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Abstract

In this study the electronic and structural properties of carbon are determined with

respect to density functional theory employing QUANTUM ESPRESSO package.

The exchange-correlation energies are computed using local density approximation

(LDA) and generalized gradient approximation (GGA). The total minimum energy

of carbon is calculated as a function of cutoff energy and Monk Horst Pack mesh.

The result reveals that the total minimum energy is monotonically decreasing with

an increment of cutoff energy. Moreover, the total minimum energy as a function

of ~k-point sampling has such a determined systematic trend. The total minimum

force of carbon is computed by displaying carbon atom as a function of cutoff energy

and ~k-point sampling, by 0.05 bohr. Moreover, the theoretical equilibrium lattice

constant is calculated and compared with experimental values of equilibrium lattice

constant. Interestingly the calculated theoretical equilibrium lattice constant is in

good agreement with experimental data.
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Chapter 1

Introduction

The element carbon has an atomic number 6, as a member of group-14 on the pe-

riodic table and it is nonmetallic and tetravalent with the ground state electronic

configuration of 2s22p2 . This element is widely distributed in nature. Its occur-

rence ranges from earth to the universe. In the earth’s crust it exists in the ratio

of 180ppm, mostly in the form of compounds. It is also detected in abundance in

the universe, in the sun, stars, comets, and in the atmosphere of the planets. It is

the fourth most abundant element in the solar system, after hydrogen, helium, and

oxygen. It is found most widely in the form of hydrocarbons and other compounds.

Carbon is different from other elements in one important respect, that is its diversity.

It has several material forms in which it exists, known as allotropes [1]. Carbon has 8

different allotropes among those graphite and diamond are the very important ones.

In its crystal structure for the graphite it has a simple hexagonal crystal structure,

and it has face centered cubic (FCC) crystal structure for diamond which is more

stable structure. The wide-variety of carbon allotropes and their associated physical

properties are largely due to the flexibility of carbons valence electrons and resulting

dimensionality of its bonding structures [2].
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The extraordinary variety of carbon allotropes, as well as their present and po-

tential applications in such diverse fields as nano-electronics or bioengineering, gives

them a special place among all the elements [3]. Graphite is widely used as a solid

lubricant for preventing wear and abrasion and can also be dispersed in water and

organic fluids to make a liquid lubricant. Graphite is soft, smooth, inflammable,

nontoxic, is inert in ambient air, does not emit fumes, and has a low coefficient of

friction. It is cheaper and environmentally safer to produce and use than many other

tribological coatings and lubricants such as polymers, diamond, DLC, and the various

borides, nitrides and carbides [4-6]. As for diamond, it is a wide band gap material

with band gap energy of Eg = 5.5eV , electronic excitations do not account for ther-

mal properties up to high temperatures [3]. Diamond films are potential materials for

commercial applications such as machine tools, optical coatings, and high tempera-

ture electronics, due to its properties which includes extreme hardness, high thermal

conductivity, high dispersion of light, and chemical inertness [7]. For both struc-

tures different first principle structural and electronic calculations has been made on

different circumstances [2-4,7].

In this study, we are more interested to study the diamond structure of carbon,

as it is a stable structure and more valuable in both basic science and technological

perspective. In this paper, we report first principle or ab initio studies of the electronic

and structural properties of carbon (diamond) structure. First principle or ab initio

approaches is based on the density functional theory methodology [8, 9]. It is a

well established and a very powerful tools for studying properties of semiconductors,

metals, surfaces, or interfaces [10-14]. The convergence issues of total energy per

atom, total force per atom, and theoretical lattice constant is investigated with respect

2



to the cutoff energy and ~k-point sampling.

1.1 Statement of the Problem

In electronic structure theory we describe the motion of electrons in atoms or molecules.

Generally this is done in the context of the Born-Oppenhimer approximation, an ap-

proximation where the nuclei of an atom is held fixed. Since the electrons are so small,

one needs to use quantum mechanics to solve for their motion. Quantum mechanics

tells us that the electrons will not be localized at particular points in space. But they

are best thought of as matter waves which is described by the wave function, at the

point x. The non relativistic Shrödinger’s theory of quantum mechanics provides us

with such a procedure, and it is the foundation of the theory of electronic structure

of matter. So our goal tends to solve for time independent Shrödinger equation. In

this study we are interested to calculate the electronic and structural properties of

carbon with respect to density functional theory.

1.2 Objective of the Study

1.2.1 General objective

The main aim of this study is to calculate the electronic and structural properties of

carbon.

1.2.2 Specific objectives

• To calculate the total minimum energy of carbon with respect to cutoff energy

• To calculate the total minimum energy of carbon with respect to ~k-point sam-

pling

3



• To calculate the minimum force of carbon with respect to cutoff energy

• To calculate the minimum force of carbon with respect to ~k-point sampling

• To determine the theoretical equilibrium lattice constant

1.3 Basic Research Questions

• What is the total minimum energy of carbon with respect to cutoff energy?

• What is the total minimum energy of carbon with respect to ~k-point sampling?

• What is the minimum force of carbon with respect to cutoff energy?

• What is the minimum force of carbon with respect to ~k-point sampling?

• What is the theoretical equilibrium lattice constant of carbon?

1.4 Significance of the Study

Understanding the electronic, and structural property of carbon helps to know the

system in depth. Moreover it helps to develop computational skills for solving many

body problems.

.
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Chapter 2

Literature Review

This chapter focuses starting from the basic quantum mechanical description of many

electron system, up to the theoretical background of the electronic and structural

calculation methodologies used in this thesis. For approximately solving the many

electron problem, Hartree-Fock, Thomas-Fermi theory, and at last the modern den-

sity functional theory are discussed in some detail. Also some of the practicalities

necessary to consider in performing such calculation (concerning to my system) such

as plane wave basis set and pseudo-potential are discussed.

2.1 Elementary Quantum Mechanics

In this chapter we will review the basic descriptions of many electron system given in

quantum mechanics, which are used as a fundamental aspects of electronic structure

theory. In order to lay the foundations for the theoretical discussion on density

functional theory (DFT) presented in later parts of this chapter.
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2.1.1 The Shrödinger equations

In quantum mechanics experimental evidence have presented, which shows conclu-

sively that, unlike the macroscopic particles which obeyed the Newtonian’s laws of

motion, the microscopic particles move according to the laws of some form of wave

motion. Thus a microscopic particle acts as if certain aspects of its behavior are gov-

erned by the behavior of an associated de Broglie wave, or wave function [15]. The

experiments considered delt only with simple cases (such as free particles, or simple

harmonic oscillators, etc) that can be analyzed with simple procedures (involving

direct applications of the de Brogli postulate, Planck’s postulate, etc) [16]. But we

certainly want to be able to treat the more complicated cases that occur in nature.

To be able to do this we must have a more general procedure that can be used to

threat the behavior of the particles of any microscopic system. Shrödinger’s equation

of quantum mechanics provides us with such a procedure [15]. The theory specifies

the laws of wave motion that the particles of any microscopic system obey. This is

done by specifying, for each system, the equation that controls the behavior of the

wave function, and also by specifying the connection between the behavior of the

wave function and the behavior of the particle. This theory will enable us to obtain

a detailed understanding of the properties of atoms. These properties form basis of

much of chemistry and solid state physics [15].

