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Abstract

Gravitational lensing is one of the powerful methods for astrophysical investigations where

General Relativity (GR) is being applied. But, the appropriate parameters incorporated

in GR are still at debate among the scientific communities. Especially, the incorporation

of cosmological constant Λ was controversial from its origin to its significance. However,

recent progress indicates that cosmological models require a form of dark matter-energy

sector that will behave in an old enough universe with energy content in the form of Λ. So,

here we worked out the effect of Λ in gravitational lensing where an effective refractive index

in vacuum is considered to accommodate it. Thus GR equations were being used to derive

lensing equation in the presence of Λ with simplifying boundary conditions. The adopted

method is so simple but agrees with the one derived from complex and more boundary value

considerations. Moreover, its significant at cosmological scale goes up to 2%, that cannot

be neglected.

Keywords:Gravitational Lensing, Cosmological Conctant Λ
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Chapter 1

General Introduction

1.1 Background of the Study

Gravitational lensing is one of the powerful methods for astrophysical investigations where

General Relativity (GR) is being applied. The appropriate parameters incorporated in GR

are still at debate among the scientific communities.

Within the last 20 years gravitational lensing has changed from being considered a geomet-

ric need to a helpful and in some ways unique tool of modern astrophysics [3].

The term gravitational lensing is used as one of the test of General relativity in the deflec-

tion of light by massive bodies and the associated phenomenon. Although these deflection

of light at the solar limb was very successfully established as the first experiment to confirm

a prediction of Einstein’s theory of General Relativity in 1919, it took more than half a

century to establish this phenomenon observationally in some other environment[18]. By

now almost many different realizations of lensing are known and observed.

Gravitational lensing is the bending of light by matter - displays a number of attractive

features as an academic discipline. Its principles are very easy to understand and to explain

due to its being a geometrical effect. Its ability to produce optical illusions is fascinating

1
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to scientists and Particular people a like. And - most importantly of course - its usefulness

for a number of astrophysical problems makes it an attractive tool in many branches of

astronomy.

The great interest in gravitational lensing comes from the fact that this phenomenon can

be used as an astrophysical and cosmological tool.

Even before more examples becomes known the gravitational lensing effect inspired theo-

rists as to the potential it would have for astrophysics and specially Cosmology. Then the

Cosmology can be done with the Cosmological Model or standard Model. Out of these

Model the ΛCDM(Lambda cold dark matter) model is very know model in cosmology.

The ΛCDM or Lambda-CDM model is a parameterization of the Big Bang cosmological

model in which cosmological issues like age of astronomical objects, origins, size, and age of

the universe we live in is estimated. The universe contains a cosmological constant, which

can be taken as fluid denoted by Lambda (Greek Λ), associated with dark energy, and cold

dark matter (abbreviated CDM)

In the general theory of relativity, light rays follow null geodesics, i.e., the minimum paths

in a curved space-time, when a light ray from a far source interacts with the gravitational

field due to a massive body.

Consistent with Einstein’s Theory of General Relativity, gravitational lensing involves study-

ing how the gravitational field of a massive object will bend light. Mean while, redshift

attempts to gauge the speed at which other galaxies are moving away from ours by mea-

suring the extent to which their light is shifted towards the red end of the spectrum (i.e.

its wavelength becomes longer the faster the source is moving away) [2].

Gravitational lensing is especially useful when it comes to determining how the Universe

came to be. Our current cosmological model, known as the Lambda Cold Dark Matter
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(Lambda CDM) model, states that Dark Energy is responsible for the late-time accelera-

tion in the expansion of the Universe, and that Dark Matter is made up of massive particles

that are responsible for cosmological structure formation.

Based on this standard (ΛCDM) model, my study aim to identify the effect of cosmological

constant in lensing system by Vacuum fluid Approach Within point mass model and several

issues like whether Λ is geometrical constant or a pure scalar function.

1.2 Statement of the Problem

Since the discovery of Einstein’s GTR, its field equations have already initiated viable

researches including cosmological issues like age of astronomical objects, origins, size, and

age of the universe we live in. Today, we can relatively tell how old our unverse is and so on

using gravitational lensing. However, the models of this lensing itself is not yet complete.

Within the framework of the standard ΛCDM model there are several issues like whether

Λ is geometrical constant or a pure scalar function and so on need still investigation.

Research questions

• How does gravity affect light geodesy?

• What is the appropriate lensing equation in the presence of cosmological constant?

• What are the relevant parameters entering in the lensing equations that determine

the age, size, origin of our universe?

1.3 Objectives

1.3.1 General Objectives

To study gravitational lensing in the standard ΛCDM cosmology.
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1.3.2 Specific Objectives

• To determine the effect of gravity on light geodesy and its implications.

• To derive lensing equation in the presence of cosmological constant.

• To extract and describe relevant parameters entering in the lensing equations that

determine the age, size, origin of our universe.

1.4 Research Methodology

General theory of relativity is considered in the presence of positive cosmological constant to

derive gravitational lensing equation with the simple point source boundary condition. The

background medium is considered as a continues smeared fluid of varying refractive index

as a function of radial distance and cosmological constant. All the angular distances also

consider the cosmological constant and the expanding universe scenario by way of the trans-

formation between the static and co-moving coordinates. The lensing equation assumes the

deflectors (the lens) and the sources positions angular distances through the observed red-

shifts by Hubble and Lemaitre law. Then, the analytically derived Lens equations are being

used to calculate some numerical values to compare with observation, For the computation

Mathematica 11 is used.

1.5 Acronyms

In this thesis there is abbreviated words that one can not know the meaning of them but

the researcher and other person who related with the field knows and the researcher can

use them, so we give the meaning of them as follow

• GTR or GR = General theory of relativity.
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• GL = Gravitational lensing

• ΛCDM= Lambda cold dark matter.

• EFE = Einstein’s field equation.

• CMB=Cosmic microwave background.

• FGRS=Field galaxy redshift survey.

• WMAP= Wilkinson microwave anisotropy probe

and other such like abbreviated words can be used in these thesis.



Chapter 2

Introduction to General Theory of

Relativity

General relativity is the geometric theory of gravitation. One of Einsteins great insights

was to make general relativity a geometric theory of gravitation.

In special relativity, spacetime is the arena for physics. Spacetime consists of events, which

require four numbers for their complete specification: three numbers to give the spatial

location with respect to some chosen coordinate grid, and one number to give the time.

Geometrically, spacetime is represented by a four-dimensional manifold (surface), each point

in the manifold corresponding to an event in spacetime.

The general theory of relativity is a classical field theory of gravitation in which all variables

are assumed to be continuous and are uniquely specified.[20, 22]

The basic philosophy of general relativity is to relate the geometry of space time, which

determines the motion of matter, to the density of matter-energy, known as the stress energy

tensor. This relation is accomplished through the Einstein field equations. The geometry

of space-time is dictated by the metric tensor which defines the properties of that geometry

6
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and basically describes how travel in one coordinate involves another coordinate, so that

ds2 = gµνdxµdxν (2.0.1)

The elements of the metric tensor are dimensionless; for ordinary Euclidean space they are

all unity if µ = ν and zero otherwise.

General relativity is defined on a four dimensional Riemannian manifold. [20] Coordinates

in this non-Euclidian space are denoted by xµ = (x0, x1, x2, x3).

Now the field equations relate second derivatives of the metric tensor to the properties of

the local matter-energy density expressed in terms of the stress-energy tensor. Specifically

the Einstein field equations are

Gµν =
8πG

c2
Tµν (2.0.2)

Here

• Gµν is known as the Einstein tensor and

• Tµν is the stress energy tensor in physical units (say grams per cubic centimeter).

• The quantity G/c2 is a very small number in any common system of units, which

shows that the departure from Euclidean space is small unless the stress-energy is

exceptionally large.

In GR it is assumed that all matter moves in an effective pseudo-Riemannian metric space-

time with a universal coupling, governed by the Einstein Equivalence Principle, consisting

of two parts;[14]

• The Weak Equivalence Principle: Given the same initial positions and velocities,

subject only to gravity particles will follow the same trajectories, or geodesics. In

other words, particles all fall with the same acceleration regardless of composition

and consequently gravity is universal.
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• The Strong Equivalence Principle: The laws of physics take the same form in a

freely-falling reference frame as in SR. Effectively, gravity can always be eliminated

at a point.

The first three tests of General Relativity were proposed by Einstein, the gravitational

redshift, the deflection of light by massive bodies and the perihelion shift of Mercury.

