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Abstract

In this study the electronic and structural properties of Aluminum (Al) were inves-
tigated with respect to density functional theory by using Quantum FEspresso Pack-
age. The local density approzimation (LDA) and the generalized gradient approrima-
tion (GGA) were used to compute the exchange correlation energy. The total minimum
enerqy of Aluminum is performed as a function of cutoff energy and Monk horst- pack
grid size . The results show that, the total minimum energy per atom is monotonically
decreasing with increasing cutoff energy due to variational principle. However,there is
no systematic trend can be predicted from just increasing the k.point sampling . The
total minimum force on Al is computed by displacing Al atom as a function of cut-
off energy and k.point grid size by 0.05 Bohr. Moreover, the total minimum force is
converged at the cutoff 60 Rydberg and Monk horst-pack mesh of 9 x 9 x 1 k.point.In
Addition to this, the equilibrium lattice constant is calculated with different lattice con-
stant. The computational value of the equilibrium lattice is 7.4 Bohr.This result is in
good agreement with experimental value. Finally, the four different smearing schemes:
Marzari- Vanderbilt, Methfessel -Paxton, Gaussian and Fermi-Dirac are checked for
convergence issues of the total minimum enerqgy. The results show that the total mini-
mum energy converges very slowly for Gaussian (Ga) and Fermi-Dirac smearing.

Keywords: Aluminum,density functional theory,electronic structure,total energy,total

force.
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Chapter 1

Introduction

1.1 General background

Aluminum is the third most abundant element in the earth’s crust [1]. Coming af-
ter oxygen and silicon. It makes up 8% of the crust’s total mass and is the most
abundant metallic element [2]. It is never found free in nature and is found in most
rocks, particularly igneous rocks as alumina silicate minerals [3, 4]. It is a light metal
that is easy to melt, odorless, tasteless, nontoxic, non-magnetic material and has a
high electrical conductivity. In the pure metallic state it oxidizes readily in air to
form a stable oxide surface that resists further corrosion. Because of these properties
Aluminum and its alloys are used extensively in modern industry, technology and
everyday life. Its experimental and theoretical study on an atomic scale is still an
active field of research. From a fundamental point of view Aluminum is interesting
also as a typical nearly-free-electron metal whose basic features can be described by
using electron gas concepts beginning with the simplest model [5].

When metals change from the molten to the solid state, they assume crystalline struc-
tures. The atoms arrange themselves in definite ordered symmetrical patterns which

metallurgists speak of as ”lattice” structures. Aluminium, like copper, silver and



gold, crystallizes with the face-centred-cubic arrangement of atoms, common to most
of the ductile metals. This means that the atoms form the corners of a cube, with
one atom in the centre of each face.The length of the sides of the cube for high purity
Aluminium has been determined as 4.049 x 10~® cm; the shortest distance between
two atoms in the Aluminium structure is v/2 divided by 2 x 4.049. The face centred
cubic structure is one of the arrangements assumed by close packed spheres, in this
case with a diameter of 4.049 x 10~® cm, the corners of the cube being at the centre
of each sphere. The metal has an atomic weight of 26.98 and a specific gravity of
2.70, approximately one-third the weight of other commonly used metals; with the
exception of titanium and magnesium [6].

In practical applications aluminum is mainly used in the polycrystalline state, al-
though for theoretical simulations and precise experimental studies mono crystalline
Al is more suitable. Under low and normal pressure it crystallizes in a FCC (face-
centered cube) structure only [7]. Total Energy calculation and molecular dynamic
simulation employing density-functional theory represent a reliable tool in condensed
matter physics, material science, and physical chemistry. A large variety of appli-
cations such as in molecules, bulk materials and surfaces have proven the power of
these methods in analyzing as well as predicting non-equilibrium and equilibrium
properties. Density-functional theory (DFT) is one of the most popular and success-
ful quantum mechanical approaches to matter. It is nowadays routinely applied for
computations of ground state properties of molecules and solids such as the binding
energy of molecules and the band structure of solids in physics. The diamond lattice
structure is very common in semiconductor materials, such as Si, Al and Ge. AlAs,

GaAs and GaP has a zincblende lattice structure which is similar to the diamond



lattice structure. The diamond and zincblende structures are similar except that in
diamond structure there is only one type of atom where as in zincblende there are
two types of atoms [§].

Calculation of the bulk ground state properties, such as lattice constants, bulk mod-
ulus, cohesive energy, and atomic positions, play an important role in the physics
of condensed matter [9,10]. Bulk calculations help us to understand, characterize,
and predict mechanical properties of materials in surroundings, under extreme con-
ditions [11]. The electronic structure of Aluminum was studied by different scholars
analytically. However the electronic and structural properties of Aluminum is not
well studied computationally. So the aim of this research is to study electronic and
structural properties of Aluminum based on density functional theory using quantum

espresso package for the exchange-correlation energy.

1.2 Statement of the problem

It is clear that many body problems are complicated and difficult to solve. That
is, the state of motion cannot be solved analytically for systems in which three or
more distinct electrons interact. In recent years, there has been remarkable surge
activity in the application of density functional techniques to many body systems
such as molecular and solid state systems and to problems of chemical interest. The
fundamental tenet of density functional theory is that any property of the system of
many interacting particles can be viewed as a functional of the ground state density
no(r); that is one scalar function of position ng(r) , in principle determines all the
information in the many body wave functions for the ground state [12]. So the purpose

of this study was to investigate the structural and electronic properties of Al with the



help of density functional theory or ab-Initio techniques.