The time independent Shrödinger equation for a system consisting of ’M’ nuclei

and ’N’ electrons is written as,

ĤΨi( ~x1, ~x2, ..., ~xN , ~R1, ~R2, ..., ~RM) = EiΨi( ~x1, ~x2, ..., ~xN , ~R1, ~R2, ..., ~RM), (2.1.1)
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where Ĥ is differential Hamiltonian operator presenting the total energy

Ĥ =
−1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA

riA

+
N∑

i=1

N∑
j>i

1

rij

+
M∑

A=1

M∑
B>A

ZAZB

RAB

. (2.1.2)

Here, ’A’ and ’B’ run over the ’M’ nuclei, while ’i’ and ’j’ denote the ’N’ electrons

in the system. The first two terms describe the kinetic energy of the electrons and the

nuclei respectively, where the Laplacian operator ∇2
q is defined as a sum of differential

operators (in cartesian coordinates),

∇2
q =

∂2

∂x2
q

+
∂2

∂y2
q

+
∂2

∂z2
q

, (2.1.3)

and MA is the mass of the nucleus ’A’ in multiples of the mass of the electron. The

remaining three terms define, the potential part of the Hamiltonian and represents

the attractive electrostatic interaction between the electrons and the nuclei, and the

repulsive potential due to the electron-electron and nucleus-nucleus interactions re-

spectively.

rij (and similarly RAB) is the distance between the particles ’i’ and ’j’, which is,

rij = |~ri−~rj|, where as riA = |ri−RA| represent the distance between the ith electron

and Ath nucleus. Ψi( ~x1, ~x2, ..., ~xN , ~R1, ~R2, ..., ~RM) stands for the wave function of the

ith state of the system, which depends on the 3N spatial coordinates [~ri], and the N

spin coordinates [Si] of the electrons, which are collectively termed [~xi] and the 3M

spatial coordinates of the nuclei, [~RM ]. This wave function contains all information

that can possibly be known about the quantum system at hand. Finally, Ei is the

numerical value of the energy of the state described by Ψi [16].

The compact form of Eq. (2.1.2) is as a result of using system of atomic units,

which is particularly adapted for working with quantum system. In this system, phys-

ical quantities are expressed as multiples of fundamental constants. The definition of
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atomic units used through out this chapter and there relations to the corresponding

SI units are summarized in Table 2.1.1, where, a quantity Q in SI units is related to

its value in atomic unit Q
′
by

Q = XQ′. (2.1.4)

Table 2.1.1: Conversion of atomic units to SI units.

Quantity Atomic unit Value in SI unit (X) Symbol(name)

mass rest mass of electron 9.1094 ∗ 10−31Kg me

charge elementary charge 1.6022 ∗ 10−19C e

angular momentum Planck′sconstant
2Π

1.0546 ∗ 10−34Js ~
length 4Πεo~

mee2 5.2918 ∗ 10−11m ao(bohr)

energy ~2

mea2
o

4.3597 ∗ 10−18J Eh(hartree)

2.1.2 Multi-electron atom
(Defining the system)

A multi-electron atom of atomic number Z contains a nucleus of charge +Ze sur-

rounded by Z electrons each of charge -e. Every electron in this system moves under

the influence of an attractive Coulomb interactions exerted by the nucleus, and the

repulsive Coulomb interactions exerted by all the other Z-1 electrons as mentioned

in Eq. (2.1.2), as well as certain weaker interactions involving the angular momenta

[15]. Our system that we have considered in this thesis, i.e., carbon is a multi electron

atom with atomic number Z=6, and contains a nucleus of charge +Ze surrounded by

Z=6 electrons each of charge -e. The electrons in this multi electron atom is best

expressed by the following two quantum mechanical properties.
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Identical particles

The question of ”How to give an accurate quantum mechanical description of a system

containing two or more identical particles, such as electrons?”, is the very powerful

question since it contains all the information we need for the description that we

are going to give. But the question it self was born from the fact that our quantum

mechanical system contain an identical particles like electrons, protons, or α-particles.

Electrons are identical particles, meaning that any electron is exactly the same as

any other electron. The wave functions associated with each electron, as described by

the Shrödinger equation of quantum mechanics may lead to an overlapping of these

wave functions. That makes it difficult to tell which wave function was associated

correctly with which electron. From this difficulty one quantum mechanical aspect

is born which describe an identical particles. That is, identical particles are indis-

tinguishable. So that eigen-functions that carry the burden of describing quantum

mechanical system must be design, in a way that they contain a mathematical expres-

sion of the above qualitative idea (indistinguishability property of identical particles)

[15].

The exclusion principle

Based on the analysis of data concerning the energy levels of atoms, in 1925 a fa-

mous exclusion principle that represent the property of electrons in any system was

established.

The principle states that: In a multielectron atom there can never be more

than one electron in the same quantum state . Equivalently the principle

can be stated as, a system containing several electrons (identical-particles) must be

9



described by an antisymmetric total eigenfunction [15]. We shall see later the meaning

of antisymmetric eigenfunction.

2.2 Electronic Structure of the Problem

The foundation of the theory of electronic structure of matter is the non relativistic

Shrödinger equation for the multi-electron wave function Ψ [17]. So our major goal

in this electronic and structural calculation of carbon is to solve the non-relativistic

time independent Shrödinger equation,

ĤΨ = EΨ.

2.2.1 Born Oppenhimer Approximation

The Born-Oppenheimer approximation plays a vital role in electronic structure calcu-

lations. The main contribution of this approximation in electronic structure problem

is that, it provides a method of separating the total eigen function of the quantum

system as a sum of electronic and nuclear eigen functions (the qualitative rational-

ization to separate the movement of electrons and nuclei). The Shrödinger equation

may be written more compactly as;

Ĥ = T̂N(R) + T̂e(r) + V̂eN(r, R) + V̂NN(R) + V̂ee(r) (2.2.1)

unfortunately, the V̂ee(r) term prevents us from separating Ĥ in to nuclear and elec-

tronic parts, which would allow us to write the molecular wave function as a product

of nuclear and electronic terms

Ψtotal(r, R) = ψelectronic(r) ∗ ψnuclear(R). (2.2.2)

10



We thus introduce the Born-Oppenheimer approximation by which we conclude

that this nuclear and electronic separation is approximately correct. The Born-

Oppenheimer (BO) approximation rests on the fact that the nuclei are much more

massive than the electrons. This allows us to say that the nuclei are nearly fixed with

respect to electron motion.

So we can consider the electrons as moving in the field of fixed nuclei. This first

step of the BO approximation is therefore often refereed to as the clamped nuclei

approximation. The nuclear kinetic energy is zero and their potential is merely a

constant. Thus the Hamiltonian in Eq. (2.2.1) reduces to,

Ĥele = T̂e(r) + V̂eN(r, R) + V̂ee(r) (2.2.3)

and the solution of the Shrödinger equation with Ĥele, is the electronic wave function

Ψele(r, R), which describes the motion of the electrons and explicitly depends on the

electronic coordinates (r) but parametrically on the nuclear coordinates (R)

ĤeleΨele(r, R) = EeleΨele(r, R). (2.2.4)

This is the clamped nuclei Shrödinger equation. V̂NN(R) which is justified, since in

this case R is just a parameter so that V̂NN(R) is just a constant and shifts the eigen

values only by some constant amount.

