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Abstract

In this thesis the first principle calculation of tungsten disulfide (WS2) is investi-

gated with density functional theory (DFT) using Quantum Espresso package. Our

study is based on Density Functional Theory (DFT) with the Perdew-Burke-Ernzerhof

(PBE) exchange-correlation functional, Vanderbilt (ultra soft) pseudopotentials and

the plane wave basis set implemented in the Quantum-ESPRESSO package. The

calculation of the total minimum energy and the total minimum force of WS2 is

calculated as a function of cutoff energy and K-points sampling. The total mini-

mum energy per cell is monotonically decreasing with increasing cutoff energy due

to variational principle. However, this trend can not be predicted from increasing

the k-points sampling. Moreover, the equilibrium lattice constant is calculated us-

ing results obtained from energy convergence test (i.e., 90 Ry and 7 × 7 × 1 ). The

computational value of the equilibrium lattice constant is 3.23 Å. This result is in

good agreement with experimental value wich is 3.18 Å . Finally, discussing band

structure and density of state of two dimensional WS2, the electrical property of two

dimensional WS2 is determined based on energy band gap.

Keywords: Tungsten Disulfide, Density Functional Theory, Electronic and struc-

tural properties.
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Chapter 1

Background of the Study

1.1 Introduction

Tungsten disulfide is the chemical compound with the formula WS2 . It is composed

of W and two sulfur atoms which has 1s22s22p63s23p63d104s24p64d105s25p64f 145d46s2

or [Xe]4f 145d46s2 and 1s22s22p63s23p4 or [Ne]3s23p4 electron configurations respec-

tively. It occurs naturally as the rare mineral tungstenite. This material is a compo-

nent of certain catalysts used for hydrodesulfurization and hydrodenitrification. Like

the closely related MoS2 , it exhibits properties of a dry lubricant. It is chemically

fairly inert but attacked by a mixture of nitric and hydrofluoric acids, when heated

in oxygen-containing atmosphere, WS2 converts to tungsten trioxide. When heated

in absence of oxygen, WS2 does not melt but decomposes to tungsten and sulfur, but

only at 1250 oC [1].

Density functional theory is an approach for the description of ground state properties

of metals, semiconductors, and insulators. The success of density functional theory

(DFT) not only encompasses standard bulk materials but also complex materials such

as proteins and carbon nanotubes [2]. The main idea of DFT is to describe an inter-

acting system of fermions via its density and not via its many-body wave function.

1
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For N electrons in a solid, which obey the Pauli principle and repulse each other via

the Coulomb potential, this means that the basic variable of the system depends only

on three -the spatial coordinates x, y, and z rather than 3N degrees of freedom [3,4].

Knowledge of the density is all that is necessary for a complete determination of all

ground state molecular properties. If one knows the exact electron density, ñ(r), then

the cusps of this density would occur at the positions of the nuclei [5].
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1.2 Statement of the Problem

Many of the true breakthroughs in our technology have resulted from a deeper un-

derstanding of the properties of materials. Studying the properties of materials plays

a crucial role to apply these materials in current technology. Tungsten disulfide is

currently being used in industrial, manufacturing, mining, marine, agriculture, and

automotive applications to reduce friction and wear.

The aim of this thesis is to investigate structural and electronic properties of WS2

using DFT.

1.3 Research Questions

What is the total minimum energy of WS2 per cell with respect to cutoff energy ?

What is the total minimum energy of WS2 per cell with respect to K-points sampling

?

What is the minimum force of WS2 per cell with respect to cutoff energy ?

What is the minimum force of WS2 per cell with respect to K-points sampling ?

What is the lattice constant of WS2 ?

What is band structure of WS2 ?

What is density of state of WS2 ?

1.4 Objectives of the Study

1.4.1 General Objectives

The general objective of this study is to predict the electronic and structural proper-

ties of two dimensional WS2 with respect to density functional theory (DFT).
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1.4.2 Specific Objectives

I To calculate the total minimum energy ofWS2 per cell with respect to cutoff energy

;

I To calculate the total minimum energy of WS2 per cell with respect to K-points

sampling ;

I To calculate the minimum force of WS2 per cell with respect to cutoff energy ;

I To calculate minimum force of WS2 per cell with respect to K-points sampling ;

I To calculate the lattice constant of WS2 ;

I To calculate band structure of WS2 ;

I To calculate density of state of WS2.

1.5 Significance of the Study

The significance of this study is to understand the electronic and structural properties

of two dimensional WS2 (many electron system) using new computational technique

known as ab initio technique. Moreover it helps to understand the electrical property

of two dimensional WS2. It also helps to compare the experimental results with

respect to our calculation.
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1.6 Scope of the Research

Due to time and budget constraint the scope of the study is limited to determine

total minimum energy per cell of WS2 with respect to cutoff energy and K-points

sampling, to find total minimum force per cell of WS2 with respect to cutoff energy

and K-points sampling, the theoretical lattice constant and band structure of WS2 ,

and to determine the density of state of WS2 .

.



Chapter 2

Review of Related Literatures

2.1 Introduction

Any problem in the electronic structure of matter is covered by Shrödinger equation

including the time. In most cases, however, one is concerned with atoms and molecules

without time-dependent interaction, so we may focus on the time-independent Shrödinger

equation [6]. Solving the Shrödinger equation to obtain energies and forces, require

only the atomic numbers of the constituents as input, and should describe the bonding

between the atoms with high accuracy [7].

