure media with electronic and optical properties are

vastly different from that usually found in natural material. In the case of metal-

dielectric composite media, their applications can practically limited by absorption
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of incident electromagnetic radiation due to the presence of metal components. In

different research it was proposed to use active (amplifying) host-matrix in order to

compensate absorption at metallic inclusion[1][16].

In this paper we will discuss the refractive index of a small spherical metal/dielectric

composite materials with Drude model (a classical model) together with Taylor ex-

pansion. For our calculation of index of refraction for both pure metal with inter-

facial layer, and metal/dielectric composite materials separated by interfacial layer

which are randomly embedded in a linear dielectric host matrix. The refractive index

n is given by the square root of the dielectric constant ε . It is planned to ana-

lyze the interfacial layer effect on the refractive index of small spherical particles for

metal/dielectric composite which is embedded in a linear dielectric host matrix. The

refractive index is given by[17]

n =
√

ε =
√

1 + 4πχ (2.4.1)

2.5 Phase Velocity and Group Velocity

The concept of group velocity was first introduced in[18]. The first recorded observa-

tion of the group velocity of a wave is presented in ref[18]. A continuous wave light

beam propagating in a medium with refractive index n has a phase velocity

Vp =
c

n
(2.5.1)

where, c is the speed of light in vacuum, and the refractive index is given by n = kc
ω

for the phase velocity. Let us next consider the propagation of a pulse through a

material system. A pulse is necessarily composed of a spread of optical frequencies,

given as φ = kz − ωt , where k = nω
c

. No change in φ to first order in ω. That
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is, dφ
dω

= 0 or dn
dω

ωz
c

+ nz
c
− t = 0, which can be written as z = vgt , where the group

velocity is given by

vg =
c

ng

=
c

n + ω dn
dω

ng = n + ω
dn

dω

(2.5.2)

Here ng is group index and np is phase index. We see that ng 6= np by a term that

depends on the dispersion dn
dω

of the refractive index. Slow and fast light effects invari-

antly make use of the rapid vibration of refractive index that occurs in the vicinity

of a material resonance.Slow light can be obtained by making dn
dω

larger and positive

(larger normal dispersion), and fast light occurs when dn
dω

is larger and negative (larger

anomalous dispersion). In theoretical treatment of pulse propagation[2], it is conti-

nent to expand the propagation constant k(ω) in a power series about the central

frequency ωo of the optical pulse as

k(ω) = ko + k1(ω − ωo) +
1

2
k2(ω − ωo)

2 +−−−− (2.5.3)

where ko = k(ωo) is the mean wave vector magnitude of the optical pulse, k1 =

dk
dω

/ω = ωo = 1
Vg

= ng

c
is the inverse of the group velocity, and k2 = d2k

dω2 /ω =

ωo =
d( 1

vg
)

dω
= 1

c

dng

dω
is a measure of the dispersion in the group velocity. Because the

transit time through a material medium of length z is given by t = z
Vg

but k1 = 1
vg

which implies that t = zk1 the spread in transit times is given approximately by

∆t ' zk2∆ω, where ∆ω is a measure of frequency bandwidth of the pulse. Group

velocity keeps its physical meaning as long as the propagation distance of slow and fast

light through the dispersive medium is much less than a narrow spectral bandwidth for

the pulse. Present interest in negative group velocity based on anomalous dispersion

in a composite medium, where the sign of the phase velocity is the same for incident
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and transmitted waves, and energy flows inside the composite medium in the opposite

direction to the incident energy flow in vacuum. In this paper we analyze interfacial

layer effects on the propagation of waves in small spherical metal/dielectric composite

separated by interfacial layer.



Chapter 3

Materials and Methods

3.1 Materials

The thesis is aimed at theoretical study and numerical analysis of the interfacial layer

effect on the refractive index and propagation of waves in small spherical particles

of metal/dielectric composite separated by interfacial layer which is embedded in

a linear dielectric host. The theory is supposed to be developed in the long wave

approximation, which means that the wavelength of radiation is much greater than

the typical size of inclusions. Because of the complexity of the equations of the

electrodynamics of the composite media even with usage of different approaches such

as Maxwell - Garnet formula, it would be necessary to employ different mathematical

codes such as Mat-lab and Mathematica softwares. The apparatus that will be applied

to carry out the theoretical part of the thesis are external hard disc, flash discs and

softwares for simulating the dielectric functions of the composite materials.

