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Abstract 

We analyze the quantum properties of the light generated by a non-

degenerate three-level laser in which the three-level atoms available in an 

open cavity are pumped to the top level by means of strong coherent light. 

We carry out our analysis by putting the noise operators associated with a 

vacuum reservoir in normal order. It is found that the three-level laser 

generates squeezed light under certain conditions, with maximum intra-

cavity squeezing being 55% below the coherent-state level. We have also 

established that the stimulated and spontaneous decay constants have 

directly and inversely proportional effect on the intensity of the light 

generated by the system, respectively. In addition, the light modes in the 

laser cavity are entangled at steady-state. 

1. Introduction 

One of the most fundamentally interesting and intriguing phenomena associated 

with a composite quantum system is entanglement. In recent years, the topic of 

continuous-variable entanglement has received a significant amount of attention as it 

plays an important role in all branches of quantum information processing [1]. The 

efficiency of quantum information schemes highly depends on the degree of 
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entanglement. A two-mode subharmonic generator at and above threshold has been 

theoretically predicted to be a source of light in an entangled state [2, 3]. Recently, 

the experimental realization of the entanglement in two-mode subharmonic generator 

has been demonstrated by Zhang et al. [4]. On the other hand, Xiong et al. [5] have 

recently proposed a scheme for an entanglement based on a non-degenerate three-

level laser when the three level atoms are injected at the lower level and the top and 

bottom levels are coupled by a strong coherent light. They have found that a non-

degenerate three-level laser can generate light in an entangled state employing the 

entanglement criteria for bipartite continuous-variable states [5]. 

Moreover, Tan et al. [6] have extended the work of Xiong et al. and examined 

the generation and evolution of the entangled light in the Wigner representation using 

the sufficient and necessary in separability criteria for a two-mode Gaussian state 

proposed by Dual et al. [5] and Simon [7]. Tesfa [8] has considered a similar system 

when the atomic coherence is induced by superposition of atomic states and analyzed 

the entanglement at steady-state. Furthermore, Ooi [9] has studied the steady-state 

entanglement in a two-mode Λ  laser. 

More recently, Eyob [10] has studied continuous-variable entanglement in a non-

degenerate three-level laser with a parametric amplifier. In this model the injected 

atomic coherence introduced by initially preparing the atoms in a coherent 

superposition of the top and bottom levels. In addition to exhibiting a two-mode 

squeezed light, this combined system produces light in an entangled state. In one 

model of such a laser, three-level atoms initially in the upper level are injected at a 

constant rate into the cavity and removed after they have decayed due to spontaneous 

emission. It appears to be quite difficult to prepare the atoms in a coherent 

superposition of the top and bottom levels before they are injected into the laser 

cavity. Besides, it should certainly be hard to find out that the atoms have decayed 

spontaneously before they are removed from the cavity. 

In order to avoid the aforementioned problems, Fesseha [11] have considered 

that N two-level atoms available in a closed cavity are pumped to the top level by 

means of electron bombardment. He has shown that the light generated by this laser 

operating well above threshold is coherent and the light generated by the same laser 

operating below threshold is chaotic. In addition, Fesseha [12, 13] has studied the 

squeezing and the statistical properties of the light produced by a degenerate three-
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level laser with the atoms in a closed cavity and pumped by electron bombardment. 

He has shown that the maximum quadrature squeezing of the light generated by the 

laser, operating far below threshold, is 50% below the coherent-state level. 

Alternatively, the three level atoms available in a closed cavity and pumped by 

coherent light also generated squeezed light under certain conditions, with the 

maximum quadrature squeezing being 43% below the coherent state level. In view of 

these results, better squeezing is found from the laser, in which the atoms are pumped 

by electron bombardment than by coherent light. 

In this model, we seek to study CV entanglement for the light generated by a 

coherently pumped non-degenerate three-level laser coupled to a two-mode vacuum 

reservoirs via a single-port mirror whose open cavity contains N non-degenerate 

three-level cascade atoms. 

 

Digram 1. Coherently pumped non-degenerate three-level laser. 

