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Abstract

In this study the electronic and structural properties of Aluminum (Al) were inves-

tigated with respect to density functional theory by using Quantum Espresso Pack-

age.The local density approximation (LDA) and the generalized gradient approxima-

tion (GGA) were used to compute the exchange correlation energy.The total minimum

energy of Aluminum is performed as a function of cutoff energy and Monk horst- pack

grid size .The results show that, the total minimum energy per atom is monotonically

decreasing with increasing cutoff energy due to variational principle.However,there is

no systematic trend can be predicted from just increasing the k.point sampling .The

total minimum force on Al is computed by displacing Al atom as a function of cut-

off energy and k.point grid size by 0.05 Bohr. Moreover, the total minimum force is

converged at the cutoff 60 Rydberg and Monk horst-pack mesh of 9× 9× 1 k.point.In

Addition to this, the equilibrium lattice constant is calculated with different lattice con-

stant.The computational value of the equilibrium lattice is 7.4 Bohr.This result is in

good agreement with experimental value. Finally, the four different smearing schemes:

Marzari-Vanderbilt, Methfessel -Paxton, Gaussian and Fermi-Dirac are checked for

convergence issues of the total minimum energy.The results show that the total mini-

mum energy converges very slowly for Gaussian (Ga) and Fermi-Dirac smearing.

Keywords:Aluminum,density functional theory,electronic structure,total energy,total

force.
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Chapter 1

Introduction

1.1 General background

Aluminum is the third most abundant element in the earth’s crust [1]. Coming af-

ter oxygen and silicon. It makes up 8% of the crust’s total mass and is the most

abundant metallic element [2]. It is never found free in nature and is found in most

rocks, particularly igneous rocks as alumina silicate minerals [3, 4]. It is a light metal

that is easy to melt, odorless, tasteless, nontoxic, non-magnetic material and has a

high electrical conductivity. In the pure metallic state it oxidizes readily in air to

form a stable oxide surface that resists further corrosion. Because of these properties

Aluminum and its alloys are used extensively in modern industry, technology and

everyday life. Its experimental and theoretical study on an atomic scale is still an

active field of research. From a fundamental point of view Aluminum is interesting

also as a typical nearly-free-electron metal whose basic features can be described by

using electron gas concepts beginning with the simplest model [5].

When metals change from the molten to the solid state, they assume crystalline struc-

tures. The atoms arrange themselves in definite ordered symmetrical patterns which

metallurgists speak of as ”lattice” structures. Aluminium, like copper, silver and
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gold, crystallizes with the face-centred-cubic arrangement of atoms, common to most

of the ductile metals. This means that the atoms form the corners of a cube, with

one atom in the centre of each face.The length of the sides of the cube for high purity

Aluminium has been determined as 4.049 × 10−8 cm; the shortest distance between

two atoms in the Aluminium structure is
√

2 divided by 2× 4.049. The face centred

cubic structure is one of the arrangements assumed by close packed spheres, in this

case with a diameter of 4.049× 10−8 cm, the corners of the cube being at the centre

of each sphere. The metal has an atomic weight of 26.98 and a specific gravity of

2.70, approximately one-third the weight of other commonly used metals; with the

exception of titanium and magnesium [6].

In practical applications aluminum is mainly used in the polycrystalline state, al-

though for theoretical simulations and precise experimental studies mono crystalline

Al is more suitable. Under low and normal pressure it crystallizes in a FCC (face-

centered cube) structure only [7]. Total Energy calculation and molecular dynamic

simulation employing density-functional theory represent a reliable tool in condensed

matter physics, material science, and physical chemistry. A large variety of appli-

cations such as in molecules, bulk materials and surfaces have proven the power of

these methods in analyzing as well as predicting non-equilibrium and equilibrium

properties. Density-functional theory (DFT) is one of the most popular and success-

ful quantum mechanical approaches to matter. It is nowadays routinely applied for

computations of ground state properties of molecules and solids such as the binding

energy of molecules and the band structure of solids in physics. The diamond lattice

structure is very common in semiconductor materials, such as Si, Al and Ge. AlAs,

GaAs and GaP has a zincblende lattice structure which is similar to the diamond
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lattice structure. The diamond and zincblende structures are similar except that in

diamond structure there is only one type of atom where as in zincblende there are

two types of atoms [8].

Calculation of the bulk ground state properties, such as lattice constants, bulk mod-

ulus, cohesive energy, and atomic positions, play an important role in the physics

of condensed matter [9,10]. Bulk calculations help us to understand, characterize,

and predict mechanical properties of materials in surroundings, under extreme con-

ditions [11]. The electronic structure of Aluminum was studied by different scholars

analytically. However the electronic and structural properties of Aluminum is not

well studied computationally. So the aim of this research is to study electronic and

structural properties of Aluminum based on density functional theory using quantum

espresso package for the exchange-correlation energy.

1.2 Statement of the problem

It is clear that many body problems are complicated and difficult to solve. That

is, the state of motion cannot be solved analytically for systems in which three or

more distinct electrons interact. In recent years, there has been remarkable surge

activity in the application of density functional techniques to many body systems

such as molecular and solid state systems and to problems of chemical interest. The

fundamental tenet of density functional theory is that any property of the system of

many interacting particles can be viewed as a functional of the ground state density

n0(r); that is one scalar function of position n0(r) , in principle determines all the

information in the many body wave functions for the ground state [12]. So the purpose

of this study was to investigate the structural and electronic properties of Al with the
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help of density functional theory or ab-Initio techniques.

