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Abstract

In this research paper ,we study the energy eigenvalue and tunneling effect of rect-

angular double quantum well (RDQW) heterostructures composed of two different

semiconductors. The heterostructure is denoted as B/W/B/W/B, where the het-

erostructure W and B acts as crystal wells and barriers, respectively. This confined

heterostructure wells have quantized states. For this research we used analytical

method and determined two transdental equations, and numerically we determined

the energy eigenvalues of RDQW. We obtained wave states and energy eigenvalues

with their transmission and reflection coefficients in the RDQW hetrostructure. How-

ever, we have also observed how the width of the wells can affect the transmission

by increasing the thickness of the barriers. This study is important in developing

photocells, photoswitching devices, optical filters, and other optoelectronic devices.
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Chapter 1

Introduction

1.1 Background of the study

In 1924 De Broglie suggested that a particle of momentum p has an associated wave

of wavelength λ given by the following λ= ~
P
. In considering such one dimensional

motion of particle that is restricted by the reflecting well that terminates a region of

constant potential energy, such a system is called quantum well. And quantum well

might have two type of potential that means finite and infinite at its potential energy.

The quantum well can have different geometrical shape. If its geometrical shape of

a layer is triangular we call it triangular quantum well, is square we call it square

quantum well and is rectangular we call it rectangular quantum well. Its simplest

form is single quantum well [1]

Hetrostructure formed from multiple heterojunction, like GaAs/AlGaAs (from III-

V) can give us quantum well. If a thin layer of narrower-band gap material, say a

sandwich between two layers of wider band gap material and form a double hetero-

junction. Still more complete structure can be formed such as double quantum well

or multiple quantum wells or supper lattice, the difference between the lattices is the

extent of the interaction between the quantum well, in particular, a multiple quantum
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well exhibits the properties of the properties of a collection of isolated single quantum

well do interact [1]. In 1928 and 1929 there were published papers pointing out the

quantum tunneling [2]. At the same time Gurney was developing idea about resonant

tunneling. In 1930’s and 1940’s there were many attempt to relate the dynamics of

the electron current in a system of metal-semiconductor which was used in rectifying

the current, to the tunneling of electrons in solid. With the discovery of transistors in

1947, the tunneling of electrons received renewed attention [2]. In 1950 the construc-

tion of semiconductor like Ge and Si had advanced to a point that it was possible to

manufacture semiconductors of given characteristics [2].

In 1957 L. Esaki discovered tunnel diode and this discovery proved the electron tun-

neling in solid determinedly. Then in 1960 I. Giaever observed that if one or both of

metals are super conduction then voltage-current curve provides fascinating informa-

tion on the subject of the state of super conductor(s). This experiment of Giaever

was sufficiently precise that it enables one to measure the energy gap in supercon-

ductor [2]. The other major result was the theoretical work of B.D. Josephson in

1962 connection with the tunneling between two superconductors separated by thin

layer of insulating oxide which serves as the barrier and he was able to forecast the

existence of second current [2].

A new technique, molecular beam epitaxy (MBE) opened the way to the growth of

semiconductors atomic layer up on atomic layer. In 1974 two basic experiments were

accepted out: Esaki and Chang reported the oscillatory behavior of the perpendicular

differential conductance due to resonant electron tunneling across potential barriers,

and theoretical measurement of Dingle showed directly the quantization of energy

levels in quantum wells [3]
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. The negative differential resistance of resonant-tunneling diode (a double barrier

diode) was recommended by Tsu and Esaki in 1973, following their pioneering work

on super lattices in the late 1960s and early 1970s. Mereover the structure and char-

acteristics of this diode were first established by numerous authors in the early 1980,

research interest escalated, partially due to the maturing MBE and metal organic

chemical vapor deposition (MOCVD) technologies. In 1985 room temperature of

negative differential resistance in this structure was reported [4].

After the first experimental realization of GaAs/Ga1−xAlxAs made as quantum wells

(QWs), and double quantum wells (DQWs) have been a subject of vast theoretical

and experimental studies. As QWs show effect of tunneling coupling fairly interest-

ingly, the wave function of the different wells overlap in the barrier region and show

splitting of sub-band energy levels. This splitting depends on number of factors such

as ratio of well widths, doping concentration, and barrier width etc. The understand-

ing of such quantum wells led to the progress of many new optoelectrical devices such

as photodetectors, semiconductor diodes etc [5].

In addition; this development of tunneling effect became means to various devices to

be fabricated and by means of the potential profile of a DQW system and multiple

quantum wells. Then electric field effects on the refractive index and optical absorp-

tion coefficient has been investigated by Kanel in 1987. Chuang and Ahn reported the

difference of linear refractive index and absorption coefficients in parabolic quantum

well. Linear and nonlinear optical absorption in semiconductor super lattice systems

were also lately investigated [5].

In 2010 one study showed that the optical properties namely linear and nonlinear

absorption coefficients and changes in the refractive index of DQW system having
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different well shapes have been studied theoretically in detail for varies quantum well

and laser parameters in the existence of external electromagnetic field applied along

the growth direction. And it recommended that the external electromagnetic field has

influences on absorption coefficients and refractive index and modify quite strongly

as compared to the cases in its absences [5].

Recently, there has been a new surge in the field effect of shape of the DQW on

optical properties. And also had been reported the effect of asymmetry on its optical

properties of a rectangular DQW system in the presence of external electromagnetic

field. In addition to asymmetry, the applied static field greatly modifies the energy

levels and the transition matrix element between levels [6].

One of the key approaches to understand optical materials with satisfactory value

and usefully figure is that of quantum engineering of semiconductor nanostructure.