1.3 Objectives

e General objective

The general objective of this study was to calculate the electronic and structural

properties of Aluminum with respect to density functional theory.
e Specific objectives
Specific objectives of this study were:

1. To calculate the total minimum energy of Aluminum per atom with respect to

cutoff energy ;

2. To calculate the total minimum energy of Aluminum per atom with respect to

k.points sampling;

3. To calculate the total minimum force of Aluminum per atom with respect to

cutoff energy ;

4. To calculate the total minimum force of Aluminum per atom with respect to

k.point sampling;

5. To calculate the lattice constant of Aluminum per atom with respect to cutoff

energy;

6. To calculate the total minimum energy of Aluminum with respect to degauss/smearing

for different k.point sampling.



1.4 Significance of the study

The significance of this study would help to understand the electronic and structural
property of many electron system ( Aluminum) using new computational technique

known as ab-initio technique.It also helps to practice new problem solving technique.

1.5 Scope of the study

The scope of this study were limited to the calculation of the total minimum energy
of Aluminum, total minimum force of Aluminum ,lattice constant of Aluminum with
respect to cutoff energy and total minimum energy of Aluminum with respect to

smearing for different k.point sampling.



Chapter 2

Literature Review

2.1 Introduction

Any problem in the electronic structure of matter is covered by Schrodinger equa-
tion including the time. In most cases, however, one is concerned with atoms and
molecules with out time -dependent interaction, so we may focus on the time - inde-
pendent Schrodinger equation [13]. Solving the Schrodinger equation to obtain en-
ergies and forces, require only the atomic numbers of the constituents as input, and
should describe the bonding between the atoms with high accuracy. The Schrodinger
equation for the complex many-atom, many-electron system is not analytically solv-
able, and numerical approaches have become invaluable for physics, chemistry, and

materials science [14].

2.2  Schrodinger’s equation

All materials are composed of atomic nuclei and electrons. The macroscopic material
properties that we observe only depend on the position of these electrons and ions.
Thus knowing only the type of atoms the material is made of is in principle enough

to calculate the wave function and energy of the system using the (time independent)



Schrodinger equation.The stationary Schrodinger equation [15] is calculated as:
HV = EV (2.2.1)

Where H is the Hamiltonian and E the total energy of the system. The solution to
this equation gives us the total wave function ¥ which in principle contains all wanted
properties of the system and is therefore essential in quantum mechanics. The goal is
therefore to find this wave function or equivalently, as in the case of DF'T, the density
n(r) = |V

For the many-body problem of a system containing N electrons and K nuclei with
charge Z; the Hamiltonian calculated as [16, 17].

Y 22 % . Z2
Z _; 2m11 471'6022‘7’1—7’]‘ 4re ZZ|

=1

The first to terms represent the kinetic energy of the electrons and nucleons, T, and T,.
The third term represents the electrostatic repulsion between the electrons,V,.. The
fourth term represents the electrostatic attraction between the electrons and nuclei,
Ve, and the last term between the nuclei,V,,,,. m, is the mass of the electrons, and M;
the mass of the cores. Z; is the number of protons in each core, I. This looks rather
complicated. It turns out that the stationary Schrodinger equation can only be solved
analytically for a one-electron system, e.g. the hydrogen atom or the ionized helium
atom He™. So, to be able to continue, certain approximations have to be made.
As a first approximation one usually makes the Born-Oppenheimer approximation

[18], which is justices by the fact that the nuclei (ions) are much heavier than the



electrons, M; >> m, In most cases, this justify a time-scale separation by saying
that the electrons immediately adapt to changes in the positions of the ions. This
means that the electronic and ionic system can be treated separately and for the
electrons the ions can be regarded as fixed. We can therefore drop the ionic kinetic
energy term and the ion-ion interaction term in the Hamiltonian and only consider
the terms involving electrons.

V- I 1 & Zre
HBO:_Z 47‘(’6021; 1_7"3| 477.6022 |Tz‘_R[‘ (2.2_3)

=1

If we denote the interaction of electron i with the ions V,,(r;) and use Hartree atomic

1
4meg

:__Zv2 ZZV_HJFZVW” (2.2.4)

The Hamiltonian H(t) = T + V(t) + W is assumed to consist of the kinetic energy,

units h=m, =e = =1, we can write the Hamiltonian as

spin-independent single-particle potential and some spin-independent particle-particle

interaction.

2.3 Density functional theory

Density Functional Theory (DFT) is the model of choice for understanding condensed
matter at low energies. It has achieved a certain status as a standard first-principles
method. Indeed for many, though not all, significant condensed-matter phenomena
DFT is a powerful analytic tool for studying electronic, vibrational, magnetic, super-
conducting among others [19].

Density Functional Theory (DFT) is a quantum mechanical technique used in Physics

and chemistry to investigate the structural and electronic properties of many body
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systems. DFT has proved to be highly successful in describing structural and elec-
tronic properties in a vast class of materials, ranging from atoms and molecules to
simple crystals and complex extended systems (including gasses and liquids). Fur-
thermore DFT is computationally very simple. For these reasons DFT has become
a common tool in first-principles calculations aimed at describing or even predicting
properties of molecular and condensed matter systems [20, 21, 22].