The total energy is then the sum of Eele and the constant nuclear repulsion term

Enucl

Etot = Eele + Enucl, (2.2.5)

where from Eq. (2.1.2)

Enucl =
M∑

A=1

M∑
B>A

ZAZB

RAB

. (2.2.6)
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In this step the nuclear kinetic energy is neglected, that is the corresponding oper-

ator T̂N(R) is subtracted from the total Hamiltonian. In the remaining electronic

Hamiltonian (Ĥele) the nuclear position enter as a parameter. The nucleus-electron

interaction are not removed and the electrons still feel the Coulomb potential of the

nuclei clamped at certain position in space [18-22]. Solving versions of Eq. (2.2.4)

and Eq. (2.2.5) is the main focus of the research reported in this thesis and, indeed

electronic structure calculations in general. The difficulties in solving Eq. (2.2.4)

lies in the electron-electron interaction, which includes all the quantum effects of the

electrons. Despite the intractable nature of these interactions, many approximate

methods have been developed to solve Shrödinger-like equations. Among those ap-

proximate solutions, the ones made use of in this thesis, will be introduced in the

following. However, the Slater determinant will be introduced first due to its funda-

mental role in many aspects of electronic structure theory.

2.2.2 Slater determinant

Before we are going to see the Slater determinant first let us see a way of writing

non-interacting electron wave functions known as the Hartree products. To do so

consider two electrons in a box where they are moving around and bouncing from

the walls but they will not scatter from each other. We assumed that there is no

interaction between the two particles, the particles move independently. The time-

independent Shrödinger equation for our system of two noninteracting particles in

three dimensions can be written,

−~2

2m
(
∂2ΨT

∂x2
1

+
∂2ΨT

∂y2
1

+
∂2ΨT

∂z2
1

)− ~2

2m
(
∂2ΨT

∂x2
2

+
∂2ΨT

∂y2
2

+
∂2ΨT

∂z2
2

)+VT ΨT = ET ΨT , (2.2.7)
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where,

m = the mass of either particle

x1, y1, z1 = the coordinates of particle 1

x2, y2, z2 = the coordinates of particle 2

ΨT = the eigenfunction for the total system

VT = the potential energy for the total system

ET = the total energy for the total system .

The potential energy of the total system is then simply the sum of the potential

energies of each particle in its interaction with the walls of the box, since the two

particles move independently. There by, each potential energy will depend only on

the coordinates of one particle. The particles are identical, so that the two potential

energy functions are the same. Thus

VT (x1, .....z2) = V (x1, y1, z1) + V (x2, y2, z2). (2.2.8)

It is easy to show, by applying the technique of separation of variables, with the above

potential there are solutions to Eq. (2.2.7) of the form,

ΨT (x1, .....z2) = ψ(x1, y1, z1)ψ(x2, y2, z2). (2.2.9)

In addition, each requires one more quantum number to specify the orientation of the

spin of the particle. We shall shorten the notation by using a single symbol, such as

α, β, or γ etc., to designate a particular set of the four quantum numbers required to

specify the space and spin quantum state of one of the particles. Thus α for example,

13



stands for a certain set of values of the four quantum numbers. Then a particular

eigenfunction for particle 1 would be written,

ψα(x1, y1, z1), (2.2.10)

we further shorten the notation by writing this as

ψα(1).

This eigenfunction contains the information that particle 1 is in the space and spin

quantum state described by α. By the same method for particle 2 we have,

ψβ(2).

The total eigenfunction ΨT (x1, .....z2) for the case in which particle 1 is in the state

α, and particle 2 is in the state β, is

ΨT (x1, .....z2) = ψα(1)ψβ(2). (2.2.11)

This way of writing the total eigenfunction for non interacting electrons as a

product of eigenfunction of each electron in the total system is known as the Hartree

product. The next step is writing these non-interacting electron wave functions in a

way that do not violet the symmetric property of electrons. According to the Pauli

exclusion principle electrons are fermions. This requires that the wave function of

electrons should be antisymmetric with respect to the interchange of the coordinates of

any two electrons. To understand this in a simple way, let us see whether measurable

quantities evaluated from these total eigenfunctions, depend on the assignment of the

particle labels. The simplest measurable quantity is the probability density function.

For the eigenfunction of Eq. (2.2.11), it is

Ψ∗
T ΨT = ψ∗α(1)ψ∗β(2)ψα(1)ψβ(2). (2.2.12)

14



By the indistinguishability property of electrons, the total eigenfunction can also be

writhen as

ΨT (x1, .....z2) = ψβ(1)ψα(2). (2.2.13)

For this eigenfunction we also have,

Ψ∗
T ΨT = ψ∗β(1)ψ∗α(2)ψβ(1)ψα(2). (2.2.14)

Since the two identical particles are indistinguishable, we should be able to exchange

their labels without changing a measurable quantity such as the probability density.

When we perform this operation on Eq. (2.2.12) we have,

ψ∗α(1)ψ∗β(2)ψα(1)ψβ(2) −→ ψ∗α(2)ψ∗β(1)ψα(2)ψβ(1), (2.2.15)

where, the expression on the left changes in to the expression on the right when 1

changes into 2 and 2 changes into 1. But the relabeled probability density function is

not equal to the original probability density function. For instance, the first term in

the relabeled function is ψ∗α evaluated at the coordinates x2, y2, z2, while the first term

in the original function is ψ∗α evaluated at the coordinates x1, y1, z1. Thus a relabeling

of the particles actually does change the probability density function calculated from

the eigenfunction of Eq. (2.2.11). The same is true for the eigenfunction of Eq.

(2.2.13). Therefore, we must conclude that these are not acceptable eigenfunctions

for the accurate description of a system containing two identical particles. Since it

violate the Pauli exclusion principle.

However, by using Slater determinant it is possible to write an eigenfunction

that has the acceptable electronic symmetry property. Consider the following linear

combination of the eigenfunction of Eq. (2.2.11)

ΨA =
1√
2
[ψα(1)ψβ(2)− ψβ(1)ψα(2)], (2.2.16)
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this is called an antisymmetric total eigenfunction. By performing the evaluation for

the probability density on the above antisymmetric total eigenfunction, we have

ΨA =
1√
2
[ψα(1)ψβ(2)− ψβ(1)ψα(2)] −→ 1√

2
[ψα(2)ψβ(1)− ψβ(2)ψα(1)] = −ΨA.

(2.2.17)

We see that the antisymmetric total eigenfunction ΨA is multiplied by minus one by

an exchange of the particle labels. We then have for the probability densities,

Ψ∗
AΨA −→ (−1)2Ψ∗

AΨA = Ψ∗
AΨA. (2.2.18)

Hence, for the antisymmetric total eigenfunctions, the probability density functions

are not changed by an exchange of the particle labels. This antisymmetric wave

function can be rewritten as a determinant,

ΨA =
1√
2

∣∣∣∣∣ ψα(1) ψβ(1)

ψα(2) ψβ(2)

∣∣∣∣∣ , (2.2.19)

and this is called a Slater determinant, where the factor 2
−1
2 is a normalization factor.