1.3 Objectives

• General objective

The general objective of this study was to calculate the electronic and structural

properties of Aluminum with respect to density functional theory.

• Specific objectives

Specific objectives of this study were:

1. To calculate the total minimum energy of Aluminum per atom with respect to

cutoff energy ;

2. To calculate the total minimum energy of Aluminum per atom with respect to

k.points sampling;

3. To calculate the total minimum force of Aluminum per atom with respect to

cutoff energy ;

4. To calculate the total minimum force of Aluminum per atom with respect to

k.point sampling;

5. To calculate the lattice constant of Aluminum per atom with respect to cutoff

energy;

6. To calculate the total minimum energy of Aluminum with respect to degauss/smearing

for different k.point sampling.
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1.4 Significance of the study

The significance of this study would help to understand the electronic and structural

property of many electron system ( Aluminum) using new computational technique

known as ab-initio technique.It also helps to practice new problem solving technique.

1.5 Scope of the study

The scope of this study were limited to the calculation of the total minimum energy

of Aluminum, total minimum force of Aluminum ,lattice constant of Aluminum with

respect to cutoff energy and total minimum energy of Aluminum with respect to

smearing for different k.point sampling.

.
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Chapter 2

Literature Review

2.1 Introduction

Any problem in the electronic structure of matter is covered by Schrödinger equa-

tion including the time. In most cases, however, one is concerned with atoms and

molecules with out time -dependent interaction, so we may focus on the time - inde-

pendent Schrödinger equation [13]. Solving the Schrödinger equation to obtain en-

ergies and forces, require only the atomic numbers of the constituents as input, and

should describe the bonding between the atoms with high accuracy. The Schrödinger

equation for the complex many-atom, many-electron system is not analytically solv-

able, and numerical approaches have become invaluable for physics, chemistry, and

materials science [14].

2.2 Schrödinger’s equation

All materials are composed of atomic nuclei and electrons. The macroscopic material

properties that we observe only depend on the position of these electrons and ions.

Thus knowing only the type of atoms the material is made of is in principle enough

to calculate the wave function and energy of the system using the (time independent)
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Schrödinger equation.The stationary Schrodinger equation [15] is calculated as:

HΨ = EΨ (2.2.1)

Where H is the Hamiltonian and E the total energy of the system. The solution to

this equation gives us the total wave function Ψ which in principle contains all wanted

properties of the system and is therefore essential in quantum mechanics. The goal is

therefore to find this wave function or equivalently, as in the case of DFT, the density

n(r) = |Ψ|2.

For the many-body problem of a system containing N electrons and K nuclei with

charge ZI the Hamiltonian calculated as [16, 17].

H = −
N∑

i=1

~2∇2
i

2me

−
K∑

I=1

~2∇2
I

2mI

+
1

4πε0

N∑
i=1

∑
j>i

e2

|ri − rj|
− 1

4πε0

K∑
I=1

N∑
i=1

ZIe
2

|ri −RI |

+
1

4πε0

K∑
I=1

∑
J>I

ZIZJe
2

|RI −RJ |

(2.2.2)

The first to terms represent the kinetic energy of the electrons and nucleons, Te and Tn.

The third term represents the electrostatic repulsion between the electrons,Vee. The

fourth term represents the electrostatic attraction between the electrons and nuclei,

Vne, and the last term between the nuclei,Vnn. me is the mass of the electrons, and MI

the mass of the cores. ZI is the number of protons in each core, I. This looks rather

complicated. It turns out that the stationary Schrödinger equation can only be solved

analytically for a one-electron system, e.g. the hydrogen atom or the ionized helium

atom He+. So, to be able to continue, certain approximations have to be made.

As a first approximation one usually makes the Born-Oppenheimer approximation

[18], which is justices by the fact that the nuclei (ions) are much heavier than the
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electrons, MI >> me In most cases, this justify a time-scale separation by saying

that the electrons immediately adapt to changes in the positions of the ions. This

means that the electronic and ionic system can be treated separately and for the

electrons the ions can be regarded as fixed. We can therefore drop the ionic kinetic

energy term and the ion-ion interaction term in the Hamiltonian and only consider

the terms involving electrons.

HBO = −
N∑

i=1

~2∇2
i

2me

+
1

4πε0

N∑
i=1

∑
J>i

e2

|ri − rj|
− 1

4πε0

K∑
I=1

N∑
i=1

ZIe
2

|ri −RI |
(2.2.3)

If we denote the interaction of electron i with the ions Vext(ri) and use Hartree atomic

units ~ = me = e = 1
4πε0

= 1 , we can write the Hamiltonian as

H = −1

2

∑
i

∇2
i +

∑
i

∑
J>i

1

|ri − rj|
+

∑
i

Vext(ri) (2.2.4)

The Hamiltonian H(t) = T + V (t) + W is assumed to consist of the kinetic energy,

spin-independent single-particle potential and some spin-independent particle-particle

interaction.

2.3 Density functional theory

Density Functional Theory (DFT) is the model of choice for understanding condensed

matter at low energies. It has achieved a certain status as a standard first-principles

method. Indeed for many, though not all, significant condensed-matter phenomena

DFT is a powerful analytic tool for studying electronic, vibrational, magnetic, super-

conducting among others [19].

