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Abstract

In this study we have developed the Hamiltonian and trial wave functions for the

triangular quantum well. Then the schroendinger equation is solved analytically and

numerically for determining the ground and excited state energy. This ground and

excited state energy of triangular quantum well are calculated by using variational

methods. The energy eigen value of states increase with an increment of applied field.

By using the compact density matrix formalism and iterative procedure, the change

in linear refractive index and absorptions coefficient is studied. The value of linear

change in refractive index and absorption coefficient carried out for given value of

transition energies and depending on the above calculated energy eigen value. As

the transition energy or frequency increases, the peak of the spectra of the change

in refractive index and change in linear absorption coefficient move toward the high

energy region. Moreover, the magnitude of the absorption coefficient increases with

an increment of transition energy.
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Chapter 1

Introduction

1.1 Back ground of the Study

In recent year, due to significant improvement in micro fabrication techniques like

Molecular Beam Epitaxy and metal organic chemical vapor deposition, it is possible

to fabricate quantum wells with varied potential profiles [1]. Quantum well, Quantum

dot, Quantum wire heterostructure are classified as low- dimensional semiconductor

quantum system become an important part with in semiconductor studies. Quan-

tum well is a particular kind of heterostructure in which one thin ”well” layer is

surrounded by two ”barriers”. Quantum well have many interesting properties for

electrical transport [2]. Quantum well are one example of heterostructure. In general

heterostructure have many uses. They can be used for advanced electronic devices,

optical component, optoelectronic devices and structures. (Mg, Zn) O are important

for the potential applications in the fabrication of optical and electro- optical devices

operating in the green- ultra violet region of the electron magnetic spectrum [3]. ZnO

(Zn, Mg )O quantum wells have been successfully grown by different techniques such

as Laser, assisted molecular beam epitaxy (LMBE), Metal ln organic chemical va-

por deposition and molecular beam epitaxy (MBE) [4]. ZnO/ZnMgO structure are
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effective to obtain intense ultraviolet emission for laser and light emmited diode ap-

plication. The principle of the Rayleigh - Ritz method is that we can adopt a trial

wave function, which may have some parameters in it and then minimize the energy

calculated with the wave function. This energy will be lowest energy level E0 and

gives a good approximation to the actual energy level. The next higher state can be

developed by using a second parametrized basis function, which is made orthogonal

to the first . The energy level of this wave function is then found by the same adjust-

ment technique [5]. The calculation of the confinement energies and excitonic states

requires a detailed knowledge of the band structure parameters.

The Piezoelectric field naturally modulated the quantum well energy states to create

triangular potentials at opposite sides of the well[6]. Which causes separate confine-

ment of the electron and holes, decrease of the wave function overlap effective in a

plane (lateral) localization of the quantized electron-hole pair was found to play an

important role.

The linear and nonlinear optical susceptibility can be determined by considering the

symmetry properties of particular crystal [7]. In the process of two photon absorption

an atom makes a transition from its ground state to an excited by the simultaneous

absorption of two laser photons. Nonlinear optics is the study of phenomena that

occur as a consequence of the modification of the optical properties of a material

system by the presence of light. Typically, only laser light is sufficiently intense to

modify the optical properties of a material system.
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1.2 Statement of the Problem

A quantum well (QW) is a two dimensional system with discrete energy levels along

one direction and continuous energy along the remaining two directions. Quantum

wells (QW) have promised a lot of device applications such as modulation doped field

effect transistors and Quantum well lasers. In addition to this QWs have been found

to play a key role in optoelectronic applications. Understanding the peculiar opti-

cal properties of ZnO triangular quantum wells helps to use numerous application of

modern technologies like high brightness, blue light emitting diodes and laser diodes.

The triangular quantum well(s) is also important systems since the absorption co-

efficient value is reduced in the experimental measurement of the electro absorption

when a triangular quantum well is used. In this study, we seek to determine the

energy eigen value of ZnO triangular quantum well by using variational techniques.

Research questions are:

1. How can we determine the energy eigen value of ZnO triangular quantum well by

using variational techniques?

2. What are the optical properties of ZnO triangular quantum wells?

1.3 Objectives

1.3.1 General Objective

The main objective of this study is:

• To determine the energy eigen value of ZnO triangular quantum wells and to de-

scribe its optical properties.
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1.3.2 Specific Objectives

The specific objectives of the study are:

• To determine the energy eigen value of ZnO triangular quantum well by using

Variation techniques.

• To describe the optical properties of ZnO Triangular quantum wells.

1.4 Significance of the Study

Quantum well is a particular kind of heterostructure in which one thin ”well” layer

is surrounded by two ”barriers”. This work helps to understand peculiar optical

properties of ZnO Triangular quantum well. In general this study have significant

impact in the understanding of the physics of ZnO triangular quantum wells and its

optical properties.

1.5 Limitation of the Study

Due to time constraint, the scope of the study is limited to the calculation of en-

ergy eigen value of ZnO triangular quantum well using variational techniques and

description of its optical properties.