Quantum wells are one instance of hetero-structures complete by joining different ma-

terials, usually in large, and with the materials connected directly at the atomic level.

This can be achieved by placing a thin layer of semiconductor between two layers of

a semiconductor material sandwiched between two layers of another semiconductor.

When two semiconductors are connected, it is not clear in advance how the different

bands in the two materials will line up in energy with one another, and there is no

accurate projecting theory in practice [7].

The rectangular double quantum well is shaped by the alternating GaAs and GaAlAs

layers with their different energy gaps. There is much larger barrier with in supper

lattice, and a voltage can be functional between two adjacent potential wells to form

RDQW. In this study we use Schrödinger equation and its solution to analyze the en-

ergy eigenvalue of RDQW. Next we establish the effect of tunneling in the DQW with
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calculation of transmission coefficient. Finally we illustrate the optical properties of

DQW; it is important to find out the absorption coefficient and refractive index; and

to analyses symmetry and asymmetry effects and linear and nonlinear photon nature.

1.2 Statement of the problem

For our rectangular double quantum well, we consider a double finite depth potential

as an approximation of the GaAs/AlGaAs potential. Next it will be considered that

discontinuous potential and its general analytical solution, as well as the continuity

and smoothness condition imposed on the solution of the Schrödinger equation by the

quantum mechanical postulate. Then, we believe the boundary condition that yield

the allowed quantum energy, and we calculate the steps by steps the resultant tran-

scendental equation for the case of infinite depth and energy greater than the barrier

height and it is straight forward in addition to accessible to physics students. Then

we calculate numerically the allowed energies and construct the first few normalized

wave functions and their energy eigenvalue. Finally we describe the transmission and

reflection rate and its numerical value in RDQW.

1.3 Objectives

1.3.1 General objectives

The main objective of this study is to determine energy eigenvalue and tunneling

property of rectangular double quantum well.
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1.3.2 Specific objectives

• Obtaining the energy eigenvalue of rectangular double quantum well.

• Analyzing numerically the energy eigenvalue of rectangular quantum well.

• Obtain the tunneling effects in terms of reflection and transmission coefficients

of rectangular double quantum well.

1.4 Significant of the study

The rectangular double quantum well is one of the heterostructures of semiconductors.

Heterostructures in general have many uses. They can be used for advanced electronic

devices (e.g. Modulation-doper field-effect transistors, heterojunction bipolar tran-

sistors, resonant tunneling devices), optical components (e.g. Waveguides, mirrors,

micro resonators), and optoelectronic devices and structures (e.g. laser diodes, photo

detectors, quantum wells and super lattices optical and optoelectronic devices) .Then

in our study we make clear the rectangular double quantum wells and its associated

application.

1.5 Limitation of the study

The limitation of the study is:

• Time constraint

• Lack of pre-knowledge to access some soft wares

• Lack of effective accessible internet connection

.
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Chapter 2

LITRETURE REVIEW

2.1 Introduction

When one or more of the dimensions of a solid are classified to study, its physico-

chemical characteristics notably depart from those of the bulk solid. With reduction

in size, novel electrical, chemical, mechanical, magnetic, and optical properties can

be introduced. The resulting structure is then called a low-dimensional structure(or

system). The confinement of particles, usually electrons or holes, to a low dimensional

structure leads to a dramatic change in their behavior and to the manifestation of

size effects that usually fall into the category of quantum-size effects [8].

The low dimensional mater exhibits new physicochemical properties not shown by

the corresponding large-scale structures of the same compositions. Nanostructures

constitute a bridge between molecules and bulk materials. Suitable control of the

properties and responses of nanostructures can lead to new devices and technolo-

gies [8]

.
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2.1.1 Classification of low-dimensional materials

Low-dimensional structures are usually classified according to the number o reduced

dimensions they have more precisely, the dimensionality refers to the number of de-

grees of freedom in the particle momentum. According, depending on the dimension-

ality, the following classification is made:

• Three-dimensional (3D) structure or bulk structure: No quantization of the

particle motion occurs, i.e, the particle is free

• Two-dimensional (2D) structure or quantum well: Quantization of the particles

motion occurs in one direction, while the particle is free to move in the other

two directions.

• One dimensional (1D) structure or quantum wire: Quantization of occurs in

two directions, leading to free movement along one direction.

2.1.2 Why we need quantum mechanics?

As a spatial dimension approaches the atomic scales a transition occurs from the

classical law to the quantum mechanical laws of physics [8]. Phenomena that occur

on the atomic or subatomic scale cannot be explained outside the framework of quan-

tum mechanical laws. For example: physical behavior at the nanoscale is accurately

predicted by quantum mechanical as represented by the Schrödinger equation, which

therefore provides a quantitative understanding of the properties of low-dimensional

structures. In quantum mechanics, the trajectory of a moving particle loses its mean-

ing when the distance over which potential energy varies is on the order of De Broglie

wavelength:
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λ =
2π√
2mE

ĥ (2.1.1)

The quantum effects of confinement become significant when at least one of the di-

mensions of a structure is comparable in length to the de Broglie wavelength. If at

least one dimension of the solid is comparable to the de Broglie wavelength of the

particle motion becomes necessary [8].

2.1.3 Quantum wells

The most significant nanostructure required to design nanoelectronic device are quan-

tum wells, quantum wires and quantum dots. They are the basic building blocks of

nanoelectric devices. Nanoelectronic also we are going to control the transfer of elec-

tron. But how can to confine them? How to activate them?, how to fix the threshold

level for conductance? This entire quantum will be answered when we understand

the physics of this quantum structure.