2.2 Schrödinger Equation

The ultimate goal of most approaches in solid state physics and quantum chemistry

is the solution of the time-independent, non-relativistic Schrödinger equation.

Ĥψi( ~x1, ~x2, ..., ~xN , ~R1
~R2, ..., ~RM) = Eiψi( ~x1, ~x2, ..., ~xN , ..., ~R1, ~R2, ..., ~RN) (2.2.1)

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(2.2.2)

6
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A separable solution of time independent Shrödinger equation has the property

that every measurement of the total energy is certain to return the value E. Here,

A and B run over the M nuclei while i and j denote the N electrons in the system.

The first two terms describe the kinetic energy of the electrons and nuclei. The other

three terms represent the attractive electrostatic interaction between the nuclei and

the electrons and repulsive potential due to the electron-electron and nucleus-nucleus

interactions [8].

2.3 The Variational Principle for the Ground State

When a system is in the state ψ, the expectation value of the energy is given by

E[ψ] =
< ψ | Ĥ | ψ >
< ψ | ψ >

(2.3.1)

where, < ψ | Ĥ | ψ >=
∫
ψ∗ | ψd~x

The variational principle states that the energy computed from a guessed ψ is an

upper bound to the ground-state energy E0. Full minimization of the functional E[ψ]

with respect to all allowed N-electrons wave functions will give the true ground state

ψ and energy E[ψ0] = E0. For a system of N electrons and given nuclear potential

Vext, the variational principle defines a procedure to determine the ground-state wave

function ψ0, the ground-state energy E0[N, Vext], and other properties of interest [9].

In other words, the ground state energy is a functional of the number of the electrons

N and the nuclear potential Vext:

E0 = E[N, Vext] (2.3.2)
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2.4 Quantum Many-Body Theory

The state of motion can not be solved analytically for systems in which three or more

distinct masses interact [10]. To solve this problem we can use different approximation

approaches. In general the N-electron Hamiltonian is given by equation (2.2.2) above.

We can write equation (2.2.2) as

Ĥ = T̂N + T̂e + V̂NN + ˆVeN + V̂ee (2.4.1)

2.4.1 Born-Oppenheimer Approximation

Due to their masses the nuclei move much slower than the electrons. We can consider

the electrons as moving in the field of fixed nuclei [11]. We can ignore the nuclear

kinetic energy and their potential energy is merely constant. Thus, the electronic

Hamiltonian (2.4.1) reduces to

Ĥ = T̂e + ˆVeN + V̂ee (2.4.2)

The solution of the Shrödinger equation with Ĥ, is the electronic wave function ψ and

the electronic energy Eelec is then the sum of Eelec and the constant nuclear repulsion

term Enuc.

Ĥψelec = Eelecψelec (2.4.3)

Etot = Eelec + Enuc (2.4.4)

where, Enuc =
∑M

A=1

∑M
B>A

ZAZB

RAB



9

2.4.2 The Hartree-Fock Approximation

The Hartree-Fock approximation is the method whereby the orthogonal orbitals ψi

are found that minimize energy for this determinantal form of ψ0:

EHF = min(ψHF−>N)E[ψHF ] (2.4.5)

The expectation value of the Hamiltonian operator with ψHF is given by

EHF = 〈ψHF | Ĥ | ψHF 〉 =
N∑
i=1

Hi +
1

2

N∑
i,j=1

(Jij −Kij) (2.4.6)

Hi ≡
∫
ψ∗
i (~x)[−

1

2
∇2 − Vext]ψi(~x)d~x (2.4.7)

defines the contribution due to the kinetic energy and the electron-nucleus attraction

and

Jij =

∫ ∫
ψi( ~x1)ψ

∗
i (~x)

1

r12
ψj( ~x2)d ~x1d ~x2 (2.4.8)

Kij =

∫ ∫
ψ∗
i ( ~x1)ψi( ~x1)

1

r12

ψij( ~x2)ψ
∗
j (x2)d ~x1d ~x2 (2.4.9)

The integrals are all real, and Jij ≥ Kij ≥ 0.The Jij are called Coulomb integrals,

the Kij are called exchange integrals. We have the property Jii = Kii.

The variational freedom in the expression of the energy equation(2.4.6) is in the

choice of the orbitals. The minimization of the energy functional with normalization

conditions
∫
ψ∗
i (~x)ψj(~x)d~x = δij leads to the Hatree-Fock differential equations:

f̂ψi = εiψi, i = 1, 2, ..., N (2.4.10)

These N equations have the appearance of eigenvalue equations, where the Lagrangian

multipliers εi are the eigenvalues of the operator f. The Fock operator f̂ is an effective
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one-electron operator defined as

f̂ = −1

2
∇2
i −

M∑
A

ZA
riA

+ VHF (i) (2.4.11)

The first two terms are the kinetic energy and the potential energy due to the electron-

nucleus attraction. VHF is the Hartree potential, the average potential experience by

the i
′th electron due to the remaining N-1 electrons, and it is given by

VHF ( ~x1) =
N∑
j

(Ĵi( ~x1)− K̂j( ~x1)). (2.4.12)

Ĵj( ~x1) =

∫
(ψj( ~x2))

2 1

r12
d ~x2 (2.4.13)

The Coulomb operator Ĵ represents the potential that an element at position ~x1

experiences due to the average charge distribution of another electron in spin orbital

ψj. The second term in (2.4.13) is the exchange contribution to the HF potential. It

has no classical analog and it is defined through its effect when operating on a spin

orbital:

K̂j( ~x1)ψi( ~x1) =

∫
ψ∗
j ( ~x2)

1

r12
ψi( ~x2)d ~x2ψj( ~x1) (2.4.14)

The Hartree-Fock potential is non-local and it depends on the spin orbitals. Thus,

the Hartree-Fock (HF) equations must be solved self-consistently [12].

