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Abstract

In this thesis we study the squeezing entanglement and statistical properties of the cav-

ity light beams produced by a coherently driven non-degenerate three-level laser with

an open cavity and coupled to a two-mode vacuum reservoir via a single-port mirror.

We have carried out our analysis by putting the noise operators associated with the vac-

uum reservoir in normal order. Applying the solutions of the equations of evolution for

the expectation values of the atomic operators and the quantum Langavin equations

for the cavity mode operators, we have calculated the mean , variance ,correlation and

entanglement of the photon number as well as the quadrature squeezing of the cavity

light. We also obtain the anti-normally ordered characteristic function defined in the

Heisenberg picture. With the aid of the resulting characteristic function, we determine

the Q function which is then used to calculate the photon number variance of two-

mode. The maximum quadrature squeezing is the same for different values of sponta-

neous emission decay constant and occurs at different values of the amplitude of the

driving coherent light. We have also noticed that the maximum quadrature squeezing

is 43.42% below the vacuum state-level.
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1

Introduction

Quantum Optics is an area of atomic, molecular, and optical physics. Its main charac-

teristics, however, is that it deals with lasers, i.e. sources of coherent electromagnetic

radiation. The quantum properties of light are largely determined by the state of the

light mode. Accordingly, the most important quantum states of light are the number

state, the chaotic state, the coherent, and squeezed states. In particular the interaction

of three-level atoms, in different configurations, with radiation has attracted a great

deal of interest for the last 20 years. In recent years, the subject of squeezing of light

has also received a great deal of attention by several authors [1-7]. These non classical

states of light (squeezed states) are characterized by a reduction of quantum fluctu-

ations (noise) in one quadrature component of the light below the vacuum level, or

below that achievable in a coherent state, at the expense of increased fluctuations in

the other component such that the product of these fluctuations still obeys the uncer-

tainty relation [7],[8], and [11]. Squeezed light has potential applications in low-noise

optical communications and weak signal detection [7],[11], [17]. Also, entanglement is

one of the fundamental tools for quantum information processing and communication

protocols. The generation and manipulation of entanglement has attracted a great deal

2
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of interest with wide applications in quantum teleportation, quantum dense coding,

quantum computation, quantum error correction, and quantum cryptography[12-18].

There has been a considerable interest in the analysis of the squeezing, and statis-

tical properties of the light generated by three-level lasers [14-24]. In a cascade three-

level laser, three-level atoms in a cascade configuration are injected into a cavity cou-

pled to a vacuum reservoir via a single-port mirror. When a three-level atom the top,

intermediate, and the bottom levels are denoted by |a〉k, |b〉k , and |c〉k in which the tran-

sitions between levels |a〉k to |b〉k and |b〉k to |c〉k are assumed to be dipole allowed, with

direct transition between levels |a〉k and |c〉k to be dipole forbidden. When the atom

makes a transition from the top to the intermediate level and then from the interme-

diate to the bottom level, two photons are emitted. If the two photons have different

frequencies, then the three-level atom is called a non-degenerate three-level atom oth-

erwise it is called degenerate.

Some of the authors have studied the squeezing and statistical properties of the light

produced by three-level lasers when the atoms are initially prepared in a coherent su-

perposition of the top and bottom levels or when these levels are coupled by a strong

coherent light [16-34]. These authors have found that these quantum optical systems

can generate squeezed light under certain conditions. Moreover, Fesseha[17] has stud-

ied the squeezing and the statistical properties of the light produced by a three-level

laser with the atoms in a closed cavity and pumped by electron bombardment. He has

shown that the maximum quadrature squeezing of the light generated by the laser, op-

erating below threshold, is found to be 50% below the vacuum-state level. In addition,

Sintayehu Tesfa[23] studied the squeezing properties and entanglement amplification
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of the cavity radiation. The authors have calculated the correlation of the photon num-

bers and the fluctuation of the intensity difference. The study has shown that the gen-

erated light exhibits a two-mode squeezing and entanglement when initially they are

more atoms in the lower level. Moreover, a strong correlation between photon num-

bers along with a significant fluctuation in the intensity difference is found .

In this thesis, we study the squeezing , entanglement and statistical properties of the

light generated by a coherently driven non-degenerate three-level laser with an open

cavity coupled to a two-mode vacuum reservoir via a single-port mirror. In order to

carry out our calculation, we put the noise operators associated with the vacuum reser-

voir in normal order. We thus first determine the master equation and the quantum

Langevin equations for the cavity mode operators. In addition, employing the master

equation and the large-time approximation scheme, we obtain equations of evolution

of the expectation values of atomic operators. Moreover, we determine the solutions

of the equations of evolution of the expectation values of the atomic operators and the

quantum Langevin equations for cavity mode operators. Furthermore, applying the

same solutions, we obtain the photon number entanglement.



2

Operator Dynamics

In this chapter we consider a non degenerate three-level laser driven by coherent light

and with the cavity modes coupled to a two-mode vacuum reservoir via a single-port

mirror as shown in Fig. (2.1). Here we first derive the master equation and the quantum

Langevin equations for the cavity mode operators. moreover, employing the master

equation and the large-time approximation scheme, we drive the equations of evolu-

tion of the expectation values of the atomic oprators. Finally, we determine the steady-

state solutions of the resulting equations of evolution.

2.1 Master equation

In this section, we consider here a system of N nondegenerate three-level atoms in cas-

cade configuration are available in an open cavity and interacting with the two non-

degenerate cavity modes. The top, intermediate, and bottom levels of the three-level

atom by |a〉k, |b〉k, and |c〉k, respectively. As shown in Fig. (2.1) when the atom makes a

transition from level |a〉k to |b〉k and from levels |b〉k to |c〉k two photons with different

frequencies are emitted. We wish to represent the light emitted from the top level by a

and the emitted from the intermediate level by b. In addition, we assume that the cavity

5
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Figure 2.1: Schematic representation of a coherently driven nondegenerate three-

level laser coupled to a two-mode vacuum reservoir.

mode a and b to be at resonance with the two transitions |a〉k → |b〉k and|b〉k → |c〉k with

top and bottom levels of the three-level atom coupled by coherent light. The interac-

tion of the three-level atoms with light mode a and b can be described by the Hamilto-

nian[17]

Ĥ
′
= ig

[
σ̂†ka â− â†σ̂k

a + σ̂†kb b̂− b̂†σ̂k
b

]
, (2.1)

where

σ̂k
a = |b〉k k〈a|, (2.2)

σ̂k
b = |c〉k k〈b|, (2.3)

are lowering atomic operators, â and b̂ are the annihilation operators for light mode a

and b,and g is the coupling constant between the atoms and the light mode a or light
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mode b. And the coupling of the top and the bottom levels by coherent light can be

described by the Hamiltonian

Ĥ
′′

=
iΩ

2
[σ̂+k

c − σ̂k
c ], (2.4)

where

σ̂k
c = |c〉k k〈a| (2.5)

is lowering atomic operator and

Ω = 2µλ. (2.6)

Here µ, considered to be real and constant, is the amplitude of the driving coherent

light and λ is the coupling constant between the atoms and coherent light. In addition,

the interaction of the cavity modes and coherent driving modes can be described by

the Hamiltonian

Ĥ
′′′

= iε(â† − â + b̂† − b̂), (2.7)

where ε, considered to be real and constant, is proportional to the amplitude of the

driving coherent light modes. Thus up on combining eqs. (2.1), (2.4) and(2.7). The

interaction of the three- level atom with the driving coherent light and cavity mode â

and b̂ is described by the Hamiltonian as

ĤS(t) = ig
[
σ̂†ka â− â†σ̂k

a + σ̂†kb b̂− b̂†σ̂k
b

]
+

iΩ

2

[
σ̂†kc − σ̂k

c

]
+ iε(â† − â + b̂† − b̂), (2.8)

where Ĥs is the Hamiltonian of the system. We next seek to obtain the time evolution of

the density operator for a two-mode cavity radiation coupled to a two-mode squeezed
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vacuum reservoir via a single-port mirror. In general, the time evolution of the reduced

density operator for a cavity radiation coupled to a reservoir has the form [4]

d

dt
ρ̂(t) = −i[ĤSR(t), ρ̂(t)]− i[〈ĤSR(t)〉R, ρ̂(0)]

−
∫ t

0

[〈ρ̂SR(t)〉R, [Ĥs(t
′)]]dt′

−
∫ t

0

TrR[ĤSR(t′), [ĤSR(t′)]]dt′, (2.9)

where S and H refers to the system and reservoir variables. Furthermore, the interac-

tion of a two-mode cavity radiation with a two-mode reservoir can be described the

Hamiltonian

ĤSR(t) = i
∑

k

gk

(
σ̂†ka âk exp[i(ω0 − ωk)t]− â†kσ̂

k
a exp[−i(ω0 − ωk)t]

+ σ̂†kb b̂k exp[i(ω0 − ωk)t]− b̂†kσ̂
k
b exp[−i(ω0 − ωk)t]

)
, (2.10)

where âk and b̂k is the annihilation operator for a reservoir sub-mode characterized by

wave vector ’k’ and

gk = [
ωk

2ε0v
]
1
2 dab.Uk. (2.11)

In addition, ω0 = ωa+ωb

2
, with ωa and ωb representing frequencies and (â, b̂) being the

annihilation operators for the cavity modes, ωk is frequency, and gk is the coupling con-

stant. In view of Eq.(2.10), we can write

〈ĤS(t)〉R̂ = i
∑

k

gk

(
σ̂†ka 〈âk〉R̂ exp[i(ω0 − ωk)t− 〈â†k〉R̂σ̂k

a exp[−i(ω0 − ωk)t]

+ σ̂†kb 〈b̂k〉R̂ exp[i(ω0 − ωk)t]− 〈b̂†k〉R̂σ̂k
b exp[−i(ω0 − ωk)t]

)
. (2.12)

Since for a two-mode reservoir, we find

〈âk〉R̂ = 〈b̂k〉R̂ = 0. (2.13)
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Hence, one can easily see that

〈ĤSR〉R̂ = 0. (2.14)

We therefore see that

[〈ĤSR〉R̂, ρ̂(0)] = 0, (2.15)

[〈ĤSR〉R̂, [Ĥ(t′), ρ̂(t′)]] = 0. (2.16)

On account of Eqs. (2.15) and (2.16), Eq. (2.10) can be put in the form

d

dt
ρ̂ = −i[ĤS(t), ρ̂]−

∫ t

0

Tr[R̂ĤSR(t)ĤSR(t′)ρ̂(t′)]dt′

−
∫ t

0

ρ̂(t′)Tr[R̂ĤSR(t′)ĤSR(t)]dt′

+

∫ t

0

Tr[ĤSR(t′)ρ̂(t′)R̂ĤSR(t′)]dt′. (2.17)

Making use of Eq. (2.10) and the cyclic property of the trace operation, one can easily

verify that

TrR(ĤSR(t)ρ̂(t′)R̂ĤSR(t′)) = −[−Γ1σ̂
†k
a ρ̂σ̂k′

a − Γ2σ̂
k
a ρ̂σ̂†k

′

a + Γ3σ̂
†k
a ρ̂σ̂†k

′

a + Γ4σ̂
k
a ρ̂σ̂k′

a

− Γ5σ̂
†k
b ρ̂σ̂k′

b − Γ6σ̂
k
b ρ̂σ̂†k

′

b + Γ7σ̂
†k
b ρ̂σ̂†k

′

b + Γ8σ̂
k
b ρ̂σ̂k′

b

+ Γ9(σ̂
†k
a ρ̂σ̂†k

′

b + σ̂†kb ρ̂σ̂†k
′

a ) + Γ10(σ̂
k
a ρ̂σ̂k′

b + σ̂k
b ρ̂σ̂k′

a )