14
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3.2 Methodology

3.2.1 Analytical method

In our thesis one of the important methods is solving the problem analytically which

is the most important input for the numerical computation.

3.2.2 Numerical method

For determining the most important parameter for the interfacial layer effect we follow

to compute the analytical results with some computational tools in Mat-Lab codes.



Chapter 4

Data Analysis and Discussion

4.1 Effects of Interfacial Layer on the Refractive

Index and Propagation of Waves

4.1.1 Introduction

It is shown that in different papers the presence of two enhancement in small spher-

ical metal/dielectric composite particles with no interfacial layer. Also it is shown

in several papers a one enhancement for pure metals in a host matrix[1],[6],[16]. In

this work we consider the effect of the interfacial layer on the refractive index of

small spherical pure metal particle with interfacial layer placed in a linear host and

the effects of interfacial layers on the refractive index of small spherical composite of

metal/dielectric particles separated by interfacial layer which are randomly embedded

in a linear host matrix. The interfacial layer separating metal from dielectric core

composites is described by the interfacial layer factor I that may be positive or neg-

ative which represent the dielectric functions of the interfacial layer placed between

16
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the composite. Furthermore, we consider f (volume fraction of metal particles in the

linear host matrix) that may effect the refractive index of the composite.

4.1.2 Drude Model

The electric behavior of metals and semiconductors with high electron concentration

as well as of plasmas is determined by the collective excitation of the free charges.

The displacement of the free charges against the ionic trunks results in positively and

negatively charged clouds which exert an attractive force on each other. For metals

there is no spring to connect free electrons to ions. So that resonance frequency

ωo = 0. Thus, the dielectric function of metal εm is chosen in the Drude form.

εm = ε∞ −
ω2

p

ω2 + iγω
, (4.1.1)

where ωP is the plasma frequency expressed by ωp =
√

Ne2

mεo
, ω is the frequency

of the incident wave, e is the charge of electron, εo is the permittivity of free space,m

is the mass of electron, N is the concentration of electron, and γ is the damping

constant. Then the real and imaginary part of equation (4.1.1) become,

ε′m = ε∞ −
ω2

p

ω2 + γ2
(4.1.2)

and,

ε′′m =
γω2

p

ω3 + ωγ2
(4.1.3)

respectively. Equation (4.1.1)-(4.1.3), are called Drude model[19]. Let us introduce

now dimensionless frequency, z, and υ as, z = ω
ωp

, and υ = γ
ωp

. So, equations (4.1.2),

and (4.1.3) become

ε′m = ε∞ −
1

z2 + γ2
, (4.1.4)
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and

ε′′m =
γ

z(z2 + γ2)
, (4.1.5)

respectively.

4.2 Analytical Descriptions of the Effect of Inter-

facial Layer for Refractive Index in Composite

We consider a composite in which a pure nonlinear metallic particles with interfa-

cial layer embedded in a linear host matrix, and also a nonlinear spherical particles

of metal/dielectric separated by interfacial layer which is randomly embedded in a

linear dielectric host matrix respectively. In the electrostatic approximation, when

the wavelength λ of the incident electromagnetic radiation is much greater than a

typical size of the inclusion, the distribution of the electric potential in the system is

described by the following expressions[18]. Let us see first the analytical descriptions

of the effects of the Interfacial layer on the refractive index of the composite for the

case of pure metal with interfacial layer.
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4.2.1 Analytical Descriptions of the Effect of Interfacial Layer

for Refractive Index in Pure Metal/Interfacial Layer

Composite.

For metal containing interfacial layer the electrostatic potential distribution in the

composite is expressed as,

Φm = −EapArcosθ, r ≤ r1,

Φi = −Eap(Br − Cr−2)cosθ, r1 ≤ r1+t ≤ r,

Φh = −Eap(r −Dr−2)cosθ, r1+t ≤ r,

(4.2.1)

where, φm, φi, and φh are potentials of the pure metal, interfacial layer, and linear

host matrix respectively, Eap is the applied field, r1, and r1 + t is the radius of pure

metal, and the interfacial layer, respectively. Also t is the thickness of the interfacial

layer, and A, B, C, and D are the unknown coefficients. By equating their electrostatic

potential and electric displacement at the boundaries, we obtain expression for the

induced dipole moment of the polarizability D , and the local-field correction factor

A as

A =
3εh

2εh + εm + 2I
r1

,

B =
2εh

2εh + εm + 2I
r1

,

C =
−εh

2εh + εm + 2I
r1

r3
1,

D = (
εm + 2I

r1
− εh

2εh + 2I
r1

+ εm

)(r1 + t)3.