.
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Chapter 2

Literature Review

2.1 Quantum Well

Semiconductor materials especially quantum wells and quantum dots are important

for a number of recent demonstration of quantum optics effects[8]. Quantum wells

(QW) are thin layered semiconductor structures in which we can observe and control

many quantum mechanical effects[2, 9]. In Qw, charge carriers (electrons and holes)

are free to move in two direction and quantized in one direction. The optical properties

of semiconductor are therefore determine by transition between energy bands rather

than between discrete levels[8]. They derive most of their special properties from

the quantum confinement of charge carrier (” electron ” and ” holes ”) in thin layers

of one semiconductor ” well ” material sandwiched between other semiconductor

” barrier ” layers. Many of the physical effects in QW structures can be seen at

room temperature and can be exploited in real devices. QW semiconductors are very

thin layer of smaller band gap material, Eg1, is sandwiched between two layers of

larger band gap material, Eg2, technically this is done by the sophisticated techniques

of Molecular Beam Epitaxy (MBE) or Metal Organic Chemical Vapor Deposition

(MOCVD)[1, 9]. One-dimensional quantum wells are formed through epitaxial growth
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of alternating layers of semiconductor materials with different band gaps. A single

quantum well is formed from one semiconductor sandwiched between two layers of a

second semiconductor having a larger band gap. The center of layer with the smaller

band gap semiconductor forms the QW, while the two layers sandwiched the center

layer create the potential barriers. QWs are one example of heterostructures made

by joining different materials, in layers and with the materials joined directly at the

atomic layer.

Among the fundamental QW properties of interest, the process of the carrier transfer

from the bulk states[8]. In bulk semiconductor, conduction band electrons are free

to move in all three directions forming a continuous energy spectrum but in QW

conduction band electrons are confined in direction and are free to move in other two

directions. The transition can take place over a continuous range of photon energies

determine by the lower and the upper energy limit of the bands. An absorption

band is therefore, with a threshold at the band gap energy Eg[8]. In contrast to bulk

semiconductors excitonic effects are very clear in quantum well at room temperature

have significant influence on device performance. For an emission, it is necessary that

there should be an electron in the conduction band and an unoccupied level that

means a hole in the valence band.These electrons and holes are typically injected into

their respective bands either from an electrical current or previous optical excitation.

The electrons that are injected relax very rapidly to the bottom of the conduction

band by emission of phonons. Similarly the injected holes relax very rapidly to the

top of the valence band. The radiative transitions therefore take place at energy very

close to the band gap energy .The width of the emission line is determined by the

thermal spread of the charge carriers with their bands or by inhomogeneous effects.
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Strong inter band transitions can occur when the transitions are allowed by the electric

dipole selection rule, and when semiconductor has a direct band gap. Indirect band

gap, a phonon must be absorbed or emitted whenever the electron jumps between the

bands, and this substantially reduces the transition probability [8]. In fact that the

electrons and holes relax with their bands before emission occurs means that there is a

qualitative difference between the emission and absorption spectra of a semiconductor.

This contrasts with atomic spectral, where the absorption and emission linens both

occur at the same energy.

2.2 Zinc Oxide (ZnO) and its Application in Tech-

nology

ZnO is a II-VI compound semiconductor whose ionicity resides at the borderline be-

tween the covalent and ionic semiconductor [10]. It is widely used in electro acoustic

devices due to its large piezoelectricity. From the 1960s, synthesis of ZnO thin film

has been an active field because of their application as sensors, transducers and cat-

alyst[11]. ZnO is a key technological material. The lack of a center of symmetry, in

Wurtzite, combined with large electromechanical coupling, result in strong piezoelec-

tric and pyroelectric properties and consequent use of Zno mechanical, actuators and

piezoelectric sensors.

Metal oxide nanostructures have attracted considerable attention for their potential

application in many technologies such as solar cells, electroluminescent devices, elec-

tro chromic windows and chemical sensors. To achieve high performance of these

devices, the metal oxides used in these applications are required to posses’ high sur-

face area as well as good electrical, electrochemical and structural properties. ZnO
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is a direct band gap (3.37ev) semiconductor with a large exciton binding energy of

60meV at room temperature. It is widely exploited metal oxide material in photo-

voltaic application as a transparent conducting electrode[12]. Band gap engineering

of ZnO be achieved by allowing with MgO or CdO. Adding Mg to ZnO increase the

band gap, where as adding Cd to ZnO it decreases the band gap[13].

ZnO is an interesting material with application spanning from the simple and well-

known to the highly advanced and sophisticated. Its wide band gap and high ab-

sorbitivity have made it useful as ultraviolet- absorbing in everything from sun screens,

advanced plastic, and rubber [14].

The availability of large single crystal is a big advantage of ZnO over GaN. For ex-

ample, GaN is usually grown on sappire, with a large lattice mismatch of 16percent

that leads to an exceedingly high concentration of extended defects (106 − 109cm−2).

The epitaxy of ZnO films on native substrates can result in ZnO layers with reduced

concentration of extended defects and consequently, better performance in electronic

and photonic devices. Another big advantage over GaN is that ZnO a merable to

wet chemical etching [13]. In general a partial list of the properties of ZnO that dis-

tinguish it from other semiconductor or oxide it useful for applications includes: In

Direct and wide band gap, large exciton binding energy, large piezoelectric constant,

Strong luminescence, Thermal conductivity, and Radiation hardness.

The ZnO / (ZnMg) O material system holds several advantages for the fabrication

of low defect type-I heterostructures[15]. ZnO and ZnMgO- layers can be used for

fabricate highly reflective distributed Bragg’s reflectors for applications in the ultra-

violet and blue /green spectral range. ZnO has a large fundamental band gap of
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3.37ev at room temperature [13].Because ZnO has attracted more and more atten-

tion due to its interesting properties. The nature of high thermal conductivity, high

luminous efficiency and mechanical and chemical robustness have made ZnO and its

alloys the promising material system for light - emitting device operated at a ultra

violet spectra region. When light sufficient energy is incident on to sample, absorbed

photons impart excess energy to electrons within the material. This photon excita-

tion causes electrons with the material to move into permissible excited states. This

excited electrons eventually relax to their ground state with radiative and nonradia-

tive relaxation the electrons, the emission of light called photo luminescence occurs.