2.1 Einstein Field Equation

The Einstein field equations (EFE; also known as Einsteins equations) comprise the set

of equations in Albert Einsteins general theory of relativity that describe the fundamental

interaction of gravitation as a result of spacetime being curved by mass and energy. Sim-

ilar to the way that electromagnetic fields are determined using charges and currents via

Maxwells equations.[14]

The EFE are used to determine the spacetime geometry resulting from the presence of mass

energy and linear momentum, i.e; they determine the metric tensor of spacetime for a given

arrangement of stress energy in the spacetime.

Einstein’s equation tells us how the presence of matter curves space-time, and so we need

to describe the matter under consideration. The Einstein field equations (EFE) may be

written in the form

Rµν −
1
2
Rgµν + Λgµν =

8πG

c4
Tµν (2.1.1)

where

• Rµν- is the Ricci curvature tensor,

• R -is the scalar curvature,

• gµν -is the metric tensor,
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• Λ -is the cosmological constant,

• G -is Newtons gravitational constant,

• c -is the speed of light in vacuum, and

• Tµν -is the stress energy tensor.

The EFE is a tensor equation relating a set of symmetric 4 x 4 tensors. Each tensor has

10 independent components. The four Bianchi identities reduce the number of independent

equations from 10 to 6, leaving the metric with four gauge fixing degrees of freedom, which

correspond to the freedom to choose a coordinate system.

In fact, when fully written out, the EFE are a system of ten coupled, nonlinear, hyperbolic-

elliptic partial differential equations.

One can write the EFE in a more compact form by defining the Einstein tensor.

Gµν = Rµν −
1
2
Rgµν (2.1.2)

Which is a symmetric second-rank tensor that is a function of the metric. The EFE can

then be written as

Gµν + Λgµν =
8πG

c4
Tµν (2.1.3)

In standard units, each term on the left has units of 1/length2. With this choice of Einstein

constant as 8πG/c4, then the stress-energy tensor on the right side of the equation must be

written with each component in units of energy-density (i.e., energy per volume = pressure).

Using geometrized units where G = c = 1, this can be rewritten as

Gµν + Λgµν = 8πGTµν (2.1.4)

The expression on the left represents the curvature of spacetime as determined by the

metric; the expression on the right represents the matter/energy content of spacetime. The
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EFE can then be interpreted as a set of equations dictating how matter/energy determines

the curvature of spacetime.

2.2 Cosmological constant

Einstein modified his original field equations to include a cosmological constant term Λ

proportional to the metric

Rµν −
1
2
Rgµν + Λgµν =

8πG
c4

Tµν

Since Λ is constant, the energy conservation law is unaffected.

The cosmological constant term was originally introduced by Einstein.

Despite Einstein’s motivation for introducing the cosmological constant term, [5] there is

nothing inconsistent with the presence of such a term in the equations. For many years the

cosmological constant was almost universally considered to be 0. However, recent improved

astronomical techniques have found that a positive value of Λ is needed to explain the

accelerating universe. However, the cosmological constant is negligible at the scale of a

galaxy or smaller.

Einstein thought of the cosmological constant as an independent parameter, but its term

in the field equation can also be moved algebraically to the other side, written as part of

the stressenergy tensor

T (vac)
µν = − Λc4

8πG
gµν

The resulting vacuum energy density is constant and given by

ρ(vac) =
Λc2

8πG

The existence of a cosmological constant is thus equivalent to the existence of a non-zero

vacuum energy. Thus, the terms ”cosmological constant” and ”vacuum energy” are now
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used interchangeably in general relativity.

A positive vacuum energy density resulting from a cosmological constant implies a negative

pressure, and vice versa. If the energy density is positive, the associated negative pressure

will drive an accelerated expansion of the universe, as observed.

2.2.1 Positive Value of Cosmological Constant

Observations announced in 1998 of distanceredshift relation for Type Ia supernovae(Supernova

Cosmology Project (Perlmutter et al. (1999)) indicated that the expansion of the universe

is accelerating. When combined with measurements of the cosmic microwave background

radiation these implied a value of ΩΛ ∼ 0.7( Baker et al. (1999)) [15] a result which

has been supported and refined by more recent measurements. There are other possible

causes of an accelerating universe, such as quintessence, but the cosmological constant is in

most respects the simplest solution. Thus, the current standard model of cosmology, the

Lambda-CDM model, includes the cosmological constant, which is measured to be on the

order of 10−52m−2, in metric units. It is often expressed as 10−35s−2 or 10−122(Barrow and

Shaw (2011)) in other unit systems. The value is based on recent measurements of vacuum

energy density, ρvacuum = 5.96 × 10−27 kg/m3 or 10−47GeV 4,in other unit systems. As

Figure 2.1: Lambda-CDM, accelerated expansion of the universe. The time-line in this
schematic diagram extends from the Big Bang/inflation era 13.7 Byr ago to the present
cosmological time.
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was only recently seen, by works of ’t Hooft, Susskind and others, a positive cosmological

constant has surprising consequences, such as a finite maximum entropy of the observable

universe.[2]

In addition to the above when formulating general relativity, Einstein believed that the

Universe was static, but found that his theory of general relativity did not permit it. This

is simply because all matter attracts gravitationally; none of the solutions we have found

correspond to a static Universe with constant a. In order to arrange a static Universe, he

proposed a change to the equations, something he would later famously call his ”greatest

blunder”. That was the introduction of a cosmological constant.

The introduction of such a tenn is permitted by general relativity, and although Einstein’s

original motivation has long since faded, it is currently seen as one of the most important

and enigmatic objects in cosmology. The cosmological constant Λ appears in the Friedmann

equation as an extra term, giving

H2 =
8πG

3
ρ− κ

a2
+

Λ
3

(2.2.1)

In principle, Λ can be positive or negative, though the positive case is much more commonly

considered. Einstein’s original idea was to balance curvature, Λ and ρ to get H(t) = 0 and

hence a static Universe. In fact, this idea was rather misguided, since such a balance proves

to be unstable to small perturbations, and hence presumably couldn’t arise in practice.

Nowadays, the cosmological constant is most often discussed in the context of Universes

with the flat Euclidean geometry, κ = 0

The effect of Λ can be seen more directly from the acceleration equation. By using the

Friedmann equation as given above, gives

ä
a

= −4πG
3

(ρ +
3p

c2
) +

Λ
3

(2.2.2)
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A positive cosmological constant gives a positive contribution to ä, and so acts effectively

as a repulsive force. In particular, if the cosmological constant is sufficiently large, it

can overcome the gravitational attraction represented by the first term and lead to an

accelerating Universe [6].



Chapter 3

Gravitational Lensing

3.1 Introduction

As we know in classical optics lensing is the process by which transparent apparatus like

glasses, human eye refract light. As the lens is curved, the image gets focused to a smaller

area Depending on the lens we use, it can make objects bigger or clearer.

By GR principle gravity is deflect all objects including light. The deflection of light by

gravity is know as gravitational lensing.

A massive object has far reaching gravitational field and it causes the light passing near or

through it to bent. So, the light will be refocused elsewhere. The bending will be more if

the object is massive as the gravitational field will be huge.

A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a

distant light source and an observer, that is capable of bending the light from the source

as the light travels towards the observer. This effect is known as gravitational lensing,

and the amount of bending is one of the predictions of Albert Einstein’s general theory of

relativity.[9]

General relativity predicts that the path of light will follow the curvature of spacetime as

14
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it passes near a star. This effect was initially confirmed by observing the light of stars or

distant quasars being deflected as it passes the Sun.

Gravitational lensing is the astrophysical phenomenon where by the propagation of light is

Figure 3.1: Deflection of light (sent out from the location shown in blue) near a compact
body (shown in gray)

affected by the distribution of mass in the universe. As photons travel across the universe,

their trajectories are perturbed by the gravitational effects of mass concentrations with

respect to those they would have followed in a perfectly homogeneous universe.

Also Reported by [15] ”A consequence of the relativistic phenomenon of light rays bending

around gravitating masses is that masses can serve as gravitational lenses if the distances

are right and the gravitational potential is sufficient”.

Further more ”When a light-ray passes through the gravitational field of a large mass it is

bent in the same sense as a converging lens. The gravitational field of a spherical mass is

a somewhat odd lens in that the amount of bending decreases away from the axis. This

means that an extended object on the axis is focused into a ring (an Einstein ring) by an
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intervening spherical mass.”