In order to carry out our analysis, we put the noise operators associated with the 

vacuum reservoir in the normal order and we consider the interaction of the three-

level atoms with a twomode vacuum reservoir. We then first drive the quantum 

Langevin equations for the cavity mode operators. We next determine the equations 

of evolution of the expectation values of atomic operators employing the pertinent 

master equation. Applying the steady-state solution of equations of evolution, we 

analyze mean photon number, quadrature squeezing, and CV entanglement. 

2. Dynamics of Atomic and Cavity Mode Operators 

We consider a coherently pumped non-degenerate three level laser dynamics 

coupled to two-mode vacuum reservoir whose cavity contains N three level atoms in 

cascade configuration as depicted in the schematic Diagram 1. For the sake of 

convenience, the bottom energy level is denoted by ,0
j

 the middle energy level by 
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,1
j

 and the top energy level by .2
j

 In order to expedite the cascading process, it 

is assumed that the parity of energy levels 
j

2  and 
j

0  is the same, where as that 

of 
j

1  is different. This entails that direct transition between energy level 

jj
02 ↔  is electric dipole forbidden but due to parity difference, the transition 

between ,21
jj

↔  and 
jj

01 ↔  are allowed. 

While the atom undergoes a direct transition from energy level 
j

2  to ,1
j

 

suppose it emits a photon represented by .2a  In principle, it can still undergo a direct 

transition and go over to the lower energy level ,0
j

 in the process emitting a 

photon described by .1a  And the two atomic transitions are resonant with two 

different modes of the cavity. The interaction of a three-level atom with cavity modes 

can be described at resonance by the Hamiltonian 

 ( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )],ˆˆˆˆˆˆˆˆˆ
2

†
2221

†
1111 ttatatttatatigtH

jjjj
σ−σ+σ−σ=

++
 (1) 

where 

 ( ) 10ˆ
1 jj
j

t =σ  (2) 

and 

 ( ) 21ˆ
2 jj
j

t =σ  (3) 

are lowering atomic operators, ( )ta1ˆ  and ( )ta2ˆ  are the annihilation operators for the 

light modes 1a  and ,2a  respectively, and g is the coupling constant between the 

atom and the cavity modes. 

The top and bottom level of the three-level atoms are coupled by a strong driving 

coherent light. The coupling of the top and bottom levels of a three-level atom by 

coherent light can be described by the Hamiltonian 

 ( ) [ ( ) ( )]tt
i

tH
jj
002 ˆˆ

2
ˆ σ−σ

Ω
= +

 (4) 

in which 
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( ) ,20ˆ
0 jj
j

t =σ  (5) 

.2 00λµ=Ω  (6) 

Here, 0µ  is the amplitude of the coherent light and 0λ  is the coupling constant 

between the coherent light and the three-level atom. Thus combining Eqs. (1) and (4), 

the interaction of a three-level atoms with the cavity modes and the driving coherent 

light can be described by the Hamiltonian 

( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]ttatatttatatigtH
jjjj

S 2
†
2221

†
111

ˆˆˆˆˆˆˆˆˆ σ−σ+σ−σ= ++
 

[ ( ) ( )].ˆˆ
2 00 tt

i jj σ−σ
Ω

+ +
 (7) 

The master equation for a three-level atom coupled to a two-mode vacuum reservoir 

has the form 

( ) [ ] [ ]jjjjjj
SHit

dt

d
000

†
000

ˆˆˆˆˆˆˆˆˆ2
2

ˆ,ˆˆ σσρ−ρσσ−σρσ
β

+ρ−=ρ ++
  

[ ]jjjjjj
111

†
111

ˆˆˆˆˆˆˆˆˆ2
2

σσρ−ρσσ−σρσ
β

+ ++
  

[ ],ˆˆˆˆˆˆˆˆˆ2
2 222

†
222

jjjjjj σσρ−ρσσ−σρσ
β

+ ++
 (8) 

where 2'2hg=β  is spontaneous emission decay constant. Now with the aid of Eq. 