2.5 Density Functional Theory (DFT)

DFT is the many body theory based on the idea of using only the density as the basic

variable for describing many electron systems. It is widely used in condensed matter

theory and computational material science for the calculation of electronic, magnetic

and structural properties of solids.
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Density functional theory is an extremely successful approach for solving many body

problems’ i.e., it is an exact reformulation of many-body quantum mechanics in terms

of the probability density rather than the wave function. The following are among

approximation approaches of density functional theory [13].

2.5.1 The Thomas-Fermi Model

This is the first density functional theory (1927) [14]. Based on the uniform electron

gas, they proposed the following functional for the kinetic energy:

TTF [ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r (2.5.1)

The energy of an atom is finally obtained using the classical expression for the nuclear-

nuclear potential and the electron-electron potential:

ETF [ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r − Z

∫
ρ(~r)

r
d~r +

1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2 (2.5.2)

Here, the energy is given completely in terms of the electron density.

In order to determine the correct density to be included in equation (2.5.2), they

employed a variational principle. They assumed that the ground state of the system

is connected to the ρ(~r) for which the energy is minimized under the constraint of∫
ρ(~r)d~r = N .

2.5.2 The first Hohenberg-Kohn Theorem

The starting point of any discussion of DFT is the Hohenberg-Kohn (HK) theorem.

The Hohenberg-Kohn theorem states that the particle density uniquely determines the
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properties of a many-particle system [15]. It represents the most basic of a number

of existence theorems which ensure that stationary many-particle systems can be

characterized (fully) by the ground state density and closely related quantities. As

the reasoning leading to the HK theorem is quite instructive, it is worthwhile to study

this prototype of an existence theorem in some detail [16]. The first Hohenberg-Kohn

theorem demonstrates that the electron density uniquely determines the Hamiltonian

operator and thus all the properties of the system. This first theorem states that the

external potential V ext is (to within a constant) a unique functional of ρ(~r); since,

in turn Vext fixes Ĥ we see that the fully many particle ground state is a unique

functional of ρ~r.

proof: Let us assume that there were two external potential Vext(~r) and V
′
ext(~r)

differing by more than a constant, each giving the same ρ(~r) for its ground state, we

would have two Hamiltonians Ĥ and Ĥ ′ whose ground-state densities were the same

although the normalized wave functions ψ and ψ
′
would be different. Taking ψ

′
as a

trial wave function for the Ĥ problem.

E0〈ψ
′ | Ĥ | ψ′〉 = 〈ψ′ | ψ′〉+ 〈ψ′ | Ĥ − Ĥ ′ | ψ′〉 = E

′

o +

∫
ρ(r̂)[Vext(~r)− V

′

ext(~r)]d~r

(2.5.3)

Where E0 and E
′
0 are the ground-state energies for Ĥ and Ĥ ′ , respectively. Similarly,

taking ψ as a trial function for the Ĥ ′ problem,

E
′
0〈ψ | ψĤ ′ | ψ〉 = 〈ψ | Ĥ | ψ〉+ 〈ψ | Ĥ ′ − Ĥ | ψ〉 = Eo +

∫
ρ(~r)[Vext(~r)− V

′

ext(~r)]d~r

(2.5.4)

Adding equation (2.5.3) and (2.5.4), we would obtain E0 + E
′
0 < E

′
0 + E0, a contra-

diction, and so there cannot be two different Vext that give the same ρ(~r) for their

ground state.
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Thus, ρ(~r) determines N and Vext(~r) and hence all the properties of the ground state,

for example kinetic energy T [ρ], the potential energy V [ρ], and the total energy E[ρ].

Now, we can write the total energy as

E[ρ] = ENe[ρ] + T [ρ] + Eee[ρ] =

∫
ρ(~r)VNe(~r)d~r + FHK [ρ], (2.5.5)

FHK [ρ] = T [ρ] + Eee (2.5.6)

This functional FHK [ρ] is the holy grail of density functional theory. If it were known

we would have solved the Shrödinger equation exactly. And, since it is a universal

functional completely independent of the system at hand, it applies equally well to

the hydrogen atom as to gigantic molecules such as, say, DNA! FHK [ρ] contains the

functional for the kinetic energy T [ρ] and that for the electron-electron interaction,

Eee[ρ]. The explicit form of both these lies completely in the dark [17]. However,

from the latter we can extract at least the classical part J [ρ],

Eee[ρ] =
1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2 + Encl = J [ρ] + Encl[ρ] (2.5.7)

Encl is the non-classical contribution to the electron-electron interaction: self-interaction

correction, exchange and coulomb correlation. The explicit form of the functionals

T [ρ] and Enl[ρ] is the major challenge of DFT.