Traditional methods in electronic structure theory, in particular Hartree-Fock theory
and its descendents are based on the complicated many-electron wave function. The
main objective of density functional theory is to replace the many-body electronic
wave function with the electronic density as the basis quantity. Whereas the many-
body wave function is dependent on 3N variables, three special variables for each of
the N electrons, the density is only a function of three variables and is a simpler
quantity to deal with both conceptually and practically [8].

The basic foundations of DFT were provided in 1964 by Hohenberg and Kohn with
their two fundamental theorems. In 1965 the major milestone in the development of
DFT was introduced by Hohenberg,Kohn and Sham(HKS).They gave the proofs of
these theorems by showing that DFT was an exact theory in same sense as the wave

function theory [23].

2.4 The Hohenberg-Kohn theorems

The Hohenberg-Kohn formalism [23] of DFT is based on two theorems:
Theorem I
For any system of interacting particles in an external potential V,,;(r), the potential

Veet(r) is determined uniquely, up to a constant, by the ground state particle density,

11



ng(r).

Theorem II
The second HK theorem defines energy functional for the system and proves that
the correct ground state electron density minimizes this energy functional [24].The

energy functional of the density E [n] is:
E[n] = /drth(r)n(r) + F[n] (2.4.1)

Where F[n] is a universal functional of the density and incorporates the kinetic and
the potential energy.Once the external potential V() has been fixed, the energy
functional E [n] has its minimum, the ground state energy Ej , at the physical ground
state density ng(r):

The Hohenberg-Kohn (HK) theorems have the limited purpose to prove that a univer-
sal functional of the electron density exists; they do not derive its actual expression.
A direct minimization of the functional is usually not applicable, because no good
expression for the kinetic energy as a functional of n is known, except for simple
metals. The Kohn-Sham (KS) scheme, a reformulation of the theory based on the
KS orbitals instead of the mere density, is the starting-point of most of the actual

calculations.

12



2.5 Kohn-Sham equation

The Density Functional Theory (DFT), in the Kohn-Sham formalism, provides a
powerful computational scheme, which allows to determine exactly the ground-state
properties even of complex systems of interacting particles, simply solving a single
particle like equation.Kohn-Sham density theory [25,26] is widely used for self con-
sistent field electronic structure calculations of the ground state properties of atoms,

molecules, and solids. The Kohn and Sham equations as:

Veat (T)

A

5V 4 V) + Vi) + Vil ) = () (251)

J/

-~

Hks

Where V,,;(r) external potential,i); eigenfunction.

Within the framework of Kohn-Sham DFT (KS DFT), the intractable many-body
problem of interacting electrons in a static external potential is reduced to a tractable
problem of non -interacting electrons moving in an effective potential. The effective
potential includes the external potential and the effects of the Coulomb interactions
between the electrons, e.g., the exchange and correlation interactions. Modeling the

latter two interactions becomes the difficulty within KS DFT [22].

2.6 Exchange-correlation energy

The KS DFT provides a practical procedure to solve the many-body problem by
breaking the problem into a set of single-particle problems. This formalism is exact
but practically still unsolvable since the many-body wave functions are still included

in the exchange-correlation term Exc[n], whose exact form is not known.

13



To make the formalism useful, it is necessary to make some approximations for the
exchange-correlation term Exc[n|. The most common and straightforward approxi-
mation to Exc|[n] is the Local Density Approximation (LDA) [23].

The idea of the LDA is assuming that the exchange-correlation energy per electron
of a non-uniform system at any point in space is equal to the exchange-correlation
energy per electron in a uniform electron gas having the same density at this point.

In LDA the exchange-correlation functional can be written as
B2 = [ a7 eulnln(T) (261)

With

€pe[n] = vriformp] (2.6.2)

xc

By definition, the LDA is local because the exchange correlation energy €,.[n| at each
point in space only depends on the electron density at the same point. The €,.[n] has
been calculated and parameterized through Monte Carlo total energy calculation for
a uniform electron gas with a variety of electron densities [27, 28].

Since the LDA is based on uniform electron gas, it is expected to be accurate only
for systems in which the electron density varies slowly. It is clearly not suitable for
the situations where the electron density undergoes rapid changes, as in the case of
covalent bounded solids. To overcome this deficiency of the LDA, another form of
exchanged-correlation functional has been developed, that is the Generalized Gradient
Approximation (GGA) [29-30].The GGA functional depends on the local electron
density as well as the spatial variation of the electron density that is represented by

the density gradient. The GGA functional can be written as
ES¢An) = /d7exc[n]Fxc[n, Vnln(r) (2.6.3)

14



The E$%A[n] is the exchange correlation energy per particle of an electron gas and
F,. is a functional of the electron density and its gradient. The GGA method gives
better total energies, especially for small molecules, but computationally it is more
time consuming than LDA [31]. Generally, GGA has the following advantages over
LDA [32, 33-34]:

e GGA improves ground state properties for light atoms, molecules and clusters.

e GGA predicts the correct magnetic properties of 3d transition metals such as

body centered iron.

e Though GGA seems to be superior compared to LDA, it has several drawbacks.
A GGA method fails to accurately treat the hydrogen bond. This defect is

clearly manifested through expansion and hence softening of bonds [35]

2.7 Periodic supercells

We defined the shape of the cell that is repeated periodically in space, the supercell,
by lattice vectors ay, as, and az. If we solve the Schroodinger equation for this periodic

system, the solution must satisfy a fundamental property known as Bloch’s theorem.