(7), one can put (8) in the form 

( ) [ ]ρσ−σρ+σρ−ρσ+ρσ−σρ+σρ−ρσ=ρ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
2

†
22

†
22

†
22

†
21

†
11

†
11

†
11

†
1

jjjjjjjj
aaaaaaaagt

dt

d
  

[ ] [ ]jjjjjjjjjj
000

†
00000

†
0

†
0

ˆˆˆˆˆˆˆˆˆ2
2

ˆˆˆˆˆˆˆˆ
2

σσρ−ρσσ−σρσ
β

+ρσ−σρ+σρ−ρσ
Ω

+ ++
 

[ ] [ ].ˆˆˆˆˆˆˆˆˆ2
2

ˆˆˆˆˆˆˆˆˆ2
2 222

†
222111

†
111

jjjjjjjjjjjj σσρ−ρσσ−σρσ
β

+σσρ−ρσσ−σρσ
β

+ ++++
 (9) 

We model that the laser cavity is coupled to a two-mode vacuum reservoir via a 

single-port mirror. In addition, we carry out our analysis by putting the noise 

operators associated with the vacuum reservoir in normal order. Thus the noise 

operators will not have any effect on the dynamics of the cavity mode operators. We 
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can therefore drop the noise operators and write the quantum Langevin equation for 

the operators ( )ta1ˆ  and ( )ta2ˆ  as 

 ( ) [ ( ) ( )] ( )tatHtaita
dt

d
S 111 ˆ

2

1ˆ,ˆˆ  κ−−=  (10) 

and 

 ( ) [ ( ) ( )] ( ),ˆ
2

1ˆ,ˆˆ 222 tatHtaita
dt

d
S κ−−=  (11) 

in which κ  is assumed to be the cavity damping constant for the light modes 1a  and 

.2a  Then with the aid of Eqs. (7), (10), and (11) together with the commutation 

relation 

 [ ] ,ˆ,ˆ †
ijji aa δ=  (12) 

we easily find 

( ) ( ),ˆ
2

1
ˆˆ 111 tagta

dt

d j κ−σ−=  (13) 

( ) ( ).ˆ
2

1
ˆˆ 222 tagta

dt

d j κ−σ−=  (14) 

Making use of the pertinent master equation and the fact that 

 ( )
( )

( ) ,ˆ0ˆ







 ρ
= tA

dt

d
TrtA

dt

d
 (15) 

where ( )tÂ  is an operator in the Heisenberg picture, it is not difficult to verify that 

[ ] ,
22

ˆˆˆˆˆˆˆ
1

†
20

†
211101

jjjjjj
aanang

dt

d
σ

β
−σ

Ω
−σ−−=σ  (16) 

[ ] ,
2

ˆˆˆˆˆˆˆ
2

†
10

†
122212

jjjjjj
aaang

dt

d
σβ−σ

Ω
+σ+η−=σ  (17) 

[ ] [ ] ,
22

ˆˆˆˆˆ
02012210
jjjjjj

nnaag
dt

d
σ

β
−−

Ω
+σ−σ=σ  (18) 

[ ] ( ),ˆˆˆˆˆˆˆˆˆ
122

†
22

†
21

†
11

†
11

jjjjjjj
nnaaaagn

dt

d
−β+σ−σ−σ+σ=  (19) 
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[ ] [ ] ,2ˆˆ
2

ˆˆˆˆˆ
20

†
02

†
22

†
22

jjjjjj
naagn

dt

d
β−σ+σ

Ω
+σ+σ=  (20) 

[ ] [ ( ),ˆˆ
2

ˆˆˆˆˆ
210

†
01

†
11

†
10

jjjjjjj
nnaagn

dt

d
+β+σ+σ

Ω
−σ+σ−=  (21) 

where 

( ) ,00ˆ
0 jj
j

tn =  (22) 

( ) ,11ˆ
1 jj
j

tn =  (23) 

( ) .22ˆ
2 jj
j

tn =  (24) 

The three-level atoms available in the cavity are pumped from the bottom level to the 

top level by strong coherent light. The pumping process must surely affect the 

dynamics of 
j

n0
ˆ  and .ˆ

2
j

n  We see that Eqs. (16)-(21) are coupled nonlinear 

differential equations and hence it is not possible to find exact time-dependent 

solutions of these equations. We intend to overcome this problem by applying the 

large-time approximation. Then employing this approximation scheme, we get from 

Eqs. (13) and (14), the approximately valid relation 

 ( )t
g

a
j

11 ˆ
2

ˆ σ
κ

−=  (25) 

and 

 .ˆ
2

ˆ
22
jg

a σ
κ

−=  (26) 