2.5.3 The Second Hohenberg-Kohn Theorem

The second Hohenberg-Kohn theorem states that FHK [ρ], the functional that delivers

the ground state energy of the system, delivers the lowest energy if and only if the

input density is the true ground state density [18]. This is nothing but the variational

principle:

E0[ρ̃] ≤ T [ρ̃] + ENe[ρ̃] + Eee[ρ̃] (2.5.8)
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In other words this means that for any trial density ρ̃, which satisfies the necessary

boundary conditions such as ρ̃(~r) ≥ 0,
∫
ρ̃(~r)d~r = N , and which is associated with

some external potential ˜Vext, the energy obtained the functional of equation (2.5.5)

represents an upper bound to the true ground state energy Eo. Eo results if and only

if the exact ground state density is inserted in equation (2.5.1).

Proof: The proof of equation (2.5.8) makes use of the variational principle established

for wave functions. We recall that any trial density ρ̃ defines its own Hamiltonian Ĥ

and hence its own wave function ψ̃. This wave function can now be taken as the trial

wave function for the Hamiltonian generated from the true external potential Vext.

Thus,

〈ψ̃ | Ĥ | ψ̃〉 = T [ρ̃] + Eee[ρ̃] +

∫
ρ̃Vextd~r = E[ρ̃] ≥ E0[ρ] = 〈ψ̃0 | Ĥ | ψ̃0〉 (2.5.9)

2.6 The Kohn-Sham Equation

In 1965 Kohn and Sham introduced a method for calculating these terms. Replace our

system of interacting electrons with a ficticious system of non-interacting electrons of

the same density [19]. The Kohn-Sham approach is the real break-through in modern

DFT. It is tightly linked to the Hartree-Fock-Slater approximation of many fermion

theory and considered exchange and correlation energies [20]. We have seen that the

ground state energy of a system can be written as

E0 = minρ−>N(F [ρ] +

∫
ρ(~r)VNed~r) (2.6.1)

Where the universal functional F [ρ] contains the contributions of the kinetic energy,

the classical Coulomb interaction and the non-classical portion:

F [ρ] = T [ρ] + J [ρ] + Encl[ρ] (2.6.2)
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Of these, only J [ρ] is known. The main problem is to find the expressions for T [ρ] and

Encl[ρ]. Kohn and Sham accounted for that by introducing the following separation

of the functional F [ρ].

F [ρ] = TS[ρ] + J [ρ] + Exc[ρ] (2.6.3)

Where Exc, the so-called exchange-correlation energy is defined through equation

(2.6.2) as

Exc[ρ] = (T [ρ]− TS[ρ]) + (Eee[ρ]− J [ρ]) (2.6.4)

The exchange and correlation energy Exc is the functional that contains everything

that is unknown.

Now the question is: how can we uniquely determine the orbitals in our non-interacting

reference system? In other words, how can we define a potential Vs such that it pro-

vides us with a slater determinant which is characterized by the same density as our

real system. To solve this problem, we write down the expression for the energy of

the interacting system in terms of the separation described in equation (2.6.3).

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] + ENe[ρ] (2.6.5)

E[ρ] = TS[ρ] +
1

2

∫ ∫
ρ(~r1)ρ~r2
r12

d~r1d~r2 + Exc[ρ] +

∫
VNeρ(~r)d~r

= −1

2

N∑
i

〈ψi | ∇2 | ψi〉+
1

2

N∑
i

N∑
j

∫ ∫
| ψi(~r1) |2

1

2r1
| ψj(~r2) |2 d~r1d~r2

+Exc[ρ]−
N∑
i

∫ M∑
A

ZA
r1A

| ψi(~r1) |2 d~r1 (2.6.6)

The only term for which no explicit form can be given is Exc. We now apply the

variational principle and ask: What condition must the orbitals ψi fulfill in order
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minimize this energy expression under the usual constraint 〈ψi | ψj〉 = δij The result-

ing equations are the Kohn-Sham equations.

(−1

2
∇2 + [

∫
ρ(~r2)

r12

+ Vxc(~r1)−
M∑
A

ZA
r1A

])ψi = (−1

2
∇2 + VS( ~R1))ψi = εiψi (2.6.7)

VS(~r1) =

∫
ρ(~r2)

~r12
d~r2 + Vxc(~r1)−

M∑
A

ZA
r1A

(2.6.8)

2.7 Exchange-Correlation Energy Functional

In this section we introduce the most frequently used approximations for the xc-energy

functional on the basis of a number of rigorous results for Exc[n].

2.7.1 Definition of Exact Exchange within DFT

It is usual to decompose the total xc-energy functional Exc[n] into an exchange part

Ex[n] and a correlation functional Ec[n], in analogy to conventional many-body the-

ory. It is nevertheless the natural first choice to define the exchange functional in

such a way that the total energy EHF and density nHF of the Hartree-Fock (HF)

approximation are reproduced if the correlation functional is completely neglected.

The corresponding HF-only ground state energy functional Ẽ[n] [21-25],

E[n] = Ts[n] + Eext[n] + EH [n] + Ex[n], (2.7.1)

is hence to be minimized by nHF ,

EHF = Ẽ[nHF ], (2.7.2)

while for any other density one must have

EHF < Ẽ[n], (2.7.3)

∀n 6= nHF
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2.8 The Local Density Approximation

The early thinking that lead to practical implementations of density functional the-

ory was dominated by one particular system for which near exact results could be

obtained - the homogeneous electron gas. In this system the electrons are subject to

a constant external potential and thus the charge density is constant. The system is

thus specified by a single number - the value of the constant electron density r = N
V

[26].