2.7.1 Bloch’s theorem

Bloch’s theorem states that in a periodic solid each electronic wave function can be

written as the product of cell-periodic part and wave like part[36].

= 4

Uy (r) = e T uy(r) (2.7.1)

Where wug(r) is periodic in space with the same periodicity as the supercell. That

is, ug(r + niay + noas + ngas) = ug(r) for any integers nq,no, and ns. This theorem

15



means that it is possible to try and solve the Schrodinger equation for each value of
k independently.

The cell-periodic part of the wave function can be expanded using a basis set consist-
ing of a discrete set of plane waves whose wave vectors are reciprocal lattice vectors

of the crystal,

u(r) = Z ciqe (2.7.2)

G
Where the reciprocal lattice vectors G are defined by G.I = 27n for all [ where [

is a lattice vector of the crystal and n is an integer. Therefor each electronic wave

function can be written as a sum of plane waves,

\Ifk(r) = Z Ci,k+G€[i(k+G)'T] (273)
G

The electronic wave functions at each k.point are now expressed in terms of a discrete
plane wave basis set. In principle this Fourier series is infinite. However, in practice
we cannot work with an infinite basis set, it has to be truncated. The number of
plane waves can be restricted by placing an upper boundary to the kinetic energy of

the plane waves. This boundary is called energy cut-off E.,;.

2.7.2 Energy cutoffs

Our lengthy discussion of k space began with Bloch’s theorem, which tells us that

solutions of the Schrodinger equation for a supercell have the form

Ry 4

(1) = e Ty (r) (2.7.4)

where wuy(r) is periodic in space with the same periodicity as the supercell. It is now

time to look at this part of the problem more carefully. The periodicity of ug(r)

16



means that it can be expanded in terms of a special set of plane waves:

ug(r) = Z cige' " (2.7.5)

G

where the summation is over all vectors defined by G = n1b; +nobs +n3bs with integer
values for n;. These set of vectors defined by G in reciprocal space are defined so that
for any real space lattice vector I; ,G.l = 27n.

Combining the two equations above gives

Uy(r) = Z Ciprgel T (2.7.6)
G

According to this expression, evaluating the solution at even a single point in k space
involves a summation over an infinite number of possible values of G. This does not
sound too promising for practical calculations! Fortunately, the functions appearing
in Eq. (2.7.6) have a simple interpretation as solutions of the Schrodinger equation:

they are solutions with kinetic energy
E = h—2|k: + G|? (2.7.7)
2m
It is reasonable to expect that the solutions with lower energies are more physically
important than solutions with very high energies. As a result, it is usual to truncate

the infinite sum above to include only solutions with kinetic energies less than some

value:
h2
Ecut == %qut (278)
The infinite sum then reduces to
\Ijk(T) = Z CG+ke[i(K+G)T (279)
|G+E|<Geut

17



This expression includes slightly different numbers of terms for different values of
k. The discussion above has introduced one more parameter that must be defined
whenever a DFT calculation is performed the cutoff energy,E.,;. In many ways, this
parameter is easier to define than the k.points , as most packages will apply sensible
default settings if no other information is supplied by the user. Just as with the k.
points , it is good practice to report the cutoff energy used in your calculations to

allow people to reproduce your results easily [37].

2.7.3 K.points sampling

The solution that is used most widely was developed by Monkhorst and pack in 1976.
Using these methods, one can obtain an accurate approximation for the electronic
potential and the total energy of an insulate or semiconductor by calculating the
electronic states at a very small number of k.points. The electronic potential and
total energy are more difficult to calculate if the system is metallic because a dense
set of k.points is required to define the Fermi surface precisely. The magnitude of any
error in the total energy due to inadequacy of the k.points sampling can always be
reduced by using a denser set of k.points. The computed total energy will converge as
the density of k.points increases, and the error due to the k.point sampling approaches
Zero.

In principle, a converged electronic potential and total energy can always be obtained
provided that the computational time is available to calculate the electronic wave
functions at sufficiently dense set of k.points. The computational cost of performing a
very dense sampling of k.space can be significantly reduced by using the k.point total

energy method [38-39].
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2.7.4 Plane wave basis sets

Bloch’s theorem states that the electronic wave functions at each k.point can be
expanded in terms of a discrete plane-wave basis sets.

In principle, an infinite plane wave basis set is required to expand the electronic wave
function. However, the coefficients C; gt for the plane waves with small kinetic
energy. %|K +G|? are typically more important than those with large kinetic energy.
Thus, the plane wave basis set can be truncated to include only plane waves that
have kinetic energies less than some particular cutoff energy. If a continuum of plane
wave basis states were required to expand each electronic wave function,the basis set
would be infinitely large number matter how small the cutoff energy. Application of
the Bloch theorem allows the electronic wave functions to expanded in terms of a
discrete set of plane waves. Introduction of any energy cutoff to discrete plane wave
basis set produces a finite basis set.

The truncation of plane wave basis set at a finite cutoff energy will lead to an error in
the computed total energy. However, it is possible to reduced the magnitude of the
error by increasing the value of cutoff energy. In principle, the cutoff energy should

be increased until the calculated total energy has converged [40].