Density Functional Theory (DFT) is a quantum mechanical technique used in Physics

and chemistry to investigate the structural and electronic properties of many body
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systems. DFT has proved to be highly successful in describing structural and elec-

tronic properties in a vast class of materials, ranging from atoms and molecules to

simple crystals and complex extended systems (including gasses and liquids). Fur-

thermore DFT is computationally very simple. For these reasons DFT has become

a common tool in first-principles calculations aimed at describing or even predicting

properties of molecular and condensed matter systems [20, 21, 22].

Traditional methods in electronic structure theory, in particular Hartree-Fock theory

and its descendents are based on the complicated many-electron wave function. The

main objective of density functional theory is to replace the many-body electronic

wave function with the electronic density as the basis quantity. Whereas the many-

body wave function is dependent on 3N variables, three special variables for each of

the N electrons, the density is only a function of three variables and is a simpler

quantity to deal with both conceptually and practically [8].

The basic foundations of DFT were provided in 1964 by Hohenberg and Kohn with

their two fundamental theorems. In 1965 the major milestone in the development of

DFT was introduced by Hohenberg,Kohn and Sham(HKS).They gave the proofs of

these theorems by showing that DFT was an exact theory in same sense as the wave

function theory [23].

2.4 The Hohenberg-Kohn theorems

The Hohenberg-Kohn formalism [23] of DFT is based on two theorems:

Theorem I

For any system of interacting particles in an external potential Vext(r), the potential

Vext(r) is determined uniquely, up to a constant, by the ground state particle density,
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n0(r).

Theorem II

The second HK theorem defines energy functional for the system and proves that

the correct ground state electron density minimizes this energy functional [24].The

energy functional of the density E [n] is:

E[n] =

∫
drVext(r)n(r) + F [n] (2.4.1)

Where F [n] is a universal functional of the density and incorporates the kinetic and

the potential energy.Once the external potential Vext(r) has been fixed, the energy

functional E [n] has its minimum, the ground state energy E0 , at the physical ground

state density n0(r):

E0 = E[n0] (2.4.2)

The Hohenberg-Kohn (HK) theorems have the limited purpose to prove that a univer-

sal functional of the electron density exists; they do not derive its actual expression.

A direct minimization of the functional is usually not applicable, because no good

expression for the kinetic energy as a functional of n is known, except for simple

metals. The Kohn-Sham (KS) scheme, a reformulation of the theory based on the

KS orbitals instead of the mere density, is the starting-point of most of the actual

calculations.
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2.5 Kohn-Sham equation

The Density Functional Theory (DFT), in the Kohn-Sham formalism, provides a

powerful computational scheme, which allows to determine exactly the ground-state

properties even of complex systems of interacting particles, simply solving a single

particle like equation.Kohn-Sham density theory [25,26] is widely used for self con-

sistent field electronic structure calculations of the ground state properties of atoms,

molecules, and solids. The Kohn and Sham equations as:

[−1

2
∇2 +

Vext(r)︷ ︸︸ ︷
V (r) + VH(r) + Vxc(r)]︸ ︷︷ ︸

HKS

ψi(r) = εiψi(r) (2.5.1)

Where Vext(r) external potential,ψi eigenfunction.

Within the framework of Kohn-Sham DFT (KS DFT), the intractable many-body

problem of interacting electrons in a static external potential is reduced to a tractable

problem of non -interacting electrons moving in an effective potential. The effective

potential includes the external potential and the effects of the Coulomb interactions

between the electrons, e.g., the exchange and correlation interactions. Modeling the

latter two interactions becomes the difficulty within KS DFT [22].

2.6 Exchange-correlation energy

The KS DFT provides a practical procedure to solve the many-body problem by

breaking the problem into a set of single-particle problems. This formalism is exact

but practically still unsolvable since the many-body wave functions are still included

in the exchange-correlation term EXC [n], whose exact form is not known.
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To make the formalism useful, it is necessary to make some approximations for the

exchange-correlation term EXC [n]. The most common and straightforward approxi-

mation to EXC [n] is the Local Density Approximation (LDA) [23].

The idea of the LDA is assuming that the exchange-correlation energy per electron

of a non-uniform system at any point in space is equal to the exchange-correlation

energy per electron in a uniform electron gas having the same density at this point.

In LDA the exchange-correlation functional can be written as

ELDA
XC [n] =

∫
d−→r εxc[n]n(−→n ) (2.6.1)

With

εxc[n] = εuniform
xc [n] (2.6.2)

By definition, the LDA is local because the exchange correlation energy εxc[n] at each

point in space only depends on the electron density at the same point. The εxc[n] has

been calculated and parameterized through Monte Carlo total energy calculation for

a uniform electron gas with a variety of electron densities [27, 28].

Since the LDA is based on uniform electron gas, it is expected to be accurate only

for systems in which the electron density varies slowly. It is clearly not suitable for

the situations where the electron density undergoes rapid changes, as in the case of

covalent bounded solids. To overcome this deficiency of the LDA, another form of

exchanged-correlation functional has been developed, that is the Generalized Gradient

Approximation (GGA) [29-30].The GGA functional depends on the local electron

density as well as the spatial variation of the electron density that is represented by

the density gradient. The GGA functional can be written as

EGGA
XC [n] =

∫
d−→r εxc[n]Fxc[n,

−→
∇n]n(r) (2.6.3)
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The EGGA
XC [n] is the exchange correlation energy per particle of an electron gas and

Fxc is a functional of the electron density and its gradient. The GGA method gives

better total energies, especially for small molecules, but computationally it is more

time consuming than LDA [31]. Generally, GGA has the following advantages over

LDA [32, 33-34]:

• GGA improves ground state properties for light atoms, molecules and clusters.