− Γ11(σ̂
†k
a ρ̂σ̂k′

b + σ̂k
b ρ̂σ̂†k

′

a )− Γ12(σ̂
k
a ρ̂σ̂†k

′

b + σ̂†kb ρ̂σ̂k′

a )], (2.18)
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where

Γ1 =
∑
k,k′

gkgk′〈â†kâk′〉R exp[−i(ω0 − ωk)t + i(ω0 − ωk′)t
′], (2.19)

Γ2 =
∑
k,k′

gkgk′〈âkâ
†
k′〉R exp[i(ω0 − ωk)t− i(ω0 − ωk′)t

′], (2.20)

Γ3 = −
∑
k,k′

gkgk′〈âkâk′〉R exp[i(ω0 − ωk)t + i(ω0 − ωk′)t
′], (2.21)

Γ4 = −
∑
k,k′

gkgk′〈â†kâ
†
k′〉R exp[−i(ω0 − ωk)t− i(ω0 − ωk′)t

′], (2.22)

Γ5 =
∑
k,k′

gkgk′〈b̂†kb̂k′〉R exp[−i(ω0 − ωk)t− i(ω0 − ωk′)t
′], (2.23)

Γ6 =
∑
k,k′

gkgk′〈b̂kb̂
†
k′〉R exp[i(ω0 − ωk)t− i(ω0 − ωk′)t

′], (2.24)

Γ7 =
∑
k,k′

gkgk′〈b̂kb̂k′〉R exp[i(ω0 − ωk)t + i(ω0 − ωk′)t
′], (2.25)

Γ8 =
∑
k,k′

gkgk′〈b̂†kb̂
†
k′〉R exp[−i(ω0 − ωk)t− i(ω0 − ωk′)t

′], (2.26)

Γ9 = −
∑
k,k′

gkgk′〈âkb̂k′〉R exp[i(ω0 − ωk)t + i(ω0 − ωk′)t
′], (2.27)

Γ10 = −
∑
k,k′

gkgk′〈â†kb̂
†
k′〉R exp[−i(ω0 − ωk)t− i(ω0 − ωk′)t

′], (2.28)

Γ11 =
∑
k,k′

gkgk′〈âkb̂
†
k′〉R exp[i(ω0 − ωk)t− i(ω0 − ωk′)t

′], (2.29)

Γ12 =
∑
k,k′

gkgk′〈â†kb̂k′〉R exp[−i(ω0 − ωk)t− i(ω0 − ωk′)t
′]. (2.30)

To evaluate the trace over the reservoir state,we need the trace of the various possible

combination of the reservoir operators coming from ĤSR. These will involve the pairs

of the operators âkâ
†
k′ . Using cyclic permutation; these trace terms can be written as

thermal average 〈X〉 = TrR(ρ̂RX). A squeezed vacuum reservoir [4], the relevant expec-
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tations are

〈âkâk′〉R = 〈â†kâ
†
k′〉R = 0, (2.31)

〈âkâk′〉R = Nδkk′ , (2.32)

〈âkâ
†
k′〉R = (N + 1)δkk′ , (2.33)

〈âk′ âk〉R = 〈â†k′ â
†
k〉R = −Mδk′,2k0−k

. (2.34)

Furthermore, for vacuum reservoir we have

N = M = 0. (2.35)

On account of Eqs. (2.31), (2.32), (2.33) and (2.34), we see that

Γ1 = Γ3 = Γ4 = Γ5 = Γ7 = Γ8 = Γ9 = Γ10 = Γ12 = 0. (2.36)

On the other hand, using Eqs.(2.32) and (2.34) one can easily see that

Γ2 = Γ6 =
∑

k

g2
k exp[i(ω0 − ωk)(t− t′)]. (2.37)

In order to evaluate the dot product involved in Eq. (2.11), we adopt spherical coordi-

nates in k-space, with the electric dipole matrix element dab taken to be along z-axis. In

addition, we take the unit vector Uk to be in the plane formed by the vectors dab and k.

Since Uk is normal to k, i.e, k.UK = 0, the angle between Uk and dab is (π
2
− θ)[4]. We then

see that

dab.Uk = dab cos(
π

2
− θ) = dab sin θ. (2.38)

Now employing the transformation

∑
k

→ V

(2π)3

∫
d3

k =
V

(2π)3

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ ∞

0

k2dk, (2.39)
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and taking in to account Eq. (2.10) along with (2.38), we can put Eq.(2.37) in the form

Γ2 = Γ6 =
d2

ab

2(2π)3ε0c3

∫ 2π

0

dφ

∫ π

0

sin θ(1− cos2 θ)dθ

×
∫ ∞

0

ω3 exp[i(ω0 − ωk)(t− t′)]dω, (2.40)

where we have made use of the relation k = ω
c
, sin2 θ = 1− cos2 θ. Furthermore, carrying

out the integration over φ as well as θ, we get

Γ2 = Γ6 =
d2

ab

6(π)2ε0c3

∫ ∞

0

ω3 exp[i(ω0 − ωk)(t− t′)]dω. (2.41)

We assume that ω varies very little around ω0. In view of this , we can replace ω3 by ω3
0

and extending the lower limit of the integration to−∞ consequently, we have

Γ2 = Γ6 =
d2

ab

6(π)2)ε0c3

∫ ∞

−∞
exp[−i(ω0 − ωk)(t− t′)]dω. (2.42)

Moreover, up on setting ω
′
= ω − ω0, we notice that

Γ2 = Γ6 =
d2

ab

6(π)2)ε0c3

∫ ∞

−∞
exp[i(ω0 − ωk)(t− t′)]dω′ . (2.43)

It the follows that

Γ2 = Γ6 = γδ(t− t′), (2.44)

in which

γ =
d2

ab

3(π)2)ε0c3
, (2.45)

where γ is the atomic decay rate. Furthermore, applying Eqs.(2.36) and (2.44), we can

express Eq. (2.18) as

Tr(R̂ĤSR(t)ĤSR(t′)) = γ[σ̂†ka σ̂k
a + σ̂†kb σ̂k

b ]δ(t− t′). (2.46)
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We easily see that

∫ t

0

Tr(R̂ĤSR(t)ĤSR(t′)ρ̂(t′)dt′ =
γ

2
[σ̂†ka σ̂k

a ρ̂ + σ̂†kb σ̂k
b ρ̂], (2.47)

with ρ̂ = ρ̂(t), we also see that

∫ t

0

ρ̂(t′)TrRR̂ĤSR(t)ĤSR(t′)dt′ =
γ

2
[ρ̂σ̂†ka σ̂k

a + ρ̂σ̂†kb σ̂k
b ρ̂]. (2.48)

Hence in view of eq. (2.36) and (2.44), we also see that

TrR(ĤSR(t)ρ̂(t′)R̂ĤSR(t′) = γ[σ̂k
a ρ̂(t′)σ̂†ka + σ̂k

b ρ̂(t′)σ̂†kb ]δ(t− t′), (2.49)

from which follows

∫ t

0

TrR(ĤSR(t)ρ̂(t′)R̂ĤSR(t′)dt′ =
γ

2
[σ̂k

a ρ̂σ̂†ka + σ̂k
b ρ̂σ̂†kb ], (2.50)

and

∫ t

0

TrR(ĤSR(t′)ρ̂(t′)R̂ĤSR(t)dt′ =
γ

2
[σ̂k

a ρ̂σ̂†ka + σ̂k
b ρ̂σ̂†kb ]. (2.51)

On substituting Eqs. (2.47), (2.48), (2.50) and (2.51) into Eq. (2.17) the master equation

for a nondegenerate three-level laser driven by coherent light and with the cavity modes

coupled to a two-mode vacuum reservoir is found to be

d

dt
ρ̂(t) = −i[Hs(t), ρ̂(t)] +

Ω

2

[
σ̂†kc ρ̂− σ̂k

c ρ̂− ρ̂σ̂†kc + ρ̂σ̂k
c

]
+

γ

2

[
2σ̂k

a ρ̂σ̂†ka − σ̂†ka σ̂k
a ρ̂− ρ̂σ̂†ka σ̂k

a

]
+

γ

2

[
2σ̂k

b ρ̂σ̂†kb − σ̂†kb σ̂k
b ρ̂− ρ̂σ̂†kb σ̂k

b

]
. (2.52)

where γ is the spontaneous emission decay constant associated with the two-modes â

and b̂. Therefore, on account of eqs.(2.1) and (2.7), the master equation for coherently
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driven three-level laser and coupled to a two- mode vacuum reservoir takes the form

d

dt
ρ̂(t) = g

[
σ̂†ka âρ̂− â†σ̂k

a ρ̂ + σ̂†kb b̂ρ̂− b̂†σ̂k
b ρ̂− ρ̂σ̂†ka â + ρ̂â†σ̂k

a − ρ̂σ̂†kb b̂ + ρ̂b̂†σ̂k
b

]
+ ε(ρ̂â− âρ̂− ρ̂â† + â†ρ̂ + ρ̂b̂− âρ̂− ρ̂â† + â†ρ̂)

+
Ω

2

[
σ̂†kc ρ̂− σ̂k

c ρ̂− ρ̂σ̂†kc + ρ̂σ̂k
c

]
+

γ

2

[
2σ̂k

a ρ̂σ̂†ka − σ̂†ka σ̂k
a ρ̂− ρ̂σ̂†ka σ̂k

a

]
+

γ

2

[
2σ̂k

b ρ̂σ̂†kb − σ̂†kb σ̂k
b ρ̂− ρ̂σ̂†kb σ̂k

b

]
. (2.53)

This is the master equation for a coherently driven non-degenerate three-level atom

with a two-mode cavity in an open cavity and coupled to a two-mode vacuum reservoir.

2.2 Quantum Langevin Equations

We assume that the cavity modes are coupled to a vacuum reservoir via single-port mir-

ror. In addition, we carry out our calculation by putting the noise operators associated

with the vacuum reservoir in normal order. Thus the noise operators will not have any

effect on the dynamics of the cavity mode operators [8,17]. We can therefore drop the

noise operators and write the quantum Langevin equations for the operators â and b̂ as

dâ

dt
= −κ

2
â− i[â, Ĥ], (2.54)

and

db̂

dt
= −κ

2
b̂− i[b̂, Ĥ], (2.55)

where κ is the cavity damping constant. By applying the commutation relations

[â, â†] = [b̂, b̂†] = 1, (2.56)

[â, b̂] = [â†, b̂†] = [â, b̂†] = 0, (2.57)

[â2, â†] = 2â. (2.58)
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In view of Eqs. (2.56), (2.57) and (2.58), the quantum Langevin equations for cavity

mode operators â and b̂ turns out to be

dâ

dt
= −κ

2
â− gσ̂k

a + ε, (2.59)

db̂

dt
= −κ

2
b̂− gσ̂k

b + ε. (2.60)

2.3 Stochastic differential Equations

Next we proceed to derive the stochastic differential equations of the atomic operators

by applying the master equation and the large-time approximation scheme. Moreover,

we find the steady-state solutions of the equations of evolution of the atomic operators.