Thomas and Fermi studied the homogeneous electron gas in the early 1920’s. The

orbitals of the system are, by symmetry, plane waves. If the electron-electron in-

teraction is approximated by the classical Hartree potential (that is exchange and

correlation effects are neglected) then the total energy functional can be readily com-

puted . Under these conditions the dependence of the kinetic and exchange energy

on the density of the electron gas can be extracted and expressed in terms of a local

functions of the density. This suggests that in the inhomogeneous system we might

approximate the functional as an integral over a local function of the charge density.

Using the kinetic and exchange energy densities of the non-interacting homogeneous

electron gas this leads to [27,28];

T [ρ] = 2.87

∫
ρ

5
3 (~r)d~r (2.8.1)

and

Ex[ρ] = 0.74

∫
ρ

5
3 (~r)d~r (2.8.2)

These results are highly suggestive of a representation for Exc in an inhomogeneous

system. The local exchange correlation energy per electron might be approximated as

a simple function of the local charge density (say, exc(r)). That is, an approximation
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of the form;

Exc[ρ] ≈
∫
ρ(~r)εxc(ρ(~r))d~r (2.8.3)

An obvious choice is then to take Exc(r) to be the exchange and correlation energy

density of the uniform electron gas of density r - this is the local density approximation

(LDA). Within the LDA Exc(r) is a function of only the local value of the density

[29,30]. It can be separated into exchange and correlation contributions;

εxc(ρ) = εx(ρ) + εc(ρ) (2.8.4)

2.9 Beyond the Local Density Approximation

At first sight a very natural extension of the LDA would be to recognise that in many

systems the exchange contribution to the energy is dominant over the correlation

energy and to compute the non-local exchange potential exactly as in Hartree Fock

theory whilst approximating the correlation potential within the LDA [31]. This

would yield a functional of the form:

Exc(ρ) = EFock + ELDA
c (2.9.1)

The greater complexity associated with the calculation of the non-local exchange po-

tential would be offset by potentially significantly greater accuracy. However, the

performance of the LDA is, in part, based on rather delicate cancellations between

the exchange and correlation interactions and, in general, the use of the exact ex-

change interaction produces rather poor results. In the homogeneous electron gas

the non-local exchange potential has effectively infinite range and its contribution to

the electron-electron interaction diverges at the Fermi surface. In metals we conclude

that the non-local exchange potential does not yield the correct physics - indeed this
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behaviour was one of the main motivating factors in the early work of Thomas and

Fermi, which formed the basis of density functional theory.

The Hartree-Fock potential produces a very reasonable local and semi-local descrip-

tion - which is superior to that of the LDA - but introduces a pathological non-local

feature. We can conclude that in order to improve on the LDA approximation semi-

local theories which incorporate some of the features of the exact exchange interaction

are required and that theories which preserve the analytic properties of the exchange

correlation hole are likely to be successful [13,32].

2.10 The Generalized Gradient Approximation

The local density approximation can be considered to be the zeroth order approxima-

tion to the semi-classical expansion of the density matrix in terms of the density and

its derivatives. A natural progression beyond the LDA is thus to the gradient expan-

sion approximation (GEA) in which first order gradient terms in the expansion are

included. This results in an approximation for the exchange hole which has a number

of un physical properties; it does not normalize to -1, it is not negative definite and

it contains oscillations at large u .

In the generalized gradient approximation (GGA) a functional form is adopted which

ensures the normalization condition and that the exchange hole is negative definite .

This leads to an energy functional that depends on both the density and its gradient

but retains the analytic properties of the exchange correlation hole inherent in the

LDA [33]. The typical form for a GGA functional is;

Exc ≈
∫
ρ(~r)εxc(ρ,∇ρ)d~r (2.10.1)
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2.11 Meta- GGA Functionals

Recently functionals that depend explicitly on the semi-local information in the Lapla-

cian of the spin density or of the local kinetic energy density have been developed.

Such functionals are generally referred to as meta-GGA functionals [34]. The form of

the functional is typically;

Exc ≈
∫
ρ(~r)εxc(ρ, |∇ρ|,∇2, τ)d~r (2.11.1)

Where the kinetic energy density τ is

τ =
1

2

∑
i

|∇ϕi|2 (2.11.2)

2.12 Hybrid Exchange Functionals

There is an exact connection between the non-interacting density functional system

and the fully interacting many body system via the integration of the work done in

gradually turning on the electron-electron interactions. The exact energy could be

computed if one knew the variation of the density-density correlation function with the

coupling constant, l. The LDA is recovered by replacing the pair correlation function

with that for the homogeneous electron gas [35]. The adiabatic integration approach

suggests a different approximation for the exchange-correlation functional. At l = 0

the non-interacting system corresponds identically to the Hartree-Fock ansatz, while

the LDA and GGA functionals are constructed to be excellent approximations for

the fully interacting homogeneous electron gas - that is, a system with l = 1. It is

therefore not unreasonable to approximate the integral over the coupling constant as
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a weighted sum of the end points - that is, we might set:

Exc ≈ aEFock + bEGGA
xc (2.12.1)

2.13 Self-Consistency in Density Functional Cal-

culations

As mentioned, the Hohenberg-Kohn theorem shows that the total energy is varia-

tional, and this is the key to its usefulness. The true ground state density is that

density which minimizes the energy. When approximations are made to Exc[p], such

as the LDA, there is no longer a true variational principle, and there is no guarantee

that the energy obtained by minimizing the now approximate energy functional will

be higher than the exact ground state energy. Clearly then, the relative quality of

different approximations cannot be determined by determining which of them yields

the lower energy [36]. Furthermore, the true ground state density is not in general the

density that minimizes the total energy as determined using approximate functionals.