What is quantum well?

The term ” well” refers to a semiconductor region that is grown to possess a lower

energy, so that it acts as a trap for electrons and holes (electrons and holes gravitate

towards their lowest possible energy positions). They are referred to as ”quantum

well” because these semiconductor region are only a few atomic layers thick; in turn,

this means that their properties are governed by quantum mechanics, allowing only

specific energies and band gaps. Because quantum well structures are very thin, they

can be modified very easily [8].

Quantum wells are real-world implementation of the ”particles in the box” problems;
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they act as potential wells for charge carriers and are typically experimentally real-

ized by epitaxial growth of a sequence of ultrathin layers consisting of semiconducting

materials of varying two dissimilar semiconductors with different band gaps can be

joined to form a heterojunction.

Figure 2.1: Quantum well

The discontinuity in either the conduction or the valence band can be used to

form a potential well. If a thin layer of a narrower-band gap material ”A” say, is

sandwiched ”B”, then they form a double heterojunction. If layer ”A” is sufficiently

thin for quantum properties to be exhibit, then such a band alignment is called a

single quantum well [8].

Additional semiconductor layer can be included in the heterostructures, for example

a stepped or asymmetric quantum well can be formed by the inclusion of an alloy

between materials A and B. Still more complex structure can be formed, such as

symmetric or asymmetric double quantum well and multiple quantum wells or super

lattices. The difference between the latter is the extent of the interaction between
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the quantum wells; in particular, a multiple quantum well exhibits the properties

of a collection of isolated single quantum well do interact. The motivation behind

introducing increasingly complicated structure in an attempt of tailor the electronic

and optical properties of these material for exploitation in devices [8].

2.1.4 potential step

For better understanding of the role that the potential acting, let us consider a simple

step potential, in which the potential is define as V(x) as shown in Fig.2.2

Figure 2.2: Schematic view of the potential of which is non-zero card constant only
in the positive half space

Thus the potential has a height of V (x) for positive x, and is zero for the negative

x-region. This potential creates a barrier to the wave function, and a wave incident

from the left (the negative region) will have part (or all) of its amplitude reflected

from the barrier. The result that obtained depended up on the relative energy of

14



the wave. If the energy is less than V (x), the wave cannot propagate in the region

of positive x axis. This is clearly seen from the Fig. 2.2; where the wave vector is

imaginary for V. Only one exponent can be retained, as we required that the wave can

be retained, as we require that the wave function remain finite (but zero) asx →∞.

From Fig.2.2 the various wave vectors are related to the energy of the wave [9].

Let us consider the low-energy case, whose wave is a non propagating wave for x > o.

In the negative half -space, we consider the wave function to be the form of,

Ψ(x) = A exp(ikx) + B exp(−ikx) (2.1.2)

Composed of an incident wave (the position exponent term) and a reflected wave

(the negative-exponent term). That are, we write the wave function for x < 0 where

the energy E and the wave vector K are related by

E =
~2K2

2m
(2.1.3)

Then it gives us K =
√

2mE
~2 . This behavior is shown in Fig 2.2. In the positive

half-space, the solution of the Schrdinger equation is given by

Ψ(x) = C exp(−γ(x)) (2.1.4)

whereγ=
√

2m(E−V )
~2

Here, we have defined a wave function in two separate regions, in which the

potential is constant in each region. These two wave functions must be smoothly

joined where at two region meet. While three constant are defined (A, B, C), one of

these is defined by the resultant normalized of the wave function (For example let A=1

without loss of generally). Two boundary conditions are required to evaluate the other

two coefficient in terms of A. The boundary conditions can vary with the problem, but
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Figure 2.3: The various wave vectors are related to the energy of the wave

one must describe the continuity of the probability of occurring at interfere between

the two regions. Thus, one boundary condition, as there may not be a sufficient

number of constant to evaluate this will be one case in the next section [9]. Equating

the derivatives of the wave function at the interface leads to

dΨI

dx
|x=0 =

dΨII

dx
|x=0 (2.1.5)

This last equation can be rearranged by placing the momentum term in the deter-

mined on the right hand side. Then adding these equations leads to

C

A
=

2ik

ik − γ
(2.1.6)

This result can now be used in, A + B = C. To find

B

A
=

ik + γ

ik − γ
(2.1.7)

The amplitude of the reflected wave is unity, so there is no probability amplitude

transmitted across the interface. In fact, the only effect of the interface is the plan
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shift the reflected wave; that the wave function is (x < 0)

ΨI = A(exp(ik + ikθ) (2.1.8)

Where θ = 2 arctan(γ
κ
)

The probability amplitude is given by

|Ψ|2 = 2A2[1 + 2 cos(2kx + θ)], X < 0 (2.1.9)

2.1.5 Finite quantum well

Now let us turn to the situation in which the potential is finite in amplitude and hence

the wave function penetrates to the regions under the barrier. We continue to treat

the potential as a symmetric potential centered about the point x = 0. However, it

is clear that we want to divide out treatment in to two cases one for energies that lie

above the top of the barriers and a second for energies that confine the particle into

the potentials which in this regard, the system is precisely like a single finite barrier.