To this end, employing the relation

d

dt
〈Â〉 = Tr

(
dρ̂

dt
Â

)
(2.61)

along with the master equation eq. (2.53), one can readily establish that

d

dt
〈σ̂k

a〉 = ε[〈âσ̂a〉 − 〈σ̂aâ〉+ 〈σ̂aâ
†〉 − 〈â†σ̂a〉+ 〈b̂σ̂a〉 − 〈σ̂ab̂〉〈σ̂ab̂

†〉

− 〈b̂†σ̂a〉] + g[〈η̂k
b â〉 − 〈η̂k

a â〉+ 〈b̂†σ̂k
c 〉] +

Ω

2
〈σ̂†kb 〉 − γ〈σ̂k

a〉, (2.62)

d

dt
〈σ̂k

b 〉 = ε[〈âσ̂k
b 〉 − 〈σ̂k

b â〉+ 〈σ̂k
b â

†〉 − 〈â†σ̂k
b 〉+ 〈b̂σ̂k

b 〉〈−σ̂k
b b̂〉+ 〈σ̂k

b b̂
†〉

− 〈b̂†σ̂k
b 〉] + g[〈η̂k

c b̂〉 − 〈â†σ̂k
c 〉 − 〈η̂k

b b̂〉]−
Ω

2
〈σ̂†ka 〉 −

γ

2
〈σ̂k

b 〉, (2.63)

d

dt
〈σ̂k

c 〉 = ε[〈âσ̂k
c 〉 − 〈σ̂k

c â〉+ 〈σ̂k
c â

†〉 − 〈â†σ̂k
a〉+ 〈b̂σ̂k

c 〉 − 〈σ̂k
c b̂〉+ 〈σ̂k

c b̂
†〉

− 〈b̂†σ̂k
a〉] + g[〈σ̂k

b â〉 − 〈σ̂k
a b̂〉] +

Ω

2

[
〈η̂k

c 〉 − 〈η̂k
a〉

]
− γ

2
〈σ̂k

c 〉, (2.64)

d

dt
〈η̂k

a〉 = ε[〈âη̂k
a〉 − 〈η̂k

a â〉+ 〈η̂k
a â

†〉 − 〈â†η̂k
a〉+ 〈b̂η̂k

a〉 − 〈η̂k
a b̂〉+ 〈η̂k

a b̂
†〉

− 〈b̂†η̂k
a〉] + g[〈σ̂†ka â〉+ 〈â†σ̂k

a〉] +
Ω

2

[
〈σ̂k

c 〉+ 〈σ̂†kc 〉
]
− γ〈η̂k

a〉, (2.65)
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d

dt
〈η̂k

b 〉 = ε[〈âη̂k
b 〉 − 〈η̂k

b â〉+ 〈η̂k
b b̂
†〉 − 〈b̂†η̂k

a〉+ 〈b̂η̂k
b 〉 − 〈η̂k

b b̂〉+ 〈η̂k
b b̂
†〉

− 〈b̂†η̂k
b 〉] + g[〈σ̂†b b̂〉+ 〈b̂†σ̂k

b 〉 − 〈σ̂†ka â〉 − 〈â†σ̂k
a〉] + γ[〈η̂k

b 〉 − 〈η̂k
a〉], (2.66)

where

η̂k
a = |a〉k k〈a|, (2.67)

η̂k
b = |b〉k k〈b|, (2.68)

η̂k
c = |c〉k k〈c|. (2.69)

We see that Eqs. (2.62) - (2.66) are nonlinear differential equations and hence it is not

possible to find exact time-dependent solutions of these equations. We intend to over-

come this problem by applying the large-time approximation [8,17]. Therefore, em-

ploying this approximation scheme, we get from Eqs. (2.59) and (2.60) the approxi-

mately valid relations are

â = −2g

κ
σ̂k

a +
2ε

κ
, (2.70)

b̂ = −2g

κ
σ̂k

b +
2ε

κ
. (2.71)

Evidently, these turn out to be exact relations at steady-state. Moreover, the conjugate

of (2.70) and (2.71), we get

â† = −2g

κ
σ̂†ka +

2ε

κ
, (2.72)

b̂† = −2g

κ
σ̂†kb +

2ε

κ
. (2.73)
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We next substituting Eqs. (2.70) - (2.73) into Eqs. (2.62)-2.66, the equations of evolution

of the atomic operators take the form

d

dt
〈σ̂k

a〉 = −(γ + γc)〈σ̂k
a〉+

Ω

2
〈σ̂†kb 〉, (2.74)

d

dt
〈σ̂k

b 〉 = −1

2
(γ + γc)〈σ̂k

b 〉 −
Ω

2
〈σ̂†ka 〉, (2.75)

d

dt
〈σ̂k

c 〉 = −1

2
(γ + γc)〈σ̂k

c 〉+
Ω

2

[
〈η̂k

c 〉 − 〈η̂k
a〉

]
, (2.76)

d

dt
〈η̂k

a〉 = −(γ + γc)〈η̂k
a〉+

Ω

2

[
〈σ̂k

c 〉+ 〈σ̂†kc 〉
]
, (2.77)

d

dt
〈η̂k

b 〉 = (γ + γc)[〈η̂k
b 〉 − 〈η̂k

a〉], (2.78)

where

γc =
4g2

κ
. (2.79)

We prefer to call the parameter defined by Eq. (2.79) is the stimulated emission decay

constant. We next sum Eqs. (2.74) - (2.78) over the N three-level atoms, so that

d

dt
〈m̂a〉 = −(γ + γc)〈m̂a〉+

Ω

2
〈m̂†

b〉, (2.80)

d

dt
〈m̂b〉 = −1

2
(γ + γc)〈m̂b〉 −

Ω

2
〈m̂†

a〉, (2.81)

d

dt
〈m̂c〉 = −1

2
(γ + γc)〈m̂c〉+

Ω

2

[
〈N̂c〉 − 〈N̂a〉

]
, (2.82)

d

dt
〈N̂a〉 = −(γ + γc)〈N̂a〉+

Ω

2

[
〈m̂c〉+ 〈m̂†

c〉
]
, (2.83)

d

dt
〈N̂b〉 = (γ + γc)[〈N̂b〉 − 〈N̂a〉], (2.84)
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in which

m̂a =
N∑

k=1

σ̂k
a , (2.85)

m̂b =
N∑

k=1

σ̂k
b , (2.86)

m̂c =
N∑

k=1

σ̂k
c , (2.87)

N̂a =
N∑

k=1

η̂k
a , (2.88)

N̂b =
N∑

k=1

η̂k
b , (2.89)

N̂c =
N∑

k=1

η̂k
c , (2.90)

with the operators N̂a, N̂b, and N̂c representing the number of atoms in the top, inter-

mediate, and bottom levels, respectively. Employing the completeness relation

η̂k
a + η̂k

b + η̂k
c = Î , (2.91)

we easily arrive at

〈N̂a〉+ 〈N̂b〉+ 〈N̂c〉 = N. (2.92)

Furthermore, using the definition given by Eq. (2.85) and setting for any k

σ̂k
a = |b〉〈a|, (2.93)

we have

m̂a = N |b〉〈a|. (2.94)
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Following the same procedure, one can also easily establish that

m̂b = N |c〉〈b|, (2.95)

m̂c = N |c〉〈a|, (2.96)

N̂a = N |a〉〈a|, (2.97)

N̂b = N |b〉〈b|, (2.98)

N̂c = N |c〉〈c|. (2.99)

Moreover, using the definition

m̂ = m̂a + m̂b, (2.100)

we see that

m̂† = m̂†
a + m̂†

b, (2.101)

where

m̂†
a = N |a〉〈b|, (2.102)

m̂†
b = N |b〉〈a|. (2.103)

Combination of Eqs. (2.100) and (2.101) yields

m̂†m̂ = (m̂†
a + m̂†

b)(m̂a + m̂b). (2.104)

Up on evaluating the terms on the right side of the above equation, we get

m̂†
am̂a = NN̂a, (2.105)

m̂†
am̂b = m̂†

bm̂a = 0, (2.106)

m̂†
bm̂b = NN̂b. (2.107)
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Substitution of Eqs.(2.105)-(2.107) into (2.104), we see that

m̂†m̂ = N(N̂a + N̂b). (2.108)

In similar manner,one can also establish that

m̂m̂† = N(N̂b + N̂c), (2.109)

m̂2 = Nm̂c. (2.110)

In the presence of N three-level atoms, we rewrite Eqs. (2.59) and (2.60) as [17]

dâ

dt
= −κ

2
â + λm̂a + ε, (2.111)

db̂

dt
= −κ

2
b̂ + βm̂b + ε, (2.112)

in which λ and β are constants whose values remain to be fixed. We note that the steady-

state solutions of Eqs. (2.59) and (2.60)are

â = −2g

κ
σ̂k

a +
2ε

κ
, (2.113)

b̂ = −2g

κ
σ̂k

b +
2ε

κ
. (2.114)

Now employing Eqs. (2.113) and (2.114), the commutation relations for the cavity mode

operators are found to be

[â, â†]k =
γc

κ

[
η̂k

b − η̂k
a

]
, (2.115)

[b̂, b̂†]k =
γc

κ

[
η̂k

c − η̂k
b

]
, (2.116)

and on summing over all atoms, we have

[â, â†] =
γc

κ

[
N̂b − N̂a

]
, (2.117)

[b̂, b̂†] =
γc

κ

[
N̂c − N̂b

]
. (2.118)
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where

[â, â†] =
N∑

k=1

[â, â†]k, (2.119)

[b̂, b̂†] =
N∑

k=1

[b̂, b̂†]k. (2.120)

We note that Eqs. (2.119) and (2.120) stand for the commutators â and â†, and for b̂ and

b̂† when the light modes a and b are interacting with all the N three-level atoms. On the

other hand, using the steady-state solutions of Eqs. (2.111) and (2.112), one can easily

verify that

[â, â†] = N

(
2λ

κ

)2(
N̂b − N̂a

)
, (2.121)

[b̂, b̂†] = N

(
2β

κ

)2(
N̂c − N̂b

)
. (2.122)

Thus on account of Eqs. (2.117) and (2.121), we see that

λ = ± g√
N

. (2.123)

Similarly, inspection of Eqs. (2.118) and (2.122) shows that

β = ± g√
N

. (2.124)

Hence in view of these two results, the equations of evolution of the light modes a and

b operators given by Eqs. (2.111) and (2.112) can be written as

dâ

dt
= −κ

2
â +

g√
N

m̂a + ε, (2.125)

db̂

dt
= −κ

2
b̂ +

g√
N

m̂b + ε. (2.126)

Now adding Eqs. (2.117) and (2.118) as well as Eqs. (2.125) and (2.126), we get

[ĉ, ĉ†] =
γc

κ

[
N̂c − N̂a

]
, (2.127)
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and

dĉ

dt
= −κ

2
ĉ +

g√
N

m̂ + 2ε, (2.128)

in which

ĉ = â + b̂. (2.129)

We next proceed to obtain the expectation value of the cavity mode operators. One

can rewrite Eq. (2.80) and the adjoint of (2.81) as

d

dt
〈m̂a(t)〉 = −(γ + γc)〈m̂a(t)〉+

Ω

2
〈m̂†

b(t)〉, (2.130)

d

dt
〈m̂†

b(t)〉 = −Ω

2
〈m̂a(t)〉 −

1

2
(γ + γc)〈m̂†

b(t)〉. (2.131)