For an N-electron system, the Slater determinant becomes,

ΨA =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(1) ψ2(1) ........ψN(1)

ψ1(2) ψ2(2) ........ψN(2)

.

.

.

.

ψ1(N) ψ2(N) ........ψN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.2.20)

Note that, the rows of the N-electron Slater determinant are labeled by electrons, and

the columns are labeled by spin orbitales [15].
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2.2.3 The Hartree-Fock Approximation

In this section we will introduce the Hartree-Fock (HF) approximation. The HF ap-

proximation is the corner stone of almost all conventional, i.e., wave function based

quantum mechanical methods, it is also of great conceptual importance. An under-

standing of the physics behind this approximation will thus be of great help in our

later analysis of density functional theory. In the Hartree-Fock scheme the simplest,

yet physically sound approximation to the complicated many-electron wave function

is utilized. In its general formulation the approximation consists of approximating

the N-electron wave function by an anti-symmetrized product of N one-electron wave

functions ψi(~xi) [23]. This product is usually referred to as a Slater determinant, as

shown in Eq. (2.2.20).

To discus the property of an interacting system, such as electrons in a molecule

or solid, it is natural to consider the many-electron wave function, Ψ(r1, r2, ......rN),

where the ri denotes the particle coordinates and spins. In 1928 Hartree made the

most widely used of all approximations for Ψ. In his contribution, Hartree approx-

imated the many-electron wave function as a product of single-particle functions

termed as Hartree product [24], i.e.,

Ψ(r1, r2, ......rN) = ψ1(r1)......ψN(rN). (2.2.21)

In this Hartree product, each of the function ψi(ri) satisfies a one-electron Schrödinger

equation, with a potential term arising from the average field of the other electrons,

i.e.,

[
−~2

2m
∇2 + Vext + Φi]ψi(r) = εiψi(r), (2.2.22)
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where the Coulomb potential Φi because of all the other N-1 electrons, is given by

Poisson’s equation,

∇2Φi = 4πe2
N∑

j=1,i6=j

|ψj|2, (2.2.23)

and Vext is the potential due to the nuclei. After expressing the electronic wave

function as a single Slater determinant, the HF procedure will solve for those orbital

which minimize the electronic energy based on variational method.

Generally this HF (self consistent field calculation) approximation, assumes that

each electron interacts only with the average charge cloud (charge density) of the

other electrons.

2.3 Density Functional Theory of Electronic Struc-

ture

The previous part of this chapter discussed about a basic quantum mechanical de-

scription and approach. For understanding a microscopic system, where the identical

particles (electrons) moves under the influence of an external potential ν(~r), and also

the basics of electronic structure problem. We will see a detailed description about

density functional theory (DFT) which is the corner stone of modern electronic and

structural calculations, in solid state physics.

2.3.1 Thomas-Fermi theory

Unlike the conventional approach which uses the wave function Ψ as a central quan-

tity, a different approach is taken by Thomas (1927) and Fermi (1927) [25], who pro-

posed a scheme based on the density of electrons in the system, ρ(r). This theory is
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regarded as ancestors of modern DFT. In the present context this approach is of only

historical interest. So we refrain from an in-depth discussion of the Thomas-Fermi

(TF) model, and restrict ourselves to a brief summary of the conclusions important

to the general discussion of DFT.

The approach taken by TF is a quantum statistical model of electrons, which in

its original formulation, takes in to account only the kinetic energy while treating

the nuclear-electron and electron-electron contributions in a completely classical way.

In this model, Thomas and Fermi arrive at the following very simple expression for

the kinetic energy based on the uniform electron gas, a fictitious model system of

constant electron density [26],

TTF [ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r. (2.3.1)

If this is combined with the classical expression for the nuclear-electron attractive

potential, and the electron-electron repulsive potential, we have the famous TF ex-

pression for the energy of an atom,

ETF [ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r − Z

∫
ρ(~r)

r
d~r +

1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2. (2.3.2)

The importance of this equation is that, the energy is given completely in terms of

the electron density ρ(~r). So this is the first expression of density functional for the

energy. Because the total energy is given completely in terms of density only.

The next step is to find a strategy of how the correct density that we need to

insert in to Eq. (2.3.2) can be identified. For this sake, the TF model employe

the variational principle. According to variational principle, the ground state of the
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system is connected to the electron density for which the energy according to Eq.

(2.3.2) is minimized under the constraint of,

∫
ρ(~r1)d~r1 = N. (2.3.3)

Generally in the TF model, the energy is given as a functional of density, and

the variational principle is expressed in terms of density, which are completely a new

expression. But the TF model has a limited use. Because, TTF is only a very coarse

approximation to the true kinetic energy and exchange and correlation effects are

completely neglected [27-29].

2.3.2 The Hohenberg-Khon theorem

In the previous part we have seen that a way of writing an expression for the total

energy of an atom in terms of density as a basic variable. Modern density functional

theory was born in 1964 when a paper by Hohenberg and Khon appeared in the

physical review [8].

In their paper, they demonstrated that ground state properties, particularly the

total energy of a system of interacting particles, could be related in a rigorous fash-

ion to the density distribution [8]. This sub section discuses the two key results of

theHohenberg-Khon (HK) theorem.

2.3.3 The first Hohenberg-Khon theorem

The first HK theorem [8] states that; the electron density, ρ(r), determines the exter-

nal potential because of the nuclie, Vext(r), and this density ρ(r), determines N, the
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total number of electrons, via its normalization

∫
ρ(r)dr = N, (2.3.4)

and the two parameters N and Vext(r) (determined from ρ(r)) determine the molecular

Hamiltonian, which determine the energy of the system via the Schrödingers equation.

Generally ρ(r) ultimately determines the system energy and all other ground state

(GS) electronic properties. The first theorem may be summarized by saying that the

energy is a functional of the density E[ρ],

E = EV [ρ]. (2.3.5)

The index ”V” has been written to make explicit the dependency on V. Hohenburg

and Khon [8] gave a straightforward proof of this theorem, which was generalized to

include systems with degenerate states in proof given by Leavy in 1979 [30]. This part

of the HK theorem was proved in a simple manner using the principle of reduction

and absurdum, and this is derived for a non-degenerate system [8,16,31-32].