When the energy is below the height of the barrier, the wave must decay into the

region where the barrier exist [9].// On the other hand, when the energy is greater

than the barrrier height, the propagating waves exist in all regareds but there is a

mismatch in the wave vectores, which leads to the quasi- bount stats and reflection

from the interface which begin with the case for the energy below the barrier height,

which is the case shown in Fig.2.4. For energies below the potential, (0 < E < V ),

the particle has free propagating charactertices only for the range |x| < a, for which

the schrodinger equation becomes

d2Ψ

dx2
+ K2Ψ = 0 (2.1.10)
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Figure 2.4: The various wave vectors are related to the wave for the case of E < Vo

a quantum well

where k =
√

2mE
~2 . In equation 2.1.10 it must be remembered that Vo is the magni-

tude of the potential barrier, and is a positively similarly, in the range |x| < a, the

Schrodinger equation comes [9]

d2Ψ

dx2
− γ2Ψ = 0 (2.1.11)

where γ =
√

2m(E−V )
~2 . We saw at the end of the last section that with the potential

begin a symmetry quantity, the solution for the schrodinger equation would have

either even or odd symmetry. The last the basic properties of section will carry over

to the present case and we expect the solutions in the well region to be either sines or

cosines. Of course these solutions have the form Ψ = C exp(−γ|x|), |x| < a, we can

match this to the proper sine or cosine function. However, in the normal case, both

the wave function and its derivative are matched at each boundary. If we attempt

to do the same here, this will provide four equations. However, these are only two

unknowns the amplitude of C relative to that of either the sine or cosine wave and
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the allowed value of the wave vector k and hence since it is not two unknowns-the

amplitude of C relative to that of either the sine or the cosine wave and the allowed

value of the wave K( and hence since it is not independent of k) for the bound- state

energy level. We can get around this problem in one fashion, and that is to make

the ratio of the continuous. That is, we make the boundary condition is logarithmic

derivative Ψ
ϕ

continuous. ( This is obviously called the logarithm of Ψ.) Of course,

if we choose the solutions to have even or odd symmetry, the redundant, as if is the

same as that at these symmetry relations. Let us consider the even-symmetry wave

functions for which the logarithmic derivative is

−k sin(kx)

cos(kx)
= −k tan(kx) (2.1.12)

the logarithmic derivative of the damped function is merely (−γ)sgn(x) where sgn(x)is

the sign of x and a rises because of the magnitude in the argument of the exponent [9].

We note that we can match the boundary condition is just, k tan(kx)=γ. This tran-

sidental equation now determines the allowed value of the energy for the boundary

states. If we define the new, reduced variable then this equation becomes

tan(ξ) =
γ

k
=

√
β2

ξ2
− 1 (2.1.13)

where β2 = 2mV0a2

~2 . The right-hand side of the transcendental equation is a decreasing

function, and it is only those values for which the energy lies in the range [9].

In recent years, there is express progress in nanoelectronic which is already on the

way to continue the outstanding successes of microelectrics. This became possible

among others, due to the development of technologies and techniques. The approach

to the semiconductors design comes into being, which perhaps could be termed as

smart design and whose aim is to tail the heterostructures shape in order to gain the
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predetermined characteristics [1].

Figure 2.5: The graphical solution of single quantum well is indicated by the circle
crossings. Here ,we have used the value of a = 5nm,vo = 0.3ev,and m∗ = 0.067m0,
appropriate to a GaAs quantum well between two two layers of GaAlAs.The two circled
crossing indicate that there are two even -symmetry solution [9].

Many of the quantum wells and super lattices that are commonly studied today

do not occur in nature, but are deliberately structured materials. In the case of super

lattices formed by molecular beam epitaxy, the quantum well results from different

band gaps of the two constituents materials [11]. The double quantum well (DQW)

represents a typical example of a bi-layer system. These structures are characterized

by two dimensional translation symmetry amended by an additional binary degree of

freedom due to the possible tunneling between layers. The presence of a quantized

motion in the growth direction of these structures has a huge impact on their physical
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properties, which strongly differ from properties of narrow single quantum wells [10].

The quantum well structures are usually realized as sandwich-like semiconductor de-

vices, where the width of individual wells is controlled with the precision of single

atomic layers. Among materials used for their preparation appear usually in group

of III-V semiconductors type. The most frequent methods of growth are without any

double the molecular beam epitaxy (MBE). Other methods such as the metal organic

chemical vapor deposition (MOCVD) or the liquid phase epitaxy are now a day very

rarely used for the preparation of high quality sample and are especially important

in the industrial use. In this thesis we discuss results achieved on rectangular double

quantum wells structure by MBE using GaAs/AlGaAs ternary system, which is the

most common combination of technology and materials at all. Its materials param-

eters such as electron and hole effective masses or band offsets are relatively well

known [10].

A schematic representation of a semiconductor hetero-structure super lattice is shown

as Fig.2.6. Because of the different band gap in the two semiconductors potential well

and barriers are formed.

The barrier height in the conduction and valance bands are Ecand Ev respectively.

We see that the difference in band gaps between the two semiconductors gives rise to

bands. In principle, these band offsets are determined Fermi level are and highly sen-

sitive to impurities, defects change transfer at the heterojunction interface. Because

of the different band gap in the two semiconductors potential well and barriers are

formed. The barrier height in the conduction and valance bands areEc and Ev re-

spectively. We see that the difference in band gaps between the two semiconductors

gives rise to bands. In principle, these band offsets are determined Fermi level are
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Figure 2.6: Heterojunction super lattice of periodicity

and highly sensitive to impurities, defects change transfer at the heterojunction in-

terface [10].

The two semiconductors of a heterojunction super lattice could be different semicon-

ductors such as binding semiconductors with ternary alloy semiconductors such as

binary semiconductors with a ternary alloy semiconductor, as GaAs/AlGaAs. The

period thicknesses typically vary between a few and many layers (10Å to 500Å)

The electron states corresponding to the of hetero junction super lattice are two

fundamental types bound stats in quantum wells and nearly free electrons states in

zone-folded energy bands. Multiple quantum wells will be made subsequently. The

eigenfunction and bound state energies of an infinitely deep potential well used as an

approximation to the states in two finite wells. The upper well applies to electrons

and the lower one to holes. This Fig.2.6 is a schematic representation of quantum

well in the GaAs region formed by a adjacent wide gap semiconductor AlGaAs [11].