(4.2.2)

Here I is the Interfacial layer factor defined as I = lim tεs as thickness t tends to

zero, and the dielectric functions of the interfacial layer goes to infinity (εs → ∞

)[20]. Now, we consider the effect of interfacial layer through the limit t → 0, namely
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the interfacial property is concentrated on a surface of approximate zero thickness

(t); then only tεs can be seen as a significant quantity. Here I is just called interfa-

cial factor[21]. Generally speaking, for sharp and smooth interface is equal to zero

(i, eI = 0), there is no jump in the normal component of the electric displacement

across the interface; whereas, for imperfect interface it is denoted by I 6= 0, in this

case the electric displacement jumps across the interface. We further remark that I

can be taken as positive or negative values, which is resemble because the dielectric

functions of metallic particles is made up of a large negative real and a small positive

imaginary[22]. When I is taken as negative value, the interface exhibits metal-like

behavior but for I = +ve value, the interface exhibits dielectric-like behavior. There-

fore, the polarization of an individual pure metal with interfacial layer embedded in

a linear host matrix can be presented in the form of equation (4.2.2). Where the

polarizability of the composite is

α =
εm + 2I

r1
− εh

2εh + 2I
r1

+ εm

(4.2.3)

Here the real α′ and imaginary α′′ parts of the polarizability of equation (4.2.3) is

described as,

α′ =
(ε′m + 2I

r1
− ε′h)(2ε

′
h + 2I

r1
+ ε′m) + ε′′2m

(2ε′h + 2I
r1

+ ε′m)2 + ε′′2m

, (4.2.4)

and

α′′ =
3ε′′mε′h

(2ε′h + 2I
r1

+ ε′m)2 + ε′′2m

, (4.2.5)

separately . The refractive index is related with the dielectric functions by the fol-

lowing expressions

n =
√

ε =
√

1 + 4πα (4.2.6)
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Consider the refractive index of the composites with real inclusions, when γ the damp-

ing factor is not extremely small but a finite being of the order of 10−2. According

to the Clausius-Mossotie formula the effective dielectric functions ε of the composite

can be written as

ε− εh

ε + 2εh

=
4π

3
DN, (4.2.7)

where, D is given by equation (4.2.2), and N is a density number of the inclusions.

With the help of the volume fraction of spherical metallic particles in a linear dielectric

host matrix f = (4π/3)r3
2N , the dielectric function of the composite is expressed by

ε = εh[1 + 3fα] (4.2.8)

In this expressions we neglect the higher order because of fα << 1. The real and

imaginary parts of equation (4.2.8) is described by the following expressions;

ε1 = ε′h + 3fε′hα
′ (4.2.9)

and

ε2 = 3fε′hα
′′ (4.2.10)

respectively. By substituting equation (4.2.4) into equation (4.2.9) and equation

(4.2.5) into (4.2.10) and then by equating the real and imaginary parts of the refractive

index n′+ in′′ with the real and imaginary parts of the dielectric functions
√

ε1 + iε2,

we obtain a coupled equations for the real n′ and imaginary n′′ parts of the refractive

index of the composite[23].

n′2 − n′′2 = ε1,

2n′n′′ = ε2,
(4.2.11)

where n′ is the real refractive index of the medium and n′′ is the imaginary part of

the refractive index of the composite[23]. Comparison of the above equation yields
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the expression for the real n′ and imaginary n′′ parts of the refractive index of metal

containing interfacial layer composite,

n′ =

√
1

2
(ε1 +

√
ε2
1 + ε2

2),

n′′ =

√
1

2
(−ε1 +

√
ε2
1 + ε2

2),

(4.2.12)

respectively. Similarly we can obtain the real n′, and imaginary n′′ parts of the

refractive index of the pure metal when the value of I in equation (4.2.3) becomes

zero.

4.2.2 Analytical Descriptions of the Effects of Interfacial Layer

for Refractive Index in Metal/Dielectric Composites.