• GGA predicts the correct magnetic properties of 3d transition metals such as

body centered iron.

• Though GGA seems to be superior compared to LDA, it has several drawbacks.

A GGA method fails to accurately treat the hydrogen bond. This defect is

clearly manifested through expansion and hence softening of bonds [35]

2.7 Periodic supercells

We defined the shape of the cell that is repeated periodically in space, the supercell,

by lattice vectors a1, a2, and a3. If we solve the Schroödinger equation for this periodic

system, the solution must satisfy a fundamental property known as Bloch’s theorem.

2.7.1 Bloch’s theorem

Bloch’s theorem states that in a periodic solid each electronic wave function can be

written as the product of cell-periodic part and wave like part[36].

Ψk(r) = ei
−→
K.−→r uk(r) (2.7.1)

Where uk(r) is periodic in space with the same periodicity as the supercell. That

is, uk(r + n1a1 + n2a2 + n3a3) = uk(r) for any integers n1, n2, and n3. This theorem

15



means that it is possible to try and solve the Schrödinger equation for each value of

k independently.

The cell-periodic part of the wave function can be expanded using a basis set consist-

ing of a discrete set of plane waves whose wave vectors are reciprocal lattice vectors

of the crystal,

uk(r) =
∑

G

ci,Ge
iG.r (2.7.2)

Where the reciprocal lattice vectors G are defined by G.l = 2πn for all l where l

is a lattice vector of the crystal and n is an integer. Therefor each electronic wave

function can be written as a sum of plane waves,

Ψk(r) =
∑

G

ci,k+Ge
[i(k+G).r] (2.7.3)

The electronic wave functions at each k.point are now expressed in terms of a discrete

plane wave basis set. In principle this Fourier series is infinite. However, in practice

we cannot work with an infinite basis set, it has to be truncated. The number of

plane waves can be restricted by placing an upper boundary to the kinetic energy of

the plane waves. This boundary is called energy cut-off Ecut.

2.7.2 Energy cutoffs

Our lengthy discussion of k space began with Bloch’s theorem, which tells us that

solutions of the Schrödinger equation for a supercell have the form

Ψk(r) = ei
−→
K.−→r uk(r) (2.7.4)

where uk(r) is periodic in space with the same periodicity as the supercell. It is now

time to look at this part of the problem more carefully. The periodicity of uk(r)
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means that it can be expanded in terms of a special set of plane waves:

uk(r) =
∑

G

ci,Ge
iG.r (2.7.5)

where the summation is over all vectors defined by G = n1b1+n2b2+n3b3 with integer

values for ni. These set of vectors defined by G in reciprocal space are defined so that

for any real space lattice vector li ,G.l = 2πn.

Combining the two equations above gives

Ψk(r) =
∑

G

ci,k+Ge
[i(k+G).r] (2.7.6)

According to this expression, evaluating the solution at even a single point in k space

involves a summation over an infinite number of possible values of G. This does not

sound too promising for practical calculations! Fortunately, the functions appearing

in Eq. (2.7.6) have a simple interpretation as solutions of the Schrödinger equation:

they are solutions with kinetic energy

E =
~2

2m
|k +G|2 (2.7.7)

It is reasonable to expect that the solutions with lower energies are more physically

important than solutions with very high energies. As a result, it is usual to truncate

the infinite sum above to include only solutions with kinetic energies less than some

value:

Ecut =
~2

2m
G2

cut (2.7.8)

The infinite sum then reduces to

Ψk(r) =
∑

|G+k|<Gcut

cG+ke
[i(K+G)r (2.7.9)
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This expression includes slightly different numbers of terms for different values of

k. The discussion above has introduced one more parameter that must be defined

whenever a DFT calculation is performed the cutoff energy,Ecut. In many ways, this

parameter is easier to define than the k.points , as most packages will apply sensible

default settings if no other information is supplied by the user. Just as with the k.

points , it is good practice to report the cutoff energy used in your calculations to

allow people to reproduce your results easily [37].

2.7.3 K.points sampling

The solution that is used most widely was developed by Monkhorst and pack in 1976.

Using these methods, one can obtain an accurate approximation for the electronic

potential and the total energy of an insulate or semiconductor by calculating the

electronic states at a very small number of k.points. The electronic potential and

total energy are more difficult to calculate if the system is metallic because a dense

set of k.points is required to define the Fermi surface precisely. The magnitude of any

error in the total energy due to inadequacy of the k.points sampling can always be

reduced by using a denser set of k.points. The computed total energy will converge as

the density of k.points increases, and the error due to the k.point sampling approaches

zero.

In principle, a converged electronic potential and total energy can always be obtained

provided that the computational time is available to calculate the electronic wave

functions at sufficiently dense set of k.points.The computational cost of performing a

very dense sampling of k.space can be significantly reduced by using the k.point total

energy method [38-39].
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2.7.4 Plane wave basis sets

Bloch’s theorem states that the electronic wave functions at each k.point can be

expanded in terms of a discrete plane-wave basis sets.

In principle, an infinite plane wave basis set is required to expand the electronic wave

function. However, the coefficients Ci,K+G for the plane waves with small kinetic

energy. ~2

2m
|K+G|2 are typically more important than those with large kinetic energy.

Thus, the plane wave basis set can be truncated to include only plane waves that

have kinetic energies less than some particular cutoff energy. If a continuum of plane

wave basis states were required to expand each electronic wave function,the basis set

would be infinitely large number matter how small the cutoff energy. Application of

the Bloch theorem allows the electronic wave functions to expanded in terms of a

discrete set of plane waves. Introduction of any energy cutoff to discrete plane wave

basis set produces a finite basis set.