22



Figure 2.7: Each super lattice unit cell consists of a thickness L of material AlGaAs,
because of the diffracted band gaps a periodic array of potential well and potential
barrier is formed.

GaAs/AlGaAs is the most popular material combination used as rectangular double

quantum well structure semiconductor type. It is geometrically at the middle this

quantum well thickness is typically around 5nm, and the barrier layer ranges from

1.5nm-5nm [3]. The rectangular double quantum well semiconductor can serve as a

filter, which only transmits electrons of energy close to the determinable resonance

value [2].

The application of double quantum well is also exist in emitting laser light in wide

range of wavelength including 1.3µm− 1.5µm which is very useful in optical commu-

nication. It also use to terahertz detectors fabrication [5]
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Figure 2.8: The eigenfunction and bound states energies of a infinitely deep potential
well used as approximation to the states in two finite quantum wells

2.2 Energy eigenstate and energy eigenvalue of the

Schrödinger equation for RDQW

The main equation of non-relativistic quantum mechanics is known as the Schrödinger

equation. It allows us to find the wave state of a particle or system of particles in a

stationary state as well as its evolution in time. This equation has an operator form

since in quantum mechanics each physical quantity corresponds to own operator. The

description of an electron’s behavior is very simple if the corresponding probability

current density, J, is constant.

In this case we studies and determines the electron wave function Ψ(x) that is the

solution of Schrödinger equation. Depending on the configuration of the potential

with in which the electron motion take place, the solution of the time-independent

24



Schrödinger equation defines the allowed energy state and corresponding wave func-

tions. In the complete energy eigenvalue study of the rectangular double quantum well

determine of its eigenstates important. The Schrödinger equation in one dimension

for the particles of interest in quantum well is

~2

2m

d2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x) (2.2.1)

Here is the structure potential or quantum well. The technology of fabrication of

planer layer structures with given physical properties allows the experimental realiza-

tion of the confinement of electrons inside potential well of various profile for practical

realization are two-dimensional potential profile of rectangular double quantum well

can be studied by dividing it into five region the quantum well, and setting general dif-

ferential equation from Schrödinger equations can be constructed a general solution.

The boundary condition of the potential is taken

V (x) = {0, 0<x<L, 0<x<L
Vo, otherwise (2.2.2)

Where Vo is the depth or dissociation energy and it is also the height of the central

separating two equivalent spatial regions. Also notice that the potential is an even

function of position. Due to this symmetry, the solution of Schrödinger equation is

either odd or even function of position. Then considering the five potential regions

we determine the energy eigenfunction using SE. These functions are well known sine

and cosine, or the hyperbolic sine and cosine functions. And they are general solution

of the SE in each potential region. In these linear combination functions we have six

unknown coefficients that must be determined. These coefficients must be determined

and should satisfy the required conditions at the region of boundaries. And about

eight conditions help us to determine the ten coefficients of the general solution of the
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SE for DQW potential. The boundary conditions can complete the general solution

of SE [12].

The quantum system allow only a discrete set of energies,{En}. And these En are

consistent with the continuity and smoothness conditions at the potential boundaries.

The most familiar boundary condition requires as in the case of the particle in a box,

that the wave function become extinct at the edge of the box. Our derivation of

boundaries equation gives us that

η =
ξ2 cosh(η a

L
)− η2 sinh(η a

L
)

ξ cot(ξ(1− a
l
)) exp(η a

L
)

(2.2.3)

Where η = k1L =
√

2m∗(E−Vo)
~2 L and ξ = k2L =

√
2m∗E

~2 L for E < V then following

the super lattice description curves the energy E of a particle as a function of its

wave vector k, this can be solved numerically using a dimension [8]. And we fix the

value of the mass, the length of the thickness and the height of the barrier, and the

depth of the potential and E. And only a finite number of energies satisfy the relation

expressed by Eq.2.2.3 [12].

2.3 Tunneling through a rectangular DQW

Quantum mechanics predict that even if the system has a finite probability to cross

or tunnel the barrier to the other side of the potential barrier. For GaAs/AlGaAs

there is minimum potential and quantum tunneling. Using the quantum tunneling

effect and taking into account the tunneling of particle of mass, m, and energy , E,

through an arbitrary potential barrier Vo, denoting the classical tunneling point and,

26



the transmission coefficient is defined by relations [2],

T = |E
A
|2 = [1 + (

1

4
(
k1

k2

+
k2

k1

)2)sinh22k1a]−1 (2.3.1)

Where E and A are coefficients of transmission and incident wave , respectively;and

k1 and k2 are wave vectors at barrier and well, respectively. The double well is the

simple system in which resonant tunneling involves coupling between two localized

energy levels in addition to coupling between the continuums of energies in the po-

tential well so it serves as a model for tunneling through super lattice. The results

are important of the quantum wells and the electrons when optimize the performance

of super lattice tunneling devices [13].

It can be seen that, away from a resonance an increasing barrier height read, as would

be expected, to a decrease in the transmission coefficient T [14]. Tunneling through

a barrier is described in terms of transmission coefficient which defined as the proba-

bility that any single electron impinging on barrier structure will tunnel and supply

to the current flow through the barrier. Frey has produced a comprehensive analysis

of transmission coefficient for rectangular double quantum well [2]. One important

aspect of the resonance tunneling is structure is the traversal of the electron from one

end of the device to the other tunneling process [15].