Suppose there is a collection of electrons enclosed in to a box influenced by an

external potential ν(r). Consider the electron density of this system is known, and it

determines ν(r) and those all properties. If there is another external potential ν ′(r)

which differs from ν(r) by more than a constant that can also give the same electron

density ρ(r) for the ground state, then we will have two different Hamiltonian Ĥ and

Ĥ ′ whose GS electron density is the same. But the normalized wave function Φ and
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Φ′ would be different. Then we will have,

E0 < 〈Φ′|Ĥ|Φ′〉 = 〈Φ′|Ĥ ′|Φ′〉+ 〈Φ′|Ĥ − Ĥ ′|Φ′〉

= E ′
0 +

∫
ρ(r)[υ(r)− υ(r)′]dr

, (2.3.6)

where E0 and E ′
0 are the ground-state energies for Ĥ and Ĥ ′ respectively. Similarly

we can get,

E ′
0 < 〈Φ|Ĥ|Φ〉 = 〈Φ|Ĥ|Φ〉+ 〈Φ|Ĥ ′ − Ĥ|Φ〉

= E0 +

∫
ρ(r)[υ(r)− υ(r)′]dr

. (2.3.7)

Adding Eq. (2.3.6) and Eq. (2.3.7) we will obtain,

E0 + E ′
0 < E ′

0 + E0. (2.3.8)

This is an obvious contradiction, so there are no two different external potentials

that can give the same ρ(r). Thus ρ(r) uniquely determines ν(r) and all ground state

properties. This statement can be defined pictorially as follows,

ρ(r) → (ν(r), N) → Hop → E.

So now we can write the energy E explicitly as a function of the electron density ρ(r),

E[ρ] = T [ρ] + Tne[ρ] + Vee[ρ]

=

∫
ρ(r)ν(r)dr + FHk[ρ],

(2.3.9)

where,

FHk[ρ] = T [ρ] + Vee[ρ]. (2.3.10)
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Here FHK [ρ] is a universal functional and is valid for any number of particles

and any external potential. And only dependent on ρ, and independent of any other

external potential ν(r). While if it includes ν, then it’s not universal because ν

depends on the system [8].

2.3.4 The second Hohenberg-Khon theorem

Following from the first part of the theorem, in their second theorem, Hohenberg and

Khon defines an energy functional in terms of the electron density for the system.

Further proves that by taking the minimum of the energy functional according to

the electron density, ground state energy can be found [33]. This is equivalent with

saying that, ground state density can be found by using a variational principle [8].

Here by the variational ansatz we search for the ρ(r) which minimize the energy E.

This is expressed as,

EV [ρ0] ≤ EV [ρ], (2.3.11)

where ρ0 is GS density in potential V̂ , and ρ is some other density. From a

calculation of the expectation value of a Hamiltonian with a trial wave function Ψ′,

that is not its GS wave function Ψ0, one can never obtain an energy below the true

GS energy Ev[ρ0].

2.3.5 The Khon-Sham approach

Density functional theory is based on two pivotal theorems due to Hohenberg and

Khon [34]. So practical implementation of DFT require an explicit construction

of the HK free energy functional, FHK [ρ] [35]. As discussed in the HK theorem

above, and from the Schrödinger equation, we see that the energy functional contains
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three terms. The kinetic energy, the interaction with the external potential, and the

electron-electron interaction as written in Eq. (2.3.9). The challenge of DFT lies in

the HK universal functional of the density FHK [ρ], which is expressed as a sum of

kinetic and electron-electron functionals as unknowns. The possibility of finding a

good approximation to these functionals is the subject of much of current research to

day [36]. Since it makes the minimization of the energy would be possible.

Kohn and Sham proposed the following approach to approximating the kinetic and

electron-electron functionals [9]. The approach does not exclusively work in terms of

the particle or charge density, but brings a special kind of wave functions (single-

particle orbital) back in to the game. Generally mapping of an interacting many

electron system (Vee 6= 0) in to a system with independent particles moving into

an effective potential (non-interacting system,Vee = 0) is made. As a consequence,

DFT then looks like an effective single-particle theory, although many-body effects

are still-included via the so called exchange-correlation functional [9, 32, 37]. We will

now see how this is done.

2.3.6 The Khon-Sham equation

In 1964 Kohn and Sham published a paper in the physical review, which deals with

the ground state of an interacting electrons gas in an external potential [9]. We shall

be considering a collection of an arbitrary number of electrons, enclosed in a large

box and moving under the influence of an external potential ν(r), and the mutual

Coulomb repulsion. For such system based on DFT the energy functional is expressed

as a sum of the external potential and a universal functional F [ρ].

If F [ρ] were a known and sufficiently simple functional of ρ, the problem of deter-

mining the GS energy and density in a given external potential would be rather easy.
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Since it requires merely the minimization of a functional of the three dimensional

density function. The major part of the complexities of the many electron problems

are associated with the determination of the universal functional F [ρ].

The Khon-Sham (KS) exact energy functional is written as,

E[ρ] = Ts[ρ] + Vext[ρ] + VH [ρ] + Exc[ρ]. (2.3.12)

In this equation,

Ts[ρ] =
−1

2

N∑
i

〈φi|∇2|φi〉 =
−~2

2m

N∑
i=1

∫
d3rφ∗i (r)∇2φi(r), (2.3.13)

is the kinetic energy of a system of non-interacting electrons, whose total GS density

ρ(r) is constructed from a set of orbital, φi(r), the so called Kohn-Sham orbitals,

ρ(r) =
N∑

i=1

|φi|2. (2.3.14)

The functional,

Vext[ρ] =

∫
ρ(r)ν(r)dr, (2.3.15)

is the electrostatic energy of the electron density interacting with the external poten-

tial ν(r). The functional,

VH [ρ] =
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2, (2.3.16)

is the electron-electron interaction considered as a classical Coulomb interaction or

Hartree energy. The last term, Exc[ρ], incorporates everything else and is called the

exchange correlation energy. It is the only term that is unknown. In a way, the
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KS method packs all the complexity of the total energy function in the exchange-

correlation functional [34].

Writing the energy functional explicitly in terms of density built from non-interacting

orbital’s, and applying the variational theorem, we find that the orbital’s which min-

imize the energy satisfy the following set of equations,

[
−1

2
∇2 + Vext(r) +

∫
ρ(r′)
|r − r′|

dr′+ νxc(r)]φi(r) = εiφi(r), (2.3.17)

where,

νxc(r) =
δExc[ρ]

δρ
, (2.3.18)

is the local multiplicative potential (local exchange correlation potential), which is

the functional derivative of Exc with respect to density.

2.4 Approximation to Density Functional Theory

In the KS approach two main approximations were made. One is made for the complex

electron-electron interaction, which is considered as a classical Coulomb interaction,

and the other is made for treating the kinetic energy functional of interacting elec-

trons, T [ρ]. According to KS approach the accurate scheme for treating this kinetic

energy functional is, based on decomposing it into one part that represent the kinetic

energy of non interacting particles of density ρ, i.e., the quantity called Ts[ρ], and one

that represent the remainder (error), denoted by Tc[ρ],

T [ρ] = Ts[ρ] + Tc[ρ]. (2.4.1)

The subscripts s and c stand for single-particle and correlation respectively [32].

So the exchange-correlation energy functional introduced in the KS equations, by
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definition contains the differences T − Ts which is equal to Tc and V − VH . This

definition shows that a significant part of the correlation energy Ec, is due to the

difference Tc between the non-interacting and interacting kinetic energy. In simple

term, Exc, is simply the sum of the error made in using a non-interacting kinetic

energy and the error made in treating the electron-electron interaction classically.

This term divided into two parts,

Exc[ρ] = Ex[ρ] + Ec[ρ], (2.4.2)

where Ex is due to the pauli principle (exchange energy) and Ec is due to correlation.