On the basis of eqs.2.130 and 2.131, we observe that

d

dt
m̂a(t) = −(γ + γc)m̂a(t) +

Ω

2
m̂†

b(t) + F̂a(t), (2.132)

d

dt
m̂†

b(t) = −Ω

2
m̂a(t)−

1

2
(γ + γc)m̂

†
b(t) + F̂b(t). (2.133)

where F̂a(t) and F̂b(t) are noise force operators and the properties of which remain to

be determined. To solve the coupled differential equations (2.132) and (2.133), we can

write the single-matrix equation as

d

dt

 m̂a(t)

m̂†
b(t)

 = M

 m̂a(t)

m̂†
b(t)

 +

 F̂a(t)

F̂ †
b (t)

 , (2.134)

d

dt
Ĵ(t) = MĴ(t) + F̂ (t), (2.135)

where

Ĵ(t) =

 m̂a(t)

m̂†
b(t)

 , (2.136)
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M =

 −(γ + γc)
Ω
2

−Ω
2

−1
2
(γ + γc)

 , (2.137)

Ê(t) =

 〈F̂a(t)〉

〈F̂ †
b (t)〉

 . (2.138)

In order to solve Eq. (2.135), we need the eigenvalues and eigenvectors of M such that

MVi = λiVi, (2.139)

where,

Vi =

 xi

yi

 , (2.140)

is the eigenvectors. with i = 1, 2, the normalization condition

x2
i + y2

i = 1. (2.141)

The eigenvalue equation (2.139) can be written as

(M − λiI)Vi, = 0 (2.142)

where I is an identity operator, Eq. (2.142) has nontrivial solution provided that

det(M − λI) = 0, (2.143)

so that applying Eq. (2.137), the eigenvalues are found to be

λ1 = −3

4
(γ + γc) +

1

2
p, (2.144)

λ2 = −3

4
(γ + γc)−

1

2
p, (2.145)
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where

p =

√
1

4
(γ + γc)2 − Ω2. (2.146)

We next seek to obtain the eigenvectors of M . To this end, the eigenvector corre-

sponding to λ1 is expressible as

V1 =

 x1

y1

 . (2.147)

Then employing Eqs. (2.137) and (2.139), we write the matrix equation −(γ + γc)
Ω
2

−Ω
2

−1
2
(γ + γc)


 x1

y1

 = λ1

 x1

y1

 . (2.148)

Taking into account this equation and the normalization condition

x2
1 + y2

1 = 1, (2.149)

we get

V1 =
1√

Ω2

4
+ (λ1 + γ + γc)2

 Ω
2

λ1 + γ + γc

 . (2.150)

The eigenvector corresponding to λ2 can also be established following a similar proce-

dure that

V2 =

 x2

y2

 =
1√

Ω2

4
+ (λ2 + γ + γc)2

 Ω
2

λ2 + γ + γc

 . (2.151)

Finally, we construct a matrix V consisting of the eigenvectors of the matrix M as col-

umn matrices

V =


Ω
2√

Ω2

4
+(λ1+γ+γc)2

Ω
2√

Ω2

4
+(λ2+γ+γc)2

λ1+γ+γc√
Ω2

4
+(λ1+γ+γc)2

λ2+γ+γc√
Ω2

4
+(λ2+γ+γc)2

 . (2.152)
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We next proceed to determine the inverse of the matrix V . To this end, it can be readily

verified that the characteristic equation

det(V − λI) = 0 (2.153)

has explicit form

λ2 −
[ Ω

2√
Ω2

4
+ (λ1 + γ + γc)2

+
λ2 + γ + γc√

Ω2

4
+ (λ2 + γ + γc)2

]
λ

−
Ω
2
(λ1 − λ2)√

Ω2

4
+ (λ1 + γ + γc)2

√
Ω2

4
+ (λ2 + γ + γc)2

I = 0. (2.154)

Thus applying the Cayley-Hamilton theorem that a matrix satisfies its own characteris-

tic equation, we have

V 2 −
[ Ω

2√
Ω2

4
+ (λ1 + γ + γc)2

+
λ2 + γ + γc√

Ω2

4
+ (λ2 + γ + γc)2

]
V

−
Ω
2
(λ1 − λ2)√

Ω2

4
+ (λ1 + γ + γc)2

√
Ω2

4
+ (λ2 + γ + γc)2

I = 0. (2.155)

In view of this, we obtain

V −1 =
1

λ1 − λ2

 −(λ2+γ+γc)
Ω
2

√
Ω2

4
+ (λ1 + γ + γc)2

√
Ω2

4
+ (λ1 + γ + γc)2

(λ1+γ+γc)
Ω
2

√
Ω2

4
+ (λ2 + γ + γc)2 −

√
Ω2

4
+ (λ2 + γ + γc)2

 . (2.156)

Furthermore, using the fact that

V V −1 = V −1V = I, (2.157)

We can write Eq.(2.135) as

d

dt
Ĵ(t) = V V −1MV V −1Ĵ(t) + F̂ (t), (2.158)
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Up on multiplying Eq. (2.158) by V −1 from the left, we get

d

dt
(V −1Ĵ(t)) = DV −1Ĵ(t) + V −1F̂ (t), (2.159)

where

D = V −1MV =

 −β 0

0 −β

 , (2.160)

in which β = γ + γc. The formal solution of Eq. (2.159) can be written as

Ĵ(t + τ) = V eDtV −1Ĵ(t) +

∫ τ

0

V eD(τ−τ ′)V −1F̂ (t + τ ′)dτ ′. (2.161)

In view of the fact that D is diagonal, we have

eDt =

 e−βτ 0

0 e−βτ

 , (2.162)

and

eD(τ−τ ′) =

 e−β(τ−τ ′ 0

0 e−β(τ−τ ′)

 . (2.163)

It then follows that

V eDτV −1Ĵ(t) =

 S(τ)〈m̂a(τ)〉 0

0 S(τ)〈m̂†
b(τ)〉

 , (2.164)

and

∫ τ

0

V eD(τ−τ ′V −1F̂ (t + τ ′)dτ ′ =


∫ τ

0
S(τ − τ ′)F̂a(τ + τ ′) 0

0
∫ τ

0
S(τ − τ ′)F̂ †

b (t + τ)

 ,(2.165)

where

S(τ) = eβτ , (2.166)

S(τ − τ ′) = eβ(τ−τ ′), (2.167)
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Finally, applications of these results yield

m̂a(t + τ) = S(τ)m̂a(t) +

∫ τ

0

S(τ − τ ′)F̂ †
b (t + τ ′)dτ ′, (2.168)

m̂†
b(t + τ) = S(τ)m̂†

b(t) +

∫ τ

0

S(τ − τ ′)F̂a(t + τ ′)dτ ′. (2.169)

Now the expectation value of Eq. (2.168) and the adjoint of (2.169) can be expressed as

〈m̂a(t + τ)〉 = S(τ)〈m̂a(t)〉+

∫ τ

0

S(τ − τ ′)〈F̂ †
b (t + τ ′)〉dτ ′, (2.170)

〈m̂b(t + τ)〉 = S(τ)〈m̂b(t)〉+

∫ τ

0

S(τ − τ ′)〈F̂ †
a (t + τ ′)〉dτ ′. (2.171)

Upon setting t = 0 and τ = t, we see that

〈m̂a(t)〉 = S(t)〈m̂a(0)〉+

∫ t

0

S(t− t′)〈F̂ †
b (t′)〉dt′, (2.172)

〈m̂b(t)〉 = S(t)〈m̂b(0)〉+

∫ t

0

S(t− t′)〈F̂ †
a (t′)〉dt′. (2.173)

Furthermore, the expectation value of Eqs. (2.132) and (2.133) are

d

dt
〈m̂a(t)〉 = −(γ + γc)〈m̂a(t)〉+

Ω

2
〈m̂†

b(t)〉+ 〈F̂a(t)〉, (2.174)

d

dt
〈m̂†

b(t)〉 = −Ω

2
〈m̂a(t)〉 −

1

2
(γ + γc)〈m̂†

b(t)〉+ 〈F̂b(t)〉. (2.175)

we note that Eqs. (2.132) and (2.174) as well as (2.133) and (2.175) will have identical

forms if

〈F̂ †
a (t)〉 = 〈F̂ †

b (t′)〉 = 0 (2.176)

With the atoms considered to be initially in the bottom level, Eqs. (2.172) and (2.173)

reduce to

〈m̂a(t)〉 = 0, (2.177)

〈m̂b(t)〉 = 0. (2.178)
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Now to obtain the expectation value of the cavity mode operators, according to the

quantum Langevin equation given by Eq. (2.125) is expressible as

〈â(t)〉 = 〈â(0)〉e−κt/2 +
g√
N

∫ t

0

eκt′/2〈m̂a(t
′)〉dt′ + εe−κt/2

∫ t

0

eκt′/2dt′. (2.179)

With the help of Eq. (2.177) and the assumption that the cavity light is initially in a

vacuum state and carrying out the integration of Eq. (2.179), at steady state goes over

into

〈â(t)〉ss =
2ε

κ
(2.180)

In view of Eq. (2.126) and the result given by Eq. (2.178), one can readily obtain

〈b̂(t)〉ss =
2ε

κ
. (2.181)

Then on account of Eq. (2.126) , Eq. (2.180), and (2.181) together with(2.129), we have

〈ĉ(t)〉ss =
4ε

κ
. (2.182)

Finally, we seek to determine the steady-state solutions of the expectation values of the

atomic operators. We note that the steady-state solutions of Eqs. (2.82), (2.83), and

(2.84) are given by

〈m̂c〉 =

(
Ω

γ + γc

) [
〈N̂c〉 − 〈N̂a〉

]
, (2.183)

〈N̂a〉 =
1

2

(
Ω

γ + γc

) [
〈m̂c〉+ 〈m̂†

c〉
]
, (2.184)

〈N̂b〉 = 〈N̂a〉. (2.185)

Furthermore, with the help of Eq. (2.92) together with (2.185), we see that

〈N̂c〉 = N − 2〈N̂a〉. (2.186)
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With the aid of Eq. (2.186), Eq. (2.183) can be written as

〈m̂c〉 =

(
Ω

γ + γc

) [
N − 3〈N̂a〉

]
, (2.187)

and in view of Eq. (2.187), we observe that

〈m̂c〉 = 〈m̂†
c〉. (2.188)

Employing , Eq. (2.188) and (2.184) can be put in the form

〈N̂a〉 =

(
Ω

γ + γc

)
〈m̂c〉. (2.189)

Using Eqs. (2.187) and (2.189), one readily gets

〈N̂a〉 =

[
Ω2

(γc + γ)2 + 3Ω2

]
N. (2.190)

Substitution of Eq. (2.190) into Eqs. (2.185), (2.186), and (2.187) results in

〈N̂b〉 =

[
Ω2

(γc + γ)2 + 3Ω2

]
N, (2.191)

〈N̂c〉 =

[
(γc + γ)2 + Ω2

(γc + γ)2 + 3Ω2

]
N, (2.192)

〈m̂c〉 =

[
Ω(γc + γ)

(γc + γ)2 + 3Ω2

]
N. (2.193)

These equations represent the steady-state solutions of the equations of evolution of

the atomic operators. Furthermore, upon setting (γ = 0), for the case in which sponta-

neous emission is absent and for (Ω � γc), the steady-state solutions described by Eqs.