Quantum wells derive most of their special properties from the quantum confinement

of charge carriers (”electrons” and ”holes”) in thin layers (e.g. 40 atomic layers thick)

of one semiconductor ”well” material sandwiched between other semiconductor ”bar-

rier” layers. They can be made to a high degree of precision by modern epitaxial

crystal growth techniques. Many of the physical effects in quantum well structures

can be seen at room temperature and can be exploited in real devices. For quantum

well, the valance bands are known as the heavy and light hole bands. Notably for
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quantum wells, the electrons in the conduction band, and the positively charged in

the valence band behave with valuable masses different from the free electron mass

[16].

28



Chapter 3

Materials and Methodology

3.1 Materials

The study is purely theoretical. For understanding the energy eigenvalue and the

tunneling effect of rectangular double quantum wells an intensive literature review is

carried out. The main sources of ‘literature review are the published articles, books,

thesis and dissertations. MATLAB and MATHEMATICA software’s and computers

are additional instruments used to accomplish this project

3.2 Methodology

3.2.1 Analytical

In this thesis one of the method or approach used to solve the problem is analytical

method. That is the Schrödinger equation of rectangular double quantum wells was

solved using variational technique analytically.

3.2.2 Computational

The energy eigenvalue and tunelling effect of the rectangular double quantum wells

for different values of variational Parameters was calculated numerically.
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Chapter 4

Energy Eigen value of rectangular
double quantum well

4.1 Introduction

Many of the quantum wells and superlattices that are commonly studied today do

not occur in nature, but rather are deliberately structured materials. In the case of

superlattices formed by molecular beam epitaxy, the quantum wells result from the

different band gaps of the two constituent materials. The additional periodicity is in

one dimension (1D) which we take along the x-direction, and the electronic behavior

is usually localized on the base planes (x-y planes) normal to the x-dimensional be-

havior.

A schematic representation of a semiconductor hetrostructure superlattice is shown

in Fig.4.1. where d is the superlattices periodicity composed of a distance 2a or, of

semiconductor s1 , and L of semiconductor s2. Because of the different band gaps

in the two semiconductors, potential wells and barriers are formed. For example in

the Fig.4.1., the barriers height in the conduction and valance bands are 4(Ec) and

4(Ev) respectively. We see that the difference in bandgaps between the two semi-

conductors gives rise to band offsets and for the conduction and valance bands. In

30



principle, these band offsets 4Ec and 4Ev are determined by matching the Fermi

levels for the two semiconductors. In actual materials, the Fermi levels are highly

sensitive to impurities, defects and charge transfer at the heterojunction interface.

The two semiconductors of a heterojunction super lattice could be different semi-

conductors such as InAs with GaP or a binary semiconductor with a ternary alloy

semiconductor, such as GaAs with AlGaAs. In the typical semiconductor superlat-

tices the periodicity d = 2a + L is the repeated many times. The period thicknesses

typically vary between a few layers and many layers. Semiconductors superlattices are

totally an extremely active research field internationally. The electronic states cor-

responding to the heterojunction superlattices are of two fundamental types-bound

states in quantum wells and nearly free electron states in zone-folded energy bands.

In this course, we limit our discussion to the band states a double finite quantum

wells. Bound Electronic states From Fig.4.1 we see that the heterojunction superlat-

tices consist of array of potential wells. The interesting limit to consider is the case

where the width of the potential well contains only a small number of crystallographic

unit cells, in which case the number of the bound states in the well is a small number.

4.2 Mathematical formulation of the problem

From a mathematical stand point, the our case to consider is a finitely deep rectan-

gular well. In this case, a particle of mass m∗ in a well of width L in the x direction

satisfies the free particle Schrodinger equation as:-

Analytic solution: for rectangular double quantum well potential region, there are

five special regions and we construct general analytical solutions from the Schrodinger
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Figure 4.1: Rectangular double quantum well with barrier thickness 2a and width of
wells L

equations. Even through the rectangular double quantum well potential is discontin-

uous function of position, it gives an appropriate description of the continuous double

minima potential. It is a simplified model of potential found in molecular chemical

systems where possible double rectangular well potential is described by the following

piecewise constant potential in one dimension.

Vo is the depth or dissociation energy and the height of the central barrier separat-

ing two equivalent spatial regions. In region(I) for −∞ < x ≤ −L, the Schrdinger

equation is

−~2

2m∗
d2ΨI

dx2
+ VoΨI = EΨI (4.2.1)

For E < Vo (that is classically forbidden region)
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d2ΨI

dx2 = k1ΨI with k1=
√

2m∗(vo−E)
~2 . The solution in this region is

ΨI = Aek1x (4.2.2)

In region (II) for −L < x < −a, the Schrodinger equation is

−~2

2m∗
d2ΨII

dx2
= EΨII (4.2.3)

the general solution of this equation is,

ΨII = Beik2x + ce−ik2x (4.2.4)

with k2=
√

2m∗E
~2 .