Here we are interested to see the effects of the interfacial layer on the refractive

index of metal/dielectric composite separated by interfacial layer embedded in a linear

dielectric host. In the electrostatic approximation, when the wavelength λ of the

incident electromagnetic radiation is much greater than a typical size of the inclusion,

the distribution of the electric potential in the system is described by the following

expressions[18].

Φd = −EapArcosθ, r ≤ r1,

Φi = −Eap(Br − Cr−2)cosθ, r1 ≤ r1+t,

Φm = −Eap(Dr − Er−2)cosθ, r1+t ≤ r2,

Φh = −Eap(r − Fr−2)cosθ, r ≥ r2.

(4.2.13)

Where, φd, φi, φm, and φh are potentials of the dielectric, interfacial layer, metal, and

the linear dielectric host matrix respectively. Eap is the applied filed, r and θ are

the spherical coordinates of the observation point (Eap is chosen along the z-axis )
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r1, r1+t, and r2 are the radius of dielectrics, interfacial layer, and metal respectively.

A, B, C,D, E and F are the unknown coefficients. Using the continuity conditions of

the potential and displacement vector at the boundaries of dielectric-interfacial layer,

interfacial layer-metal, and metal-host matrix, we obtain a system of linear algebraic

equations for A, B, C,D, E and F . The solutions of this system can be given as

A =
9εmεh

2ph
.

F = {1− 3εh[(3/p− 1)εm + b]

2h
}r3

2.

(4.2.14)

where,

h = ε2
m + kεm + bεh. (4.2.15)

Here k = (3/2p − 1)b + (3/p − 1)εh, p = 1 − (r1/r2)
3 is a metal fraction in the

inclusion, b = εd + 2I
r1

where, I is the interfacial layer factor, εd, εm, and εh are the

dielectric functions (DFs) of the dielectric, metal, and the linear host matrix, respec-

tively. Therefore, the polarization of an individual small spherical metal inclusion

separated by interfacial layer from a dielectric core which is embedded in a linear

dielectric host matrix can be presented in the form of equation (4.2.14) can be,

F = αr3
2,

α = 1− 3εh[(3/p− 1)εm + b]

2h

(4.2.16)

Here F is the effective polarization of the composite. The expressions of equation

(4.2.13) holds true for the Raman particles when the radius of inclusion r2 is much less

than the wavelength of incident radiation λ. Further, it is known that the frequency

dependence of metals over the optical frequency range is described by the Drude

model given in equation (4.1.4) and (4.1.5). In this paper we consider the case when

the host matrix is real. Now we obtain expressions for the real α′ and imaginary α′′
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parts of the polarizability which is in the form of

α′ = 1− 3εh

2

[(3/p− 1)ε′m + b]h′ + εh[(3/p− 1)ε′′m]h′′

h′2 + h′′2
, (4.2.17)

and,

α′′ =
3εh

2

[(3/p− 1)ε′m + b]h′′ + εh[(3/p− 1)ε′′m]h′

h′2 + h′′2
, (4.2.18)

respectively. Also the real and the imaginary part of h is given in the following

expressions

h′ = ε′2m + kε′m + bεh − ε′′2m ,

h′′ = ε′′m(k + 2ε′m).
(4.2.19)

An analytic analysis of the obtained expressions can be done in the model of a very

weak damping of plasma vibrations in the metal part of the inclusion when we consider

γ << 1, which is negligible. In this case from the imaginary part of equation (4.1.5)

can be consider ε′′m ∼ γ << 1. The minimum of the denominators in (4.2.17) and

(4.2.18) gives the maximum value of polarization at the condition of

ε′2m + kε′m + bεh = 0. (4.2.20)

This equation (4.2.20) has two roots that in turn gives two resonant frequencies.

The imaginary party of the polarizability is responsible for the absorption of electro-

magnetic waves in the composites. By substituting equation (4.2.17) into equation

(4.2.9) and equation (4.2.18) into (4.2.10), and then by equating the real and imag-

inary parts of the obtained expressions of the dielectric functions with the real and

imaginary parts of the refractive index, we obtain the expressions for the real n′, and

imaginary parts of the refractive index of metal/dielectric composite separated by

interfacial layer as shown in equation (4.2.12). Similarly we can obtain the real n′,
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Figure 4.1: Refractive index n′ of pure metal versus z for three different values of the
interfacial layer factor, for the value of f = 0.001, and the numerical values of the
composite parameters:

εh = 2.25, ε
′′

h = 0,ε∞ = 4.5,ωp = 1.6× 1016rad/s, andγ = 0.0115

and imaginary n′′ parts of the refractive index of the metal/dielectric composite when

the value of I in the expression b = εd + 2I
r1

is equal to zero.