Evidently, these turn out to be exact relations at steady-state. Solving these 

expressions simultaneously one easily verify that 

 
jg

a 1221 ˆ
4

2
ˆ σ

ε−κ

κ
−=  (27) 

and 

 .ˆ
4

2
ˆ

2222
jg

a σ
ε−κ

κ
−=  (28) 
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Now introducing Eqs. (27) and (28) into Eqs. (16)-(21), we find 

,
2

ˆ
2

ˆ
2

ˆ
1

†
211

jjjcj

dt

d
σ

β
−σ

Ω
−σ

γ
−=σ  (29) 

,ˆ
2

ˆˆ
2

†
122

jjj
c

j

dt

d
σβ−σ

Ω
+σγ−=σ  (30) 

[ ] ,
2

ˆˆ
2

ˆ
2

ˆ
02000
jjjjcj

nn
dt

d
σ

β
−−

Ω
+σ

γ
−=σ  (31) 

[ ] ( ),ˆˆˆ
12211
jjjj

c
j

nnnnn
dt

d
−β+−γ−=  (32) 

[ ] ,2ˆˆ
2

ˆˆ
20

†
022

jjjj
c

j
nnn

dt

d
β−σ+σ

Ω
+γ−=  (33) 

[ ] ( ,ˆˆ
2

ˆˆ
210

†
010

jjjjj
c

j
nnnn

dt

d
+β+σ+σ

Ω
−γ=  (34) 

where 

 .
4

2

κ
=γ

g
c  (35) 

We prefer to call the parameter defined by Eq. (35) the stimulated emission decay 

constant. Then summing Eqs. (29)-(34) over the N three-level atoms, we see that 

,
2

ˆ
2

ˆ
2

ˆ
1

†
211 ∑

β
−∑

Ω
−∑

γ
−=∑ c

dt

d
 (36) 

,ˆ
2

ˆˆ
2

†
122 ∑β−∑

Ω
+∑γ−=∑ cdt

d
 (37) 

[ ] ,
2

ˆˆ
2

ˆ
2

ˆ
02000 ∑

β
−−

Ω
+∑

γ
−=∑ NN

dt

d c  (38) 

[ ] [ ],ˆˆˆ
12211 NNNNN

dt

d
c −β+−γ−=  (39) 

[ ] ,2ˆˆ
2

ˆˆ
20

†
022 NNN

dt

d
c β−∑+∑

Ω
+γ−=  (40) 

[ ] [ ],ˆˆ
2

ˆˆ
210

†
010 NNNN

dt

d
c +β+∑+∑

Ω
−γ=  (41) 
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where 

,ˆˆ

1

11 ∑
=

σ=∑
N

j

j
 (42) 

,ˆˆ

1

22 ∑
=

σ=∑
N

j

j
 (43) 

,ˆˆ

1

00 ∑
=

σ=∑
N

j

j
 (44) 

,ˆˆ

1

00 ∑
=

=

N

j

j
nN  (45) 

,ˆˆ

1

11 ∑
=

=

N

j

j
nN  (46) 

∑
=

=

N

j

j
nN

1

22 ˆˆ  (47) 

with the operators ,ˆ,ˆ
12 NN  and 0N̂  representing the number of atoms in the top, 

middle, and bottom levels. In addition, employing the completeness relation 

 ,ˆˆˆˆ
210
jjj

nnnI ++=  (48) 

we easily arrive at 

 .ˆˆˆ
210 NNNN ++=  (49) 

Furthermore, applying the definition given by Eq. (2) and setting for any j 

 ,10ˆ
1 =σ j

 (50) 

we have 

 .10ˆ
1 N=∑  (51) 

Following the same procedure, one can also check that 
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,21ˆ
2 N=∑  (52) 

,20ˆ
0 N=∑  (53) 

,00ˆ
0 NN =  (54) 

,11ˆ
1 NN =  (55) 

.22ˆ
2 NN =  (56) 