3.2 Historical Development of Gravitational Lensing

3.2.1 The Early Years, Before General Relativity

As referred in [11] The Newtonian theory of gravitation predicts that the gravitational force

F on a particle of mass m is proportional to m, so that the gravitational acceleration a =

F/m is independent of m. Therefore, the trajectory of a test particle in a gravitational field

is independent of its mass but depends, for a given initial position and direction, only on

the velocity of the test particle. About 200 years ago, several physicists and astronomers

speculated that, if light could be treated like a particle, light rays may be influenced in a

gravitational field as well. John Mitchell in 1784, in a letter to Henry Cavendish, and later

Johann von Soldner in 1804, mentioned the possibility that light propagating in the field

of a spherical mass M (like a star) would be deflected by an angle α̂ = 2GM/(c2ξ), where

G and c are Newton constant of gravity and the velocity of light, respectively, and ξ is

the impact parameter of the incoming light ray. At roughly the same time, Pierre-Simon

Laplace in 1795 noted that the gravitational force of a heavenly body could be so large, that

light could not flow out of it (Laplace 1975), i.e., that the escape velocity ve =
√

2GM/R

from the surface of a spherical mass M of radius R becomes the velocity of light, which

happens if R = Rs = 2GM/c2, nowadays called the Schwarzschild radius of a mass M.

3.2.2 Gravitational Light Deflection in GR

All these results were derived under the assumption that light some how can be considered

like a massive test particle; this was of course well before the concept of photons was

introduced [11]. After the formulation of general relativity by Albert Einstein in 1915 the

behavior of light in a gravitational field be studied on a firm physical ground. Before the
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final formulation of GR, Einstein published a paper in 1911 where he recalculated the results

of Mitchell and Soldner (of whose work he was unaware) for the deflection angle. Only after

the completion of GR did it become clear that the Newtonian value of the deflection angle

was too small by a factor of 2. In the general theory of relativity, the deflection is

α̂ =
4GM

c2ξ
= 1′′.75(

M

M⊙ )(
ξ

R⊙ )−1 (3.2.1)

The deflection of light by the Sun can be measured during a total solar eclipse when it is

possible to observe stars projected near the Solar surface.

The first observation of light [14] deflection was performed by noting the change in position

of stars as they passed near the Sun on the celestial sphere. The observations were performed

in 1919 by Arthur Eddington, Frank Watson Dyson, and their collaborators during the total

solar eclipse on May 29.The solar eclipse allowed the stars near the Sun to be observed.

light deflection then slightly changes their positions. A measurement of the deflection in

1919, with a sufficient accuracy to distinguish between the Newtonian and the GR value,

provided a tremendous success for Einsteins new theory of gravity.

Soon thereafter,[11] Lodge (1919) used the term lens in the context of gravitational light

deflection, but noted that it has no focal length. Chwolson (1924) considered a source

perfectly coaligned with a foreground mass, concluding that the source should be imaged as

a ring around the lens. Einstein, in 1936, after being approached by the Czech engineer Rudi

Mandl, wrote a paper where he considered this lensing effect by a star, including both the

image positions, their separation, and their magnifications. He concluded that the angular

separation between the two images would be far too small (of order milli-arcseconds) to be

resolvable, so that there is no great chance of observing this phenomenon (Einstein 1936).
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Figure 3.2: One of Eddington’s photographs of the 1919 solar eclipse experiment, presented
in his 1920 paper announcing its success

3.2.3 The Revival of Lensing

Until the beginning of the 1960s the subject rested, but in 1963/4, three authors indepen-

dently reopened the field [11]: Klimov (1963), Liebes (1964) and Refsdal (1964a,b). Klimov

considered lensing of galaxies by galaxies, whereas Liebes and Refsdal mainly studied lensing

by point-mass lenses. Their papers have been milestones in lensing research; for example,

Liebes considered the possibility that stars in the Milky Way can act as lenses for stars

in M31 we shall see in ML, this is a truly modern idea. Refsdal calculated the difference

of the light travel times between the two images of a source since light propagates along

different paths from the source to the observer, there will in general be a time delay which

can be observed provided the source is variable, such like a supernova. Refsdal pointed out

that the time delay depends on the mass of the lens and the distances to the lens and the
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source, and concluded that, if the image separation and the time delay could be measured,

the lens mass and the Hubble constant could be determined [11].

In 1963, the first quasars were detected: luminous, compact (quasi-stellar) and very distant

sources hence, a source population had been discovered which lies behind Zwickys nebulae,

and finding lens systems amongst them should be a certainty. In 1963, a Dutch astronomer

Figure 3.3: Bending light around a massive object from a distant source. The orange arrows
show the apparent position of the background source. The white arrows show the path of
the light from the true position of the source.

named Maarten Schmidt identified the first quasar (Schmidt 1963) using optical and radio

telescopes. Quasars are distant galaxies that harbour an active nucleus, consisting of a

supermassive black hole accreting matter in the shape of a disk.

Around the same time, [11] three astrophysicists independently revived the interest for

gravitational lensing. In 1963, the USSR scientist Yu Klimov provided a mathematical de-

scription of lensing by galaxies (Klimov 1963a,c,b). In a 1964 paper, Sidney Liebes studied

the probability of a stellar lens detection (Liebes 1964). The same year, Sjur Refsdal pub-

lished two papers on the subject: the first one proposes a geometrical optics description of

a point-mass lens. The second one highlights the possibility of using gravitational lensing
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observations to measure the Hubble parameter, giving for the first time a cosmological ap-

plication to this phenomenon [4].

Finally, in 1979, the first observation of gravitational lensing of a quasar by a galaxy is

confirmed. Dennis Walsh, Bob Carwell and Ray Weymann observed a pair of twin quasars,

with the same spectrum at the same redshift, separated by a short distance (Walsh et al.

1979). They suggested immediately upon discovery that this twin object was in fact two

images of the same background quasar formed through gravitational lensing. Shortly after,

the elliptical galaxy responsible for the lensing had been identified by Stockton (1980). The

second lensing candidate was discovered that same year (Weymann et al. 1980).

3.3 Form of Gravitational Lensing

Gravitational lensing is a consequence of one of the most famous predictions of Einsteins

General Relativitythe idea that light is bent in a gravitational field.

There are three main forms of gravitational lensing:

3.3.1 Strong Gravitational Lensing

The first strong gravitational lens, discovered in 1979, was indeed linked to a quasar (QSO

0957+561 [19]), and although the phenomenon was expected on theoretical grounds, it left

the astronomers surprise. The existence of two objects separated by about 6”(6 arcsec) and

characterized by an identical spectrum led to the conclusion that they were the doubled

image of the same quasar, clearly showing that Zwicky was perfectly right and that galaxies

may act as gravitational lenses.

Afterwards, also the lens galaxy was identified, and it was established that its dynamical

mass, responsible for the light deflection, was at least ten-times larger than the visible mass.
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This double quasar was also the first object for which the time delay (about 420 days) be-

tween the two images [19], due to the different paths of the photons forming the two images,

has been measured. This has also allowed obtaining an independent estimate of the lens

galaxy dynamical mass. Observations can also show four images of the same quasar, as in

the case of the so-called Einstein Cross, or when the lens and the source are closely aligned,

one can observe the Einstein ring.

The macroscopic effect of multiple images formation is generally called strong lensing, which

also consists of the formation of arcs, as those clearly visible in the deep sky field images

by the Sloan Digital Sky Survey (SDSS). The sources of strong lensing events are often

quasars, galaxies, galaxy clusters and supernovae, whereas the lenses are usually galaxies

or galaxy clusters. The image separation is generally larger than a few tenths of an arcsec,

often up to a few arcsecs.

Strong gravitational lensing is nowadays a powerful tool for investigation in astrophysics

[9]. Strong lensing gives a unique opportunity to measure the dynamical mass of the lens

object using, for example, the mass estimator M(< RE) = πΣcrθ
2
E .

Light rays leaving a source in different directions are focused on the same point by the

intervening galaxy or cluster of galaxies. These are called strong lenses.

The first strong lensing observation was of the doubly imaged quasar Q0957+561 by Walsh,

Carswell, and Weymann (1979). An optical image of QSO 0957+561 taken by HSTs WF-

PCII camera is shown in Figure 3.4. The magnification produced by strong lensing affects

the observable properties of active galaxies, quasars, and any other lensed sources. Strong

lensing also may provide information for cosmology. For example, the time delay among the

multiple images of a quasar can be used to measure the Hubble constant. The first large
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Figure 3.4: HST image of QSO 0957+561.(Soucail et al.1987a)

luminous arc produced by strong lensing (Figure 3.5) was found in the massive nearby clus-

ter, Abell 370, in 1986 by Lynds and Petrosian (1986) at Kitt Peak National Observatory

(KPNO) and by Soucail et al. (1987a) at the Canada France Hawaii Telescope (CFHT).