4.3 Numerical Analysis of the Effects of Interfacial

Layer on the Refractive Index of Composite

By considering the case of the linear dielectric host matrix, we analyzed and describe

the real part of the refractive index of the composite based on the following Figures.

In Figure 4.1 for constant value of the volume fraction of metallic particles f = 0.001,

we observe that for the three different values of interfacial layer factor I = −2r1, 0, 2r1,

there is one maximum refractive index of the composite each for each of the three

interfacial layer factors at different plasma resonance frequency, i.e, we observe one
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Figure 4.2: Refractive index n′ of pure metal composite versus z for three differ-
ent values of the percentage of metal f in linear host matrix, when the rest of the
parameters are the same as in Fig 4.1

region of anomalous dispersion for each of the three values of the interfacial layer

factor I at different resonance frequencies. For I = 2r1 the maximum refractive index

is n′ = 1.519 at the frequency of z = 0.296, for I = 0 the maximum refractive is index

n′ = 1.525 is obtained at the frequency z = 0.328, and for I = −2r1 the maximum

refractive index is n′ = 1.536 at the frequency of z = 0.372. Here we found that as the

dielectric functions εs of the interfacial layer property is changed from dielectric-like

property (I = 2r1) to metal-like property (I = −2r1). The resonance frequency of

the composite is increased while, the corresponding refractive index of the composite

is enhanced.

In Fig 4.2 for three different values of the percentage of the volume fraction of the

metal particles in the linear host matrix, we observe different maximum values of

the refractive index for a given value of the interfacial layer factor I = −2r1. i.e

for f = 0.001 the refractive index n′max = 1.536, for f = 0.002 the refractive index
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Figure 4.3: Refractive index n′ of metal/dielectric composite verses z with interfacial
layer factors I = −2r1, I = 0, 2r1 for f = 0.001, and p = 0.99, when εd = 6 and the
rest of the parameters are the same as in Fig 4.1

n′max = 1.572, and for f = 0.003 the refractive index n′max = 1.608. The increasing in

the volume fraction of the metallic particles f in the linear host matrix increases the

refractive index of the composite.

In Figure 4.3 the refractive index is plotted as a function of frequency for f =

0.001, p = 0.99, and I = −2r1, 0, 2r1. From the graphical representation we observe

that for three different values of the interfacial layer factors different values for the

first, and second maxima of the real parts of the refractive index of the composite of

small spherical metal/dielectric particles which is embedded in a linear host matrix at

different frequencies. For example, for I = −2r1 the first maxima is n′1 = 1.525, the

second maxima is n′2 = 1.497, for I = 0 the 1st, and 2nd maxima is n′1 = 1.523, and

n′2 = 1.498, respectively. And for I = 2r1 the 1st and 2nd maxima is n′1 = 1.519, and

n′2 = 1.504 respectively. From the above data we have seen three different maxima of

refractive index of the composite at different plasma resonance frequency because of
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Figure 4.4: Refractive index n′ of metal/dielectric composite verses z with interfacial
layer factors I = 2r1 for three different values of metal fraction p = 0.9, 0.99, 0.999,
whenf = 0.001, εd = 6 and the rest of the parameters are the same as in Fig 4.1

different value of the interfacial factor I. As the dielectric function of the interfacial

layer εs is changed from dielectric-like property to metal-like property the refractive

index of the composite is enhanced, while the plasma resonance frequency is increased.

But when the dielectric function of the interfacial layer εs is changed from metal-like

to dielectric-like property the refractive index of the composite is enhanced while, the

plasma resonance frequency is decreased. If there is no interfacial layer effect on the

refractive index of the composite, the peak of the refractive index of the composite is

reduced. This shows the interfacial layer plays a role on the refractive index compos-

ite. And it is noticed that such role is more important for metal-like interfacial layer

than dielectric-like interfacial layer.