There is, in fact, no prescription for determining what the exact ground state density

is from approximate functionals.
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Accordingly, calculations proceed by minimizing the approximate energy func-

tional, recognizing that, although the resulting energy may be lower (or higher) than

the true ground state energy, a good approximation to the energy functional should

give a good energy and density and that the procedure is exact for the true energy

functional [37].

2.14 Pseudopotential

The Phillips-Kleinman Construction

The pseudopotential approach originated with the orthogonalized planewave (OPW)

method [38], in which the valence wavefunctions were expanded using a basis consist-

ing of planewaves that were orthogonalized to the lower lying core states, ϕc.

φOPW (K +G) = φPW (K +G)−
∑
α,c

< ϕc|φPW (K +G) > ϕα,c, (2.14.1)

where φPW is a planewave and φOPW is the corresponding OPW, and the sum is over

core states and atoms.

Pseudo-potentials were introduced to model the interaction between ions and va-

lence electrons. They effectively eliminate, from the very start, the true electron-

nuclear potential and the inner core electrons, that is, those electronic states which

are tightly bound to the nucleus, do not participate in the formation of chemical

bonds, and remain approximately unchanged in atoms, molecules, and solids [39,40].

This tremendous conceptual simplification also amounts to a very practical and ef-

ficient computational scheme, especially when a plane-wave basis set is adopted to

expand the electronic wave functions. After 1980, this method, in connection with

a density-functional description of the electron-electron interaction, evolved into a

reliable prescription for the first-principles computation of electronic, structural, and
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dynamical properties of molecules and solids.

The fundamental idea of pseudopotential is the replacement of one problem with

another. The primary applications in electronic structure is to replace the strong

Coulomb potential of the nucleus and the effects of the tightly bound core levels by

an effective ionic potential acting on the valence electrons. The core states remain

almost unchanged (Frozen approximation). Plane wave pseudopotentials are usually

employed because of the extreme simplicity. The strong core potential is replaced by

a pseudopotential. For many elements the resulting pseudo wave functions are quite

smooth.

2.14.1 Orthogonalized Plane Wave (OPW) Method

Orthogonalized plane wave (OPW) begins by explicitly distinguishing between the

core electrons and the valence electrons. The core wave functions are well localized

about the lattice sites. Valence wave functions are approximated by a few plane

waves. The OPW φk is defined by:

φk = ei
~k.~r +

∑
bcψ

c
k(~r) (2.14.2)

where, ψk(~r) is core wave functions.

Orthogonalized plane wave φk satisfy the Bloch condition ion with the wave vector

~k. Therefore, the actual electronic eigenstates of the Shrödinger equation can be

expanded as a linear combination of OPW’s.

ψk =
∑

ckφk+K (2.14.3)
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2.14.2 Model Ion Potential

Pseudopotential has become a fertile field for generating new methods and insight

for the electronic structure of molecules and solids. There are two approaches:- Ionic

Pseudopotential, i.e., for better transferablity and total pseudopotential for describ-

ing bands accurately.

Pseudopotential has the following goals:

(1) Pseudopotential should be as soft as possible, meaning that it should allow ex-

pansion of the valence pseudo-wave equations using as few plane waves as possible.

(2)It should be as transferable as possible (meaning that a pseudopotential generated

for a given atomic configuration should reproduce others accurately).

(3)The pseudo-charge density (the charge density constructed using the density-wave

functions) should reproduce the valence charge density as accurately as possible

[39,40,41].

2.14.3 Norm-conserving Pseudopotential

The pseudo-wave function (and potential) are constructed to be equal to the actual

valence wave function (and potential) outside some core wave function radius rc.

Inside rc, the pseudo-wave functions differ from the true wave function, but the norm

is constructed to be the same.

∫ rc

0

drr2ψ∗ps(~r) =

∫ rc

0

drr2ψ∗(~r)ψ(~r) (2.14.4)

The integrated charge density inside rc for each wave function agrees.
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The wave function and eigenvalue depend on the angular momentum l. The pseudo-

wave function should be l dependent and is called semi-local. In position of norm-

conservation ensures that the logarithm derivative (scattering property) of pseudo

and all electron wave functions much of reference energy [E] and the first derivative

with respect to E matches as well.

Norm conserving pseudopotential has a special class in the development of ab ini-

tio pseudopotential and generated by calculations on atoms and can’t be fitted to

experiment.

2.14.4 Ultra Soft Pseudopotential

Ultra soft pseudopotential defines an auxilary function added to the plane waves

around each atom and allows fewer plane waves for good description. This is in sprit

of OPW but with smooth auxilary function.