But for both parts no general exact expression in terms of the density is known. In

this sense KS density functional theory is an empirical methodology, since we do not

know the exact functional. However, the functional is universal [38]. In practice, the

utility of DFT rests on the approximation used for Exc[ρ]. The approximations to

DFT discussed below are often refereed to as ab initio or first principles methods.

2.4.1 The local density approximation for Exc[ρ]

The generation of approximations for Exc has lead to a large and still rapidly ex-

panding field of research. As a practical approximate expression for Exc[ρ], Khon

and Sham [9] suggested what is known in the context of DFT as the local density

approximation (LDA) [35]. In the LDA the exchange-correlation energy is [23, 39],

Exc[ρ] ≈ Exc−LDA[ρ] =

∫
ρ(r)εxc−LDA(ρ(r))d3r (2.4.3)

this formula of LDA is determined by properties of uniform electron gas. It is a system

in which the electrons sit in an infinite region of space, with a uniform positive external

potential, chosen to preserve overall charge neutrality [40]. The corresponding xc
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potential is simply,

V LDA
xc [ρ](r) =

∂εxc(ρ)

∂ρ
|ρ−→ρ(r). (2.4.4)

In this LDA, the interesting point is that, the understanding of formulas origi-

nally derived for the uniform electron gas works so well for such nonuniform systems

as atoms and molecules [37]. In the early 1920’s Thomas and Fermi studied the

homogeneous electron gas [25]. In the Thomas and Fermi study the exchange and

correlation effects are neglected and the electron-electron interaction is approximated

by the classical Hartree potential [25].

Under this conditions, the dependency of the kinetic and exchange energy on the

density of the electron gas can be extracted and expressed in terms of a local functions

of the density. This suggests that in the inhomogeneous system we might approximate

the functional as an integral over a local function of the charge density. Using the

kinetic and exchange energy density of the non-interacting homogeneous electron gas

this leads to,

T [ρ] = 2.87

∫
ρ

5
3 (r)dr, (2.4.5)

and,

Ex[ρ] = 0.74

∫
ρ

4
3 (r)dr. (2.4.6)

These results are a representation for Exc in an inhomogeneous system. So as

shown in Eq. (2.4.3) the local exchange correlation energy per electron is approxi-

mated as a simple function of the local charge density εxc−LDA(ρ(r)), where,

εxc−LDA(ρ) = εx−LDA(ρ) + εc−LDA(ρ), (2.4.7)

this εxc−LDA(ρ) is the exchange-correlation energy per electron in a uniform electron
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gas of density ρ, and computed accurately at densities of interest, using Monte Carlo

techniques [39]. Its exchange part leads to,

εx−LDA(ρ) =
−3

4π
(3π2ρ)

1
3 , (2.4.8)

and for the correlation, εc−LDA, the functional form is unknown, and has been simu-

lated for the homogeneous electron gas in numerical quantum Monte Carlo calcula-

tions which yields essentially exact result [38, 41].

For many decades the LDA has been applied in, e.g., calculations of band-structure

and total energies in solid state physics [32].

2.4.2 The generalized gradient approximations for Exc[ρ]

The previous LDA is based on a reference system of homogeneous electron gas, in

which the exchange-correlation energy only depends on the local density, and approx-

imation shows that homogeneous system has properties which are also exact for the

inhomogeneous system. More importantly it restricts and guides the search for more

accurate practical approximations. Since it has its own success and failure [35, 42], a

discussion on the success and faller of LDA can be found in Ref. [42] and references

therein.

The first logical step to go beyond LDA is the use of not only the information

about the density ρ(r) at a particular point ~r, but to supplement the density with

information about the gradient of the charge density, ∇ρ(~r) in order to account

for the non-homogeneity of the true electron density. It is based on a description

of exchange-correlation energies in reciprocal space. Thus, we write the exchange-

correlation energy in the following form termed generalized gradient approximation
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(GGA) [39, 42],

Exc[ρ] ' Exc−GGA[ρ] =

∫
ρ(r)εxc−GGA(ρ(r), |∇ρ(r)|)d3r. (2.4.9)

As shown in Eq. (2.4.9), in a GGA the xc functionals depends on the density

and its gradient [39]. This reciprocal-space approach (GGA) is the most successful

ab initio DF method, and which have succeeded in reducing the errors of LDA for

many properties. For example, for the, binding energy, GS energy, and geometries of

molecules, the GGAs can yield better results than the LDAs [31, 35, 42].

Different functionals within this non-local (GGA) approximations family have

been developed, for different problems, like, the band-gap problem, the symmetry

problem, the long-range problem, the near degeneracy problem, the surface problem,

and the core problem. A discussion of the various GGAs family can be found in Ref.

[43-45].

2.5 Plane-Waves and Pseudo-Potentials

We now turn to the more practical problem of how the strategies developed so far,

can be mapped on to computational schemes, for solving the one electron Khon-Sham

equations. In the practical application of DFT basis sets and pseudo-potential need

to be considered. In calculations of solids or condensed matter, which will be the main

types of systems that DFT is applied to, in this Thesis, plane-wave basis set is a very

common choice. In many cases, combined with plane-wave is the pseudo-potential

approach for treating the strong interactions between core electron and nuclei. We

will now briefly discuss plane-waves and then pseudo-potentials.
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2.5.1 Plane wave basis set

A different DFT based computer program have been developed to solve the one

electron KS equations,

[
−∇2

2
+ υks[ρ](r)]φi(r) = εiφi(r). (2.5.1)

Among those codes a PWscf (a plane-wave DFT code) code [46], is used in this

thesis. To calculate the total energy of solids, a plane wave expansion of the KS

wave functions is very useful as it takes advantage of the periodicity of the crystal

[27,47-48]. When dealing with a crystal which has atoms periodically arranged, the

electrons are in a periodic potential U(r), where U(r+R) = U(r) and R is the Bravais

lattice vectors [31]. According to Bloch’s theorem [49], the KS wave functions φk,n(r),

can be written as,

φk,n(r) = eik.rµnk(r), (2.5.2)

where k is the wave vector, n is the band index, and µnk(r) is a function with the

same periodicity as the potential U(r), that µnk(r+R) = µnk(r). Furthermore, µ can

be expanded as,

µik =
1

Ωcell

∑
m

ci,me
iGm.r, (2.5.3)

where G is the reciprocal lattice vector and Ω = NcellΩcell. Here Ω is the whole

volume.