Moreover, using the definition 

 21
ˆˆˆ ∑+∑=∑  (57) 

and taking into account Eqs. (51)- (57), it can be readily established that 

( ),ˆˆˆˆ
21

† NNN +=∑∑  (58) 

( ),ˆˆˆˆ
01

† NNN +=∑∑  (59) 

.ˆˆ
0

2 ∑=∑ N  (60) 

Upon adding Eqs. (13) and (14), we have 

 ( ) ( ),ˆ
2

1
ˆˆ tagta

dt

d j κ−σ−=  (61) 

in which 

( ) ( ) ( ),ˆˆˆ 21 tatata +=  (62) 

.ˆˆˆ
21
jjj σ+σ=σ  (63) 

The steady-state solution of Eq. (61) is expressible as 

 .ˆ
2

ˆ jg
a σ

κ
=  (64) 

Taking into account of Eq. (64) and its complex conjugate, the commutation relation 

of the cavity mode operator is 

 [ ] ( )jjc
j nnaa 20

† ˆˆˆ,ˆ −
κ

γ
=  (65) 
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and on summing over all atoms, we have 

 [ ] ( ),ˆˆˆ,ˆ 20
†

NNaa c −
κ

γ
=  (66) 

where 

 [ ] [ ]∑
=

=

N

j

jaaaa

1

†† ˆ,ˆˆ,ˆ  (67) 

stands for the commutator of â  and †
â  when the cavity mode is interacting with all 

the N three-level atoms. 

In the presence of N three-level atoms, we rewrite Eq. (61) as 

 ( ) ( ) ∑λ+κ−= ˆˆ
2

1
ˆ tata

dt

d
 (68) 

in which λ  is a constant whose value remains to be fixed. The steady-state solution 

of Eq. (68) is 

 .
ˆ2

ˆ
κ

∑λ
=a  (69) 

In view of (69) and its complex conjugate, the commutation relation for the cavity 

mode operator is 

 [ ] ( ).ˆˆ4
ˆ,ˆ 202

2
† NNNaa −

κ

λ
=  (70) 

Comparing Eqs. (66) and (70), shows that 

 .
N

g
=λ  (71) 

Then Eqs. (68) and (69) can be rewritten as 

 ( ) ( ) ∑+κ−= ˆˆ
2

1
ˆ

N

g
tata

dt

d
 (72) 

and 

 .ˆ2
ˆ ∑

κ
=

N

g
a  (73) 
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3. The Mean Photon Number 

W next seek to calculate the mean photon number at steady-state. The mean 

photon number is given by 

 .ˆˆ†aan =  (74) 

To this end, we note that the steady-state solutions of Eqs. (38), (39), and (40), are 

( )
[ ],ˆˆˆ

200 NN
c

−
β+γ

Ω
=∑  (75) 

( )
[ ],ˆˆ

22
ˆ

0
†
02 ∑+∑

β+γ

Ω
=

c

N  (76) 

.ˆˆ
21 NN =  (77) 

Now employing Eqs. (49), (75), (76), and (77), we readily find 

 

Figure 1. A plot of n  Eq. (81) versus Ω  for ,8.0,5.0,5.0 =κ=γ=β c  and 

.1=N  
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Figure 2. A plot of n  Eq. (81) versus β  and cγ  for ,8.0,5 =κ=Ω  and .1=N  

 
( )( ) 2

2

2
32

ˆ

Ω+β+γβ+γ

Ω
=

cc

N
N  (78) 

and 

 
( )

( )( )
.

32

2ˆ
20

Ω+β+γβ+γ

β+γΩ
=∑

cc

c N
 (79) 

Hence using Eqs. (73) along with (57), the mean photon number of the two-mode 

cavity light is expressible as 

 [ ]21
ˆˆ NNn c +

κ

γ
=  (80) 

so that on account of Eqs. (73) and (57), we have 

 
( )( )

.
32

2

2

2

Ω+β+γβ+γκ

Ωγ
=

cc

cN
n  (81) 

We note from the plot in Figure 1 that maximum mean photon number can be 

observed when 5≥Ω  for .8.0,5.0,5.0 =κ=γ=β c  And also we see from the 

plot in Figure 2 that the stimulated and spontaneous decay constants have directly 

and inversely proportional effect on the intensity of the light generated by the laser 

cavity, respectively. 