2.8 Pseudopotentials

From the earliest developments of plane-wave methods, it was clear that there could
be great advantages in calculations that approximated the properties of core electrons
in a way that could reduce the number of plane waves necessary in a calculation.

The most important approach to reducing the computational burden due to core

electrons is to use pseudopotentials. Conceptually, a pseudopotential replaces the
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electron density from a chosen set of core electrons with a smoothed density chosen
to match various important physical and mathematical properties of the true ion core.
The properties of the core electrons are then fixed in this approximate fashion in all
subsequent calculations; this is the frozen core approximation. Calculations that do
not include a frozen core are called all-electron calculations, and they are used much
less widely than frozen core methods.

A pseudopotential is developed by considering an isolated atom of one element, but
the resulting pseudopotential can then be used reliably for calculations that place this
atom in any chemical environment without further adjustment of the pseudopotential.
This desirable property is referred to as the transferability of the pseudopotential.
The details of a particular pseudopotential define a minimum energy cutoff that
should be used in calculations including atoms associated with that pseudopoten-
tial. Pseudopotentials requiring high cutoff energies are said to be hard, while more
computationally efficient pseudopotentials with low cutoff energies are soft. The most
widely used method of defining pseudopotentials is based on work by Vanderbilt; these
are the ultrasoft pseudopotentials (USPPs). As their name suggests, these pseudopo-

tentials require substantially lower cutoff energies than alternative approaches [37].

2.9 Self-consistent-field calculation

In (1897-1958) D. R. Hartree came up with the first idea of getting Self Consistent
Field (SCF) solutions to a many-electron problem as a strategy to break the state.
D. R. Hartree was helped by his father, William Hartree, in solving the numerical
problems involved in solving the SCF problem [41,42-43]. Here we focus discussion

on SCF in DFT calculations, the most time-consuming part of an SCF calculation is
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in matrix diagonalization, which consists of computing the self-consistent solutions of

the following Kohn-Sham equation (in atomic units):

[+ Venn(r), (1) = s 29.1)

Where 9;(r) is a wave function, ¢; is a Kohn-Sham eigenvalue. The external potential

Vewt(n(1),7) = Vien(r) + Vi (n(r),r) + Vie(n(r),r), (2.9.2)

includes the ionic potential V;,,, the Hartree potential V5 and the exchange-correlation
potential V.. In DFT the external potential depends only on n(r)the charge density.

The charge density is given by

Noce
n(r) =2 [i(r)P, (2.9.3)

i=1
where 7, is the number of occupied states (half the number of valence electrons in
the system) and the factor of two comes from spin multiplicity. Self-consistent iter-
ations for solving this problem consist of starting with an initial guess of the charge
density n(r), then obtaining a guess for V., and solving Kohn-Sham equation for
wave function v;(r) to update charge density and external potential. Then Kohn-
Sham equation is solved again for the new wave function and the process is carried
on until the difference between two consecutive external potential is below a certain

tolerance (equivalently, the wave functions are close to stationary)[44].
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2.9.1 Algorithm Self-Consistent Iteration

The SCF method is an iterative procedure which yields a self-consistent set of wave

functions and orbital energies. It consists of the following steps.
1. An initial guess for the charge density.
2. Solve [—%2 + Vege(n(r), r)|bi(r) = e;h;(r) for wave function ¢;(r), i = 1,2, ..
3. Compute new charge density n(r) =237 [;(r)]?
4. Solve for new Hartree potential V.
5. Update V,. and Vj,,.

6. If the wave function does not satisfy the right boundary condition, we return to
step 3 in order to make another guess for the energy ¢;(r). If the wave function
satisfies the right boundary condition, the calculation returns to step 2 and the

newly obtained ;(r) plays the role of wave functions [45].
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Chapter 3

Materials and methods

3.1 Materials

The study was purely theoretically. The main sources of information are the published
articles, books, thesis and dissertations. Softwares and computers are additional

instruments used to accomplish this project.

3.2 Computational methodology

Our calculations would be based on Density Functional Theory (DFT) with the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, Vanderbilt ultra soft
pseudopotentials [46] and the plane wave basis set implemented in the Quantum-
ESPRESSO program package [47]. Quantum ESPRESSO is an integrated suite of
computer codes for electronic-structure calculations and materials modeling based on
density-functional theory (DFT) [22-25], plane waves basis sets (PW) and pseudo
potentials (PP) [48].
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It is freely available and distributed as open-source software under the terms of the
GNU General Public License (GPL). The present applicability of Quantum ESPRESSO
ranges from simple electronic structure calculations to the most sophisticated theoreti-
cal spectroscopy such as Nuclear Magnetic Resonance (NMR), Electron Paramagnetic
Resonance (EPR), Raman and Scanning Tunneling Microscopy, etc. The simulation
tools implemented in Quantum ESPRESSO are used across a wide range of R and
D applications. The relevance of this code has been highlighted by its adoption in a
number of key research groups, renowned institutions as well as in a number of com-
mercial industries. The most important input parameters in Quantum Espresso are
the atomic geometries (number and types of atoms in the periodic cell, bravais-lattice
index, crystallographic or lattice constants), the kinetic energy cutoff and the type of

pseudo potentials [49].
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Chapter 4

Results and discussions

Introduction

In this work , the structural and electronic properties of Aluminum(Al) was calculated
within the frame work of the density functional theory. One of the important aspects
in studied Aluminum is the total minimum energy. Results are mainly presented in
tables and figures. The first results are the total energy per atom and second results
are forces values for bulk Aluminum. Then comes the results for the equilibrium
lattice constants and different smearing for different k.point sampling. The output
files of the computations were use to deduce the tables of energy cutoffs, k.points
and lattice constants against the total energies and graphs were plotted to obtain the

optimized parameters for Al structure with in the both LDA and GGA .