The truncation of plane wave basis set at a finite cutoff energy will lead to an error in

the computed total energy. However, it is possible to reduced the magnitude of the

error by increasing the value of cutoff energy. In principle, the cutoff energy should

be increased until the calculated total energy has converged [40].

2.8 Pseudopotentials

From the earliest developments of plane-wave methods, it was clear that there could

be great advantages in calculations that approximated the properties of core electrons

in a way that could reduce the number of plane waves necessary in a calculation.

The most important approach to reducing the computational burden due to core

electrons is to use pseudopotentials. Conceptually, a pseudopotential replaces the
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electron density from a chosen set of core electrons with a smoothed density chosen

to match various important physical and mathematical properties of the true ion core.

The properties of the core electrons are then fixed in this approximate fashion in all

subsequent calculations; this is the frozen core approximation. Calculations that do

not include a frozen core are called all-electron calculations, and they are used much

less widely than frozen core methods.

A pseudopotential is developed by considering an isolated atom of one element, but

the resulting pseudopotential can then be used reliably for calculations that place this

atom in any chemical environment without further adjustment of the pseudopotential.

This desirable property is referred to as the transferability of the pseudopotential.

The details of a particular pseudopotential define a minimum energy cutoff that

should be used in calculations including atoms associated with that pseudopoten-

tial. Pseudopotentials requiring high cutoff energies are said to be hard, while more

computationally efficient pseudopotentials with low cutoff energies are soft. The most

widely used method of defining pseudopotentials is based on work by Vanderbilt; these

are the ultrasoft pseudopotentials (USPPs). As their name suggests, these pseudopo-

tentials require substantially lower cutoff energies than alternative approaches [37].

2.9 Self-consistent-field calculation

In (1897-1958) D. R. Hartree came up with the first idea of getting Self Consistent

Field (SCF) solutions to a many-electron problem as a strategy to break the state.

D. R. Hartree was helped by his father, William Hartree, in solving the numerical

problems involved in solving the SCF problem [41,42-43]. Here we focus discussion

on SCF in DFT calculations, the most time-consuming part of an SCF calculation is
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in matrix diagonalization, which consists of computing the self-consistent solutions of

the following Kohn-Sham equation (in atomic units):

[−∇
2

2
+ Vext(n(r), r)]ψi(r) = εiψi (2.9.1)

Where ψi(r) is a wave function, εi is a Kohn-Sham eigenvalue. The external potential

Vext(n(r), r) = Vion(r) + VH(n(r), r) + Vxc(n(r), r), (2.9.2)

includes the ionic potential Vion, the Hartree potential VH and the exchange-correlation

potential Vxc. In DFT the external potential depends only on n(r)the charge density.

The charge density is given by

n(r) = 2
nocc∑
i=1

|ψi(r)|2, (2.9.3)

where nocc is the number of occupied states (half the number of valence electrons in

the system) and the factor of two comes from spin multiplicity. Self-consistent iter-

ations for solving this problem consist of starting with an initial guess of the charge

density n(r), then obtaining a guess for Vext and solving Kohn-Sham equation for

wave function ψi(r) to update charge density and external potential. Then Kohn-

Sham equation is solved again for the new wave function and the process is carried

on until the difference between two consecutive external potential is below a certain

tolerance (equivalently, the wave functions are close to stationary)[44].
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2.9.1 Algorithm Self-Consistent Iteration

The SCF method is an iterative procedure which yields a self-consistent set of wave

functions and orbital energies. It consists of the following steps.

1. An initial guess for the charge density.

2. Solve [−∇2

2
+ Vext(n(r), r)]ψi(r) = εiψi(r) for wave function ψi(r), i = 1, 2, ..

3. Compute new charge density n(r) = 2
∑nocc

i=1 |ψi(r)|2

4. Solve for new Hartree potential VH .

5. Update Vxc and Vion.

6. If the wave function does not satisfy the right boundary condition, we return to

step 3 in order to make another guess for the energy εi(r). If the wave function

satisfies the right boundary condition, the calculation returns to step 2 and the

newly obtained ψi(r) plays the role of wave functions [45].
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Chapter 3

Materials and methods

3.1 Materials

The study was purely theoretically. The main sources of information are the published

articles, books, thesis and dissertations. Softwares and computers are additional

instruments used to accomplish this project.

3.2 Computational methodology

Our calculations would be based on Density Functional Theory (DFT) with the

Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, Vanderbilt ultra soft

pseudopotentials [46] and the plane wave basis set implemented in the Quantum-

ESPRESSO program package [47]. Quantum ESPRESSO is an integrated suite of

computer codes for electronic-structure calculations and materials modeling based on

density-functional theory (DFT) [22-25], plane waves basis sets (PW) and pseudo

potentials (PP) [48].
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It is freely available and distributed as open-source software under the terms of the

GNU General Public License (GPL). The present applicability of Quantum ESPRESSO

ranges from simple electronic structure calculations to the most sophisticated theoreti-

cal spectroscopy such as Nuclear Magnetic Resonance (NMR), Electron Paramagnetic

Resonance (EPR), Raman and Scanning Tunneling Microscopy, etc. The simulation

tools implemented in Quantum ESPRESSO are used across a wide range of R and

D applications. The relevance of this code has been highlighted by its adoption in a

number of key research groups, renowned institutions as well as in a number of com-

mercial industries. The most important input parameters in Quantum Espresso are

the atomic geometries (number and types of atoms in the periodic cell, bravais-lattice

index, crystallographic or lattice constants), the kinetic energy cutoff and the type of

pseudo potentials [49].
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Chapter 4