In region(III), (−a) ≤ (x) ≤ (a), the Schrodinger equation is ,

−~2

2m∗
d2ΨIII

dx2
+ VoΨIII = EΨIII (4.2.5)

The general solution of this Schrodinger equation is ,

ΨIII = Dek1x + Ee−k1x (4.2.6)

In region (IV) for a < x < L, the Schrodinger equation is,

−~2

2m∗
d2ΨIV

dx2
= EΨIV (4.2.7)

And this solution is

ΨIV = Feik2x + Ge−ik2x (4.2.8)

In region(V), L ≤ (x) < ∞, the Schrodinger equation is,

−~2

2m∗
d2ΨV

dx2
+ VoΨV = EΨV (4.2.9)

33



and its solution is

ΨV = He−k1x (4.2.10)

Generally it is known that the wavefunction and the slope of the wavefunction must

be continuous every where matching at the step x = −L, x = −a, x = a and x = L

gives

B =
1

2
(1 +

k1

ik2

)Ae−k1L+ik2L (4.2.11)

C =
1

2
(1− k1

ik2

)Ae−k1L−ik2L (4.2.12)

F =
1

2
(1− k1

ik2

)He−k1−ikL2L (4.2.13)

G =
1

2
(1 +

k1

ik2

)He−k1=ikL2L (4.2.14)

D =
1

2
(1 +

ik2

k1

)Be−ik2a+k1a +
1

2
(1− −ik2

k1

)Ceik2a+k1a (4.2.15)

E =
1

2
(1− ik2

k1

)Be−ik2a−k1a +
1

2
(1 +

−ik2

k1

)Ceik2a−k1a (4.2.16)

D =
1

2
(1 +

ik2

k1

)Feik2a−k1a +
1

2
(1− −ik2

k1

)Ge−ik2a−k1a (4.2.17)

E =
1

2
(1− ik2

k1

)Feik+2a+k1a +
1

2
(1 +

−ik2

k1

)Ge−ik2a+k1a (4.2.18)

Replacing equation (4.2.11) and (4.2.12) for B and C in equation(4.2.15) and we

obtain

D =
A

2
ek1(a−L)[2 cos(k2(a− L) + (

k2
2 − k2

1

k1k2

) sin(k2(a− L))] (4.2.19)

Similarly replacing equations (4.2.11) and (4.2.14) for B and C in equation (4.2.16)

E =
−A

2
e−k1(a+L)(

k2
1 + k2

2

k1k2

) sin(k2(a− L)) (4.2.20)

Inserting equations (4.2.13) and (4.2.14) in to equation(4.2.17) we obtain

D =
−H

2
(
k2

1 + k2
2

k1k2

)(e−k1(a−L)) sin(k2(a− L)) (4.2.21)
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Using the same fashion inserting equations (4.2.13) and (4.2.14) in equation (4.2.18)we

obtain

E =
H

2
ek1(a−L)[2 cos(k2(a− L) +

(k2
2 − k2

1)

k1k2)
sin(k2(a− L))] (4.2.22)

Equating (4.2.19) and (4.2.20)

A[2k1k2cos(k2(a−L)) + (k2
2 + k2

1 sin(k2(a−L))]ek1a = H(k2
1 + k2

2) sin(k2(a−L))e−k1a

(4.2.23)

Similarly relating (4.2.20) and(4.2.22)

A[(k2
1 +k2

2) sin(k2(L−a)]e−k1a = H[2k1k2 cos(k2(L−a))+(k2
1−k2

1) sin(k2(L−a))]ek1a

(4.2.24)

After some mathematical manipulation (4.2.23) and (4.2.22) becomes

A[2k1k2 cot(k2(L− a)) + (k2
1 − k2

2]e
k1a −H(k2

1 + k2
2)e

−k1a = 0 (4.2.25)

A[(k2
1 + k2

2)](e
−k1a)−H[2k1k2 cot(k2(L− a)) + (k2

1 − k2
2)e

k1a] = 0 (4.2.26)

The solution of the determined of equation (4.2.25) and (4.2.26) is

[2k1k2 cot(k2(L− a) + (k2
1 − k2

2)]e
k1a = ±(k2

1 + k2
2)e

−k1a (4.2.27)

From this we infer that we have two transdental equations,

k1k2 cot(k2(L− a))ek1a = k2
2 cosh(k1a)− k2

1 sinh(k1a) (4.2.28)

and

k1k2 cot(k2(L− a))ek1a = k2
2 sinh(k1a)− k2

1 cosh(k1a) (4.2.29)
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Using dimensionless variables η = k1L =
√

(2m∗(vo−E)
~2 )L and ξ = k2L =

√
(2m∗E

~2 )L,

we have

η2 + ξ2 =
2m∗voL

2

~2
= R2 (4.2.30)

Rewriting equations (4.2.28) and (4.2.29) with dimensionless variables ξ and η

ηξ cot[ξ(1− a

L
)]eη a

L = ξ2 cosh(η
a

L
)− η2 sinh(η

a

L
) (4.2.31)

ηξ(ξ(1− a

L
))eη a

L = ξ2 sinh(η
a

L
)− η2 cosh(η

a

L
) (4.2.32)

η =
ξ2 cosh(η a

L
)− η2 sinh(η a

L
)

ξ cot(ξ(1− a
L
))eη a

L

(4.2.33)

η =
ξ2 sinh(η a

l
− η2 cosh(η a

L

ξ cot(ξ(1− a
L
))eη a

L

(4.2.34)

If we measure E in terms of Vo, then ξ = R
√

E
vo

and η = R
√

1− E
vo

4.3 Numerical Solution

The energy eigenvalues are found from a numerical or graphical solution of equa-

tions(4.2.33) and (4.2.34) with definitions k1 and k2 in the previous section. The

graphical method for analytical equation that described in the previous section. The

graphical method for describing the solution is given here as it reveals the way in

which the number of is create energy levels depend on Vo an L. Further more tunnel-

ing effect over the barrier depends on the width of the barrier a and the potential Vo.