Giant arcs are due to the lensing effect of rich clusters of galaxies on background galax-

ies, with huge magnifications that can distort the galaxy shapes into long arcs around the

clusters cores. The cluster Abell 2218 contains the most famous example of gravitationally

lensed arcs (Figure 3.6). Until recently, the most massive galaxies and galaxy clusters have

been the object of gravitational lensing studies. Galaxy groups are comprised of a lower

density of galaxies than clusters, making them more difficult to detect.

After some controversy regarding whether ΛCDM (cold dark matter plus Cosmological

Constant) simulations predict enough dark matter substructures to account for the obser-

vations, some indication is found of an excess of massive galaxy satellites), more recent

analysis, taking also into account the uncertainty in the lens system ellipticity, finds results

consistent with those predicted by the standard cosmological model. The strong lensing

systems is main point we study under this thesis by Using ΛCDM Model. Three proper-

ties make strong gravitational lensing a most useful tool to measure and understand the
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Figure 3.5: First observed giant gravitational arc (Soucail et al.1987a).

universe.

• Firstly,strong lensing observable - such as relative positions, flux ratios, and time de-

lays between multiple images - depend on the gravitational potential of the foreground

galaxy (lens or deflector) and its derivatives.

• Secondly, the lensing observable also depend on the overall geometry of the universe

via angular diameter distances between observer, deflector, and source.

• Thirdly, the background source often appears magnified to the observer, sometimes

by more than an order of magnitude.

As a result, gravitational lensing can be used to address three major astrophysical issues:

• Understanding the spatial distribution of mass at kpc and sub-kpc scale where baryons

and DM interact to shape galaxies as we see them;
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Figure 3.6: Foreground galaxies in the cluster Abell 2218 distort the images of background
galaxies. Giant elliptical arcs surround the central region of the cluster at right.

• Determining the overall geometry, content, and kinematics of the universe;

• Studying galaxies, black holes, and active nuclei that are too small or too faint to be

resolved or detected with current instrumentation.

3.3.2 Weak Lensing

In the deep field surveys of the sky, also arclets (i.e., single distorted images with an el-

liptical shape) and weakly distorted images of galaxies, with an almost invisible individual

elongation, have been detected. This effect is known as weak lensing and is playing an

increasingly important role in cosmology.

The weak lensings main feature is the shape deformation of background galaxies, whose

light crosses a mass distribution (e.g., a galaxy or a galaxy cluster) that acts as a gravi-

tational lens. Actually, gravitational lensing gives rise to two distinct effects on a source

image: convergence, which is isotropic, and shear, which is anisotropic. In the weak lensing

regime, the observer makes use of the shear, that is the image deformation (sometimes re-

lated to the galaxy orientation), while the convergence effect is not used, since the intrinsic

luminosity and the size of the lensed objects are unknown.
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The first weak lensing event was detected in 1990 as statistical tangential alignment of

galaxies behind massive clusters [12], but only in 2000, coherent galaxy distortions were

measured in blind fields, showing the existence of the cosmic shear [12].The weak lensing

cannot be measured by a single galaxy, but its observation relies on the statistical analysis

of the shape and alignment of a large number of galaxies in a certain direction.

There are at least two major issues in weak lensing studies, one mainly relying on the the-

ory, the other one on observations: the former concerns finding the best way to reconstruct

the intervening mass distribution from the shear field γ = (γ1, γ2), the latter with looking

for the best way to determine the true ellipticity of a faint galaxy, which is smeared out

by the instrumental point spread function PSF). To solve these issues, several approaches

have been proposed, which can be distinguished into two broad families: direct and inverse

methods. On the theoretical side, the direct approaches are: the integral method, which

consists of expressing the projected mass density distribution as the convolution of γ by a

kernel, and the local inversion method, which instead starts from the gradient of φ (e.g.,

under [9] and the references therein). The inverse approaches work on the lensing potential,

and they include the use of the maximum likelihood or the maximum entropy methods to

determine the most likely projected mass distribution that reproduces the shear field. The

inverse methods are particularly useful since they make it possible to quantify the errors in

the resultant lensing mass estimates, as, for instance, errors deriving from the assumption

of a spherical mass model when fitting a non-spherical system.

The inverse methods allow one also to derive constraints from external observations, such

as X-ray data on galaxy clusters strong lensing or CMB lensing. In particular, one can

compare mass measurements from weak lensing and X-ray observations for large samples

of galaxy clusters.
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weak lensing observations showed that the mass was largely concentrated around the galax-

ies themselves, and this enabled a clear, independent measurement of the amount of dark

matter.

3.3.3 Microlensing

The Microlensing lensing is the phenomenon that occurs when θE is smaller than the typical

telescope angular resolution, as in the case of stars lensing the light from background stars.

If the source and the lens are aligned (first panel on the left), the circular symmetry of the

problem leads to the formation of a luminous annulus having radius θE around the lens

position. Otherwise, increasing the θS value, the secondary image gets closer to the lens

position, while the primary image drifts apart from it, and in the limit of θs � θE , the

microlensing phenomenon tends to disappear. However, observing multiple images during a

microlensing event is practically impossible with the present technology. [19] For instance,

in the case in which the phenomenon is maximized, corresponding to the perfect alignment.

3.4 Applications Gravitational Lensing

3.4.1 Measure Mass and Mass Distributions

Gravitational light deflection is determined by the gravitational field through which light

propagates. This in turn is related to the mass distribution via the Poisson equation (or its

GR generalization). It is essential to realize that this simple fact implies that gravitational

light deflection is independent of the nature of the matter and of its state lensing is equally

sensitive to dark and luminous matter, and to matter in equilibrium or far out of it. On

the negative side, this implies that lensing alone cannot distinguish between these forms

of matter, but on the positive side, it also cannot miss one of these matter forms. Hence,

lensing is an ideal tool for measuring the total mass of astronomical bodies, dark and
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luminous.

Weak lensing studies of clusters estimate the mass distribution to much larger radii than

the strong lensing regime [21], and like strong lensing effects, probe for asymmetries and

substructures in the cluster mass. In fact, substructure in the mass distribution of lens

galaxies has been detected, thereby confirming one of the robust predictions of the Cold

Dark Matter model for our Universe. In addition, the mass distribution of galaxies at large

radii, where one runs out of local dynamical tracers, can be studied statistically using an

effect called galaxygalaxy lensing.

3.4.2 Constraining the Number Density of Mass Concentrations

The probability for a lensing event to occur (e.g., the fraction of high-redshift sources

that are multiply imaged, or the fraction of stars undergoing microlensing) depends on the

projected number density of potential lenses [21]. Hence, by investigating statistically well-

defined samples of sources and their lensed fraction, we can infer the number density of

lenses. Examples of such studies are estimates of the number density of compact objects in

the dark halo of our Galaxy, the redshift evolution of the number density of galaxies acting

as strong lenses, and the number density of clusters producing strong and weak lensing

signals. Upper limits on the number of lensing events can also be translated into upper

bounds on the number density of putative lenses: e.g., the fact that nearly all multiply-

imaged sources have a visible lens galaxy puts strong upper bounds on the number density

of dark lenses (they can at most provide a few percent of the galaxy-mass objects), and the

non-detection of lens systems with image separations of tens of milli-arcseconds provides

bounds on the number density of compact galaxies with masses ∼ 109M⊙. In fact, by

now lensing has put stringent constraints on the population of compact massive objects in

the Universe over an extremely broad range of mass scales, from ∼ 10−3M⊙ (from upper
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limits on the variability of distant quasars) to ∼ 1016M⊙ (from the absence of very wide

pairs of quasars), with only a few mass gaps within this range. Even lower-mass objects

(∼ 10−6M⊙) can be ruled out as significant contributors to the dark matter in our Milky

Way.