Results and discussions

Introduction

In this work , the structural and electronic properties of Aluminum(Al) was calculated

within the frame work of the density functional theory. One of the important aspects

in studied Aluminum is the total minimum energy. Results are mainly presented in

tables and figures. The first results are the total energy per atom and second results

are forces values for bulk Aluminum. Then comes the results for the equilibrium

lattice constants and different smearing for different k.point sampling. The output

files of the computations were use to deduce the tables of energy cutoffs, k.points

and lattice constants against the total energies and graphs were plotted to obtain the

optimized parameters for Al structure with in the both LDA and GGA .

4.1 Total energy of Al per atom with respect to

energy cutoffs

The input here has 6× 6× 6 = 216 k. point’s mesh; some of these k. points have the

same energy because of the symmetry of the crystal. The calculation was done using

different cutoff values, from 20 to 150 Ry and lattice constant of 7.50 Bohr.
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Table 4.1: The results of the total minimum energy computed with energy cutoffs

Energy cutoffs(Ry) Total energy(Ry)
20 -4.18846340
30 -4.18947981
40 -4.18986824
50 -4.18993525
60 -4.18993525
70 -4.18993544
80 -4.18993569
90 -4.18993586
100 -4.18993593
110 -4.18993595
120 -4.18993596
130 -4.18993595
140 -4.18993596
150 -4.18993596

4.1.1 Convergence test of total minimum energy of Al with
respect to energy cutoffs

Here we see that, the total minimum energy of Al is calculated as a function of energy

cutoff. An increment of energy cutoff for wave function is made until the convergence

is achieved. As we can see from the Fig4.1, the total minimum energy converge at 50

Ry plane wave cutoff energy and the total ground state energy had its minimum at

−4.18993525 Ry . Moreover the total minimum energy is monotonically decreasing

with increasing energy cutoffs for wave function. The accuracy of the ground state

energy depends on the number of basis functions. However, we can get energy that

close to ground state energy as the number of basis functions approaches infinity.
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Figure 4.1: Total minimum energy of Al with respect to energy cutoffs
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4.2 Total minimum energy of Al with respect to

K.point grid sampling

In this case, the calculation was done using different k.point’s values from 2× 2× 1

to 28×28×1 mesh with 2.0 points. Here the other variables such as lattice constant,

energy cutoff, are keeping fixed.

Table 4.2: The results of the total minimum energy of Al computed with K.points
grid

K. points grid Total energy (Ry)
2 -4.18262858
4 -4.18761179
6 -4.18846340
8 -4.18914036
10 -4.18925069
12 -4.18921005
14 -4.18918761
16 -4.18918792
18 -4.18918878
20 -4.18918870
22 -4.18918833
24 -4.18918860
26 -4.18918852
28 -4.18918864

4.2.1 Convergence test of total energy of Al with respect to
K.point grid sampling

Here we can see that, the total minimum energy of Aluminum is calculated as a

function of k.points grid size using PWSCF code. For this calculation, the other

variables (lattice constant, energy cutoff) are kept constant. The total energy of Al

versus k.point’s grid size is shown in Figure 4.2. Here it can be observed that the

total minimum energy of Aluminum converges at 14× 14× 14× 1 k.points grid and

the total ground state energy has its minimum at −4.18918761 Ry .
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Figure 4.2: Total energy of Al with respect to K.point grid size
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4.3 Total minimum forces of Al per atom with re-

spect to energy cutoff

Table 4.3: The result of total forces of Al computed with energy cutoffs

Energy cutoff (Ry) Total forces ( Ry/Bohr)
20 0.449196
30 0.448343
40 0.448857
50 0.448845
60 0.448835
70 0.448834
80 0.448833
90 0.448834
100 0.448832
110 0.448829
120 0.448835
130 0.448833
140 0.448831
150 0.448829

4.3.1 Convergence test of total force of Al with respect to
energy cutoffs

In this calculations, we see that the forces on Al are zero in x ,y and z directions.This

is because of symmetry,which cancels out forces. However, it is possible to create

forces by displacing a aluminum atom + 0.05 Bohr in the z directions (fractional

coordinates). Here we calculated total force on Al as a function of plane wave cutoff

energy by keeping other parameters fixed. For this calculation, we used the lattice

constants a = 7.50 Bohr and 6×6×6×1 k .points grid. In this simulation convergence

is achieved when the energy cutoff is equal to 60 Ry. A total force value at this energy

cutoff is 0.448835 Ry/ Bohr.
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Figure 4.3: Total forces of Al with respect to energy cutoffs
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4.4 Total force of Al per atom with respect to

K.point sampling

Table 4.4: The result of total force of Al computed with K.point grid

K.points grid Total forces (Ry/Bohr)
2 0.447652
3 0.451531
4 0.447882
5 0.448995
6 0.449196
7 0.448663
8 0.449014
9 0.448837
10 0.448830
11 0.448876
12 0.448830
13 0.448847
14 0.448847
15 0.448844

In this case, we have calculated the force on 0.05 Bohr displaced Al as a function

of k.point grid size, by keeping other parameters (lattice constant, energy cutoff) con-

stant. The calculated force with respect to k.point grid is shown above in table 4.4.