(2.190)-(2.93) take the form

〈N̂a〉 =
1

3
N, (2.194)
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〈N̂b〉 =
1

3
N, (2.195)

〈N̂c〉 =
1

3
N, (2.196)

〈m̂c〉 = 0. (2.197)

The results described by Eqs. (2.194)-(2.197) are exactly the same as those obtained by

Fesseha [17].
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Photon statistics

In this chapter we seek to study the statistical properties of light mode a and b is de-

scribed in terms of the mean and variance of photon number as well as the statistical

properties of the two-modes cavity light applying the solutions of the equations of evo-

lution of the expectation values of the atomic operators and the quantum Langavin

equations for the cavity mode operators. In addition, employing the Q-function ob-

tained using antinormally ordered characteristics function defined in the Heisenberg

picture we determine photon number variance for the cavity modes.

3.1 Single-mode photon statistics

Here we wish to calculate the mean and variance of the photon numbers for light mode

a and b.

3.1.1 Mean photon number

we proceed to calculate the mean photon numbers of light mode a and b. The mean

photon number of light mode a, represented by the operators a and a† is defined by

n̄a = 〈â†â〉. (3.1)

31
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We note that the steady state solution of Eq.(2.125) and Eq.(2.126) can be written as

â =
2g

k
√

N
m̂a +

2ε

k
, (3.2)

and

b̂ =
2g

k
√

N
m̂b +

2ε

k
. (3.3)

So introducing Eq.(3.2) and its adjoint into (3.1), we see that

n̄a =
2g

k
√

N
〈m̂†

am̂a〉+
4ε2

k2
. (3.4)

On account of Eq.(2.105) , Eq. (3.4) can be expressed as

n̄a = 〈â†â〉 =
γc

k
〈Na〉+

4ε2

k2
. (3.5)

also with the aid of Eq.(3.2), one can easily establish that

〈ââ†〉 =
γc

k
〈Nb〉+

4ε2

k2
, (3.6)

〈ââ〉 = 〈â†â†〉 =
4ε2

k2
. (3.7)

Therefore,in view of Eq.(2.190), there follows

n̄a =
γc

k

[
Ω2

(γc + γ)2 + 3Ω2

]
N +

4ε2

k2
. (3.8)

Moreover, we consider the case in which spontaneous emission is absent(γ = 0). Then

the mean photon number of light mode a for this case has the form

n̄a =
γc

k

[
Ω2

(γc)2 + 3Ω2

]
N +

4ε2

k2
. (3.9)
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Figure 3.1: Plots of the mean photon number of light mode a [Eq. (3.8)] versus

Ω for γc = 0.4, κ = 0.8, ε = 0.3, N = 50, and for different values of γ.

In addition,we note that for the case in which there is no driving light radiation (ε = 0)

and (Ω >> γc) Eq.(3.9) the mean photon numbers reduces to

n̄a =
γc

3k
N. (3.10)

The plots in Fig. (3.4) show that the mean photon number of the single-mode light in-

creases with Ω and the steady-state mean photon number of light mode a in the absence

of spontaneous emission when (γ = 0) is greater than in the presence of spontaneous

emission (γ 6= 0). Therefore, the effect of spontaneous emission decreases the mean

photon number.

Fig.(3.5) represents the plots of the mean photon number of light mode a [Eq.3.8]

versus γ for Ω = 0.5(solid curve), Ω = 0.4(dotted curve) and Ω = 0.2(dash curve) .We see
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Figure 3.2: Plots of the mean photon number of light mode a [Eq. (3.8)] versus

γ for γc = 0.4, κ = 0.8, ε = 0.3, N = 50, and for different values of Ω.

from the figure the steady-state mean photon number of light mode a decreases as the

spontaneous emission increases.

From fig.(3.3) we see that the mean of the photon number of light modea with the

driving light (ε 6= 0) is greater than with out the driving light (ε = 0). In other words, the

driving light increases the mean of the photon number.
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Figure 3.3: Plots of the mean photon number of light mode a [Eq. (3.8)] versus

Ω for γc = 0.4, κ = 0.8, γ = 0.2, N = 50, and for different values of ε.

Following a similar procedure, the mean photon number of light mode b is found to

be

n̄b =
γc

k
〈Nb〉+

4ε2

k2
. (3.11)

Now on substituting Eq.(2.191) into Eq.(3.11), we have

n̄b =
γc

k

[
Ω2

(γc + γ)2 + 3Ω2

]
N +

4ε2

k2
. (3.12)

we note that, the case in which there is no driving light radiation (ε = 0) and (Ω >> γc),

the mean photon number of mode b reduces to

〈b̂†b̂〉 = n̄b =
γc

3k
N. (3.13)

In view of eq.(3.2) and eq.(3.13), we see that

n̄a = n̄b. (3.14)
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Therefore, we also observe that the mean photon number of light mode a is equal to

light mode b.

3.2 The Q function

Here we wish to obtain, using anti-normally ordered characteristic function defined in

the Heisenberg picture, the Q function for the two-mode laser light beam. Then em-

ploying the resulting Q function, we determine the photon number variance of single-

mode and two-mode laser light beam.

Consider a two-mode laser light beam represented by the operators ĉ and ĉ† sub-

jected to the commutation relation

[ĉ, ĉ†] = λ (3.15)

where,

λ =
γc

κ
[〈N̂c〉 − 〈N̂a〉]. (3.16)

is a constant c-number. The Q function for the two mode laser light beam can be ex-

pressed interms of the anti-normally ordered characteristics function as

Q(γ∗, γ) =
λ

π2

∫
d2zφa(z) exp[z∗γ − zγ∗], (3.17)

where γ = α + β is the c-number variable corresponding to the operator ĉ given by

Eq.(2.129) the anti-normally ordered characteristics function is defined by

φa(z) = Tr(ρ̂ exp−z∗ĉ expzĉ†). (3.18)

with the aid of the completeness relation [17]

ĉ|γ〉 = λγ|γ〉, (3.19)
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we obtain

φa(z) =

∫
d2γλQ(λγ∗, λγ) exp[zλγ∗ − z∗λγ]. (3.20)

where Q(λγ∗, λγ) is the Q function for the two-mode laser light beam. Next introducing

the variable ξ = λγ, the anti-normally ordered function can be put in the form

φa(z) =

∫
d2ξ

Q(ξ∗, ξ)

λ
exp[zξ∗ − z∗ξ]. (3.21)

since Q(ξ∗,ξ)
λ

is the inverse fourier transform of the characteristics function,we see that

Q(ξ∗, ξ) =
λ

π2

∫
d2zφa(z) exp[z∗ξ − zξ∗]. (3.22)

Up on integrating both sides of Eq.(3.22) over ξ, and taking into account the fact that

1

π2

∫
d2ξ exp[z∗ξ − zξ∗] = δ(2), (3.23)

we arrive at

∫
d2ξQ(ξ∗, ξ) = λ

∫
d2zTr(ρ̂ exp−z∗ĉ expzĉ†). (3.24)

from which follows

∫
d2ξQ(ξ∗, ξ) = λ. (3.25)

This shows that the normalized to λ. We next proceed to obtain the explicit form of the

anti normally-ordered characteristic function for the two-mode laser light beam. Thus

applying the Baker-Hausdorff identity[29]

eÂeB̂ = eÂ−B̂+ 1
2
[Â,B̂], (3.26)
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which holds for [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 along with Eq.(3.15) the anti-normally or-

dered characteristic function given by Eq. (3.18) can be put in the form

φa(z, t) = exp
−λ
2

z∗z
〈
exp[zĉ†(t)− z∗ĉ(t)]

〉
. (3.27)

In view of Eq.(2.129) and the assumption that the cavity modes are initially in a vacuum

state,we can re-write Eq.(3.27) as

φa(z, t) = exp
−λ
2

z∗z exp

[
〈1
2
(zĉ†(t)− z∗ĉ(t))2〉

]
. (3.28)

It then shows that

φa(z, t) = exp

[
−λ

2
z∗z − z∗z

2
〈ĉ†(t)ĉ(t)〉 − z∗z

2
〈ĉ(t)ĉ†(t)〉+

z2

2
〈ĉ†2(t)〉+

z†2

2
〈ĉ2(t)〉

]
. (3.29)

since 〈m̂c〉 is real, we see that

〈ĉ2〉 = 〈ĉ†2〉 =
γc

k
〈m̂c〉+

16ε2

k2
, (3.30)

and with the aid of Eq.(2.129), we get

〈ĉ†ĉ〉 =
γc

k
[〈N̂a〉+ 〈N̂b〉] +

16ε2

k2
, (3.31)

〈ĉĉ†〉 =
γc

k
[〈N̂b〉+ 〈N̂c〉] +

16ε2

k2
. (3.32)

So that on account of EqS.(3.16), (3.30),(3.31) and (3.32) the anti-normally characteris-

tics function can be put in the form

φa(z, t) = exp[−z∗z[
γc

k

[
〈N̂b〉+ 〈N̂c〉

]
+

16ε2

k2
] + (

γc

k
〈m̂c〉+

16ε2

k2
)(

z∗2

2
+

z2

2
). (3.33)

This can be written as

φa(z, t) = exp[−Rz∗z + S(
z∗2

2
+

z2

2
)]. (3.34)
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in which

R =
γc

k
[〈N̂b〉+ 〈N̂c〉] +

16ε2

k2
, (3.35)

S =
γc

k
〈m̂c〉+

16ε2

k2
. (3.36)

Now introducing Eq.(3.29) into Eq.(3.17) the Q function for two-mode laser light beam

can be written as

Q(γ∗, γ) =
λ

π2

∫
d2z exp[−Rz∗z + S(

z∗2

2
+

z2

2
)]. (3.37)

Furthermore, using the relation given [17]∫
d2z

π
e−az∗z+bz+cz∗+Az2+Bz∗2 =

1√
a2 − 4BC

e
abc+Ab2+Bb2

a2−4BC , a > 0, (3.38)

and performing the integration, one readily obtain

Q(γ∗, γ) =
λ

π

[
1

u2 − v2

] 1
2

exp[−uγ∗γ + v(
γ∗2

2
+

γ2

2
)]. (3.39)

in which

u =
R

R2 − S2
(3.40)

v =
S

R2 − S2
. (3.41)

We note that Eq.(3.39) is the Q function for the two-mode laser light beam. Moreover,

following a similar procedure,the Q function for the single-mode a can be written as

Q(α∗, α) =
λ

π

[
1

a2 − b2

] 1
2

exp

[
− a

a2 − b2
α∗α +

b

a2 − b2
(
α∗2

2
+

α2

2
)

]
. (3.42)

where

a =
γc

κ
〈Nb〉+

4ε2

κ2
, (3.43)

b =
4ε2

κ2
. (3.44)
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It then follows that

Q(α∗, α) =
λ

π

[
1

u′2 − v′2

] 1
2

exp

[
−u′α∗α + v′(

α∗2

2
+

α2

2
)

]
. (3.45)

in which u′ = a
a2−b2

, and v′ = b
a2−b2

.