In equation(4.2.30) ξ and η are restricted to position values, the energy levels may
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be found in this form the inter sections in the first quadrant of the curve of known

radius R =
√

2m∗Vol2

~2 . Similarly the odd part of the same circle with the curve of

equation (4.2.34) in the first quadrant. For the values of a
l
=0.1, 0.01, and 0.001 and

VoL
2 = ~2

2m∗ , 4 ~2

2m∗ and 12 ~2

2m∗ , the graphical solutions are demonstrated in Fig.4.2,

Fig.4.3, and Fig.4.4 respectively. In this computation the height of the barrier is given

in units of ~2

2m∗L2 .

Figure 4.2: Energy eigenvalues of even and odd and eigen states with a
L

= 0.1
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Figure 4.3: Energy eigenvalues of even and odd and eigen states with a
L

= 0.01
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Figure 4.4: Energy eigenvalues of even and odd and eigen states with a
L

= 0.001

The intersection point(at which we determined our energy eigenvalue) of the

graphes and the energy eigenvalues for different barrier width are explained in Table1.
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Table1: The energy eigen value of rectangular double quantum well for different

values of a
L
,En = Voξ2

n

R2
2

a
L

ξn ηn En in ~2

2m∗L2

0.1 0.820 0.5903 0.6724

1.120 1.704 1.2544

1.320 3.273 1.7424

1.56 1.297 2.4336

1.62 3.062 2.6244

0.01 0.74 0.6728 0.54776

1.04 1.759 1.0857

1.22 3.320 1.4884

1.50 1.381 2.250

1.52 3.113 2.3104

0.001 0.74 0.6728 0.5476

1.03 1.755 1.0609

1.23 3.200 1.5129

1.50 1.381 2.250

1.53 3.121 2.3409

4.4 Tunneling effects in terms of transmission and

reflection coefficient

Consider our rectangular double quantum well as Fig4.1 taking the regions II, III

and IV, as a point of interest to derive our tunneling effect. Let’s take for region

−L < x < −a Schrodinger equation and derive wave states as

Ψ(II) = Aeik2x + Be−k2x (4.4.1)
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then for region −a < x < a region using Schrodinger equation we have another

equation as

ΨIII = Cek1x + De−k1x (4.4.2)

at last for a ≤ (x) < L region we get

ΨIV = Eeik2x (4.4.3)

from the incident part at region II, and we have a transmission or at the region IV a

wave stateΨIV , then to determine the transmission coefficient of this tunneling effect,

we can use two boundary conditions at x = −a andx = −a. We can use Ψ|x=(±)a and

dΨ
dx
|x=±(a) at two interfaces so that:

At x = −a using equations (4.4.1) and (4.4.2)we obtained that

A = (1− k1

ik2

)
C

2
e−k1a+ik2a + (1− k1

ik2

)
D

2
ek1a+ik2a (4.4.4)

And at x = a using equation (4.4.2) and (4.4.3) we can get that

C = (1 +
ik2

k1

)(
E

2
)eik2a−k1a (4.4.5)

and

D = (1− ik2a

k1

)(
E

2
)eik2a+k1a (4.4.6)

Then substituting equations (4.4.5) and (4.4.6) in equation (4.4.4) and we obtained

that

(
A

E
) =

1

4
[(

k2
1 − k2

2

ik1k2

) + 2]e2ik2a−2k1a − (
1

4
)[(

k2
1 − k2

2

ik1k2

)− 2]e2k1a+2ik2a (4.4.7)

When the above equation squared and simplified gives us an equation of

(
A

E
)2 = 1 + (1 +

1

4
(
k2

1 − k2
2

k1k2

)2sinh2(2k1a) (4.4.8)
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And further can be simplified as

(
A

E
)2 = [1 +

1

4
(
k1

k2

+
k2

k1

)2sinh2(2k1a)] (4.4.9)

this means that our transmission coefficient(T) will be indicated in Equ.4.4.10

T = |E
A
|2 = [1 + (

1

4
(
k1

k2

+
k2

k1

)2)sinh22k1a]−1 (4.4.10)

In addition; the probability of transmission and reflection is

T + R = 1 (4.4.11)

where T and R are transmission and reflection coefficients, respectively across the

barrier in the RDQW hetrostructure

Figure 4.5: Tunneling effects of rectangular double quantum well of central barrier
thickness a = 3nm and a = 5nm

At this point, we denote our RDQW heterostructure as B1/W2/B3/W4/B5 in order

to clarify discussion. The width of the central barrier if it is taken to be 2a, while
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the width of the outer well (crystal W2 and W4) is given by ±L . The transmission

coefficient of the total RDQW heterostructure is analytically determined from the

values (ξ = 0.820 and η = 0.5903) from the data given in Table 4.1 at the first row.

Using the obtained equation analytically as transmission and plotting it over the

range of the central barrier crystal then we can see the how thickness of the barrier

affects the transmission rate in tunneling effects of particles in the system.As the

thickness of the barrier increases the transmission decreases.
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Chapter 5

Conclusion

In this thesis we have studied the rectangular double quantum well (RDQW) with the

model of double finite potential of GaAs/AlGaAs. The simplicity of RDQW allow

us to obtain relations from the required properties imposed to the solutions of the

schrodinger equation by the quantum mechanical postulates analytically . The ana-

lytical manipulations are straight forward to obtain two transcedental equations. The

numerical aspect of the analysis that include the solution of a transcedental equation

and the solution of schrodinger equation with softwares results energies eigen value in

RDQW. we have demonstrated how tunneling effect occurs in these heterostructure,

where by wave states with their energies corresponding to bound states of the system

undergo transmission through the structure. The degree of transmission can be con-

trolled by varying the thickness of the central barrier and by modifying the width of

the wells in the hetrostructure.
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