In figure 4.4 by keeping I = 2r1, and f = 0.001 we observe for the three different

values of the metal fraction in the inclusion p, different values of the first, and second
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Figure 4.5: Refractive index n′ of metal/dielectric composite verses z with inter-
facial layer factors I = 2r1 for three different values of percentage of particles
f = 0.001, 0.002, 0.003, when εd = 6.the rest of the parameters are the same as
in Fig 4.1

maxima of the real parts of the refractive index of the composite at different frequen-

cies. For example, for p = 0.9 the first maxima is n′1 = 1.515 at frequency 0.272, the

second maxima is n′2 = 1.509 at frequency 0.383, for p = 0.99 the 1st,and 2nd maxima

is n′1 = 1.519 at frequency 0.314,and n′2 = 1.504 at frequency 0.35, respectively. And

similarly for p = 0.999 the 1st and 2nd maxima is n′1 = 1.524 at frequency 0.325,and

n′2 = 1.488 at frequency 0.343 respectively. Here the second maxima of the refractive

index of the composite is decreasing and even for I = −2r1 for the case of p = 0.999

second enhancement is very small.

In Figure 4.5 by keeping I = 2r1, and p = 0.99 we observe for the three different

values of the volume fraction fof the metallic particles in the linear host matrix for

different values of the first, and second maxima of the real parts of the refractive

index of the composite. For example for f = 0.001 the first maxima is n′1 = 1.519 at
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frequency 0.314, the second maxima is n′2 = 1.504 at frequency 0.35, for f = 0.002

the 1st, and 2nd maxima is n′1 = 1.538 at frequency 0.314, and n′2 = 1.508 at frequency

0.35 respectively. And similarly for f = 0.003 the 1st and 2nd maxima is n′1 = 1.557

at frequency 0.314,and n′2 = 1.511 at frequency 0.35,respectively. Here we found

that increasing the value of f increases the refractive index of the composite. So

for different values of f we observe three different values of the 1st maxima of the

refractive index of the composite almost at the same resonance frequency, and the

same is true for the 2nd maxima. So the value of the parameter f is not significantly

frequency dependent.

4.4 Analytical Descriptions of Effect of Interfacial

Layer for Propagation of Waves

The pioneering demonstrations of slow and fast light were all based on the exploita-

tion of narrow spectral resonances, mainly created by electromagnetically-induced

transparency[24] or coherent population oscillation[25]. In this chapter we peresent

that the composites of spherical metal with interfacial layer embedded in a linear host

matrix and the composite of small spherical metal/dielectric composite separated by

interfacial layer which is embedded in a linear dielectric host matrix strongly absorb

and refract light on one and two resonance frequencies, respectively. In our study we

consider a linear dielectric host matrix which is represented as real ε′h and imaginary

ε′′h but in our study we neglect the imaginary part. For linear host matrix consider-

ation the numerical values for the real and imaginary parts of the the polarizability

of pure metal with interfacial layer and for metal/dielectric composite by interfacial
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layer are shown αm,′ α′′m and α,′ α′′ in the Figures 4.1 − 4.4 and 4.5. We set the the

volume fraction f = 0.001. Equation (4.2.3), and equation (4.2.16) help us to obtain

the analytical results to ignore the dipole-dipole interaction between the inclusions.

The real parts of the refractive index of metal with interfacial layer are described

in Figures 4.1 − 4.2, and the real parts of the refractive index of metal/dielectric

composite separated by interfacial layer are described in Figures 4.3− 4.5 for a linear

dielectric host matrix. In this chapter we are interested to see the effects of interfa-

cial layer on the propagation of electromagnetic waves in the composite of both pure

metal with interfacial layer, and metal/dielectric composite separated by interfacial

layer respectively. By substituting the analytical description of the real parts of the

refractive index of the above composite expressed in equation (4.2.12) into equation

(2.5.1) we obtain the analytical description of the group velocity for the composite

separately.