The most common radiative transition in semi conductors is between states in the

conduction and valence band. Moreover, the excitons in ZnO- based quantum well

(QW) heterostructure exhibit strong stability as compared to bulk semiconductors

or III -V QWs due to the enhancement of the binding energy and reduction of the

exciton - phonon coupling caused by quantum confinement[16]. An important step in

order to design high performance ZnO based optoelectronic devices is the realization

of band gap engineering to create barrier layers and quantum wells in heterostruc-

ture devices. An effect of built- in electric field inside QW layer might be taken into

account for ZnO QWs having relatively high barrier height.

2.3 Density State of Quantum well

The application of the quantum wells are based mainly on the optical transitions

around the high symmetry points in the two-dimensional Brillonin zone [17]. Macro-

scopic properties of any condensed matter system depend on the integral (total)density

of state. The density of states is defined as the number of states per energy per unit
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volume of real space.

ρ(E) =
dN

dE
=
dN

dK

dK

dE
(2.3.1)

In two dimensional electron or holes gas (2DEG), the total number of states per unit

cross- sectional area is given by the spin degeneracy factor multiplied by the area of

the circle of radius k, divided by the occupied by each state, i.e. [18].

N2D = 2πk2 1
( 2π

L
)2

1
L2

N2D =
k2

2π
(2.3.2)

The parabolic bands of effective mass theory is given by,

E =
~2k2

2m∗ (2.3.3)

From equation (2.3.3)k (wave vector) becomes,

k =

(
2m∗E

~2

) 1
2

(2.3.4)

Density of state in two dimension [18],

ρ2D(E) =
dN2D

dE
=
dN2D

dK

dK

dE
(2.3.5)

Derivate equation (2.3.2)by dk then we get,

dN2D

dK
=
k

π
(2.3.6)
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Figure 2.1: The density of states for quantum well(2D)[18].

And Derivate equation (2.3.4)by dE it gives,

dK

dE
=

1

2

(
2m∗

~2

) 1
2

E
−1
2 (2.3.7)

Using equation (2.3.6)and (2.3.7) in to equation (2.3.5) then the density state of two

dimension is becomes,

ρ2D(E) =
m∗

π~2
(2.3.8)

Generally the density state of quantum well (2 dimensional) is given by,

ρ2D(E) =
A

2π
(
2m∗

~2
) (2.3.9)

where A is surface area
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2.4 Optical Property in Quantum well

The unique properties of low dimensional semiconductor materials are originated from

the quantum confinement of the motion of electrons [19]. Depending on dimension-

ality, in the two dimensional structure quantum well, the quantization of the particle

motion occurs in one dimension, while the particle is free to move in other two direc-

tions. In the case of quantum well structures, the conduction band will be quantized

to several subbands along the growth direction due to quantum confinement. In quan-

tum well, the electron and the holes are free to move in the direction parallel to the

layers [2]. Hence, we do not really have discrete energy states for electrons and holes

in quantum well: we have instead ”subbands” that start at the energies calculated

for the confined states. Optical measurement constitutes the most important means

of determining the band structures of semiconductors[20]. photon induced electronic

transitions can occur between different bands, which lead to the determination of the

energy band gap, or with in a single band such as a free - carrier absorbtion.

The quantum well looks like artificial model, which has an application in the real

world. Although an infinitely deep well cannot be made it is simple now days to

grow structures that are close to an ideal infinite well. A heterostructure consisting

of a thin sandwiched of ZnO between two thick layers of ZnMgO provides a simple

quantum well. Free electrons have energy,

E0 =
~2k2

2m0me

(2.4.1)

Electrons in the semiconductor live in the conduction band which changes their energy

in two ways. First energy must be measured from the bottom of the band Ec rather

than from zero, second electrons behave as though their effective mass m0me or (m∗).
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Figure 2.2: The schematic diagram of optical properties of quantum well
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Thus energy is given by

Ec(~k) = Ec +
~2k2

2m0me

(2.4.2)

The sandwiched acts like a quantum well, because Ec is higher in ZnMgO than ZnO

and difference ∆Ec provides the barrier that confines the electrons. We could measure

the energy levels by shining light on the sample and determining which frequencies

were absorbed. A photon is absorbed by exciting an electron from low level to higher

one, and the energy of the photons matches the difference in electric energy level. It

is given by,

~ω = Ee2 − Ee1 (2.4.3)

Semiconductors have energy levels in other bands. The most important of this is

valence band,Ev below the conduction band. The band curve is down ward, in a

function of K,Ev is giving by,

Ev(~k) = Ev −
~2k2

m0me

(2.4.4)

The conduction bands and valence bands are separated by an energy called band gap

energy, Eg is given by,

Eg = Ec − Ev (2.4.5)

The valence band is completely full and the conduction band is completely empty in

a pure semiconductor at zero temperature. Optical absorption must therefore list an

electron from the valence to the conduction band. In a bulk sample of ZnO this can

occur, provided that ~ω > EZnO
g similarly we need ~ω > EZnMgO

g in ZnMgO. The

16



process level behind the empty state or hole in the valence band so the subscript h

is used to identify parameters of the valence band. Quantum well ZnO, absorption

cannot start at ~ω = EZnO
g , because the states in the well are quantized. The lowest

energy at which absorption can occur is given by difference in energy, Ee1 − Eh1,

between the lowest state in the well on the conduction band and the lowest in the

well in the valence band. Absorption can occur at higher energy. The strongest

quantization occurs between corresponding states in two bands, so that ne = nh = n.