Moreover the trend of total force for increment of grid size is described in Fig4.4. As

it is observed in Figure, the total force converge at the grid size of 9× 9× 1 k.point

mesh; and its value is 0.448837 Ry/Bohr. Generally, it is true that different struc-

tural geometries will require different k.point meshes in order to reach convergence.

However, the change in required k.point density for a slight shift in atoms is expected

to be large than the change in required k.point density if we completely change the

crystal symmetry for basic centered cubic to face centered cubic.
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Figure 4.4: Total force of Al with respect to k.point grid size
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4.5 The equilibrium lattice constant of Al

Table 4.5: The result of total energy of Al computed versus lattice constant

Lattice constant (Bohr) Total energy Ry)
6.2 -4.04683272
6.4 -4.09640121
6.6 -413250305
6.8 -4.15777158
7.0 -4.17436079
7.2 -4.18400582
7.4 -4.18809055
7.6 -4.18788244
7.8 -4.18436495
8.0 -4.17844531
8.2 -4.17081838
8.4 -4.16205111
8.6 -4.15256902
8.8 -4.14268531
9.0 -4.13260656

4.5.1 Convergence test of total energy of Al with versus lat-
tice constant

To find the equilibrium lattice constant of aluminum we perform total energy calcu-

lation for a series of plausible parameters. In this calculation the energy cutoff and

the k.point sampling are made fixed (50 Ry,14× 14× 1 k.point) using the cutoff and

k.point grid criteria for energy convergence. The numerical calculation shows that

the equilibrium lattice constant is 7.4 Bohr. This result is in good agreement with

experimental value.
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Figure 4.5: Total energy of Al versus lattice constant
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4.6 Total energy of Al with respect to degauss/smearing

Degauss is the electronic temperature; it controls the broadening of the occupation

numbers around the Fermi energy and smearing used to select occupation distribu-

tion; there are two options: Fermi-Dirac smearing (fd); cold-smearing (cs) including

marzari-vanderbilt(m-v), Methfessel-Paxton(M-P) and Gaussian(Ga).

In this calculation, the plane wave cutoffs for wave functions are fixed is 20 Ry and

Brillouin Zone integrations have been performed using different smearing from 0.04

up to 0.19 over shifted Monkhorst-Pack meshes of order 6× 6× 1 for the face central

cubic (fcc). Here we see that, the an increment of the smearing are necessary to

obtain fully converged total minimum energy of Al.

4.6.1 Total energy of Al with smearing for 6 × 6 × 1 k.point
grid

Table 4.6: The result of total energy of Al computed with smearing

Smearing Total energy(Ry) in (m-v) Total energy(Ry) in(m-p) Total energy(Ry) in (ga) Total energy(Ry) in (f-d)
0.04 -4.18835466 -4.18857321 -4.19077017 -4.20297416
0.05 -4.18836914 -4.18855767 -4.19200130 -4.21098514
0.06 -4.18846340 -4.18854687 -4.19351577 -4.22073630
0.07 -4.18861398 -4.18854998 -4.19530945 -4.23223843
0.08 -4.18880064 -4.18857333 -4.19737585 -4.24549811
0.09 -4.18900688 -4.18861820 -4.19970845 -4.26051439
0.10 -4.18921827 -4.18867873 -4.20230236 -4.27727878
0.11 -4.18942586 -4.18874550 -4.20515502 -4.29577619
0.12 -4.18962864 -4.18880954 -4.20826601 -4.31598586
0.13 -4.18983216 -4.18886426 -4.21163628 -4.33788211
0.14 -4.19004533 -4.18890584 -4.21526751 -4.36143498
0.15 -4.19027770 -4.18893276 -4.21916159 -4.38661068
0.16 -4.19053804 -4.18894514 -4.22332033 -4.41337204
0.17 -4.19083396 -4.18894416 -4.22774525 -4.44167898
0.18 -4.19117196 -4.18893152 -4.23243757 -4.47148888
0.19 -4.19155781 -4.18890916 -4.23739816 -4.50275710
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4.6.2 Total energy of Al with smearing for 8 × 8 × 1 k.point
grid

Table 4.7: The result of total energy of Al computed with smearing

Smearing Total energy (Ry)in(m-v) Total energy (Ry)in (m-p) Total energy (Ry) in (ga) Total energy (Ry) in (f-d)
0.04 -4.18928243 -4.18935737 -4.19134283 -4.20317625
0.05 -4.18918156 -4.18925293 -4.19248607 -4.21110005
0.06 -4.18914036 -4.18917191 -4.19392596 -4.22079761
0.07 -4.18916559 -4.18912469 -4.19565145 -4.23226916
0.08 -4.18924049 -4.18910380 -4.19765274 -4.24551230
0.09 -4.18934517 -4.18909673 -4.19992418 -4.26051998
0.10 -4.18946637 -4.18909361 -4.20246343 -4.27728003
0.11 -4.18959914 -4.18908893 -4.20527005 -4.29577532
0.12 -4.18974466 -4.18908047 -4.20834436 -4.31598402
0.13 -4.18990738 -4.18906778 -4.21168692 -4.33787992
0.14 -4.19009300 -4.18905107 -4.21529823 -4.36143279
0.15 -4.19030738 -4.18903071 -4.21917867 -4.38660875
0.16 -4.19055615 -4.18900694 -4.22332852 -4.41337060
0.17 -4.19084461 -4.18897985 -4.22774796 -4.44167826
0.18 -4.19117779 -4.18894947 -4.23243712 -4.47148915
0.19 -4.19156047 -4.18891584 -4.23739603 -4.50275859