4. Quadrature Squeezing 

In this section, we wish to calculate the quadrature squeezing of the cavity light 
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in the entire frequency interval. The squeezing properties of the cavity light are 

described by two quadrature operators defined by 

,ˆˆˆ † aaa +=+  (82) 

( ).ˆˆˆ † aaia −=−  (83) 

It can be readily established that 

 [ ] [ ].ˆˆ2ˆ,ˆ 02 NNiaa c −
κ

γ
=+−  (84) 

It then follows that 

 [ ].ˆˆ
02 NNaa c −

κ

γ
≥∆∆ −+  (85) 

The variance of the quadrature operators is expressible as 

 [ ] [ ] .ˆˆˆˆ 2†2† aaaaa ±±±=∆ ± ∓  (86) 

Next we wish to know the expectation value of the atomic operator .∑̂  To this end, 

applying large time approximation scheme to Eq. (59), we easily get 

 
( )

†
12

ˆ
2

ˆ ∑
β+γ

Ω
=∑

c

 (87) 

and in view of this result, Eq. (36) takes the form 

 ,
2

1
101 ∑η−=∑

dt

d
 (88) 

where 

 
( )

.
2

2

0 β+γ

Ω
+γ+β=η

c
c  (89) 

We notice that the steady-state solution of (90) for 0η  different from zero is 

 01 =∑  (90) 

from which follows 

 .02 =∑  (91) 



ENTANGLED PHOTONIC MODES INSIDE COHERENTLY … 

 

15 

Then on account of (92) and (93) along with (57), we see that 

 .0=∑  (92) 

In addition, the expectation value of the solution of Eq. (72) is expressible as 

 ( ) ( ) ( ) '.'ˆ'
2

1
0ˆˆ

0
2

1
2

1

dtttee
N

g
eata

ttt
∑κ+= ∫

−κ−κ−
 (93) 

Now with the aid of (94) and the assumption that the cavity light is initially in a 

vacuum state, Eq. (95) goes over into 

 ( ) .0ˆ =ta  (94) 

We observe on the basis of Eqs. (72) and (96) that â  is a Gaussian variable with zero 

mean. Hence employing Eq. (88) along with (97), the quadrature variance leads to 

 [ ].ˆˆˆˆˆˆ 2†2†† aaaaaaa +±+=∆ ±  (95) 

Now taking into account (58) and (59) together with (73) and (95), the quadrature 

variance turns out to be 

 [
( )

( )( )
.

32

22
1

2

2

Na

cc

cc

Ω+β+γβ+γ

β+γΩ±Ω
+

κ

γ
=∆ ±  (96) 

We observe that the cavity mode is in a squeezed state and the squeezing occurs in 

the minus quadrature. 

We recall that the light generated by a two-level laser operating well above 

thresh hold is coherent, the quadrature variance of which is given by [11] 

 .Naa c

κ

γ
=∆=∆ −+  (97) 

This is just the first term in (96). We prefer to call this term the coherent level. We 

calculate the quadrature squeezing of the cavity light relative to the quadrature 

variance of the cavity coherent level. We then define the quadrature squeezing of the 

cavity light by 

 
( ) ( )

( )
,

2

22

coh

syscoh

a

aa
S

±

−±

∆

∆−∆
=  (98) 
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so that on account of (96) and (97) together with (98), we see that 

 
( )

( )( )
.

32

22

2

2

Ω+β+γβ+γ

Ω−β+γΩ
=

cc

cS  (99) 

 

Figure 3. A plot of S Eq. (99) versus Ω  for .5.0=β=γc  

We note that unlike the mean photon number, the quadrature squeezing does not 

depend on the number of atoms. This implies that the quadrature squeezing of the 

cavity light does not depend on the number of photons. The plot in Figure 3 shows 

that the the maximum quadrature squeezing is 55% below the coherent level, which 

is slightly greater than the result found so far. 