The strong absorption occurs at the frequency given by,

~ωn = Een − Ehn (2.4.6)

The energy levels (Een) in a well of width a is given by,

Een = Ec +
~2π2n2

e

2m0mea2
(2.4.7)

where k is wave vector and given by, k2 = π2n2

a2 and a is well width

Energy of the bound states (Ehn) are given by,

Ehn = Ev −
~2π2n2

2m0mha2
(2.4.8)

where k2 =
π2n2

h

a2

Using equation (2.4.7)and (2.4.8) into equation (2.4.6)then we get,

~ωn = (Ec + ~2π2n2

2m0mea2 )− (Ev − ~2π2n2

2m0mha2 )

~ωn = (Ec − En) +
~2π2n2

2m0mea2
+

~2π2n2

2m0mha2
(2.4.9)

Using equation (2.4.5) in to equation (2.4.9) then the energy in quantum well is given

by,
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~ωn = Eg +
~2π2n2

2m0a2
[

1

me

+
1

mh

] (2.4.10)

where the effective mass is given by, 1
meh

= 1
me

+ 1
mh

The barrier in a semiconductor are finite and absorption occurs in the ZnMgO barriers

for all frequencies where ~ω > EZnMgO
g , no absorption is possible for ~ω < EZnO

g

and and there is a continuous band of absorption for~ω > EZnMgO
g , between these

frequencies discrete lines are produced by transition between states in the quantum

well with energies given by equation (2.4.10). The width of the well can be infrared

from the energy of this lines, of the effective masses are known. In practice slightly

different experiment is usually performed called photoluminescence light with ~ω >

EZnMgO
g is shown on the sample which excites many electrons from the valence to the

conduction band every where. Some of the electrons trapped in the quantum well

and the same thing happen to the hole in the valence band. It is then possible for

the electron to fall from the conduction band in to the hole in the valence band and

released the difference in energy a light. This luminescence in the reverse process to

the absorption and occur at the same energies.

2.5 Triangular Quantum Well

Quantum wells (QWs) are grown with various shapes as rectangular quantum wells

(RQW) (Greene and Bajaj, 1983; Miller et al., 1984), parabolic quantum wells (PQW)

(Merlin, 1987; Brey et al., 1989-II), triangular quantum wells(TQW) (Jiang and Wen,

1994-II) etc[21]. Calculation of electron and hole energy levels and hence the transi-

tion energies in such quantum wells will be useful for many advanced studies on them.

18



The intersubband transitions and impurity binding energy in differently shaped semi-

conductor quantum wells under magnetic field are calculated by Yesilgul et al., (2011)

using a variational method with in the effective mass approximation. The triangular

well is a type of potential well which is quite common in every day semiconduc-

tor devices, such as the common metal oxide semiconductor(MOS) transistor. The

Piezoelectric field naturally modulated the QW energy states to create triangular

potentials at opposite sides of the well [6], which causes separate confinement of the

electron and holes, decrease of the wave function overlap effective in a plane (lateral)

localization of the quantized e-h pair was found to play an important role .For the

quantum wells especially for a well thickness smaller than the three dimension(3D)

free exciton Bohr radiusaB [6]. The optical inter-subband transition between the

states of two triangular QWs, one for the electrons in conduction band and another

one for the holes in valence band[22]. The triangular well is useful because it is a

simple description of the potential well at a doped heterojunction. The triangular

quantum well is important systems science the absorption coefficient value is reduced

in the experimental measurement of the electro absorption.

The countered potential is the triangular quantum well for which the potential

V(z)is linear for z > 0 and has infinite barrier at z = 0 [23]. In this case of triangular

potential well, as V (z) = eFz , the Schrdinger equation for the envelope wave function

is given by,

−~2

2m∗ [
d2

dz2
+ eFz]ψ(z) = Eψ(z) (2.5.1)

Where F is the electric field.
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Figure 2.3: Wave functions and subband energies in a triangular quantum well[23].

2.6 Variational Techniques/Method/

The variational method can give a good estimate of the lowest order mode by choosing

an appropriate trial function and carrying out an optimization; the method becomes

quite cumbersome when applied to higher order modes[24]. The exact analytical

solution of the Schrodinger equation is possible only in a few cases. Even the direct

numerical solution by integration is often not feasible in practice, especially in systems

with more than one particle. There are, however extremely useful approximated

methods that can in many cases reduce the complete problem to a much simpler

one. The energies of the ground state and the first excited state are determined by

minimizing the expectation value of Hamiltonian[25].

E =
< ψ|H∗ψ >

< ψ|ψ >
(2.6.1)
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Hamiltonian equation is given by,

−~2

2m
[
d2

dx2
+

d2

dy2
+

d2

dz2
] + V̂ = Ĥ (2.6.2)

The variational methods provide an estimate of the energy of the lowest state of the

system. Although this might seems a rather specialized task, the method is impor-

tant for its accuracy, for its applicability to complicated problems, and because many

numerical methods are available to minimize a function.

2.7 Linear Optics

Linear optics is subfield of optics, consisting of linear systems and is the opposite of

nonlinear optics. Linear optics includes most application of lenses mirrors wave plates,

diffraction grating and many other common optical components and systems. The

linear optics, the induced polarization depends linearly on the electric field strength

in a manner that can often be described by the relationship [7]

~P (t) = ε0χ
(1) ~E(t) (2.7.1)

where the constant of the proportionality χ(1) is known as the linear susceptibility

and ε0 the permittivity of free space.