3.3 Photon number variance

We next proceed to obtain the variance of the light mode a and b. The photon number

variance of light mode a and b defined by

(∆na)
2 = 〈(a†a)2〉 − n̄2, (3.46)

(∆nb)
2 = 〈(b†b)2〉 − n̄2. (3.47)

using the commutation relation [â†, â] = 1, we can write of the first on the right hand

sides terms of Eq.(3.46) and Eq.(3.47)as

〈(a†a)2〉 = 〈a2a†2〉 − 3n̄a − 2, (3.48)

〈(b†b)2〉 = 〈b2b†2〉 − 3n̄b − 2. (3.49)

So that expression (3.46), can be written as

(M na)
2 = 〈(a2a†2)〉 − n̄2 − 3n̄a − 2. (3.50)

Thus employing Eq.(3.45), we have

〈a2a†2〉 =

∫
d2αQ(α)α†2α2. (3.51)

This can be put in the form

〈a2a†2〉 = [u′2 − v′2]
1
2

d4

dη2dz2

∫
d2α

π
e−u′α∗α+ηα+zα∗+v′(α∗2

2
+α2

2
), η = z = 0 (3.52)
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On carrying out the integration using Eq.(3.38), we obtain

〈a2a†2〉 =
d4

dη2dz2
exp[

(u′zη + v′z2

2
+ v′η2

2
)

u′2 − v′2
], η = z = 0. (3.53)

Performing the derivative and applying the condition z = η = 0, we get

〈a2a†2〉 = 2(n̄a + 1)2. (3.54)

Using Eq.(3.54) into (3.50), we get

(∆na)
2 = n̄2

a + n̄a. (3.55)

Therefore, substitution of Eq.(3.8),into Eq.(3.55), we have

(M na)
2 =

[
γc

k

[
Ω2

(γc + γ)2 + 3Ω2

]
N +

4ε2

k2

]2

+
γc

k

[
Ω2

(γc + γ)2 + 3Ω2

]
N +

4ε2

k2
. (3.56)

It can also be shown in similar manner

(M nb)
2 = n̄2

b + n̄b. (3.57)

We see from eqs.(3.55) and (3.57) that the light mode a and b are separately in a chaotic

light. Furthermore, inspection of these equation indicates that (∆n)2
a > n̄a and (∆n)2

b >

n̄b, and hence the photon statistics of each light mode is super-poissonian statistics.

3.4 Two-mode photon statistics

In this section, applying the steady-state solutions of the equations of evolution of the

expectation value of the atomic operators and quantum langevin equations for the cav-

ity mode operators, we seek to obtain the mean and variance of the photon numbers

for two-mode light beam.
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3.4.1 Two-mode mean photon number

Here we seek to calculate the steady state mean photon number of the two-mode cavity

light beam. The mean photon number of the two-mode light beam, represented by the

operators ĉ and ĉ† is defined by

n̄ = 〈ĉ†ĉ〉. (3.58)

The steady-state solution of Eq.(2.129) is found to be

〈ĉ〉 =
2g

k
√

N
m̂ +

4ε

k
. (3.59)

Hence at steady state the mean photon numbers goes over into

n̄ =
γc

k
[〈Na〉+ 〈Nb〉] +

16ε2

k2
. (3.60)

We see from Eq.(3.60) that the mean photon number of the two-mode light beam is the

sum of photon numbers of the separate single mode light beams given by Eq.(3.5) and

(3.11). Therefore, on account of Eqs.(3.8) and (3.12),into Eq.(3.60), we have

n̄ =
γc

k

[
2Ω2

(γc + γ)2 + 3Ω2

]
N +

16ε2

k2
. (3.61)

We next proceed to consider for the case in which spontaneous emission is absent(γ =

0) and Ω � γc. Then the mean photon number for this case takes the form

n̄ =
2γc

3k
N +

16ε2

k2
. (3.62)

Furthermore, we note that for (ε = 0) Eq.3.62reduces to

n̄ =
2γc

3k
N. (3.63)
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Figure 3.4: Plots of the mean photon number of two-mode light [Eq. (3.60)] versus

Ω for γc = 0.4, κ = 0.8, ε = 0.3, N = 50, and for different values of γ.

The plots in Fig. (3.4) we observe that the steady-state mean photon number of

two-mode light in the absence of spontaneous emission when (γ = 0) is greater than

in the presence of spontaneous emission (γ 6= 0). Therefore, the effect of spontaneous

emission decreases the mean photon number two-mode light. also, from fig.(3.5) we

see that the mean of the photon number of two-mode light with the driving light (ε 6=

0) is greater than with out the driving light (ε = 0). In other words, the driving light

increases the mean of the photon number.
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Figure 3.5: Plots of the mean photon number of light mode a [Eq. (3.60)] versus

Ω for γc = 0.4, κ = 0.8, γ = 0 N = 50, and for different values of ε.

3.4.2 Two-mode photon number variance

Here we proceed to study the steady state photon number variance for the two-mode

cavity light is expressible as

(∆n)2 = 〈n̂2〉 − 〈n̂〉2. (3.64)

where n̂ = ĉ†ĉ . Using the usual boson commutation relation, it is possible to rewrite

Eq. (3.64) in terms of the c-number variables associated with the normal ordering the

photon number variance can be written as

(∆n)2 = 〈(γ2γ†2)〉 − n̄2 − 3n̄− 2. (3.65)
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Figure 3.6: Plots of the photon number variance of two-mode light [Eq. (3.69)] versus

Ω for γc = 0.4, κ = 0.8, ε = 0.3 N = 50, and for different values of γ.

The term on the right side of Eq.(3.65) can be expressed in terms of Q function as

〈γ2γ†2〉 =
2λ

π
[u2 − v2]

1
2

d4

dm2dn2

∫
d2αe−uγ∗γ+mγ+nγ∗+v( γ∗2

2
+ γ2

2
), m = n = 0. (3.66)

so that up on carrying out integration, differentiation and setting the condition m =

n = o, we get

〈γ2γ†2〉 = 2(n̄ + 1)2. (3.67)

substitution of Eq.(3.67) into (3.65) yields

(∆n)2 = n̄2 + n̄. (3.68)

Therefor, with the aid Eq.(3.61), we can write

(∆n)2 =

[
γc

k

[
Ω2

(γc + γ)2 + 3Ω2

]
N +

16ε2

k2

]2

+
γc

k

[
Ω2

(γc + γ)2 + 3Ω2

]
N +

16ε2

k2
, (3.69)



3.4.2 Two-mode photon number variance 46

Figure 3.7: Plots of the variance of photon number of two-mode light [Eq. (3.69)] versus

Ω for γc = 0.4, κ = 0.8, γ = 0.2 N = 50, and for different values of ε.

we note that for the case in which there is no driving light radiation(ε = 0), (Ω � γc)

and the spontaneous emission is absent(γ = 0).The variance of the photon for this case

takes the form

(∆n)2 =

[
2γc

3k
N

]2

+
2γc

3k
. (3.70)

Plots on fig.(3.6) we observe that the steady-state variance photon number of two-

mode light is greater than the mean photon number of two-mode light. Furthermore,

we have also observe that the normally ordered variance of the photon number for

chaotic light and the photon statistics of the two-mode light is super-poissonian.

From fig.(3.7) we observe that the variance of the photon number of two-mode light

with the driving light (ε 6= 0) is greater than with out the driving light (ε = 0). In other
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words, the driving light increases the variance of the photon number.

3.5 Photon number correlation

In order to determine whether the photon numbers of mode a and mode b are corre-

lated or not, we must examine the normalized photon numbers correlation. Thus the

photon number correlation of a two-mode light can be defined by [35]

g
(2)
ab (0) =

〈n̂an̂b〉
n̄an̄b

(3.71)

where,n̂a = â†â and n̂b = b̂†b̂ are the photon number operators for cavity modes a and

b, respectively. If g
(2)
ab = 1 the photon numbers of the cavity modes are uncorrelated.

If on the other hand g
(2)
ab 6= 1, the photon numbers of the cavity modes are correlated.

Therefore, one can express eq.(3.71) in the form

g
(2)
ab (0) =

〈â†âb̂†b̂〉
n̄an̄b

. (3.72)

Since Eqs.(2.125) and (2.126) are linear differential equation, one can express Eq. (3.72)

in the form

g
(2)
ab (0) =

〈â†â〉〈b̂†b̂〉+ 〈â†b̂†〉〈âb̂〉+ 〈â†b̂〉〈âb̂†〉
n̄an̄b

. (3.73)

It then follows that;

g
(2)
ab (0) = 1 +

〈â†b̂†〉〈âb̂〉+ 〈â†b̂〉〈âb̂†〉
n̄an̄b

, (3.74)

with the aid of Eqs.(3.2) and (3.3) the steady-state second order correlation function

takes the form

g
(2)
ab (0) = 1 +

4 γc

κ3 ε
2〈mc〉+ 32ε4

κ4

n̄an̄b

. (3.75)
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The result in Eq. (3.75) shows that the second order correlation function of the two-

mode light depends on the number of atom and the chaotic light has no effect on the

photon number correlation. It also fore the case; we note that upon setting absence of

driving light(ε = 0) the above equation reduces to the photon number correlation for

the two-mode chaotic light.

Therefore, this result shows that the photon numbers for the cavity modes a and b

are correlated.

3.6 Intensity Difference Fluctuation

On the other hand, the variance of the intensity difference can be defined as

I2
D = 〈Î2

D〉 − 〈ÎD〉2, (3.76)

where the difference of intensity is

ÎD = â†â− b̂†b̂. (3.77)

Hence making use of Eq. (3.77), it is possible to express

I2
D = 〈â†2〉〈â2〉+ 2〈â†â〉2 + 〈b̂†2〉〈b̂2〉

+ 2〈b̂†b̂〉2 − 2〈âb̂〉2 − 2〈â†â〉〈b̂†b̂〉

− 2〈â†b̂〉2 + 〈â†â〉〈b̂†b̂〉. (3.78)

This can be rewritten as

I2
D = 〈â†â〉[1 + 〈â†â〉] + 〈b̂†b̂〉

× [1 + 〈b̂†b̂〉]− 2〈âb̂〉2, (3.79)
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Figure 3.8: Plot of the variance of the intensity difference ∆I2versus η occurs at steady

state for N = 50, (ε = 0, 0.5) ,κ = 0.8, and γc = 0.4

On account of Eqs. (3.2), (3.3), (3.4) and (3.10) in to Eq. (3.79) one can readily finds

I2
D = 2

[γc

k
〈Na〉

]2

+ 2
[γc

k
〈Na〉

]
+

16γcε
2

k3
〈Na〉+

8ε2

k2
. (3.80)

In addition, employing Eq. (2.190), we have

I2
D = 2

[
γc

k

[
NΩ2

(γc + γ)2 + 3Ω2

]]2

+
16γcε

2

k3

[
Ω2

(γc + γ)2 + 3Ω2

]
N

+
2γc

k

[
Ω2

(γc + γ)2 + 3Ω2

]
N +

8ε2

k2
. (3.81)

Up on setting η = Ω
γc

, and (γ = 0), Eq. (3.81) reduces to

I2
D = 2

[
γc

k

[
Nη2

1 + 3η2

]]2

+
16γcε

2

k3

[
η2

1 + 3η2

]
N +

2γc

k

[
η2

1 + 3η2

]
N +

8ε2

k2
. (3.82)

Eq. (3.82), describes the variance of the intensity difference of a coherently driven

three-level laser and coupled to a two-mode vacuum reservoirs.
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Figure (3.8) shows that the variance of the intensity difference for a coherently

driven three-level laser with in the absence of the driving light and presence of driv-

ing light and coupled to a two-mode vacuum reservoirs versus η for the values N = 50,

κ = 0.8, and γc = 0.4 . The plot shows that variance of the intensity difference, ∆I2,

increases as η increases.
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Quadrature Squeezing

In this chapter we seek to study the quadrature variance and the quadrature squeez-

ing of the light produced by a non-degenerate three-level laser with an open cavity and

coupled to a two-mode vacuum reservoir . Applying the steady-state solutions of the

equations of evolution of the expectation values of the atomic operators and the quan-

tum Langevin equations for the cavity mode operators, we obtain the quadrature vari-

ances for light modes a and b. In addition, we determine the quadrature squeezing of

the two-mode cavity light.