We aim to solve the following Schrödinger-like equation (one electron KS equation)

where each electron move in effective potential Veff (r),

Ĥeffφi(r) = [
−1

2
∇2 + Veff (r)]φi(r) = εiφi(r). (2.5.4)
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By the Bloch theorem in Eq. (2.5.2), the eigenfunctions can be written as

φi(r) =
∑

q

ci,q
1

Ω
eiq.r =

∑
q

ci,q × |q〉. (2.5.5)

Here ci,q are the expansion coefficients and q = K + G, in the basis of the or-

thonormal plane-wave |q〉 satisfying

〈q′|q〉 =
1

Ω

∫
eiq′.reiq.r = δq′.q. (2.5.6)

Inserting Eq. (2.5.5) into Eq. (2.5.4) with the orthogonality of Eq. (2.5.6) and

multiplying from the left by 〈q′|, leads to the Schrödinger-like equation in Fourier

space,

〈q′|[−1

2
∇2 + Veff (r)]|q〉 = εi〈q′|q〉ci,q = εici,q. (2.5.7)

Considering each term in the Hamiltonian. The first term, kinetic energy operator

can be written as,

〈q′|−1

2
∇2|q〉 = |q|2δq.q′ . (2.5.8)

Second, for a crystal, the periodic potential Veff (r) can be expressed as a sum of

Fourier components,

Veff (r) =
∑
m

Veff (Gm)e(iGm.r). (2.5.9)

Together with Eq. (2.5.8) and Eq. (2.5.9), Eq. (2.5.5) can be rewritten as

Hm,m′(K)ci,m′(K) = εi(K)ci,m′(K), (2.5.10)

where

Hm,m′ = 〈K +Gm|Ĥeff |K +G′
m〉 = |K +Gm|2 + Veff (Gm −G′

m). (2.5.11)

Here q has been expanded as K + G. Eq. (2.5.10) and Eq. (2.5.11) are the basic

Schrödinger-like equations of a periodic crystal with a plane-wave basis set [27, 31].
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2.5.2 Pseudo-potential

The many-electron Schrödinger equation can be very much simplified if electrons are

divided in to two groups: valence electrons and inner core electrons. The electrons in

the inner shells are strongly bound and do not play a significant role in the chemical

binding of atoms. This suggests the description of an atom based solely on its valence

electrons, which feel an effective potential including both the nuclear attraction and

the repulsion of the inner electrons. So, in metals and semiconductors, the physical

and chemical properties are almost completely due to the valence electrons. This

separation is very important in electronic structure calculation. Because, the valence

wave-functions of the large Z atoms oscillate strongly in the vicinity of the atomic core

due to the orthogonalization to the inner electronic wave-functions. To describe these

oscillations a large number of plane-waves is required, difficulting the calculation of

the total energy. This separation suggests that inner electrons can be ignored in a

large number of cases, thereby reducing the atom to a ionic core that interacts with

the valence electrons. Such an approximation, that approximates the potential felt by

the valence electrons is known as a pseudo-potential. It was first proposed by Fermi

in 1934 [27, 50].

Ab-initio pseudo-potentials

Pseudo-potential schemes have been used widely in calculations of the electronic

properties of semiconductors and their interfaces, in order to eliminate numerical

difficulties, arising from the core electrons and the requirement of orthogonality [51].

To describe the valence charge density accurately, a more realistic pseudo-potentials

were given by Topp and Hopfield [27,52-53]. Modern pseudo-potentials are obtained
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by forcing the pseudo wave-functions to coincide with the true valence wave-functions

beyond a certain distance rl. The pseudo wave-functions are also forced to have the

same norm as the true valence wave-functions.

In its mathematical form it is expressed as: if r > rl,

RPP
l (r) = RAE

nl (r), (2.5.12)

if r < rl, ∫ rl

0

dr|RPP
l (r)|2r2 =

∫ rl

0

dr|RAE
nl (r)|2r2, (2.5.13)

where, Rl(r) is the radial part of the wave-function with angular momentum l, and

PP and AE denote, respectively, the pseudo wave-function and the true (all-electron)

wave-function. The index n in the true wave-functions denotes the valence level. In

addition to the above two equations, the pseudo-potential must fulfill the following

two conditions. First, the pseudo wave-functions should not have nodal surfaces, and

second, the pseudo energy-eigenvalues should match the true valence eigenvalues, i.e.,

εPP
l = εAE

nl . (2.5.14)

The potentials, contracted in such a way are called norm-conserving pseudo-

potentials, and are semi-local potentials that depend on the energies of the reference

electronic levels, εAE
l . It is the type of pseudo-potential used in this thesis.

In general, to obtain the pseudo-potential, first, the free atom Kohn-Sham radial

equations are solved taking into account all the electrons. And then using Eq. (2.5.12)

and Eq. (2.5.13) (norm-conservation), the pseudo wave-functions are determined.

From this pseudo wave-functions, the pseudo-potential is calculated based on, the

inversion of the radial Kohn-Sham equation for the pseudo wave-function and the
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valence electronic density,

ωl,scr(r) = εPP
l − l(l + 1)

2r2
+

1

2rRPP
l (r)

d2

dr2
[rRPP

l (r)]. (2.5.15)

The resulting pseudo-potential, ωl,scr(r), still includes screening effects due to the

valence electrons that have to be subtracted to yield

ωl(r) = ωl,scr(r)− υH [ρPP ](r)− υXC [ρPP ](r). (2.5.16)

The quality or accuracy of the pseudo-potential constructed by such procedure, is

measured by the cutoff radii, rl, we chose. Because the cutoff radii establishes the

region where the pseudo and true wave-functions coincide. We have two way of

choosing this cutoff radii. First, the minimum possible value is determined by the

location of the outermost nodal surface of the true wave-functions. For cutoff radii

close to this minimum, the pseudo-potential is very realistic, but also very strong.

Second, very large cutoff radii are chosen, and the pseudo-potentials will be smooth

and almost angular momentum independent, but also very unrealistic. For a plane-

wave basis calculations this second way of choosing cutoff radii is appropriate. Since

smooth potential leads to a fast convergence of plane-wave basis calculations. So our

educational guess (choice) of cutoff radii, must meet our need to basis-set size and

pseudo-potential accuracy [27, 51, 54].

Generally, as discussed above most physically interesting properties of solids are

determined by the valence electrons rather than the core electrons. But in a first

principle calculation, the deeply bound core electrons within plane-wave basis sets,

require a huge amount of basis functions for their description. This leads to the

fact that less important core electrons will consume a lot of computational cost.

To alleviate this problem, the pseudo-potential approximation replaces the strong
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ionic potential with a weaker pseudo-potential. So the combination of DFT, plane-

wave basis set, and pseudo-potentials has became a well-established methodology in

electronic structure calculations of condensed matter [31, 55, 56].
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Chapter 3

Materials and Methodology

3.1 Materials

The study is purely theoretical for understanding the structural and electronic prop-

erty of carbon, an intensive literature review is carried out. The main sources of

literature review are the published articles, books, thesis and dissertations. Latex

software and computers are additional instruments used to accomplish this project.

3.2 Methodology

3.2.1 Theoretical method

In this Thesis first-principles (ab-initio) calculations are used for performing the struc-

tural and electronic properties of carbon. This method of calculation is based on

density functional theory, that is the structural and electronic property of carbon is

obtained based on the principles of density functional theory.

3.2.2 Computational method

The calculation is performed computationally using QUANTUM ESPRESSO [46],

which is an open-source package for research in electronic structure, simulation and
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Optimization. The QUANTUM ESPRESSO distribution [46] contains the core pack-

ages PWscf (Plane-Wave Self-Consistent Field) and CP (Car-Parrinello) for the cal-

culation of electronic-structure properties within density-functional theory using a

plane-Wave (PW) basis set and pseudo-potentials. In this Thesis the PWscf package

is used.
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Chapter 4

First Principle Calculation of
Structural and Electronic
Properties of Carbon

4.1 Conceptual Framework and Work Package

In this thesis density functional theory with the help of Quantum Espresso [46] was

used to calculate the structural and electronic properties of carbon. The plane wave

self-consistent field (PWSCF) code is employed as our first principle energy code.