Vanderbilt and co-workers [42,43,44] proposed a radical departure from the concept

of norm-conservation. In their approach, the pseudo-wavefunctions are required to be

equal to the all-electron wavefunctions outside rc, as with norm-conserving pseudopo-

tentials, but inside rc they are allowed to be as soft as possible; the norm-conservation

constraint is removed to accomplish this. Although this introduces some complica-

tions, it can greatly reduce the planewave cutoff needed in calculations, particularly

since quite large values of rc can be used in their scheme. The complications that

result are two-fold. First of all, since the pseudo-wavefunctions are equal to the all-

electron wavefunctions (and therefore have the same norm) in the interstitial, but do

not have the same norm inside rc they are necessarily not normalized. This intro-

duces a non-trivial overlap into the secular equation. In fact, the overlap turns out
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to be non-diagonal. Secondly, the pseudocharge density is not obtained by comput-

ing
∑
ϕ∗ϕ as with norm conserving pseudopotentials; among other things this would

yield the wrong total charge. Rather, an augmentation term needs to be added in the

core region. A third, but less important, complication is that by relaxing the norm

conservation, the resulting pseudopotentials can become less transferable. However,

Vanderbilt pseudopotentials were proposed for use in large scale calculations, for

which the cost of generating pseudopotentials is negligible compared with the cost of

the calculations. Accordingly, it is quite feasible to recalculate the pseudopotential

as the configuration evolves during the course of the calculation [41].
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Figure 2.1: Schematic illustration of the replacement of the all-electron wavefunction
and core potential by a pseudo-wavefuntion and pseudopotential.



Chapter 3

Research Methodology

3.1 Materials

An intensive survey of literature from published articles, books and dissertations is

carried out based on the projectile title.

Latex software, Quantum ESPRESSO and computers were additional instruments to

accomplish this project.

3.2 Methodology

Our study is based on Density Functional Theory (DFT) with the Perdew-Burke-

Ernzerhof (PBE) exchange-correlation functional, Vanderbilt ultra soft pseudo po-

tentials [45] and the plane wave basis set implemented in the Quantum-ESPRESSO

program package. Quantum ESPRESSO is an integrated suite of computer codes for

electronic-structure calculations and materials modeling based on density-functional

theory (DFT) , plane waves basis sets (PW) and pseudo potentials (PP). It is freely

available and distributed as open-source software under the terms of the GNU General

Public License (GPL) [46].

28
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At first, an initial guess for the electron density is assumed, which is required

for the calculation of Veff (r), the diagonilization of the Kohn-Sham equations, and

the subsequent evaluation of ρ(r) along with total minimum energy. As long as

the convergence criterion is not fulfilled, the numerical procedure is continued with

the last ρ(r) instead of the initial guess. When criterion is satisfied, various output

quantities are computed [47].
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Figure 3.1: Self Consistent Field of flow chart of the iteration scheme.



Chapter 4

Results and Discussions

4.1 Introduction

In this chapter, the structural and electronic properties of tungsten disulfide, WS2,

is calculated within the frame work of the density functional theory. The important

aspects in studied tungsten disulfide are the total minimum energy and total minimum

force, lattice constant, band structure and density of state ofWS2. Results are mainly

presented in figures. The first results are the total minimum energy per cell with

respect to cutoff as well as K-points sampling and second results are total minimum

forces values for two dimensional WS2 with respect to cutoff and K-points sampling.

Then comes the results for the equilibrium lattice constants, band structure and

density of state of WS2. Graphs were plotted to obtain the optimized parameters

for WS2 structure with in the Perdew-Burke-Ernzerhof (PBE) exchange-correlation

functional, Vanderbilt (ultra soft) pseudopotentials and the plane wave basis set.

4.2 Geometrical Structure of Mono-layer WS2

The primitive cell of WS2 is shown in Figure 4.1. A single-layer of WS2 is composed

of hexagons with S-W-S atoms situated at commutative corners.

31
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Figure 4.1: Geometrical Structure of Mono-layer WS2

4.3 Convergence Test of Total Minimum Energy

of WS2 with Respect to Energy Cutoff

The total minimum energy of WS2 is calculated as a function of energy cutoff. In

this case the input code has 2 × 2 × 1 = 4 K-points mesh and lattice constant of

3.18Å. The calculation was done using different cutoff values, from 20 to 150 Ry. An

increment of energy cutoff for wave function is made until the convergence is achieved

( i.e., the place where the energy becomes nearly constant ). As we can see from the

Figure 4.2, the total minimum energy converges at 90 Ry plane wave cutoff energy

and the total ground state energy had its minimum at -207.45120294 Ry. Moreover,
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the total minimum energy is monotonically decreasing with increasing energy cutoffs

for wave function. The accuracy of the ground state energy depends on the number

of basis functions. However, we can get energy that close to ground state energy as

the number of basis functions approaches infinity.

Figure 4.2: Total minimum energy of WS2 with respect to energy cutoff
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4.4 Convergence Test of Total Energy of WS2 with

Respect to K-point grid

In this case, the calculation was done using different k-point values from 2 × 2 × 1

to 10 × 10 × 1 k-points. The other variables such as lattice constant, energy cutoff,

are kept fixed. The total minimum energy of WS2 is calculated as a function of k-

points grid size using PWSCF code. The total energy of WS2 versus k-points grid

size is shown in Figure 4.3. It can be observed that the total minimum energy of

WS2 converged at 7× 7× 1 K-points grid and the total ground state energy has its

minimum at -207.39508572 Ry.