4.1 Single-mode quadrature variance

We now proceed to calculate the quadrature variance of light mode a in the entire fre-

quency interval. The squeezing properties of light mode a are described by two quadra-

ture operators

â+ = â† + â, (4.1)

and

â− = i(â† − â). (4.2)
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where â+and â− are Hermitian operators representing physical quantities called plus

and minus quadratures using Eq.(4.1) and (4.2) one can write

[â−, â+] = i〈[â† − â, â + â†]〉, (4.3)

with the aid of the identity

[Â + B̂, Ĉ + D̂] = [Â, Ĉ] + [Â, D̂] + [B̂, Ĉ] + [B̂, D̂], (4.4)

we have

[â−, â+] = i(〈[â†, â] + [â†, â†]− [â, â]− [â, â†]〉). (4.5)

So that in view of Eq.(2.117),one can express this commutation relation in the form

[â−, â+] = 2i
γc

κ

[
N̂a − N̂b

]
. (4.6)

In view of this result,the uncertainty relation for plus and minus quadrature operators

of mode a is expressible as

∆â+∆â− ≥
1

2
|〈[â+, â−]〉| , (4.7)

≥
∣∣〈[â, â†]〉 − 〈[â†, â]〉

∣∣ . (4.8)

so that using Eqs.(3.4) and (3.5) then follows

∆â+∆â− ≥
γc

k
|〈Na〉 − 〈Nb〉| . (4.9)

On account of Eq.(2.185), the uncertainty relation for the quadrature operators can be

expressed as

∆â+∆â− ≥ 0. (4.10)
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The quadrature variance for mode a is defined by

(∆â+)2 = 〈(â+)2〉 − 〈(â+)〉2, (4.11)

and

(∆â−)2 = 〈(â−)2〉 − 〈(â−)〉2. (4.12)

In view of Eqs.(4.1) and (4.11) can be expressed in terms of the creation and annihilation

operators as

(∆â+)2 = 〈ââ†〉+ 〈â†â〉+ 〈â2〉+ 〈â†2〉 − 〈â〉2 − 〈â†〉2 − 2〈â〉〈â†〉. (4.13)

In addition on account of Eqs.(4.12) and (4.2), we get

(∆â−)2 = 〈ââ†〉+ 〈â†â〉 − 〈â2〉 − 〈â†2〉+ 〈â〉2 + 〈â†〉2 − 2〈â〉〈â†〉. (4.14)

So that combing of Eqs.(4.12) and (4.13)the quadrature variance can be put in the form

(∆â±)2 = ±(±(〈ââ†〉 ± 〈â†â〉) + 〈â2〉+ 〈â†2〉)∓ (〈â〉2 + 〈â†〉2 ± 2〈â〉〈â†〉). (4.15)

we observe on the basis of Eq.(2.180) one can write

〈â〉〈â†〉 = 〈â†〉〈â〉 =
4ε2

k2
(4.16)

Applying Eqs. (3.4), (3.5), (3.6), and (4.16) into (4.15), we arrive at

(∆â±)2 =
γc

κ

[
〈Na〉+ 〈Nb〉

]
. (4.17)

On account of (Eq.2.185), we see that

(∆â±)2 =
2γc

κ
〈Na〉. (4.18)
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Now substitution of Eq. (2.190) in to Eq. (4.18) results in

(∆â±)2 =
γc

k

[
2Ω2

(γc + γ)2 + 3Ω2

]
N. (4.19)

Furthermore, the case in which spontaneous emission is absent (γ = 0),and Ω � γc ,

then the quadrature variance for this case takes the form

(∆â±)2 =
2γc

3k
N. (4.20)

On account of Eq. (3.10), Eq. (4.20) can be put in the form

(∆â±)2 = 2n̄a. (4.21)

Therefore, we see that the cavity mode a is in a chaotic state.

Next we seek to calculate the quadrature variance of light mode b. The squeezing

properties of light mode b are described by two quadrature operators defined by

b̂+ = b̂† + b̂, (4.22)

and

b̂− = i(b̂† − b̂). (4.23)

where b̂+ and b̂−These operators are Hermitian which represents physical quantities

called plus and minus quadratures,respectively. While b̂† and b̂ are creation and annihi-

lation operators for light mode b with the help of Eq.(4.22) and (4.23), we can show that

the two quadratures satisfy the commutation relation

[b̂−, b̂+] = 2i
γc

κ

[
N̂b − N̂c

]
. (4.24)
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In view of Eq. (4.24), the uncertainty relation for the plus and minus quadrature opera-

tors of mode b is expressible as

∆b̂+∆b̂− ≥
1

2

∣∣∣〈b̂+b̂−〉
∣∣∣ ,

≥
∣∣∣〈[b̂, b̂†]〉 − 〈[b̂†, b̂]〉∣∣∣ . (4.25)

On account of Eqs. (4.24), (2.191) and (2.192), into Eq. (4.25), we can easily find that

∆b̂+∆b̂− ≥
γc

k
N

∣∣∣∣ (γc + γ)2

(γc + γ)2 + 3Ω2

∣∣∣∣ . (4.26)

Now setting, spontaneous emission is absent (γ = 0) and Ω = 0, one can finds

∆b̂+∆b̂− ≥
γc

k
N, (4.27)

We therefore notice that the product of the uncertainties in the two quadratures satis-

fies the minimum uncertainty relation.

Next we proceed to calculate the quadrature variance of light mode b. The variance

of the plus and minus quadrature operators for light mode b are defined by

(∆b̂±)2 = 〈b̂2
±〉 − 〈b̂±〉2. (4.28)

On account of Eq. (4.22), Eq. (4.23) and Eq. (4.28) can be expressed in terms of the

creation and annihilation operator as

(∆b̂±)2 = ±(〈b̂2〉+ 〈b̂†2〉 ± 〈b̂b̂†〉 ± 〈b̂†b̂〉)∓ (〈b̂〉2 + 〈b̂†〉2 ± 2〈b̂〉〈b̂†〉). (4.29)

Moreover, with the aid of Eq. (3.3) , we get

(∆b̂±)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 − 2〈b̂〉〈b̂†〉. (4.30)
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and in view of Eqs. (3.3) and (2.181) one can write

〈b̂〉〈b̂†〉 = 〈b̂†〉〈b̂〉 =
4ε2

κ2
. (4.31)

also with the help Eq. (4.31), we have

〈b̂2〉 = 〈b̂†2〉 =
4ε2

κ2
. (4.32)

moreover, using Eqs. (4.32), (4.31) and (3.12) into (4.30) and, the quadrature variance of

light mode b takes, at steady-state, the form

(∆b̂±)2 =
γc

k

[
(γc + γ)2 + 2Ω2

(γc + γ)2 + 3Ω2

]
N. (4.33)

With the help of Eqs. (4.19) and (4.33), we see that

(∆b̂±)2 = (∆â±)2 +
γc

k

[
(γc + γ)2

(γc + γ)2 + 3Ω2

]
N. (4.34)

In view of this result, the quadrature variance of light mode b is greater than the quadra-

ture variance of light mode a. This must be due to the fact that some of the atoms that

make transition from the upper and intermediate level to the bottom level with spon-

taneous and stimulated emissions. Furthermore,we consider the case in which spon-

taneous emission is absent (γ = 0). Then the quadrature variance for this case has the

form

(∆b̂±)2 =
γc

k

[
(γc)

2 + 2Ω2

(γc)2 + 3Ω2

]
N. (4.35)

In addition, we note that (Ω � γc), and the quadrature variance of the single mode light

is independent of the deriving coherent light Eq. (4.35), reduces to

(∆b̂±)2 =
2γc

3k
(4.36)
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In view of eq. (3.13) this can be expressed as

(∆b̂±)2 = 2n̄b, (4.37)

which is the normal ordered quadrature variance for chaotic light.

4.2 Two-mode quadrature squeezing

we proceed to determine the quadrature variances of the two-mode light beam. The

squeezing properties of the two-mode cavity light are described by two quadrature op-

erators

ĉ+ = ĉ† + ĉ, (4.38)

and

ĉ− = i(ĉ† − ĉ). (4.39)

where ĉ+ and ĉ− are Hermitian operators representing the physical quantities called

plus and minus quadratures, respectively while ĉ† and ĉ are the creation and annihila-

tion operators of the two-mode cavity light. With the aid of Eqs. (4.38) and (4.39), we

show that the two quadrature operators satisfy the commutation relation

[ĉ−, ĉ+] = 2i
γc

κ

[
N̂a − N̂c

]
. (4.40)

Using Eq. (4.40), the uncertainty relation for the plus and minus quadrature operators

of the two-mode cavity light is expressible as

∆ĉ+∆ĉ− ≥
1

2
|〈[ĉ+, ĉ−]〉| , (4.41)

≥
∣∣〈ĉ, ĉ†〉 − 〈ĉ†, ĉ〉∣∣ , (4.42)
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so that using Eqs. (3.31) and (3.32), there follows

∆ĉ+∆ĉ− ≥
γc

κ
|〈Na〉 − 〈Nc〉| . (4.43)

On account of Eqs. (2.190) and (2.191), the uncertainty relation for the plus and minus

quadrature operators is found to be

∆ĉ+∆ĉ− ≥
γc

k
N

∣∣∣∣ (γc + γ)2

(γc + γ)2 + 3Ω2

∣∣∣∣ . (4.44)

In addition, we consider the case in which spontaneous emission is absent (γ = 0),the

driving coherent light is absent and up on setting (Ω = 0). Then the uncertainty relation

for this case takes the form

∆ĉ+∆ĉ− ≥
γc

k
N. (4.45)

which is the minimum uncertainty relation for the two-mode cavity vacuum state. Next

we proceed to calculate the quadrature variance of the two-mode cavity light. The vari-

ance of the plus and minus quadrature operators of the two-mode cavity light are de-

fined by

(∆ĉ±)2 = 〈ĉ2
±〉 − 〈ĉ±〉2. (4.46)

On account of Eqs.In view of Eqs. (4.38), (4.39) and (4.46), the plus and minus quadra-

ture variance can be expressed in terms of the creation and annihilation operators as

(∆ĉ±)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 ± 〈ĉ2〉 ± 〈ĉ†2〉 ∓ 〈ĉ〉2 ∓ 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉. (4.47)

with the aid of Eqs. (3.30), (3.31), (3.32) and (3.56) into Eq.(4.47), expression goes over

into

(∆ĉ±)2 =
γc

κ

[
〈Na〉+ 2〈Nb〉+ 〈Nc〉 ± 〈m̂c〉 ± 〈m̂†

c〉
]
. (4.48)
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Now using Eqs.(2.186) and (2.188) , the quadrature variance of the two-mode cavity

light is found to be

(∆ĉ±)2 =
γc

κ

[
〈N〉+ 〈Nb〉 ± 〈m̂c〉

]
. (4.49)

Finally, on account of Eqs.(2.191) and (2.193), the quadrature variance of the two-mode

cavity light takes, at steady-state, the form

(∆ĉ+)2 =
γc

κ
N

[
(γc + γ)2 + 4Ω2 + 2Ω(γc + γ)

(γc + γ)2 + 3Ω2

]
, (4.50)

and

(∆ĉ−)2 =
γc

κ
N

[
(γc + γ)2 + 4Ω2 − 2Ω(γc + γ)

(γc + γ)2 + 3Ω2

]
. (4.51)

Furthermore, we consider the case in which spontaneous emission is absent (γ =

0),and for (Ω � γc) . Thus the quadrature variance for this case has the form

(∆ĉ±)2 =
4γc

3κ
N. (4.52)

This result is exactly the same as the one obtained by Fesseha [17].also this can be writ-

ten as

(M ĉ±)2 = 2n̄, (4.53)

where n̄ is given by Eq. (3.59). We see that Eq. (4.53) represents the normally ordered

quadrature variance for chaotic light. Thus upon setting (Ω = 0) in Eq. (4.51), we get

(∆ĉ+)2 = (∆ĉ−)2 =
γc

κ
N. (4.54)

which is the normally ordered quadrature variance of the two-mode cavity vacuum

state. We note that for (Ω = 0) the uncertainty in the plus and minus quadratures
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Figure 4.1: Plots of (∆c−)2 [Eq. (4.51)] versus Ω for γc = 0.4, k = 0.8, N = 50 and

for different values of γ.

are equal and satisfy the minimum uncertainty relation.The plot in Fig. (4.1) clearly

indicates that the minimum value of the quadrature variance for γ = 0.2, γ = 0.1, and

γ = 0is (∆ĉ−)2 = 14.14 and occur at Ω = 0.2626, Ω = 0.2121, and Ω = 0.1717,respectively.