PWSCF is a first principle energy code that uses norm conserved pseudo- potential

(PP) and ultra-soft pseudo-potentials (US-PP) with in density functional theory.

The pseudo-potential theory is based on the ansatz which separate the total wave

function in to an oscillatory and smooth part (Pseudo wave function). The strong true

potential of the atom is replaced by a weaker potential valid for the valence electrons,

the pseudo-potentials which approaches the unscreened Coulomb potential. The main

feature of Pseudising process is to eliminate the strong Coulomb potential within the

core region. Thus, the norm conserved pseudo-potentials with Perdew Zunger (PZ)

version of the local density approximation (LDA) exchange correlation functional
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and the ultra-soft pseudo-potentials with Perdew-Burke-Ernzerhof (PBE) version of

the generalized gradient approximation (GGA) exchange correlation functional are

employed respectively. Carbon has a diamond structure with face-centered cubic

(FCC). The states 2s22p2 will be treated as a valance electrons.

For choice of plane wave basis set, the cutoff kinetic energy at 20 Ry, and the

cutoff charge density at 250 Ry is used as trial cutoff energy and charge density

respectively. For ~k-point sampling of bulk carbon we start with Monk Horst Pack

mesh grid (4x4x4). The convergence issue will be checked in two ways. The minimum

total energy will be found by varying cutoff energy (ecutwfc) for fixed Monk Horst

Pack mesh. Moreover, the minimum total energy will be obtained by varying the

Monk Horst Pack mesh grid or the ~k-point sampling for fixed cutoff energy.

4.2 Results and Discussion

4.2.1 Total energy of carbon with respect to cutoff energy

In this part of the calculation the total energy of carbon is performed as a function

of cutoff energy. An increment of cutoff energy made until the values of total energy

comes to a common value or equivalently until convergence is achieved. While chang-

ing the cutoff energy, the lattice constant and the ~k-point are fixed respectively. In

this research we have considered the diamond structure of carbon for total energy

calculation, the lattice constants a = b = c = ao = 6.6 and the ~k-points are 4× 4× 4.

The total energy versus cutoff energy is shown in the Figure 4.1, in this calculation,

the converged cutoff energy appears to be approximately at 170 Ryd for the given

lattice constant and ~k - point grid. The trend of the graph in Figure 4.1 shows that
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Figure 4.1: Total energy of carbon versus cutoff energy

the total energy is monotonically decreasing with increasing cutoff energy. This be-

havior is the direct result of variational principle. The accuracy of the ground state

energy depends on the number of basic functions or plane waves. As the number of

basic functions approach to infinity we can get the energy that close to the ground

state energy.

4.2.2 Total energy of carbon with respect to ~k-point sampling

In this part the total energy of carbon is calculated as a function of ~k-points. The

other parameters such as lattice constant, cutoff energy etc. are made fixed. That is
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the lattice constant a = b = c = ao = 6.6 and from the previous convergency test of

total energy with respect to cutoff energy, we fix cutoff energy to be 170 Ryd. The

total energy of carbon versus ~k-points grid size is shown in Fig.4.2.

Figure 4.2: Total energy of carbon versus ~k-points grid

As it can be observed that the total energy of carbon converges at 9 × 9 × 9

~k-points grid, for the fixed lattice constant and cutoff energy.

4.2.3 Convergency of force with respect to cutoff energy

In the previous calculations, the forces on carbon are zero in x, y, and z directions.

However it is possible to create forces by displacing one of the atom in a unit cell
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which is previously located at (0.25, 0.25, 0.25) along the Z axis with a displacement

of 0.05bohr. We calculated force on carbon as a function of cutoff energy by keeping

other parameters fixed. For this calculation, we used the lattice constants a = b =

c = ao = 6.6 and from the previous calculation of total energy with respect to ~k-

points sampling, we used the ~k-points grid at 9 × 9 × 9 respectively. Fig.4.3 shows

the convergency of force with respect to cutoff energy.

Figure 4.3: Force of carbon versus cutoff energy

It is clearly shown that convergence is achieved when the cutoff energy is equal to

100 Ryd. The force at this cutoff energy is 0.442528 Ryd/bohr.
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4.2.4 Convergency of force with respect to ~k-points grid size

In this part, we have calculated the force on the displaced carbon atom as a function

of ~k-points. By fixing the other parameters such as a lattice constant a = b = c =

ao = 6.6 bohr and cutoff energy is 170 Ryd. Figure 4.4 shows the convergency of

force with respect to ~k-points grid size.

Figure 4.4: Force of carbon versus ~k-points grid size

From the Figure it is clear that the convergency of force at 170 Ryd was achieved

at grid size of 9× 9× 9.
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4.2.5 Structural (Equilibrium lattice constant) property of
carbon

In this part of the calculation, the theoretical value of equilibrium lattice constant

of carbon at which the minimum energy can be found, is done by varying the lattice

constant from 6 to 7 Bohr in steps of 0.05 bohr. From the previous calculation of

convergency test of total energy we fixed the cutoff energy at 170 Ryd and the ~k-point

at 14× 14× 14. Fig.4.5 shows the equilibrium lattice constant of carbon.

Figure 4.5: Total energy of carbon versus lattice constant

It is clearly shown in the above graph that the minimum energy of carbon, which
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is face-centered cubic (FCC) diamond structure, is found for theoretical value of

equilibrium lattice constant a = 6.75bohr which is very close to the experimental

value of lattice constant for carbon (diamond structure) of 6.740331832 = 6.74bohr

[24].
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Chapter 5

Conclusion

The structural and electronic properties of carbon have been theoretically studied,

within the frame work of the density functional theory, plane wave basis set and

pseudo-potentials. The norm conserved pseudo-potentials with Perdew Zunger (PZ)

version of local density approximation (LDA) and the ultra-soft pseudo potentials

with Perdew-Bureke-Ernzerhof (PBE) version of the generalized gradient approxi-

mation (GGA) exchange-correlation functional are employed respectively. The total

energy calculation using a unit cell containing 2 atoms is performed as a function of

cutoff energy and Monk Horst Pack mesh grid respectively fixing the other parame-

ters constant. Energy convergence is achieved, at the energy cutoff 170 Ryd for the

first case and at 9× 9× 9 ~k-point grid for the second case. The total force on carbon

as a function of cutoff energy and Monk Horst Pack mesh is calculated by displacing

one of the carbon atom in a cell, which is located at (0.25,0.25,0.25) along the z-axis

with a displacement of 0.05 bohr. Total force convergence is achieved for the cutoff

energy 100 Ryd and for Monk Horst Pack mesh at 9 × 9 × 9 ~k-point grid. Our nu-

merical calculation shows that the theoretical value of equilibrium lattice constant is

at a = b = c = ao = 6.75 bohr. This result is in good agreement with experimental
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results which is a = b = c = ao = 6.74 bohr.
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