3.4.3 Cosmological Parameters

Following Refsdals idea, the Hubble constant can be obtained from the time delay in mul-

tiple image systems. This method has the advantage of being independent of the usual

distance ladder used in determinations of H0, and it also measures the Hubble constant

on a truly cosmic scale, in contrast to the quite local measurements based on Cepheid dis-

tances. Despite the determination of time delays in a number of systems, values for H0 by

lensing are burdened with the uncertainties of the lens models; however, there is a trend

toward slightly lower values of the Hubble constant than obtained from Cepheids. Other

cosmological parameters can also be obtained from lensing [21]. For example, the fraction

of lensed high-redshift quasars when combined with the distribution of image separations

can be used to estimate the cosmological model. Weak lensing by the large-scale structure

is sensitive to the matter density parameter and the normalization of the density fluctua-

tions, and significant constraints on these parameters have been obtained. In particular in

combination with results from the anisotropy of the cosmic microwave background, future

cosmic shear studies will provide an invaluable probe of the equation of state of the dark en-

ergy. Weak lensing has also successfully been used to determine the bias parameter, which

describes the relation between the statistical distribution of galaxies and the underlying

dark matter, and for which only few alternative methods are available.
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3.4.4 Lenses as Natural Telescopes

Since a lens can magnify background sources, these appear brighter than they would without

a lens. This makes it easier to investigate these sources in detail, e.g. through spectroscopic

observations. In some cases, this magnification is even essential to detect the sources in the

first place, provided their lensed brightness just exceeds the detection threshold of a sur-

vey or of the current instrumental sensitivity. This magnification effect has in fact yielded

spectacular results, such as very detailed spectra of very distant galaxies, the detection of

some of the highest redshift galaxies behind cluster lenses, and the detection of very faint

sub-millimeter sources in cluster fields.

With the lenses as magnifiers, larger effective angular resolution of the sources is obtained.

Galaxies acting as sources for giant arcs can therefore be resolved in unprecedented detail,

at least in one dimension. The host galaxy of quasars, which is difficult to study in unlensed

objects owing to the large brightness contrast between the active nucleus and the surround-

ing host, can be studied much more easily when lensing allows the spatial resolution of the

host in many cases, the host galaxy is in fact mapped into an Einstein ring.

3.4.5 Searches for Planets

As refereed in [12], the light curves of Galactic microlensing events are affected by com-

panions of the main lens. For example, light curves of binary stars are readily identified

as such, provided their separation falls into a favorable range determined by the geometry

of the lens system. Because of that, even planets will leave an observable trace in the mi-

crolensing light curves if they are situated at the right radius from the star and at the right

orbital phase. Although these traces can be quite subtle, and last for a short time only,

current observing campaigns aimed at the search for planets have the sensitivity for their

detection, and several candidate events for the detection of planetary signals in microlensing
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light curves have been reported. Indeed, microlensing is considered to be the simplest (and

cheapest) possibility to detect the presence of low-mass planets around distant stars (ML).

These few examples should suffice to illustrate the broad range of applications of gravi-

tational lensing; the ever increased publication rate of articles investigating and applying

gravitational lensing underlines the timeliness of the subject.

3.5 General Lens System

The description of a mass distribution as a point mass (Schwarzschild lens) is only sufficient

for GL considerations [9]. Even if the deflector is a star, its gravitational field is distorted

in most realistic cases, either because the star is part of a galaxy which provides a tidal

gravitational field, or a disturbance is due to galaxies lying near the line-of-sight to the

source therefore, introduces an additional distortion.Hence, the Schwarzschild lens is an

idealization; however, it is extremely useful, not only because of its simple properties, but

also because such a simple model provides relations, e.g., between lens mass, the distances

to lens and source, and angular separation between the images of a lensed source, which are

of the same order of-magnitude as those for more realistic lenses.whereas a Schwarzschild

lens (and other matter distributions with spherical symmetry) can produce ring-shaped

images of arbitrarily small sources, a general lens does not have this property.

3.5.1 Description of a general lensing situation

Fig. 3.8 is a typical lensing situation.[9] Consider the source sphere Ss, i.e., a sphere with

radius Ds , centered on the observer 0, and, correspondingly, the deflector sphere Sd with

radius Dd , i.e., the distance to the center of the lens L [12]. Here we assume that the lens

has a velocity relative to a comoving observer which is much smaller than the velocity of

light. We call the straight line through 0 and L the optical axis, which serves as a reference
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Figure 3.7: A general GL system; the ’center’ of the lens is at L, and the line through L
and the observer is the ’optical axis’. Relative to that, the source S has an undisturbed
angular position β. A light ray SI’O from the source is deflected by an angle α̂, so that an
image of the source is observed at position θ. Due to the smallness of all angles present, we
can replace the real light ray by its approximation SIO, and the source and lens spheres by
their tangent planes.(Source [9])

line; it intersects the source sphere at N. In addition, consider the observer sphere So which

is the apparent ”sky” of the observer. On So, the source would have angular position β if the

light rays from the source S were not influenced by the gravitational field of the deflector.

However, since the lens does bend light rays, the straight line SO is no longer a physical ray

path. Rather, there are light rays which connect source and observer but which are curved

near Sd. One such ray Sl’O is drawn, together with its approximation SID, consisting of

the two asymptotes of the real ray. The angle α̂ between the two asymptotes SI and IO

is the deflection angle caused by the matter distribution L. The observer will thus see the
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source at the position θ on his sphere So.

3.5.2 The deflection angle

General relativity predicts that a dense object bends the space-time continuum in its vicin-

ity.In the general relativistic case, however, gravity affects both the spatial and time com-

ponent of the photons path, so that the actual bending is twice this value. Thus, we define

the angle of deflection, otherwise known as the Einstein angle, as[1].

A simple sketch of the deflection is shown on Figure 3.8. The deflection angle α̂ on a light

ray passing by a mass M at a distance b is:

α̂ =
4GM

bc2
. (3.5.1)

where G is the gravitational constant and c the speed of light.

Figure 3.8: The deflection of a light by a mass M, O is the observer, b is the impact
parameter

3.5.3 The lens equation

Let us consider first a point-like mass M. The aim is to express the deflection angle as

a function of observables quantities. Figure 3.9 represents the situation of an observer

O observing the image I of a source S lensed by L. DL, DS and DLS are the respective
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Figure 3.9: A diagram of gravitational lensing by a lens L of a light ray emitted by a source
S into an image I as seen by the observer O Credit: Chantry (2009)[1]

distances between the observer, the lens, and the source. At cosmological scales, it can be

assumed that these distances are much larger than the typical size of a galaxy. This yields

two reasonable working hypotheses: first, the thin lens approximation, which means that all

the mass of the lens is concentrated in a plane at a distance DL. The same approximation is

tacitly assumed for the background source. Second, the small-angle approximation makes it

possible to approach a few trigonometrical functions of the angles by the size of the angles

themselves. α is the apparent angle between the source and its lensed image, as measured

by the observer, whereas α̂ is that same angle, as measured from the lens plane

They are linked by the following reduced deflection angle equation

α =
DLS

DS
α̂ (3.5.2)

β is the angular position of the source and θ is the angular position of the lensed image,

both as seen by the observer. θ is usually the only observable angle. b is the distance from

the lens to the intersection between the light ray and the lens plane.

Under the small-angle hypothesis, using trigonometry, we have

θDS = βDS + α̂DLS (3.5.3)
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By using Equation 3.5.2 equation 3.5.3 can be rewritten as:

β = θ − α(θ) (3.5.4)

then by substituting for α(θ)

β = θ − α̂(θ)
DLS

DS
(3.5.5)

The above equation 3.5.5 is the lens equation. These relations are valid under the assump-

tion that the mass M is point-like, which is unphysical.

”Einstein rings”

For a point lens of mass M the deflection angle is given by equation (3.5.1). Plugging into

equation (3.5.5) and using the relation b = DLθ (from Figure 3.9) one obtains:

β(θ) = θ − 4GM

c2θ

DLS

DLDS
(3.5.6)

For the special case in which the source lies exactly behind the lens ( β = 0), due to

the symmetry a ring-like image occurs whose angular radius is called Einstein radius or

Einstein ring θE :

θE =
√

4GM

c2

DLS

DLDS
(3.5.7)

The Einstein radius defines the angular scale for a lens situation.

Ring-shaped images of point sources can only occur in lensing situations with axially sym-

metric matter distributions; they arise solely from symmetry. On the other hand, extended

sources can have ring-shaped images even if the lens is not perfectly symmetric,Such images

are frequently called ”Einstein rings”.
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3.6 Angular Distance in Gravitational Lensing

There are many ways to specify the distance between two points, because in the expanding

Universe, the distances between comoving objects are constantly changing, and Earth-

bound observers look back in time as they look out in distance [8]. The unifying aspect is

that all distance measures somehow measure the separation between events on radial null

trajectories, i.e, trajectories of photons which terminate at the observer.