4.6.3 Total energy of Al with smearing for 10× 10× 1 k.point
and 12× 12× 1 k.point grid

Here there are two tables, first for the total energy of Al with smearing for 10×10×1

k.point and second for 12× 12× 1 k.point grid size as shown below.
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Table 4.8: The result of total energy of Al computed with smearing

Smearing Total energy (Ry) in (m-v) Total energy (Ry) in (m-p) Total energy (Ry) in (ga) Total energy (Ry) in (f-d)
0.04 -4.18935781 -4.18927415 -4.19132533 -4.20317584
0.05 -4.18928439 -4.18922485 -4.19248761 -4.21109918
0.06 -4.18925069 -4.18917768 -4.19393140 -4.22079714
0.07 -4.18926558 -4.18913985 -4.195653665 -4.23226923
0.08 -4.18931934 -4.18911263 -4.19765079 -4.24551278
0.09 -4.18940051 -4.18909484 -4.19991986 -4.26052069
0.10 -4.18950164 -4.18908383 -4.20245874 -4.27728086
0.11 -4.18961992 -4.18907600 -4.20526620 -4.29577620
0.12 -4.18975619 -4.18906818 -4.20834180 -4.31598490
0.13 -4.18991355 -4.18905812 -4.21168557 -4.33788075
0.14 -4.19009632 -4.18904455 -4.21529780 -4.36143353
0.15 -4.19030930 -4.18902694 -4.21917886 -4.38660935
0.16 -4.19055742 -4.18900519 -4.22332908 -4.41337098
0.17 -4.19084561 -4.18897941 -4.22774873 -4.44167831
0.18 -4.19117868 -4.18894978 -4.23243798 -4.47148875
0.19 -4.19156132 -4.18891653 -4.23739694 -4.50275765
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Table 4.9: The result of total energy of Al computed with smearing

Smearing Total energy (Ry) in (m-v) Total energy (Ry) in (m-p) Total energy (Ry) in (ga) Total energy (Ry) in (f-d)
0.04 -4.18919237 -4.18905779 -4.19121756 -4.20316832
0.05 -4.18919624 -4.18907445 -4.192422439 -4.21109815
0.06 -4.18921005 -4.18907679 -4.19389599 -4.22079818
0.07 -4.18924918 -4.18907489 -4.19563540 -4.23227089
0.08 –4.18931389 -4.18907414 -4.19764273 -4.24551460
0.09 -4.18939960 -4.18907486 -4.19991737 -4.26052253
0.10 -4.18950248 -4.18907530 -4.20245896 -4.27728269
0.11 -4.18962143 -4.18907368 -4.20526759 -4.29577802
0.12 -4.18975797 -4.18906874 -4.20834362 -4.31598671
0.13 -4.18991547 -4.18905980 -4.21168752 -4.33788258
0.14 -4.19009832 -4.18904656 -4.21529977 -4.36143541
0.15 -4.19031134 -4.18902900 -4.21918083 -4.38661131
0.16 -4.19055949 -4.18900724 -4.22333104 -4.41337308
0.17 -4.1908469 -4.18898144 -4.22775067 -4.44168062
0.18 -4.19118077 -4.18895181 -4.23243991 -4.47149134
0.19 -4.19156342 -4.18891856 -4.23739886 -4.50276060

4.7 Convergence test of the total minimum energy

of Al with smearing for different k.point sam-

pling

In this part, the total minimum energy of Al is calculated as a function of smearing.

An increment of smearing for different k.point sampling is made until the convergence

is achieved. Here we can see that,the four different colors describe the smearing type

methods with different k.point sampling as shown in Figure 4.6 .
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Figure 4.6: The plots of smearing for different k.point sampling
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For metals convergence is very slow.The total minimum energy converges very fast

using Marzari-Vanderbilt (M-v)or Methefessel-Paxton(M-P) smearing as compared to

Gaussian(Ga) or Fermi-Dirac(F-D) smearing for the given values of degauss. More-

over we have checked the convergence of the minimum energy for different values

smearings varing the k.point sampling. However, the difference is not considerable.
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Chapter 5

Conclusion

The electronic and structural properties of Aluminum (Al) was investigated within

the frame work of the density functional theory, plane wave basis sets, and pseudo

potentials (ultra-soft). All calculations have been carried out with Quantum Espresso

package( software). The total minimum energy calculation is performed as a function

of cutoff energy and Monkhorst pack-grid size, respectively fixing the other parameters

constant.the total energy convergence test is achieved, at the energy cutoff 50 Ry for

the first case and at 14 × 14 × 1 k.point grid size for the second case. The total

minimum energy is −4.18993525 Ry for the first case and −4.18918761 Ry for the

second case. The total minimum force on Al as a function of cutoff energy and

Monkhorst-Pack grid is calculated by displacing Al atom by 0.05 Bohr. Total force

convergence test is achieved for the cutoff energy 60 Ry and for Monkhorst-Pack grid

at 9× 9× 1 k.point grid size. Our numerical calculation shows that the equilibrium

lattice constant is 7.4 Bohr. This result is in good agreement with experimental

value. Finally, for Al metallic systems, the choice of smearing function is also a

major consideration to minimizing the electronic energy in a DFT calculation.The
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different smearing calculation was performed with Marzari-Vanderbilt, Methfessel-

Paxton , Gaussian and Fermi-Dirac function for four different k.point mesh. The

result shows that, the convergence in cold smearing is very fast than Fermi-Dirac

smearing.
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