According to the rules of quantum mechanics, the expectation value of the electric

dipole moment is given by,

˜< P > =< ψ|µ̂|ψ > (2.7.2)
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The contribution linear in the applied field amplitude is given by

˜< P (1) > =< ψ(0)|µ|ψ(1) > + < ψ(1)|µ|ψ(0) > (2.7.3)

˜< P (1) > =
1

~
∑

p

∑
m

(
µmg[µmg.E(ω)]

ωmg − ωp

+
[µmg.E(ωp)]µmg

ω∗mg + ωp

) exp(−iωpt) (2.7.4)

Finally we introduce the linear susceptibility defined through the relation,

P 1
i (ωp) = ε0

∑
j

χ
(1)
ij Ej(ωp) (2.7.5)

thenχ
(1)
ij (ωp) becomes

χ
(1)
ij =

N

ε0~
∑
m

(
µi

mgµ
j
mg

ωmg − ωp

+
µj

mgµ
i
mg

ω∗mg + ωp

) (2.7.6)

Nonlinear optical phenomena are ”nonlinear” in the sense that they occur when the

response of a material system to an applied optical field. For example, second order

harmonic generation occur as a result of the atomic response that scales quadratically

with the strength of the applied optical field [7]. In order to describe more precisely

what we mean by an optical non linearity, let us consider how the dipole moment

per unit volume, or polarization~P (t) , of a material system depends on the strength

~E(t)of an applied optical field.

In nonlinear optics, the optical response can often be described by generalizing equa-

tion (2.7.1) by expressing the polarization ~P (t) as a power series in the field strength

~E(t) as

~P (t) = ε0[χ
(1) ~E(1)(t) + χ(2) ~E(2)(t) + χ(3) ~E(3)(t)+, ...] (2.7.7)
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The quantities χ(2)andχ(3) are known as the second and third order nonlinear optical

susceptibility respectively.

2.8 Density Matrix Formalism

We calculate the nonlinear optical susceptibility through the use of the density matrix

formulation of quantum mechanics [7]. We use this formalism because of it is capable

of treating effects, such as collision broadening of the atomic resonances. That cannot

be treated by the simple- theoretical formalism based on the atomic wave function.

The density matrix formalism follows from the basic laws of the quantum mechanics.

We can describe all of the physical properties of the system in terms of the wave func-

tion ψs(~r, t) appropriate to the state. This function obeys the Schrdinger equation.

i~
∂ψs(~r, t)

∂t
= Ĥψs(~r, t) (2.8.1)

whereĤ denotes the Hamiltonian operator of the system. It is represent as

Ĥ = Ĥ0 + V̂ (t) (2.8.2)

where Ĥ0 is the Hamiltonian for a free atom and V̂ (t) represents the interaction of

energy, and Wave function of state as

ψs(~r, t) =
∑

n

Cs
n(t)Un(~r) (2.8.3)

The functions Un
~(r) are the energy eigen solutions to the time independent Schrdinger

equation. Using equation (2.8.3) in (2.8.1), Schrdinger equation obtain,

i~
∑

n

dCs
n(t)

dt
Un(t) =

∑
n

U s
n(t)ĤUn(~r) (2.8.4)
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Multiply equation (2.8.4) from left byU∗m and integrate over all space.

Ĥmn =

∫
Um∗(~r)ĤUn(~r)d3~r (2.8.5)

Then we obtain result,

i~
dCs

m(t)

dt
=

∑
n

ˆHmnCs
n(t) (2.8.6)

The expectation value of any observable quantity can be calculated in terms of the

wave function of the system. The expectation value of < A > can be expressed in

terms of the probability amplitudeCs
n(t)

< A >=
∑
mn

C∗smC
s
nAmn (2.8.7)

We define the elements of density matrix of the system by

ρnm =
∑

s

ρ(s)C∗smC
s
n (2.8.8)

The density matrix is useful because it can be used to calculate the expectation value

of any observable quantity. The expectation value overall possible states of the system

to yield,

¯< A > =
∑

s

ρ(s)
∑
nm

C∗smC
s
nAmn (2.8.9)

Using equation (2.8.8) and (2.8.9) the ensemble average of the quantum mechanical

expectation value of the observable quantity A∗ becomes,

¯< A > =
∑
nm

ρnmAmn (2.8.10)
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The double summation in the equation can be simplified as follows:

∑
nm

ρnmAmn =
∑

n

(
∑
m

ρnmAmn) =
∑

n

(ρ̂Â)nn = tr(ρ̂Â) (2.8.11)

In order to determine how any expectation value evolves in time, it is thus necessary

only to determine how the density matrix itself evolves in time. By direct time

differentiation of equation (2.8.8), we obtain that,

˙ρnm =
dρnm

dt
=

∑
s

dρ(s)

dt
C∗smC

s
n +

∑
s

ρ(s)(C∗sm

dCs
n

dt
+
dC∗sm

dt
Cs

n) (2.8.12)

For ρ(s) does not vary in time so that the first term in this expression vanishes. We

can then evaluate the second term straight forward by using Schrdinger equation.