The optical pulse propagating through highly dispersive[22],[25] show a negative

value of the group velocity (Vg). In such consideration,the value of group velocity may

be negative for two cases the 1st prediction is when the peak of the transmitted pulse

will exit the material before the peak of the incident pulse emerges the material, and

in addition to that the 2nd consideration is when the pulse will appear to propagate

in the backward direction within the material[11]. We calculate the group velocity

(vg) with the help of the known formula[11],

vg(z) =
c

ng

,

ng(z) = n′(z) + z
dn′

dz
,

(4.4.1)

which is called the group velocity of a wave packet. Here c is the speed of light in

vacuum and ng is the group velocity index[11]. Let us consider the narrow wave packet
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centered at ko is given by the following equation E(t) =
∫∞
−∞ e−i(kx−wot)e

−(k−ko)2

2∆2 dk

This relation is obtained from Vg = dω/dk, where, ω is the frequency and k is the

wave vector using the definition of the real part of the refractive index n′ = kc/ω(k),

the group velocity vg appears in the second term of the Taylor series expansion

ωk = ωk0 + Vg(k0)(k − k0) +
1

2

dVg

dk
|k=k0(k − k0)

2 + ... (4.4.2)

around the center of the wave packet k0. Therefore, (4.4.1) has a meaning of the group

velocity in the case of a week dispersion of ω(k). For a strong dispersion, the higher

terms in (4.4.2) must be taken into account and in this case Vg losses its physical

meaning[11].

4.5 Numerical Analysis of the Effects of Interfacial

Layer on the Group Velocity of Composite

Based on the analytical descriptions of the group velocity the numerical descrip-

tions of the group velocity of the composite of pure metal with interfacial layer and

metal/dielectric composite separated by interfacial layer are described in the following

Figure 4, 6− 4.8 and 4.9− 4.11 separately.

In Figure 4.6 we observe that for the value of interfacial layer factor I = 0, for

constant f = 0.01. The supperluminal light or the negative group velocity vg/c < 0 is

observed between frequency ranges of (0.33, 0.35) in this frequency range the negative

group velocity or the propagation of light is rapidly increasing until it reaches the

minimum of the group index ng, which is the maximum point for the negative group

velocity of the composite i.e vg = −0.15(c).
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Figure 4.6: The graph of normalized group velocity by speed of light vg/c versus z of
the composite of pure metal, when f = 0.01, ε′h = 2.25, and ε∞ = 4.5

.

Figure 4.7: The graph of normalized group velocity by speed of light vg/c versus z
of the composite of pure metal with interfacial layer factor I = −2r1, when f =
0.01,ε′h = 2.25, and ε∞ = 4.5

.
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Figure 4.8: The graph of normalized group velocity by speed of light vg/c versus z
of the composite of pure metal with interfacial layer factor I = 2r1, when f = 0.01,
ε′h = 2.25, and ε∞ = 4.5

.

In Figure 4.7 we observe that for the value of interfacial layer factor I = −2r1, i.e,

when the dielectric function of the interfacial layer is metal-like property,for constant

f = 0.01. The supperluminal light or the negative group velocity vg/c < 0 is observed

between frequency ranges (0.378, 0.391) in this frequency range the negative group

velocity or the propagation of light is rapidly increasing until it reaches the minimum

of the group index ng, which is the maximum point for the negative group velocity

of the composite i.e vg = −0.13(c).

In Figure 4.8 we observe that for the value of interfacial layer factor I = 2r1, i.e

when the dielectric function of the interfacial layer is dielectric-like property, for a

constant f = 0.01. The supperluminal light or the negative group velocity vg/c < 0 is

observed between frequency ranges of (0.30, 0.319) in this frequency range the negative

group velocity or the propagation of light is rapidly increasing until it reaches the

minimum of the group index ng, which is the maximum point for the negative group
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Figure 4.9: The graph of normalized group velocity by speed of light vg/c versus
z of the composite of metal/dielectric particles separated by interfacial layer with
interfacial layer factor I = 2r1, f = 0.001, and p = 0.99

.

velocity of the composite i.e vg = −0.21(c).

In Figure 4.9 we observe that for the value of interfacial layer factor I = 2r1,

i.e when the dielectric function of the interfacial layer factor is dielectric-like prop-

erty, for a constant p = 0.99, and f = 0.01. NO supperluminal light (or negative

group velocity) vg/c < 0 is observed between frequency ranges (0.25, 0.40). In this

frequency range the refractive index of the composite is minimum and also the value

of absorption is less so that the group velocity is positive i.e slow propagation of wave

vg/c < 1.