4.1 Total energy of Al per atom with respect to
energy cutoffs

The input here has 6 x 6 x 6 = 216 k. point’s mesh; some of these k. points have the
same energy because of the symmetry of the crystal. The calculation was done using

different cutoff values, from 20 to 150 Ry and lattice constant of 7.50 Bohr.
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Table 4.1: The results of the total minimum energy computed with energy cutoffs

Energy cutoffs(Ry) | Total energy(Ry)
20 -4.18846340
30 -4.18947981
40 -4.18986824
50 -4.18993525
60 -4.18993525
70 -4.18993544
80 -4.18993569
90 -4.18993586
100 -4.18993593
110 -4.18993595
120 -4.18993596
130 -4.18993595
140 -4.18993596
150 -4.18993596

4.1.1 Convergence test of total minimum energy of Al with
respect to energy cutoffs
Here we see that, the total minimum energy of Al is calculated as a function of energy
cutoff. An increment of energy cutoff for wave function is made until the convergence
is achieved. As we can see from the Fig4.1, the total minimum energy converge at 50
Ry plane wave cutoff energy and the total ground state energy had its minimum at
—4.18993525 Ry . Moreover the total minimum energy is monotonically decreasing
with increasing energy cutoffs for wave function. The accuracy of the ground state
energy depends on the number of basis functions. However, we can get energy that

close to ground state energy as the number of basis functions approaches infinity.
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Figure 4.1: Total minimum energy of Al with respect to energy cutoffs
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4.2 Total minimum energy of Al with respect to
K.point grid sampling

In this case, the calculation was done using different k.point’s values from 2 x 2 x 1
to 28 x 28 x 1 mesh with 2.0 points. Here the other variables such as lattice constant,

energy cutoff, are keeping fixed.

Table 4.2: The results of the total minimum energy of Al computed with K.points
grid

K. points grid | Total energy (Ry)
2 -4.18262858
4 -4.18761179
6 -4.18846340
8 -4.18914036
10 -4.18925069
12 -4.18921005
14 -4.18918761
16 -4.18918792
18 -4.18918878
20 -4.18918870
22 -4.18918833
24 -4.18918860
26 -4.18918852
28 -4.18918864

4.2.1 Convergence test of total energy of Al with respect to
K.point grid sampling

Here we can see that, the total minimum energy of Aluminum is calculated as a

function of k.points grid size using PWSCF code. For this calculation, the other

variables (lattice constant, energy cutoff) are kept constant. The total energy of Al

versus k.point’s grid size is shown in Figure 4.2. Here it can be observed that the

total minimum energy of Aluminum converges at 14 x 14 x 14 x 1 k.points grid and

the total ground state energy has its minimum at —4.18918761 Ry .
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Figure 4.2: Total energy of Al with respect to K.point grid size
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4.3 Total minimum forces of Al per atom with re-
spect to energy cutoff

Table 4.3: The result of total forces of Al computed with energy cutoffs

Energy cutoff (Ry) | Total forces ( Ry/Bohr)
20 0.449196
30 0.448343
40 0.448857
50 0.448845
60 0.448835
70 0.448834
80 0.448833
90 0.448834
100 0.448832
110 0.448829
120 0.448835
130 0.448833
140 0.448831
150 0.448829

4.3.1 Convergence test of total force of Al with respect to
energy cutoffs
In this calculations, we see that the forces on Al are zero in x ,y and z directions.This
is because of symmetry,which cancels out forces. However, it is possible to create
forces by displacing a aluminum atom + 0.05 Bohr in the z directions (fractional
coordinates). Here we calculated total force on Al as a function of plane wave cutoff
energy by keeping other parameters fixed. For this calculation, we used the lattice
constants a = 7.50 Bohr and 6 x6 x 6 x 1 k .points grid. In this simulation convergence
is achieved when the energy cutoff is equal to 60 Ry. A total force value at this energy
cutoff is 0.448835 Ry/ Bohr.
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Figure 4.3: Total forces of Al with respect to energy cutoffs
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4.4 'Total force of Al per atom with respect to
K.point sampling

Table 4.4: The result of total force of Al computed with K.point grid

K.points grid | Total forces (Ry/Bohr)
2 0.447652
3 0.451531
4 0.447882
5 0.448995
6 0.449196
7 0.448663
8 0.449014
9 0.448837
10 0.448830
11 0.448876
12 0.448830
13 0.448847
14 0.448847
15 0.448844

In this case, we have calculated the force on 0.05 Bohr displaced Al as a function
of k.point grid size, by keeping other parameters (lattice constant, energy cutoff) con-
stant. The calculated force with respect to k.point grid is shown above in table 4.4.
Moreover the trend of total force for increment of grid size is described in Fig4.4. As
it is observed in Figure, the total force converge at the grid size of 9 x 9 x 1 k.point
mesh; and its value is 0.448837 Ry/Bohr. Generally, it is true that different struc-
tural geometries will require different k.point meshes in order to reach convergence.
However, the change in required k.point density for a slight shift in atoms is expected
to be large than the change in required k.point density if we completely change the

crystal symmetry for basic centered cubic to face centered cubic.
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Figure 4.4: Total force of Al with respect to k.point grid size
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4.5 The equilibrium lattice constant of Al