Therefore we obtain,

˙ρnm =
dρnm

dt
=
i

~
∑

v

(ρnmHvm −Hnvρvm) (2.8.13)

Finally the summation over v can be performed formally to write this result as com-

mutation relation,

˙ρnm =
dρnm

dt
=
i

~
(ρ̂Ĥ − Ĥρ̂)nm =

−i
~

[Ĥ, ρ̂]nm (2.8.14)

when there are certain interactions (such as resulting from collisions between atoms)

that cannot conveniently be included in Hamiltonian description, such interaction

lead to a change in the state of the system, and hence of no vanishing of dρ(s)
dt

. We

include such effects in the formalism by adding phenomenological damping terms to

the equation of motion (2.8.14) The density matrix equation to have the form

˙ρnm =
dρnm

dt
=
−i
~

[Ĥ, ρ̂]nm − γnm(ρnm − ρeq
nm) (2.8.15)
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The second term on the right hand side is a phenomenological damping term, which

is indicates that ρnm relaxes to its equilibrium value ρeq
nm at rate ofγnm
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Chapter 3

Materials and Methodology

3.1 Materials

An intensive survey of literature from published articles, books, thesis and disserta-

tion was carried out based on the project.

3.2 Methodology

3.2.1 Analytical

In this thesis one of the method or approach used to solve the problem is analytical

method.We have determine the energy eigen value of ground and excited state energy

of triangular quantum well by exactly solving schroendinger equation analytically.

3.2.2 Computational

The ground and excited state energy of triangular quantum well for applied electric

field was calculated numerically. Both numerical and graphical methods have been

used to solve the intended research problem. For numerical calculation and graphical

method soft ware’s MATHEMATICA and MATLAB were used respectively.
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Chapter 4

Energy eigen value of Triangular
Quantum Well using Variational
Techniques

4.1 Introduction

Semiconductor quantum well have been the object of detailed experimental and the-

oretical investigations. The studies on quantum heterostructure have opened a new

field in fudamental physics, and also provide a wide range of potential application

for optoelectronic devices[24]. Quantum well, heterostructures which are classified

as low-dimensional semiconductor quantum systems have become an important part

with in semiconductor studies[2-20]. The theoretical and experimental investigation

gives some possibilities to produce high quality quantum heterostructures. Some vis-

ible lasers based on the electronic transition between levels of the conduction band.

Among the other quantum heterostructures, the triangular quantum well(s) is also

important systems since the absorption coefficient value is reduced in the experi-

mental measurement of the electro absorption when a triangular quantum well is
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used. Among the approaches and methods used to study the quantum heterostruc-

tures, our formalism is based on solving the schroendinger equation coming from the

Hamiltonian written for the case of position of dependent mass. Here, we study,

numerically the optical properties of the inter subband transition in ZnMgO/ZnO

triangular quantum well nanostructure. Numerically the energy of eigen value of

ground and excited states of triangular quantum well are calculated. Depending on

this energy eigen value the refractive index and absorption coefficient are calculated

for triangular quantum well by using density matrix formalism.

4.2 Mathematical Formulation of the Problem

The lowest energy eigen values, the ground and first excited states are determined

with respect to two trial chosen wave functions. Let us consider the following trial

ground and excited state wave functions.

ψ0(x, y, z) = AZe(
−αz

2
)φ0(x, y)

ψ1(x, y, z) = BZ(1− α+ β

6
z) e(

−βz
2

)φ1(x, y) (4.2.1)

Normalization is given by,

∫ ∞

−∞
< ψ∗(z)|ψ(z) > dz = 1 (4.2.2)

where A and B are the normalization constants, with

A =
(

α3

2

) 1
2

and B =
(

3β5

2(α2+β2−αβ)

) 1
2

It is observable that both ψ0(z) and ψ1(z) are

zero at z=0, as they should be neither wave functions can penetrate the barrier at the

hetro interface if it is very high. Moreover both the ground and excited state wave
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functions are orthogonal.

φ0(x, y) and φ1(x, y) are two dimensional plane-wave functions. On the basic effective

mass approximation (m∗), the Hamiltonian of the electron, for the triangular quantum

well is given by,

Ĥ =
−~2

2m∗

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
+ V (z) (4.2.3)

where

V (z) = {eFz, z>0
∞, z≤0

Here z- represents the triangular quantum well’s growth direction, F is the mag-

nitude of the applied electric field parallel to z-direction.

A simple variational calculation is to minimize the total energy of the electrons was

performed to determine the value of the parameter. The solution of the schrodinger

equation for the Hamiltonian (4.2.3)is given by

En,k = En +
~2

2m∗ (k
2
x + k2

y) (4.2.4)

where kx and ky are the wave vectors correspond to the plane waves. En is the solution

of one dimensional schrodinger equation.

Hzψ0(z) = Enψ0(z) (4.2.5)

where Hz is the z part of the Hamiltonian Ĥ, and it is given

Ĥz =
−~2

2m∗
d2

dz2
+ eFz (4.2.6)
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Using the variational technique the ground state energy for triangular quantum well

is:

< Ĥz >=< ψ0|Hz|ψ0 >=< ψ0|
−~2

2m∗
d2

dz2
|ψ0 > + < ψ0|eFz|ψ0 > (4.2.7)

< Ĥz >=< K̂ > + < V̂ > (4.2.8)

In this case

K =< ψ0|−~2

2m∗
d2

dz2 |ψ0 > and V =< ψ0|eFz|ψ0 >

K =
∫

(α3

2
)

1
2 ze−αz

2
(−~2

2m∗ )(
α3

2
)