In Figure 4.10 we observe that for the value of interfacial layer factor I = 0,

p = 0.99 and f = 0.01. The supperluminal light or the negative group velocity

vg/c < 0 is observed between frequency ranges 0.322, 0.324 in this frequency range

the group velocity or the propagation of light is rapidly increasing until it reaches the

minimum of the group index ng , which is the maximum point for the negative group
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Figure 4.10: The graph of normalized group velocity by speed of light vg/c versus
z of the composite of metal/dielectric particles separated by interfacial layer with
interfacial layer factor I = 0, f = 0.001, p = 0.99

.

velocity of the composite i.e vg = −1.18(c).

In Figure 4.11 we observe that for the value of interfacial layer factor I = −2r1,p =

0.99, and f = 0.01. The supperluminal light or the negative group velocity vg/c < 0

is observed between frequency ranges0.325, 0.335 in this frequency range the negative

group velocity or the propagation of light is rapidly increasing until it reaches the

minimum of the group index, which is the maximum point for the negative group

velocity of the composite i.e, vg = −0.75(c).
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Figure 4.11: The graph of normalized group velocity by speed of light vg/c versus
z of the composite of metal/dielectric particles separated by interfacial layer with
interfacial layer factor I = −2r1, f = 0.001, p = 0.99

.



Chapter 5

Conclusion and Recommendation

5.1 Conclusion

We have calculated the real and imaginary parts of the refractive index and group

velocity for both composite of small spherical pure metal with interfacial layer, and

small spherical particles of metal/dielectric separated by interfacial layer which is

randomly embedded in a linear dielectric host. We have discussed the analytical

descriptions, and the numerical analysis of refractive index, and the propagation of

wave of such composite with Drude model together. As it is shown in the analytical

descriptions and numerical analysis, we can conclude the following in this work.

Firstly:

In this work we show the effects of the interfacial layer on the refractive index of

the composite.

When the dielectric function of the interfacial layer is changed from dielectric-like

property to metal-like property the refractive index of the composite is more en-

hanced while, the frequency ω of the incident electromagnetic field is increased. But
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when the dielectric functions of the interfacial layer is changed from metal-like prop-

erty to dielectric-like property the refractive index of the composite is less enhanced

while, the frequency ω of the incident electromagnetic field is decreased.

Maximum refractive index of the composite is obtained at less frequency of the in-

cident electromagnetic filed when the dielectric functions of the interfacial layer is

dielectric-like property but when the dielectric functions of the interfacial layer is

metal-like property the maximum refractive index of the composite is obtained at

high frequency of the incident electromagnetic field.

The refractive index of the composite is more enhanced when the dielectric function

of the interfacial layer is metal-like property than dielectric-like property.

At a given frequency of the the incident electromagnetic field the refractive index of

the composite is more enhanced when the percentage of the volume fraction of the

metallic particles in the inclusion is increased .

Secondly:

We show the effects of the interfacial layer on the propagation of wave of the com-

posite.

As it is shown in Fig 4.6 - 4.8 for the case of pure metal with interfacial layer which is

randomly embedded in a linear dielectric host, for the value of f = 0.01 in comparison

with no interfacial layer the maximum extreme value of the negative group velocity

is observed when the dielectric function (εs) of the interfacial layer is metal-like prop-

erty than dielectric-like property.

As it is shown in Fig 4.9 - 4.11 for the case of small spherical metal/dielectric com-

posite separated by interfacial layer which is embedded in a linear dielectric host, by
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decreasing the percentage of the volume fraction of metallic particles in the inclusion

from 0.01 to 0.001.

We found: No negative group velocity is is observed in the composite between fre-

quency range (0.25 - 0.4) of incident electromagnetic field, when the dielectric function

of the interfacial layer is dielectric-like property but negative group velocity is found

in the composite between frequency (0.325 - 0.335)of the incident electromagnetic

field when the dielectric function of the interfacial layer is metal-like property.

Finally, based on the above results we conclude the following:

The interfacial layer has an effect on the refractive index and propagation of waves

in small spherical metal/dielectric composite separated by interfacial layer which is

embedded in a linear dielectric host.

It is also possible to control the negative group velocity of the composite by using the

dielectric function εs of the interfacial layer dielectric-like property than metal-like

property

It is also possible to observe a slow light propagation in a composite media when the

dielectric property of the interfacial layer is metal-like property than dielectric-like

property.
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5.2 Recommendation

In our study we discussed the contribution of interfacial layer on the linear and

nonlinear response of the composite media which strongly effects on the refractive

index and propagation of waves of the optical materials. We expect that it will

stimulate the development of experiments.
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