Table 4.5: The result of total energy of Al computed versus lattice constant

Lattice constant (Bohr) | Total energy Ry)
6.2 -4.04683272
6.4 -4.09640121
6.6 -413250305
6.8 -4.15777158
7.0 -4.17436079
7.2 -4.18400582
7.4 -4.18809055
7.6 -4.18788244
7.8 -4.18436495
8.0 -4.17844531
8.2 -4.17081838
8.4 -4.16205111
8.6 -4.15256902
8.8 -4.14268531
9.0 -4.13260656

4.5.1 Convergence test of total energy of Al with versus lat-
tice constant

To find the equilibrium lattice constant of aluminum we perform total energy calcu-

lation for a series of plausible parameters. In this calculation the energy cutoff and

the k.point sampling are made fixed (50 Ry,14 x 14 x 1 k.point) using the cutoff and

k.point grid criteria for energy convergence. The numerical calculation shows that

the equilibrium lattice constant is 7.4 Bohr. This result is in good agreement with

experimental value.
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4.6 Total energy of Al with respect to degauss/smearing

Degauss is the electronic temperature; it controls the broadening of the occupation

numbers around the Fermi energy and smearing used to select occupation distribu-

tion; there are two options: Fermi-Dirac smearing (fd); cold-smearing (cs) including

marzari-vanderbilt(m-v), Methfessel-Paxton(M-P) and Gaussian(Ga).

In this calculation, the plane wave cutoffs for wave functions are fixed is 20 Ry and

Brillouin Zone integrations have been performed using different smearing from 0.04

up to 0.19 over shifted Monkhorst-Pack meshes of order 6 x 6 x 1 for the face central

cubic (fcc). Here we see that, the an increment of the smearing are necessary to

obtain fully converged total minimum energy of Al.

4.6.1 Total energy of Al with smearing for 6 x 6 x 1 k.point

grid

Table 4.6: The result of total energy of Al computed with smearing

[ Smearing | Total energy(Ry) in (m-v) [ Total energy(Ry) in(m-p) [ Total energy(Ry) in (ga) [ Total energy(Ry) in (f-d)
0.04 -4.18835466 -4.18857321 -4.19077017 -4.20297416
0.05 -4.18836914 -4.18855767 -4.19200130 -4.21098514
0.06 -4.18846340 -4.18854687 -4.19351577 -4.22073630
0.07 -4.18861398 -4.18854998 -4.19530945 -4.23223843
0.08 -4.18880064 -4.18857333 -4.19737585 -4.24549811
0.09 -4.18900688 -4.18861820 -4.19970845 -4.26051439
0.10 -4.18921827 -4.18867873 -4.20230236 -4.27727878
0.11 -4.18942586 -4.18874550 -4.20515502 -4.29577619
0.12 -4.18962864 -4.18880954 -4.20826601 -4.31598586
0.13 -4.18983216 -4.18886426 -4.21163628 -4.33788211
0.14 -4.19004533 -4.18890584 -4.21526751 -4.36143498
0.15 -4.19027770 -4.18893276 -4.21916159 -4.38661068
0.16 -4.19053804 -4.18894514 -4.22332033 -4.41337204
0.17 -4.19083396 -4.18894416 -4.22774525 -4.44167898
0.18 -4.19117196 -4.18893152 -4.23243757 -4.47148888
0.19 -4.19155781 -4.18890916 -4.23739816 -4.50275710

36




4.6.2 Total energy of Al with smearing for 8 x 8 x 1 k.point

grid

Table 4.7: The result of total energy of Al computed with smearing

Smearing | Total energy (Ry)in(m-v) | Total energy (Ry)in (m-p) | Total energy (Ry) in (ga) | Total energy (Ry) in (f-d)
0.04 -4.18928243 -4.18935737 -4.19134283 -4.20317625
0.05 -4.18918156 -4.18925293 -4.19248607 -4.21110005
0.06 -4.18914036 -4.18917191 -4.19392596 -4.22079761
0.07 -4.18916559 -4.18912469 -4.19565145 -4.23226916
0.08 -4.18924049 -4.18910380 -4.19765274 -4.24551230
0.09 -4.18934517 -4.18909673 -4.19992418 -4.26051998
0.10 -4.18946637 -4.18909361 -4.20246343 -4.27728003
0.11 -4.18959914 -4.18908893 -4.20527005 -4.29577532
0.12 -4.18974466 -4.18908047 -4.20834436 -4.31598402
0.13 -4.18990738 -4.18906778 -4.21168692 -4.33787992
0.14 -4.19009300 -4.18905107 -4.21529823 -4.36143279
0.15 -4.19030738 -4.18903071 -4.21917867 -4.38660875
0.16 -4.19055615 -4.18900694 -4.22332852 -4.41337060
0.17 -4.19084461 -4.18897985 -4.22774796 -4.44167826
0.18 -4.19117779 -4.18894947 -4.23243712 -4.47148915
0.19 -4.19156047 -4.18891584 -4.23739603 -4.50275859