1
2

d2

dz2 (ze
−αz

2 )dz

K = −~2

2m∗ (
α3

2
)
∫
ze

−αz
2

d2

dz2 (ze
−αz

2 )dz

K = −~2

2m∗ (
α3

2
)
∫
ze

−αz
2 ( z

4
α2e

−αz
2 − αe

−αz
2 )dz

K = −~2

2m∗ (
α3

2
)
∫∞

0

[
1
4
(z2α2e−αz)− αze−αz

]
dz

K = −~2

2m∗ (
α3

2
)(−1

2α
) = ~2

2m∗ (
α2

4
)

K =
~2α2

8m∗ (4.2.9)

Similarly

V =
∫∞

0
(α3

2
)

1
2 ze

−αz
2 eFz(α3

2
)

1
2 ze

−αz
2 dz

V = α3

2
eF

∫∞
0
z3e−αzdz

V = α3

2
eF 6

α4 since
∫∞

0
z3e−αzdz = 6

α4

V =
3eF

2α
(4.2.10)

substituting equation (4.2.9)and (4.2.10)into equation(4.2.8)then < Ĥz > becomes

< Ĥz >=
~2α2

8m∗ +
3eF

2α
(4.2.11)
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To find α derivate equation (4.2.11) and equate with zero ( i.e d
dα

(< Ĥz >) = 0 )

~2α
4m∗ − 3eF

2α2 = 0

~2α
4m∗ = 3eF

2α2

α =

(
6eFm∗

~2

) 1
3

(4.2.12)

E0 =< Ĥz >=
~2α2

8m∗ +
3eF

2α
(4.2.13)

using equation (4.2.12)into (4.2.13)

E0 = ~2

8m∗

(
6eFm∗

~2

) 2
3 + 3eF

2

(
6eFm∗

~2

) 1
3

E0 =
3(3)

2
3

4(2)
1
3

(eF~)
2
3

m∗ 1
3

= 1.23822

(
e2F 2~2

m∗

) 1
3

(4.2.14)

The excited state energy,E1 is determined using the excited state wave function.

E1 =< Ĥ ′
z >=< ψ1|

−~2

2m∗
d2

dz2
|ψ1 > + < ψ1|eFz|ψ1 > (4.2.15)

Again in equation (4.2.15)K =< ψ1|−~2

2m∗
d2

dz2 |ψ1 > and V =< ψ1|eFz|ψ1 >

K1 = −~2

2m∗ (
3β5

2(α2+β2−αβ)
)
∫∞

0
z(1− α+βz

6
)e

−βz
2

d2

dz2 (z(1− α+β
6

))e
−βz

2 dz

K1 = −~2

2m∗ (
3β5

2(α2+β2−αβ)
)
[

1
144

(
−8(α2+β2−αβ)

β3

)]
K1 =

−~2β2

24m∗
(α2 + 7β2 − αβ)

(α2 + β2 − 2αβ)
(4.2.16)

V1 = 3β5eF
2(α2+β2−αβ)

∫∞
0
z3(1− α+βz

6
)2e−βzdz

V1 =
eF (5α2 − 2αβ + 2β2)

β(α2 − 2αβ + β2)
(4.2.17)
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< Ĥ
′

z >=< K̂1 > + < V̂1 > (4.2.18)

Using equation (4.2.16) and (4.2.17) into (4.2.18)then < Ĥ
′
z > becomes,

< Ĥ
′

z >=
−~2β2

24m∗
(α2 + 7β2 − αβ)

(α2 + β2 − 2αβ)
+
eF (5α2 − 2αβ + 2β2)

β(α2 − 2αβ + β2)
(4.2.19)
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Table 4.1: Ground and excited state energies of triangular quantum well for applied
electric field.
Fx107 v

m
α β E0(J) E1(J) ∆E(E1 − E0)(J)

1 5.48208x108 1.8696x108 6.56685x10−21 8.997x10−20 0.834x10−19

5 9.37423x108 3.197x108 1.9202x10−20 2.631x10−19 2.438x10−19

10 1.1811x109 4.028x108 3.0481x10−20 4.1761x10−19 3.871x10−19

15 1.352x109 4.611x108 3.994x10−20 5.472x10−19 5.073x10−19

20 1.488x109 5.075x108 4.8385x10−20 6.629x10−19 6.145x10−19

25 1.603x109 5.467x108 5.6146x10−20 7.6925x10−19 7.13104x10−19

30 1.703x109 5.809x108 6.340x10−20 8.687x10−19 8.053x10−19

35 1.793x109 6.116x108 7.026x10−20 9.627x10−19 8.924x10−19

40 1.875x109 6.394x108 7.681x10−20 1.052x10−18 9.755x10−19

45 1.950x109 6.650x108 8.308x10−20 1.138x10−18 10.55x10−19

Table 4.1 shows the energy eigen value, Transition energy and parameters α and

β

4.3 Optical Properties of Triangular Quantum Wells

Triangular quantum wells are formed by continuously changing the allow composition

from the center to edge of the wells. The effective masses of electrons and the dielec-

tric constant of materials vary with the allow composition as well as the positions of

the electrons. The interest in the quantum wells composed of the II-VI materials has

increased, because of their wide band gap and the applications on potential devices

such as high brightness blue light emitting diodes and laser diodes. Here, we study

numerically the optical properties of the intersubband transitions in ZnMgO/ZnO tri-

angular quantum well nanostructure. The refractive index and absorption coefficient

are calculated for triangular quantum well using density matrix formalism. In order

to calculate these optical constants we used the ground and excited state energies

calculated previous section, which one related to the transition dipole frequencies
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ωji =
(Ej−Ei)

~ . Moreover,the transition dipole moment µij =< φj(z)|ez|φi(z) > is

determined. We assume that the system is excited by applying an oscillatory field

~E(t) = εeiωt, Decomposing the Hamiltonian in to the unperturbed HamiltonianĤ0

and the time dependent interaction potentialĤ1(t)representing the perturbation.