Figure 4.3: Total minimum energy of WS2 with respect to k-point sampling
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4.5 Convergence Test of Total Force of WS2 with

Respect to Energy Cutoff

In this calculations, we see that the forces on WS2 are zero in x, y and z directions.

This is because of symmetry, which cancels out forces. However, it is possible to create

forces by displacing a W atom +0.05Å in the z directions (fractional coordinates).

Here we calculated total force on WS2 as a function of plane wave cutoff energy by

keeping other parameters fixed. For this calculation, we used the lattice constants

a = 3.18Å and 2 × 2 × 1 k-points grid. In this simulation convergence is achieved

when the energy cutoff is equal to 80 Ry. A total force value at this energy cutoff is

−0.037684Ry/Å.
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Figure 4.4: Total force of WS2 with respect to energy cutoff

4.6 Convergence Test of Total Force of WS2 with

Respect to K-point grid

In this case, the calculation was done using different k-points value from 2 × 2 × 1

to 10 × 10 × 1. Here the other variables such as lattice constant, energy cutoff are

kept fixed. As it is observed in Figure, the total force converges at the grid size of

8 × 8 × 1 k-point mesh; and its value is 0.018640 Ry/Å. Generally, it is true that

different structural geometries will require different k-point meshes in order to reach

convergence.
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Figure 4.5: Total minimum force of WS2 with respect to k-point sampling
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4.7 The Equilibrium Lattice Constant of WS2

To find the equilibrium lattice constant of WS2 we estimated serious of lattice param-

eters from 2.8 to 3.6. In this calculation the energy cutoff and the K-points sampling

are made fixed (90 Ry, 7 × 7 × 1 k-point) using the cutoff and k-point grid criteria

for energy convergence. The numerical calculation shows that the equilibrium lattice

constant is 3.23Å. This result is in good agreement with experimental value.

Figure 4.6: Total energy of WS2 versus lattice constant
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4.8 Band Structure of Two Dimensional WS2

In this work, the energy cutoff and the BZ sampling were chosen to converge the to-

tal energy with a value of 20 Ry and we generated 36 K-points in crystal coordinate.

The energy band structure of the mono-layer WS2 is presented in Figure 4.7. Energy

Figure 4.7: Band Structure of mono-layer 2D WS2

gap between occupied and unoccupied energy levels is among the ways that we can

determine the difference between electrical properties of metals, semiconductor, and

insulator. From band structure of two dimensional WS2 , we calculated the energy

gap which is 1.875 eV. The calculated value has 6.25 percent of error with experi-

mental value (2 eV). The two dimensional mono-layer WS2 has a direct band gap.



40

The presence of a direct band gap in WS2 makes it interesting for applications in

optoelectronics.

4.9 Density of State (DOS) of WS2

The main issue we can see from calculating the DOS of WS2 is the investigation of

electronic transport properties of WS2. From the following Figure 4.8, we see that

before the Fermi level enters the conduction band, there is an insulating regime. The

Fermi level (Ef ) was referenced at 0 eV. The calculated energy gap of mono-layer

WS2 between the occupied and unoccupied energy levels was 1.78 eV and has 6.5

percent of error with experimental value. Semiconductor materials are a sub-class

of materials distinguished by the existence of a range of disallowed energies between

the energies of the occupied level (valence electrons) and the energies of unoccupied

level. Intrinsic semiconductors has (band gap between 1 eV and 3 eV). Since so, our

calculated value shows as our system is semiconductor.
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Figure 4.8: Density of state of WS2



Chapter 5

Conclusion

In this thesis, we investigated structural and electronic properties of two dimensional

WS2 using DFT. The electronic and structural properties of Tungsten disulfide WS2

was investigated within the frame work of the density functional theory (DFT) with

the Perdew Burke-Ernzerhof (PBE) exchange-correlation functional, Vanderbilt (ul-

tra soft) pseudopotentials and the plane wave basis set implemented in the Quantum-

ESPRESSO program package. All calculations have been carried out with Quantum

Espresso package. The total minimum energy calculation is performed as a function

of cutoff energy and Monkhorst pack-grid size (K-points sampling), respectively fixing

the other parameters constant. The total energy convergence test is achieved, at the

energy cutoff 90 Ry for the energy cutoff case and at 7×7×1 k-point grid size for the

K-point sampling case. The total minimum energy is -207.45120294 Ry for the first

case and -207.39508572 Ry for the second case. The total minimum force on WS2 as

a function of cutoff energy and Monkhorst-Pack grid is calculated by displacing W

atom by +0.05Å. Total force convergence test is achieved for the cutoff energy 80 Ry

and for Monkhorst-Pack grid at 8×8×1 k-point grid size. The numerical calculation

shows that the equilibrium lattice constant is 3.23Å.

42
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This value is in good agreement with existing experimental value which is 3.18Å.

In the case of investigating the band gap of WS2, we observed that indirect band gap

of bulk WS2 is changed to direct band gap of WS2. This change makes it interesting

for applications in optoelectronics. Also, experimentally the band gap of 2D WS2 is

about 2.0 eV and our numerical calculation shows 1.875 eV, which has 6.25 percent

of error with the experimental value. Finally, the calculated DOS of WS2 determines

its electrical property. The calculated energy gap of mono-layer WS2 between the

occupied and unoccupied energy levels in case of DOS is 1.78 eV and has 6.5 percent

of error with experimental value. This value shows as this system is semiconductor.
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