4.6.3 Total energy of Al with smearing for 10 x 10 x 1 k.point

and 12 x 12 x 1 k.point grid

Here there are two tables, first for the total energy of Al with smearing for 10 x 10 x 1

k.point and second for 12 x 12 x 1 k.point grid size as shown below.
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Table 4.8: The result of total energy of Al computed with smearing

Smearing | Total energy (Ry) in (m-v) | Total energy (Ry) in (m-p) | Total energy (Ry) in (ga) | Total energy (Ry) in (f-d)
0.04 -4.18935781 -4.18927415 -4.19132533 -4.20317584
0.05 -4.18928439 -4.18922485 -4.19248761 -4.21109918
0.06 -4.18925069 -4.18917768 -4.19393140 -4.22079714
0.07 -4.18926558 -4.18913985 -4.195653665 -4.23226923
0.08 -4.18931934 -4.18911263 -4.19765079 -4.24551278
0.09 -4.18940051 -4.18909484 -4.19991986 -4.26052069
0.10 -4.18950164 -4.18908383 -4.20245874 -4.27728086
0.11 -4.18961992 -4.18907600 -4.20526620 -4.29577620
0.12 -4.18975619 -4.18906818 -4.20834180 -4.31598490
0.13 -4.18991355 -4.18905812 -4.21168557 -4.33788075
0.14 -4.19009632 -4.18904455 -4.21529780 -4.36143353
0.15 -4.19030930 -4.18902694 -4.21917886 -4.38660935
0.16 -4.19055742 -4.18900519 -4.22332908 -4.41337098
0.17 -4.19084561 -4.18897941 -4.22774873 -4.44167831
0.18 -4.19117868 -4.18894978 -4.23243798 -4.47148875
0.19 -4.19156132 -4.18891653 -4.23739694 -4.50275765
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Table 4.9: The result of total energy of Al computed with smearing

Smearing | Total energy (Ry) in (m-v) | Total energy (Ry) in (m-p) | Total energy (Ry) in (ga) | Total energy (Ry) in (f-d)
0.04 -4.18919237 -4.18905779 -4.19121756 -4.20316832
0.05 -4.18919624 -4.18907445 -4.192422439 -4.21109815
0.06 -4.18921005 -4.18907679 -4.19389599 -4.22079818
0.07 -4.18924918 -4.18907489 -4.19563540 -4.23227089
0.08 —4.18931389 -4.18907414 -4.19764273 -4.24551460
0.09 -4.18939960 -4.18907486 -4.19991737 -4.26052253
0.10 -4.18950248 -4.18907530 -4.20245896 -4.27728269
0.11 -4.18962143 -4.18907368 -4.20526759 -4.29577802
0.12 -4.18975797 -4.18906874 -4.20834362 -4.31598671
0.13 -4.18991547 -4.18905980 -4.21168752 -4.33788258
0.14 -4.19009832 -4.18904656 -4.21529977 -4.36143541
0.15 -4.19031134 -4.18902900 -4.21918083 -4.38661131
0.16 -4.19055949 -4.18900724 -4.22333104 -4.41337308
0.17 -4.1908469 -4.18898144 -4.22775067 -4.44168062
0.18 -4.19118077 -4.18895181 -4.23243991 -4.47149134
0.19 -4.19156342 -4.18891856 -4.23739886 -4.50276060

4.7 Convergence test of the total minimum energy

of Al with smearing for different k.point sam-

pling

In this part, the total minimum energy of Al is calculated as a function of smearing.

An increment of smearing for different k.point sampling is made until the convergence

is achieved. Here we can see that,the four different colors describe the smearing type

methods with different k.point sampling as shown in Figure 4.6 .
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Figure 4.6: The plots of smearing for different k.point sampling
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For metals convergence is very slow.The total minimum energy converges very fast
using Marzari-Vanderbilt (M-v)or Methefessel-Paxton(M-P) smearing as compared to
Gaussian(Ga) or Fermi-Dirac(F-D) smearing for the given values of degauss. More-
over we have checked the convergence of the minimum energy for different values

smearings varing the k.point sampling. However, the difference is not considerable.
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Chapter 5

Conclusion

The electronic and structural properties of Aluminum (Al) was investigated within
the frame work of the density functional theory, plane wave basis sets, and pseudo
potentials (ultra-soft). All calculations have been carried out with Quantum Espresso
package( software). The total minimum energy calculation is performed as a function
of cutoff energy and Monkhorst pack-grid size, respectively fixing the other parameters
constant.the total energy convergence test is achieved, at the energy cutoff 50 Ry for
the first case and at 14 x 14 x 1 k.point grid size for the second case. The total
minimum energy is —4.18993525 Ry for the first case and —4.18918761 Ry for the
second case. The total minimum force on Al as a function of cutoff energy and
Monkhorst-Pack grid is calculated by displacing Al atom by 0.05 Bohr. Total force
convergence test is achieved for the cutoff energy 60 Ry and for Monkhorst-Pack grid
at 9 x 9 x 1 k.point grid size. Our numerical calculation shows that the equilibrium
lattice constant is 7.4 Bohr. This result is in good agreement with experimental
value. Finally, for Al metallic systems, the choice of smearing function is also a

major consideration to minimizing the electronic energy in a DFT calculation.The
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different smearing calculation was performed with Marzari-Vanderbilt, Methfessel-
Paxton , Gaussian and Fermi-Dirac function for four different k.point mesh. The
result shows that, the convergence in cold smearing is very fast than Fermi-Dirac

smearing.
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