3.6.1 Cosmographic parameters

The Hubble constant H0

is the constant of proportionality between recession speed v and distance d in the expanding

Universe [8]

v = H0d

The subscripted ”0” refers to the present epoch because in general H changes with time.

The dimensions of H0 are inverse time, but it is usually written as

H0 = 100hkms−1Mpc−1

where h is a dimensionless number parameterizing our ignorance. The inverse of the Hubble

constant is the Hubble time tH

tH =
1

H0

and the speed of light c times the Hubble time is the Hubble distance DH

DH =
c

H0
=

c

H0(1 + Z)
(3.6.1)

Where Z-is the redshift, for Gravitational Lensing at source ZS , at Lens ZL
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The mass density ρ of the Universe and the value of the cosmological constant

Λ

They are dynamical properties of the Universe, affecting the time evolution of the metric

[8]. They can be made into dimensionless density parameters ΩM and ΩΛ by

ΩM =
8πGρ0

3H2
0

ΩΛ =
Λ

3H2
0

A third density parameter ΩK measures the ”curvature of space” and can be defined by the

relation

ΩM + ΩK + ΩΛ = 1 (3.6.2)

Assuming the observed Flatness ΩK = 0,ΩM = 0.27,ΩΛ = 0.73

3.6.2 Comoving distance (line-of-sight)

A small comoving distance δDC between two nearby objects in the Universe is the distance

between them which remains constant with epoch if the two objects are moving with the

Hubble flow [8]. In other words, it is the distance between them which would be measured

with rulers at the time they are being observed (the proper distance) divided by the ratio of

the scale factor of the Universe then to now. In other words the proper distance multiplied

by (1+z). The total line-of-sight comoving distance DC from us to a distant object is

computed by integrating the infinitesimal δDC contributions between nearby events along

the radial ray from z = 0 to the object.

As adopted by [8] comoving distance

E(Z) =
√

ΩM (1 + Z)3ΩK(1 + Z)2 + ΩΛ (3.6.3)
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Since the speed of light is constant, this is a proper distance divided by the scale factor,

which is the definition of a comoving distance. The total line-of-sight comoving distance is

then given by integrating these contributions, or

DC =
c

H0(1 + Z)

∫ z

0

dz′

E(z′)
(3.6.4)

where DH is the Hubble distance defined above.

In some sense the line-of-sight comoving distance is the fundamental distance measure in

cosmography since, as will be seen below, all others are quite simply derived in terms of it.

3.6.3 The angular diameter distance

The angular diameter distance DA between source and Observer at redshifts ZS and the

observer and Lens at ZL, frequently used in gravitational lensing [8]. It is not found by

subtracting the two individual angular diameter distances.

by using eqn.3.6.4 above is

• The angular Distance observer to Lens DL is

DL =
c

H0(1 + ZL)

∫ zL

0

dz′

E(z′)
(3.6.5)

• The angular Distance observer to Source DS is

DS =
c

H0(1 + ZS)

∫ zS

0

dz′

E(z′)
(3.6.6)

• The angular Distance Lens to Source DLS is

DLS =
c

H0(1 + ZS)

∫ ZS

ZL

dz′

E(z′)
(3.6.7)

where DH = c
H0(1+Z) is the Hubble Distance, c-is speed of Light H0-is Hubble Constant



Chapter 4

Gravitational Lensing in the

standard ΛCDM Cosmology

4.1 Introduction

During the 1980s, most research focused on cold dark matter with critical density in matter,

around 95% CDM and 5% baryons: these showed success at forming galaxies and clusters

of galaxies, but problems remained; notably, the model required a Hubble constant lower

than preferred by observations, and observations around 1988-1990 showed more large-scale

galaxy clustering than predicted. These difficulties sharpened with the discovery of CMB

anisotropy by COBE in 1992, and several modified CDM models, including ΛCDM and

mixed cold and hot dark [10] matter, came under active consideration through the mid-

1990s.

The ΛCDM model then became the leading model following the observations of accelerating

expansion in 1998, and was quickly supported by other observations: in 2000, the BOOMER

and microwave background experiment measured the total (matter-energy)density to be

close to 100% of critical,whereas in 2001 the 2nd FGRS galaxy redshift survey measured

the matter density to be near 25%; the large difference between these values supports a
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positive Λ or dark energy. Much more precise spacecraft measurements of the microwave

background from WMAP in 2003 - 2010 and Planck in 2013 - 2015 have continued to

support the model and pin down the parameter values, most of which are now constrained

below 1% uncertainty.[7, 16, 17].

In the twenty-first century, gravitational lensing is a highly active field of astrophysical

research. Since the first conference exclusively devoted to gravitational lensing was held in

Lige, France, in 1983, there have been similar international conferences every year.

The reason for the field’s growth is that, today, gravitational lenses are much more than

just an interesting general relativistic phenomenon. Now that a significant number of lens

systems has been identified, lensing is used more and more as an observation tool, allowing

us to answer astrophysical as well as cosmological questions, from estimates of the amount

of dark matter contained in the lens mass to the determination of fundamental parameters

of the big bang models[19].

The thesis was mainly adopted by Considering GR in the presence of positive cosmological

constant to derive gravitational lensing equation and effect of cosmological constant through

vacuum fluid approach with the simple point Mass source model. The background

medium is considered as a continues smeared fluid of varying refractive index as a function

of radial distance and cosmological constant. All the angular distances also consider the

cosmological constant and the expanding universe scenario by way of the transformation

between the static and co-moving coordinates. The lensing equation assumes the deflectors

(the lens) and the sources positions angular distances through the observed redshifts by

Hubble law. Then, the analytically derived Lens equations are being used to generate some

numerical values to compare with observation, For the computation Mathematica 11 is

used.
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4.1.1 Index of Refractive

Starting from the field equations of general relativity, light deflection can be calculated by

studying geodesic curves. It turns out that light deflection can equivalently be described

by Fermats principle, as in geometrical optics.

Fermat’s Principle: A light ray from a source S (spacetime event) to an observer 0

(timelike curve) follows a trajectory that is a stationary value of the arrival times t, measured

relative to the observer’s proper time, of all paths from S to 0 [13].

We first need an index of refraction n because Fermats principle says that light will follow

a path along which the travel time,will be extremal∫
n

c
dl (4.1.1)

As in geometrical optics, we thus search for a path, ~x(l), for which the variation

δ

∫ B

A
n(~x(l))dl = 0 (4.1.2)

In order to find the index of refraction, we make a first approximation: we assume that the

lens is weak, and that it is small compared to the overall dimensions of the optical system

composed of source, lens and observer. There are multiple ways at gravitational lensing

which agree in the limit which is commonly applied. In by far the most astrophysical

applications, the Newtonian gravitational potential φ is small, |φ|/c2 � 1, and the lensing

mass distribution moves slowly with respect to the cosmological rest frame.

Under such conditions, gravitational lensing can be described by a small perturbation of
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the weak lens perturbs this metric such that

ηµν → gµν =



1 + 2φ
c2

0 0 0

0 −(1− 2φ
c2

) 0 0

0 0 −(1− 2φ
c2

) 0

0 0 0 −(1− 2φ
c2

)


for which the line element becomes

ds2 = gµνdxµdxν = (1 +
2φ

c2
)c2dt2 − (1− 2φ

c2
)(d~x)2 (4.1.3)

Also for the Schwarzschild de-sitter Metrics

gµν =



1 + 2φ
rc2
− Λr2

3 0 0 0

0 −(1− 2φ
rc2
− Λr2

3 ) 0 0

0 0 −(1− 2φ
rc2
− Λr2

3 ) 0

0 0 0 −(1− 2φ
rc2
− Λr2

3 )


for which the line element becomes

ds2 = gµνdxµdxν = −(1 +
2φ

rc2
− Λr2

3
)dt2 + (1− 2φ

rc2
− Λr2

3
)−1(d~x)2 (4.1.4)

Now light propagates or projected at null geodesic (ds = 0), from which we gain

(1 +
2φ

rc2
− Λr2

3
)dt2 = (1− 2φ

rc2
− Λr2

3
)−1(d~x)2 (4.1.5)

The light speed in the schwarzschild de-sitter metric is thus

c′ =
|d~x|
dt

= c

√√√√1 + 2φ
rc2
− Λr2

3

1− 2φ
rc2
− Λr2

3

≈ c(1 +
2φ

rc2
− Λr2

3
), (4.1.6)

where we have used that φ/c2 � 1 by assumption. The index of refraction is thus

n =
c

c′
=

1

1 + 2φ
rc2
− Λr2

3

≈ 1− 2φ

c2
− Λr2

3
(4.1.7)
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With φ ≤ 0, n ≥ 1, and the light speed c’ is lower than in vacuum.