Therefore, from fig.(4.1) we see that squeezed state for all values of Ω between 0 and 1

and squeezing occurs in the minus quadrature.

Next we proceed to calculate the global quadrature squeezing of the two-mode cav-

ity light relative to the quadrature variance of the two-mode vacuum state. We then

define the quadrature squeezing of the two-mode cavity light by [17]

S =
(∆ĉ−)2

v − (∆ĉ−)2

(∆ĉ−)2
v

, (4.55)
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it then follows that

S = 1− (∆ĉ−)2

(∆ĉ−)2
v

. (4.56)

In view of Eqs.(4.50) and (4.54) , the quadrature squeezing of the two-mode cavity light

takes, at steady-state, the form

S =

[
2Ω(γc + γ)− Ω2

(γc + γ)2 + 3Ω2

]
. (4.57)

We observe from this equation that unlike the mean photon number, the photon num-

ber variance, and the quadrature variance, the quadrature squeezing does not depend

on the number of three-level atoms in the cavity and the cavity damping constant. This

implies that the quadrature squeezing of the two-mode cavity light is independent of

the number of photons.

Applying Eqs. (3.2) and (3.3), we find

〈b̂â〉 =
γc

κ
〈m̂c〉+

4ε2

κ2
. (4.58)

Since 〈b̂〉 = 〈â〉 , we see that light modes a and b are correlated. The squeezing of the

two-mode cavity light is due to this correlation. The two-mode light can be used in

experiments involving entangled light modes [36]. In addition, we consider the case

in which spontaneous emission is absent (γ = 0)and up on setting (ε = 0). Then the

quadrature squeezing for this case takes the form

S =

[
2Ωγc − Ω2

γ2
c + 3Ω2

]
. (4.59)

Eq.4.54 result is exactly the same as the one obtained by Fesseha [8]. In Fig. (4.2) we plot

the quadrature squeezing of Eq. (4.57) versus Ω for γ = 0.2(dot curve) and γ = 0.1(dash
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Figure 4.2: Plots of S [Eq. (4.57)] versus Ω for γc = 0.4, k = 0.8, N = 50 and for

different values of γ.

curve) γ = 0(solid curve). We see from the figure that can be obtained for small values

of Ω, the degree of squeezing of the two-mode cavity light increases with Ω and for large

values of Ω the quadrature squeezing decreases as Ω increases. In addition, we found

that the maximum quadrature squeezing to be the same in the presence (γ 6= 0) as well

as in the absence of spontaneous emission (γ = 0). Therefore, this result implies that

the maximum intracavity squeezing for the above values is 43.42% below the vacuum

level.
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Entanglement Amplification

Here we seek to study the entanglement condition of the two modes in the cavity. A pair

of particles is taken to be entangled in quantum theory, if its states cannot be expressed

as a product of the states of its individual constituents. The preparation and manipu-

lation of these entangled states that have nonclassical and nonlocal properties lead to

a better understanding of the basic quantum principles. That is, if the density operator

for the combined state cannot be described as a combination of the product of density

operators of the constituents,

ρ̂ 6=
∑

j

Pj ρ̂
(1)
j

⊗
ρ̂

(2)
j . (5.1)

Pj ≥ 0 and
∑

j Pj = 1 is set to ensure normalization of the combined density of state.

To study the properties of entanglement produced by this quantum optical system, we

need an entanglement criterion for the system. According to the criteria set by Duan

et al. [20], a quantum state of the system is entangled provided that the sum of the

variances of the two EPR(Einstein-Podolsky-Rosen)-type operators (entanglement) û

and v̂ satisfies the condition;

(∆û)2 + (∆v̂)2 < 2N, (5.2)
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where,

û = x̂a − x̂b, v̂ = p̂a + p̂b, (5.3)

with

x̂a =
(â† + â)√

2
, x̂b =

(b̂† + b̂)√
2

, (5.4)

p̂a =
i(â† − â)√

2
, p̂b =

i(b̂† − b̂)√
2

. (5.5)

being the quadrature operators for modes â andb̂. The total variance of the operators û

and v̂ can be written as

(∆û)2 + (∆v̂)2 < 2N. (5.6)

This implies that

(∆û)2 = 〈u2〉 − 〈u〉2. (5.7)

On account of Eq. (5.3), we see that

(∆û)2 = 〈(1
2
(â + â†)− 〈1

2
(b̂ + b̂†))2〉, (5.8)

from which follows

(∆û)2 =
1

2
[1 + 2〈â†â〉]− 1

2
[2〈âb̂〉]− 1

2
[2〈âb̂〉] +

1

2
[1 + 2〈b̂†b̂〉]. (5.9)

It then follows that

(∆û)2 = 1 + 2〈â†â〉+ 2〈b̂†b̂〉 − 2〈âb̂〉. (5.10)

Following the same procedure , we easily obtain

(∆v̂)2 = [1 + 2〈â†â〉+ 2〈b̂†b̂〉 − 2〈âb̂〉]. (5.11)
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Thus, the sum of the variances of u and v can be expressed as

(∆û)2 + (∆v̂)2 = 2(∆û)2 = 2(∆ĉ±)2. (5.12)

We see from this result that the degree of entanglement is directly proportional to the

degree of squeezing of the two-mode light. Therefore, we see that

(∆û)2 + (∆v̂)2 = 2
[
1 + 2〈â†â〉+ 2〈b̂†b̂〉 − 2〈b̂â〉

]
. (5.13)

Now making use of Eqs.(3.5), (3.11) and (4.58), we see that

(∆û)2 + (∆v̂)2 =
2γc

κ
[N + 〈Nb〉ss − 2〈mc〉] . (5.14)

Thus in view of Eq.(5.12) to gather with Eq.(4.51), the sum of the variances of u and v

can be expressed as

(∆û)2 + (∆v̂)2 = 2(∆ĉ−)2 =
2γcN

κ

[
(γc + γ)2 + 4Ω2 − 2Ω(γc + γ)

(γc + γ)2 + 3Ω2

]
. (5.15)

We next consider some special cases. We note that the spontaneous emission is absent

γ = 0 , one can readily verify that

(∆û)2 + (∆v̂)2 = 2(∆ĉ−)2 =
2γcN

κ

[
(γc)

2 + 4Ω2 − 2Ω(γc)

(γc)2 + 3Ω2

]
. (5.16)

This represents the photon entanglement of the cavity modes for a non degener-

ate three level laser coupled to a two-mode vacuum reservoir. The plot in Fig. (5.1)

we see that the minimum value of the photon entanglement for γ = 0.2, γ = 0.1,

and, γ = 0 is (∆û2 + ∆v̂2) = 28.28 and occur at Ω = 0.2626, Ω = 0.2121, and

Ω = 0.1717,respectively.This result implies that the maximum intracavity photon en-

tanglement for the above values is 56%below the coherent-state level.
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Figure 5.1: Plots of ∆û2 + ∆v̂2 [Eq. (5.15)] versus Ω for γc = 0.4, k = 0.8, N = 50 and

for different values of γ.

One can immediately notice that, this particular entanglement measure is directly re-

lated the two-mode squeezing. This direct relationship shows that whenever there is a

two-mode squeezing in the system there will be entanglement in the system as well. It

is noted that the entanglement disappears when the squeezing vanishes. This is due to

the fact that the entanglement is directly related to the squeezing as given by Eq.(4.49).

It also follows that like the mean photon number and quadrature variance the degree of

entanglement depends on the number of atoms and the degree of entanglement does

not depends on the external driving light.

Based on the criteria (5.2),that a significant entanglement between the states of the

light generated in the cavity due to the strong correlation between the radiation emit-

ted when the atoms decay from the upper energy level to the lower via the intermediate
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level. the sum of the variances of a pair of EPR-type operators (∆û)2 + (∆v̂)2 is plotted

against the amplitude of the driving coherent light so that the available entanglement

is clearly evident for various values of Ω between 0 and 1.



6

Conclusion

In this thesis we have considered a coherently driven non-degenerate three-level laser

with an open cavity and coupled to a two-mode vacuum reservoir. We have carry

out our analysis by putting the noise operators associated with the vacuum reservoir

in normal order. first we have derived the master equation and the quantum lagevin

equations for the cavity light. Applying these equations, the equations of evolution of

the cavity mode and the atomic operators are obtained. Making use of the solutions

of atomic and cavity mode operators, the mean photon number, the variance photon

number, the quadrature variance, the quadrature squeezing, and the photon number

entanglement are determined.

We have found that the mean photon number of light mode a is equal to the mean pho-

ton number of light mode b. In addition, we have found that the mean photon number

of the two-mode light beam is the sum of the mean photon numbers of the separate

single-mode light beams. Moreover, we have observed that the photon number vari-

ance of the two-mode light beam does not happen to be the sum of the photon number

variance of the separate single-mode light beams.

We have found that the light generated by the three-level laser is in a squeezed state

68
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and the squeezing occurs in the minus quadrature. The maximum squeezing is found

to be 43.42% below the vacuum state-level. we have also seen that the two-mode de-

riving light has no effect on the squeezing of the cavity modes. Unlike the quadrature

squeezing, the deriving light affect the mean photon number, the photon number vari-

ance, the quadrature variance,and the photon number correlation. We have also found

that increasing the amplitude of the deriving light increases the mean photon number,

the photon number variance, the quadrature variance,and the photon number corre-

lation. In addition like the mean photon number, the photon number variance, the

quadrature variance,and the photon number correlation depends on the number of

three-level atoms in the cavity and the cavity damping constant. But,the quadrature

squeezing does not depend it. This implies that the quadrature squeezing of the two-

mode light beam is independent of the number of photons.

Finally, we observe that the squeezing and entanglement in the two-mode light is di-

rectly related. As a result, an increase in the degree of squeezing directly implies an

increase in the degree of entanglement. This shows that whenever there is squeezing in

the two-mode light, there exists entanglement in the system.
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