Ĥ = Ĥ0 + Ĥ1(t) (4.3.1)

whereĤ1(t) = −µ. ~E(t) The density of matrix operator ρ̂ is defined as:

ρ̂ = |ψ >< ψ| (4.3.2)

The time evolution of the density matrix operator, including phenomenological damp-

ing constant is[7].

(
dρ

dt
)nm =

−i
~

[Ĥ, ρ̂]nm − γnm(ρ̂nm − ρeq
nm) (4.3.3)

where(dρ
dt

)nm is the nm element the evolution of the density matrix operator, ρeq
nm is

the equilibrium value of ρnm and γnm is the decay rate ofρnm.

The electric polarization to the quantum system due to Ẽ(t) can be expressed as

~P (t) = ε0χ
(1)(ω)ε(iωt) + ε0χ

(2)(ω)ε(iωt) + ε0χ
(3)(ω)ε(iωt) + ... (4.3.4)

The linear response of the triangular quantum well system to the applied fields is

determined by the linear susceptibility χ(1) and given by,

χ(1) =
N |µij|2

ε0

[
1

∆Eij − ~ω − i~γij

]
(4.3.5)

where N is the number of carriers per unit surface.

From the above equation we get,
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χ(1) =
N |µij|2

ε0

[
∆Eij − ~ω + i~γij

(∆Eij − ~ω)2 + (~γij)2

]
(4.3.6)

from equation (4.3.6)the Real and Imaginary are as follows:

Reχ(1)(ω) =
N |µij|2

ε0

[
∆Eij − ~ω

(∆Eij − ~ω)2 + (~γij)2

]
(4.3.7)

Imχ(1)(ω) =
N |µij|2

ε0

[
~γij

(∆Eij − ~ω)2 + (~γij)2

]
(4.3.8)

The change in the refractive index is related to the susceptibility

∆n(ω) = Re
χ(ω)

2nr

(4.3.9)

where nr is the medium index of refraction.

Using equations (4.3.7) and (4.3.9)

∆n(1)(ω) =
N |µij|2

2nrε0

[
∆Eij − ~ω

(∆Eij − ~ω)2 + (~γij)2

]
(4.3.10)

where∆Eij = Ej − Ei is the energy interval of two different electronic states, µij is

the dipole matrix element and γij is the damping rate.

Absorption coefficient is given by,

β(1)(ω) =
ωImχ(1)(ω)

nrc
(4.3.11)

The absorption coefficient β(1)(ω) is related to the susceptibility by, using equation

(4.3.8)in to (4.3.11) and C is speed of light given by C = 1√
µε0

where µ is permeability

and ε0 is permittivity of free space, finally absorption coefficient becomes,

β(1)(ω) =
ω

nr

√
µ

ε0

[
N |µij|2~γij

(∆Eij − ~ω)2 + (~γij)2

]
(4.3.12)
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where µ is the permeability of the system.

Now will investigate the linear response of the triangular quantum well which is

coupled by laser field. We solved the effective mass schroendinger equation already

obtained the energy eigen value. Moreover we calculated the transition dipole moment

using wave functions. As we know the real and imaginary part of χ(1) accounts for

the linear dispersion and absorption, respectively.

The numerical solution of linear change in refractive index absorption coefficient is

carried out for different values transition energies ∆Eij = 8.34 × 10−20J , 10.17 ×

10−20J and 12.15 × 10−20J , the transition dipole momentµij = 2.436 × 10−28c.m,

2.677× 10−28c.m and 2.88× 10−28c.m, N = 5.0×1012

cm2
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Figure 4.1: The change in first order refractive index (∆n(1))versus photon energy
(~ω) in (J)

The change in linear refractive index is plotted as a function of photon energy

(~ω) for transition energies (∆Eij = 8.34× 10−20J, 10.17× 10−20J and 12.15× 10−20J

respectively as shown in Figure 4.1. Figure 4.1 describes that the change in linear

refractive index depends on the transition energy of triangular quantum well. As

the transition energy or frequency increases, the peak of the spectra of the change in

refractive index move toward the high energy regions.
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Figure 4.2: The change in linear absorption coefficient (∆β(1)) versus photon energy
(~ω) in (J)

In Figure 4.2 the linear absorption coefficient of a triangular quantum well is

plotted as a function of photon energy for transition energies of(∆Eij = 8.34×10−20J,

10.17 × 10−20J, 12.15 × 10−20J respectively. As the transition energy increases the

peak of the spectra of the change in linear absorption coefficient shows blue shift.

Moreover, the magnitude of the absorption coefficient increases with an increment of

photon energy.
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Chapter 5

Conclusion

In this thesis energy eigen value of triangular quantum well with an applied electric

field has been calculated analytically and numerically. We have worked out the ground

and excited state energy of triangular quantum well. Depending on this ground and

excited state energy and by using a compact density matrix formalism, the change in

linear refractive index and absorption coefficient is studied. The energy eigen value

increase with an increment of the applied electric field. As the transition energy or

frequency increases, the peak of the spectra of the change in refractive index move

toward the high energy regions. Moreover, the magnitude of the absorption coefficient

increases with an increment of transition energy.
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