n will typically depend on the spatial coordinate ~x and perhaps also on proper time τ . Let

~x(l) be a light path. Then the light travel time is proportional to∫ B

A
n[~x(l)]dl, (4.1.8)

and the light path follows from

δ

∫ B

A
n[~x(l)]dl = 0 (4.1.9)

This is a standard variational problem, which leads to the well known Euler equations. In

our case we write

dl = |d~x

dτ
|dτ (4.1.10)

with a curve parameter τ which is yet arbitrary, and find

δ

∫ B

A
dτn[~x(l)]|d~x

dτ
| = 0 (4.1.11)

The expression

n[~x(l)]|d~x

dτ
| = L(~̇x, ~x, τ) (4.1.12)

takes the role of the Lagrangian in analytic mechanics, with

~̇x =
d~x

dτ
(4.1.13)

Finally, we have

|d~x

dτ
| = |~̇x| = (~̇x2)1/2 (4.1.14)

Using these expressions, we find the Euler equations

d

dτ

∂L

∂~̇x2
− ∂L

∂~x
= 0. (4.1.15)
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Now
∂L

∂~x
= |~̇x|∂n

∂~x
= (~∇n)|~̇x|, ∂L

∂~̇x
= n

~̇x

|~̇x|
~̇x (4.1.16)

~̇x is a tangent vector to the projected light path, which we can assume to be normalized by

a suitable choice for the curve parameter τ . We thus assume |~̇x| = 1 and write ~e = ~̇x for

the unit tangent vector to the projected light path. Then, we have

d

dτ
(n~e)− ~∇n = 0 (4.1.17)

or

n~̇e + ~e.[(~∇n)~̇x] = ~∇n (4.1.18)

⇒ n~̇e = ~∇n− ~e(~∇n.~e) (4.1.19)

The second term on the right hand side of eqn 4.1.19 is the derivative along the projected

light path, thus the whole right hand side is the gradient of n perpendicular to the light

path. Thus

~̇e =
1
n

~∇ ⊥ n = ~∇ ⊥ lnn (4.1.20)

As n = 1− 2φ/rc2 − Λr2

3 and φ/c2 � 1, lnn ≈ −2φ/rc2 − Λr2

3 , and

~̇e = − 2
c2

~∇ ⊥ φ− Λr2

3
(4.1.21)

4.2 The effect of cosmological constant in gravitational lens-

ing through vacuum fluid approach

4.2.1 Deflection angle from Refractive index

The total deflection angle of the light path is the integral over the refractive index along

the light path,

~̂α =
∫ B

A

~∇⊥(φ− Λr2

3
)dτ (4.2.1)
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Where the first term of RHS of the above equation is gravitational potential in GR (φ =

2GM/rc2) and the 2nd term is the Cosmological potential term.

The deflection is thus the integral over the pull of the gravitational potential and cosmolog-

ical potential perpendicular to the projected light path. Note that ~∇(φ− Λr2

3 ) points away

from the lens center, so ~̂α points towards it [20].

Which is the gradient of the dimension-less Newtonian potential and Cosmological poten-

tial perpendicular to the deflected light ray, integrated along the light ray and multiplied

by two. This factor of two comes from the fact that the perturbed schwarzschild de-sitter

metric has equal perturbations in both its temporal and spatial components.

Now From refractive index gradient integral scenario of eqn 4.1.21 the total deflection angle

∂n

∂r
= αdr (4.2.2)

α = −
∫

1
n

∂n

∂r
dr

Deflection angle in terms of matter and Cosmological constant

Now from the above total deflection angle, the deflection angle interms of matter and

Cosmological constant Λ for refractive index (n = 1 + 2GM
c2r

− Λr2

3 ) is

α = −
∫ DL

−DLS

−→
∇

(
2GM
c2r

− Λr2

3

)
(4.2.3)

= −
∫ DL

−DLS

1
r

(
2GM
c2r2 − 2Λr

3

)
α = −

∫ DL

−DLS

1
r

(
2GM
c2r3 − 2Λ

3

)

α(Λ,m) = −
∫ DL

−DLS

(
2GM
c2r3 − 2

3Λ
)

ydx (4.2.4)

The integration limit, for the origin of the plane of the lens located at the center of the lens,

is all right. But the integration limit in the final result for the correction term is switched
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only from the source to the plane of the lens.This effect neglects the lensing from the plane

of the lens to the observer, and so contradicts the starting assumption of the lensing system

being considered with varying refractive index from its center outwards or the reverse.

So with this comment we will have the following improved approximation on the effect of

the cosmological constant on lensing.

a. deflection angle contribution due to matter The first integral term of eqn.4.2.4 is

represented by α(m). Of course it is the deflection angle contribution due to matter.

α(m) = −
∫ DL

−DLS

(
2GM
c2r3

)
ydx (4.2.5)

As DL and DLS get very large it is possible to replace the limit of integration from

−∞ to +∞. So

α(m) = −
∫ +∞

−∞

(
2GM
c2r3

)
ydx (4.2.6)

α(m) =
2GM

c2y

∫ +∞

−∞

(
1
r3

)
dr (4.2.7)

For our Spacetime is spherical symmetry r has the r,θ, and φ components

r =


r sin θ cos φ

r sin θ sinφ

r cos θ


Thus

∂r

∂r
=

∣∣∣∣∣∣∣∣
r sin θ cos φ

r sin θ sinφ

r cos θ

∣∣∣∣∣∣∣∣ =
∣∣∣ ∂r

∂r

∣∣∣ = 1

∂r

∂θ
=


r cos θ cos φ

r cos θ sinφ

−r sin θ

 =
∣∣∣ ∂r

∂θ

∣∣∣ = r
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∂r

∂φ
=


−r sin θ sinφ

r sin θ cos φ

0

 =
∣∣∣ ∂r

∂φ

∣∣∣ = r sin θ

The surface element spaning from θ to θ + dθ and φ to φ + dφ at constant spherical

surface r ∣∣∣| ∂r
∂θ r̂ × ∂r

∂φ r̂
∣∣∣ |dθdφ = r2 sin θdθdφ

Hence, by integrating by part∫ 2π

φ=0
dφ

∫ π

θ=0
sin θdθ

∫ ∞

r=0

1
r3

dr = 4

Then now

α(m) =
2GM

c2y

∫ +∞

−∞

(
1
r3

)
dr

α(m) =
2GM

c2y
(
∫ 2π

φ=0
dφ

∫ π

θ=0
sin θdθ

∫ ∞

r=0

1
r3

dr)

This is easily integrated to give us

α(m) =
4GM

c2y
(4.2.8)

It seems that the integral depends on y, but the matter contribution is just within its

strong field. Hence for effective matter contribution of Einstein photon deflection

α(m) =
4GM

c2b
(4.2.9)

where b is the closest distance by the photon to the lensing.

Of course it is possible to have some additional terms from second to other higher

order terms in GM/c2, which revives the Robertson - Walker metric expansion form.

b. deflection angle due to cosmological Constant contribution The integral of the

cosmological effect part as in equation 4.2.4 is trivially integrated to give us

α(Λ) =
2
3
Λy

∫ DL

−DLS

dx =
2
3
ΛyDS (4.2.10)
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Here we note that the effect is vacuum dominance and therefore one cannot treat

the effect in similar manner as that of the matter. With this understanding the

Figure 4.1: Sketch of a gravitational-lens system of point mass(self sketched):

deflection angle arising due to cosmology varies with y over the whole space extended

along the path of the photon. So in equation 4.2.10 the value of y averaged over all

the path length of the photon must be used (fig.4.1). Though, it still needs further

analysis(future work), we can reasonably approximate the average value of y as in the

following manner;

Let y1 is the average value of y along the path of photon from the source to the plane

of the lens. That means it varies from βDS to the closest distance b or θDL. Then
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for order of cosmological distances it is quite reasonable to average it as,

y1 =
1
2
(y0 + yI)

tanβ =
y0

Ds

y0 = βDs

tan θ =
yI

DL

yI = θDL

Since DLS and DL are nearly the same order of magnitudes we can use DL as DLS

and for very small angle tan β ≈ β, tan θ ≈ θ. Then for y1 is the average of y0 and yI

y1 =
1
2
(θDL + βDs) (4.2.11)

In a similar way we define y2 as the average of y over the path of the photon travel

from the plane of the lens to the observer given by

y2 =
1
2
θDL (4.2.12)

Since DL and DLS are nearly the same order of magnitudes, we can once again reasonably

average y over y1 and y2 to obtain

yav =
1
2
(θDL +

1
2
βDS) (4.2.13)
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So, the contribution of cosmological constant to the deflection of light in the vicinity of eqs.