4. Entanglement 

To this end, we prefer to analyze the entanglement of photon-states in the laser 

cavity. Quantum entanglement is a physical phenomenon that occurs when pairs or 

groups of particles cannot be described independently - instead, a quantum state may 

be given for the system as a whole. Measurements of physical properties such as 

position, momentum, spin, polarization, etc. performed on entangled particles are 

found to be appropriately correlated. A pair of particles is taken to be entangled in 

quantum theory, if its states cannot be expressed as a product of the states of its 

individual constituents. The preparation and manipulation of these entangled states 

that have non-classical and non-local properties lead to a better understanding of the 

basic quantum principles. It is in this spirit that this section is devoted to the analysis 

of the entanglement of the two modes (photon-states). In other words, it is a well-
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known fact that a quantum system is said to be entangled, if it is not separable. That 

is, if the density operator for the combined state cannot be described as a 

combination of the product density operators of the constituents, 

 
( ) ( )

,ˆˆˆ 21
k

k

kkP ρ⊗ρ≠ρ ∑  (100) 

in which 0>>kP  and 1=∑k kP  to verify the normalization of the combined 

density states. On the other hand, an entangled continuous variable (CV) state can be 

expressed as a common eigenstate of a pair of EPR-type operators [14] such as 

12 ˆˆ xx −  and .ˆˆ 12 pp −  The total variance of these two operators reduces to zero for 

maximally entangled CV states. According to the criteria given by Duan et al [5], 

cavity photon-states of a system are entangled, if the sum of the variance of a pair of 

EPR-like operators, 

 12 ˆˆˆ xxs −=  (101) 

and 

 ,ˆˆˆ
12 ppt +=  (102) 

where 

( ),ˆˆ
2

1
ˆ †

111 aax +=  (103) 

( ),ˆˆ
2

1
ˆ †

222 aax +=  (104) 

( ),ˆˆ
2

ˆ 1
†
11 aa

i
p −=  (105) 

( )2
†
22 ˆˆ

2
ˆ aa

i
p −=  (106) 

are quadrature operators for modes 1a  and ,2a  satisfy 

 ( ) ( ) .2
22

Nts <∆+∆  (107) 

On the other hand, using Eqs. (13) and (14) together with (27) and (28), the equation 

of evolution of cavity mode operators 1â  and 2â  can be rewritten as 
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 ( ) ( ) j
gtata

dt

d
111 ˆˆ

2

1
ˆ σ−κ−=  (108) 

and 

 ( ) ( ) .ˆˆ
2

1
ˆ

222
j

gtata
dt

d
σ−κ−=  (109) 

Applying the steady-state solution of Eqs. (108) and (109), one can readily establish 

the commutation relation of the cavity mode operators 1â  and 
†
1â  as well as 2â  and 

.ˆ†
2a  Hence we notice that 

[ ] [ ],ˆˆˆ,ˆ
10

†
11

jjc nnaa −
κ

γ
=  (110) 

[ ] [ ]jjc nnaa 21
†
22 ˆˆˆ,ˆ −

κ

γ
=  (111) 

and on summing over all atoms, we obtain 

 [ ] [ ]10
†
11

ˆˆˆ,ˆ NNaa c −
κ

γ
=  (112) 

and 

 [ ] [ ],ˆˆˆ,ˆ 21
†
22 NNaa c −

κ

γ
=  (113) 

where 

 [ ] [ ]∑
=

δ=

N

j

jkiikki aaaa

1

†† ˆ,ˆˆ,ˆ  (114) 

stands for the commutator of mode operators when the cavity light is interacting with 

all the N three-level atoms. 

In the presence of N three-level atoms, we rewrite Eqs. (108) and (109) as 

 ( ) ( ) 1111
ˆ'ˆ

2

1
ˆ ∑λ+κ−= tata

dt

d
 (115) 

and 
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 ( ) ( ) 2222
ˆ'ˆ

2

1
ˆ ∑λ+κ−= tata

dt

d
 (116) 

in which '
1λ  and '

2λ  are constants whose values remain to be fixed. The steady-state 

solution of Eqs. (115) and (116) is 

 122

'
1

1
ˆ

4

2
ˆ ∑

ε−κ

κλ
=a  (117) 

and 

 .ˆ

4

2
ˆ 222

'
2

2 ∑
ε−κ

κλ
=a  (118) 