4.2.10, 4.2.13 is given by

α(Λ) =
∫ DL

−DLS

−2
3
Λydx

= −2
3
Λy

∫ DL

−DLS

dx

= −2
3
Λyx|DL

−DLS

= −2
3
Λy(DL − (−DLS))

α(Λ) = −2
3
ΛyDS

From the curved space-time background of vacuum fluid source the angular distance is not

additive i.e;

DS 6= DL + DLS (4.2.14)

Instead we use the distance of redshift is used

DS(1 + zs) = DL(1 + zL) + DLS(1 + zs) (4.2.15)

α(Λ) = −2
3
Λ(

1
2
(θDL +

1
2
βDS))DS

= −2
3
Λ× 1

2
(θDL +

1
2
βDS)DS

α(Λ) = −1
3
Λ(θDL +

1
2
βDS)DS (4.2.16)

Now by eqs. 4.2.11 ,4.2.16 the angle of deflection for lensing through vacuum fluid approach

is given by

α(Λ,m) =
4GM

c2b
− 1

3
Λ(θDL +

1
2
βDS)DS (4.2.17)

Or

α(Λ,m) =
4GM

c2DLθ
− 1

3
Λ(θDL +

1
2
βDS)DS (4.2.18)

Where we replaced b by θDL



50

4.2.2 The Lens Equation

Assuming spherical spacetime, From fig.4.2 Let

Figure 4.2: Sketch of a gravitational-lens system of point mass(self sketched): The optical
axis runs from the observer O through the centre of the lens to O’. The angle between the
source S and the optical axis O’ is β, the angle between the image S’ and the optical axis
O’ is θ. The light ray towards the image is bent by the deflection angle α̂, measured at the
lens. The reduced deflection angle α is measured at the observer

Ô′S = βDs

Ô′S′ = θDs

ŜS′ = αDs

ŜS′ = α̂DLS

But we have

αDs = α̂DLS

α̂ =
αDs

DLS
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Then now the lens equation measured at observer is derived as follows

Ô′S′ = Ô′S + ŜS′ (4.2.19)

= βDs + α̂DLS

Ô′S′ = θDs = βDs + (
αDs

DLS
)DLS

~θ = ~β + ~α

If we rewrite eqn.interms of θ

~α(θ) = ~θ − ~β(θ) (4.2.20)

Again

Ô′S = Ô′S′ − ŜS′ (4.2.21)

βDs = θDS − α̂DLS

By dividing both side DS finally we get lens equation

β = θ − α̂
DLS

DS
(4.2.22)

By noting that, for small angles and with the angle expressed in radians, the point of nearest

approach y at an angle α for the lens L on a distance DL is given by y = θDL,

For a source right behind the lens, θDL = 0, and the lens equation for a point mass gives a

characteristic value for θ that is called the Einstein radius, denoted θE . Putting βDS = 0

and solving for θ gives the Einstein radius for a point mass provides a convenient linear

scale to make dimensionless lensing variables. The Einstein radius most prominent for a

lens typically halfway between the source and the observer.

Substituting eq. 4.2.18 in the lens equation 4.2.22 we get lens equation with the effect

of Cosmological constant;

β = θ − DLS

DS

(
4GM
c2DLθ

− 1
3Λ(θDL + 1

2βDS)DS

)
(4.2.23)
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This is the Fundamental lensing equation we derive in the presence of cosmological constant.

Alignment

When the source is exactly behind the lens, the angular position of the source(S) and the

Optical sight(O) becomes Align;i.e β = 0 then

β = θ − DLS

DS

(
4GM

c2θDL
− 1

3
Λ(θDL +

1
2
βDS)DS

)

o = θ − DLS

DS

(
4GMDS

c2θDL
− 1

3
ΛbDS − 0

)

θ =
(

4GMDLS

DSc2θDL
− 1

3
ΛθDLSDL

)
From these

θ2 = θ2
E −

1
3
ΛDLDLS (4.2.24)

Now by representing the Einsteins ring radius θ2
EΛ with cosmological correction in Schwarzschild

- de Sitter metric in terms of the purely Schwarzschild metric θE as

θ2
EΛ =

θ2
E

1 + FΛ
(4.2.25)

Where θE is given by

θ2
E =

4GM

c2

DLS

DLDS
(4.2.26)

And FΛ is the correction factor to Einstein ring radius due to cosmological constant given

by

FΛ =
1
3
ΛDLDLS (4.2.27)

In conclusion we observe that the Einstein radius is affected by the factor

1
1 + FΛ

(4.2.28)

And therefore the deflection of light due to the presence of cosmological constant decreases.
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Result and discussion

Observational data Source

Cultech astrophysical lensing data https://www.cfa.harvard.edu/castles.

To study the effect of Λ in lensing we implement eqn. 4.2.23 with point mass assumption.

Thus, from the data source Einstein ring system is being used, where the selection is deter-

mined by the number of images.

Moreover, the particular case β = 0, i.e; when the source is exactly behind the lens is

considered for in view of the smallness of Λ for better imagination.

So, eqn. 4.2.23 becomes

θ2 = θ2
E −

1
3
ΛDLDLS (5.0.1)

Where

θ2
E =

4GMDLS

c2DLDS
(5.0.2)

Is Einstein Ring.

And thus, the cosmological effect part is

FΛ =
1
3
ΛDLDLS (5.0.3)
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As can be seen from eqn.5.0.1 for Λ = 0 just Einstein’s ring.

5.1 Data analysis for the four(4)Einstein’s ring extracted

from observation

In our fundamental equation 5.0.1 and 5.0.2 we use the angular distances given in eqn.3.6.5

-3.6.7 summarized as

DL =
c

H0(1 + ZL)

∫ zL

0

dz′

E(z′)

DS =
c

H0(1 + ZS)

∫ zS

0

dz′

E(z′)

DLS =
c

H0(1 + ZS)

∫ ZS

ZL

dz′

E(z′)

And the correction part

FΛ =
ΩΛ

3
1

(1 + ZS)(1 + ZL)

∫ ZL

0

dz′

E(z′)

∫ ZS

ZL

dz′

E(z′)

Furthermore, the Einstein ring is determined by the velocity dispersion given by: [9].

θE =
4πσ2

c2

DLS

DS
(5.1.1)

Table 5.1: Data of selected ring of lens system.
N0

¯
Lens System zS zL σ(km/s) FΛ θ2(Λ = 0) θ1(Λ 6= 0)

1 Q0047-2808 3.60 0.48 229 0.01887 1.0962 1.048
2 CFRS03.1077 2.941 0.938 256 0.01831 1.0748 1.02826
3 HST15433+5352 2.092 0.497 108 0.01936 1.0450 1.01304
4 MG1549+3047 1.17 0.11 227 0.00840 1.0918 1.04177

The worked out data is displayed in table 5.1.

For this table we considered a flat cosmological model defined by the parameters ΩΛ =

0.73,ΩM = 0.27 and H0 = 71km/s/Mpc.

From the above table we see that the significance of Cosmological constant is 2%.
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Summary and Conclusion

By using simple point mass models for the Lens, we have derived the lensing equation in

the presence of cosmological constant,furthermore from eqn.4.2.22 we summarize,that

• 4GM
c2b

-is the matter contribution, and its just within the strong field. hence for this its

also known as Einstein photon deflection, around 43%,

– b is the closest distance by the photon to the lensing

• 1
3ΛDLSDL-is the cosmological constant contribution to the deflection of lights and

also its known as the correction factor, its Contributes about 2% in my result

The contribution of Λ is completely involved in the form of the angular diameter distance

DA. no modifications due to Λ appear even if the second-order terms in G are included.also

some authors have shown that the gravitational lensing effects are strongly dependent on

the value of the cosmological constant and hence they provide with useful means to test the

cosmological constant.

Finally

1. The cosmological constant Λ does appear in the Lens equation of light,as geometrical

optics
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2. Nevertheless the bending angle of light α can be affected by Λ by a very small signifi-

cance correction,or the deflection of light due to the presence of cosmological constant

decreases, and

3. Its significance is around 2%.
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