In view of (117) and (118) as well as their complex conjugate, the commutation 

relation for the cavity mode operators is 

 [ ] [ ]102

2
1†

11
ˆˆ

'4
ˆ,ˆ NN

N
aa −

κ

λ
=  (119) 

and 

 [ ] [ ].ˆˆ
'4

ˆ,ˆ 212

2
2†

22 NN
N

aa −
κ

λ
=  (120) 

On comparing Eqs. (112) and (119) together with (113) and (120), shows that 

 .'
2

'
1

N

g
=λ=λ  (121) 

Then Eqs. (117) and (118) can be rewritten as 

( )
.ˆ

4

2
ˆ 1221 ∑

ε−κ

κ
=

N

g
a  (122) 

( )
.ˆ

4

2
ˆ 2222 ∑

ε−κ

κ
=

N

g
a  (123) 

Furthermore, the expectation value of the solution of Eqs. (115) and (116) together 

with (121) is expressible as 

 ( ) ( ) ( ) '.'ˆ0ˆˆ 1
0

'
2

1

2

1

2

1

11 dttee
N

g
eata

t ttt
∑+= ∫

κ−κ−κ−
 (124) 
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Figure 4. A plot of ( ) ( )22
ts ∆+∆  Eq. (128) versus Ω  for ,8.0=κ  ,5.0=γc  

,5.0=β  and .1=N  

 ( ) ( ) ( ) '.'ˆ0ˆˆ 2
0

'
2

1

2

1

2

1

22 dttee
N

g
eata

t ttt
∑+= ∫

κ−κ−κ−
 (125) 

Now in view of Eqs. (90) and (91) with the assumption that the cavity light is initially 

in a vacuum state, Eqs. (124) and (125) goes over into 

 ( ) ( ) .0ˆˆ 21 == tata  (126) 

On account of this result as well as Eqs. (115) and (116) that ( )ta1ˆ  and ( )ta2ˆ  are 

Gaussian variables with zero mean. Employing Eqs. (101) and (102) along with 

(126), we readily get 

( ) ( ) [ ]†
222

†
2

†
111

†
1

22 ˆˆˆˆˆˆˆˆ aaaaaaaats +++=∆+∆  

[ ].ˆˆˆˆˆˆˆˆ †
1

†
212

†
2

†
121 aaaaaaaa +++−  (127) 

Finally, in view of (78) and (79), Eq. (126) reduces to 

 ( ) ( )
( )

( )( )
.

32

22
1

2

2
22

Nts

cc

cc













Ω+β+γβ+γ

β+γΩ+Ω
+

κ

γ
=∆+∆  (128) 

The plot in Figure 4 shows that the light modes in the laser cavity are entangled and 

the degree of entanglement decreases when the value of Ω  taken to be 9.00 ≤Ω≤  

and increases when the value of .9.0>Ω  
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5. Conclusion 

We have studied a coherently pumped non-degenerate three-level laser coupled 

to a two-mode vacuum reservoirs via a single-port mirror whose open cavity contains 

N non-degenerate three-level cascade atoms. We carried out our analysis by putting 

the noise operators associated with a vacuum reservoir in normal order. We then first 

obtained the quantum Langevin equations for the cavity mode operators. We next 

determined the equations of evolution of the expectation values of atomic operators 

employing the pertinent master equation. Applying the steady-state solution of these 

equations, we have analyzed the mean photon number, the quadrature squeezing, and 

CV bipartite photon-state entanglement. It is found that the light modes in the laser 

cavity are entangled and the degree of entanglement decreases when the value of Ω  

taken to be 9.00 ≤Ω≤  and increases when the value of .9.0>Ω  In addition, we 

have established that maximum mean photon number can be observed when 5≥Ω  

for .8.0,5.0,5.0 =κ=γ=β c  And we have also observed that the stimulated and 

spontaneous decay constants have directly and inversely proportional effect on the 

intensity of the light generated by the system, respectively. Moreover, we have shown 

that unlike the mean photon number, the quadrature squeezing does not depend on 

the number of atoms. This implies that the quadrature squeezing of the cavity light 

does not depend on the number of photons. And also the maximum quadrature 

squeezing is 55% below the coherent level, under certain conditions, which is slightly 

greater than the result found so far. 
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