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Abstract

The success of general theory of relativity in testing deflection of light, radar echo

delay, precession of planetary motion and gravitational redshift by gravity are the

manifestation of progress in astronomy and astrophysical studies. The discovery of

the expanding universe at an accelerating phase is another astounding progress in

astronomy and astrophysics. Nowadays, the end products of stellar evolution called

compact objects (White Dwarf (WD), Neutron Star (NS) and Black Hole (BH)) act

as laboratory for the Theory of General Relativity tests over a wide range includ-

ing origins and future determinations. These objects provide important information

about the age of astrophysical objects; constrain models of galactic and cosmological

evolutionary history from small scale to large scale structure. Currently, the devel-

opment of astronomy has led an expansion of human knowledge reaching out, ever

farther from our home where the observational tools were solely dependent on the

information carried by electromagnetic waves (EMWs). However, due to EMWs in-

teraction with matter there are limitations where these waves unable to penetrate a

great deal of compact objects. However, it is hoped that, the transparency of media

to GWs a laboratory for general relativity and a window to energetic astrophysical

phenomena. Although no conclusive evidence for the direct detection of gravitational

waves exists at present, as literatures point out a great hope that gravitational-wave

astronomy may open a new window on the universe. Yet, the mechanisms of match-

ing and testing theoretical models with observation need to be worked out for the

completeness of the underlying physics. Motivated by this scientific background, we

work on gravitational radiation emitted from binary compact objects like NS-NS or

viii
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NS-BH or BH-BH binaries that possibly support a mechanism to test the effect of cos-

mological constant at local level in Schwarzschild de-Sitter background. The project

problem attack assumes a pure theoretical development that involves both analytical

and numerical approaches.

Keywords: Compact objects -NSs-BHs, Gravitational Radiation



Introduction

The existence and ubiquity of gravitational waves is a clear prediction of Einstein’s
theory of general relativity. Although gravitational radiation has not yet been unam-
biguously and directly detected,there is already significant indirect evidence for its
existence. In 1974,Russel Hulse and Joseph Taylor discovered the first binary pul-
sar,PSR 1913+16 which consists of two neutron stars with an orbital period of eight
hours[8,10]. Today there is more than just hope in the existence of gravitational
waves,which are one of the main predictions of Einstein theory of gravity through the
measurement,performed by Hulse and Taylor,of the compact binary system.

The general theory of relativity predicts that the orbiting stars disturb spacetime
around them,losing energy by emitting gravitational waves and therefore growth closer
together[9]. Close binary stars consisting of two compact stellar remnants neutron
stars (NS-NS),or black holes(BH-BH) are considered as primary targets of the forth
coming field of gravitational waves(GWs) astronomy since their orbital evolution is
entirely controlled by emission of gravitational waves and lead to ultimate merge
of the components. For a given system its amount of gravitational radiation known
exactly what is the amplitude and frequency of the gravitational waves in terms of the
masses of the two bodies and their separation[2,4]. General Relativity also explains
gravitation as a consequence of the curvature of spacetime,while in turn spacetime
curvature is a consequence of the presence of matter. Spacetime curvature affects
the movement of matter,which reciprocally determines the geometric properties and
evolution of spacetime[3].

Recently,in 1998,a group of astronomers has claimed to have observed that our
universe is currently undergoing accelerate expansion which is attributed to the ex-
istence of a positive cosmological constant. The idea that nature contains a cosmo-
logical constant stems from Newton. Newton being rather religious believed that the
universe must be infinite in extend,must have existed at all times and must be static.
However,gravity attracts causing such a space to be unstable. He therefore postu-
lated that there must be some repulsive mechanism leading to a static universe. At
that time and in centuries to follow nothing much was known about the universe and
physicists ignored these ideas. Einstein too also believed that the universe must the

1
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static. However his theory of gravity led a dynamic universe,and he therefore in 1916
reintroduced the cosmological constant. At that time Einstein lived in Germany and
could not because of World War I send his letters of correspondence to England and
the USA. Still,he was able to send them to the Netherlands which was neutral at that
time. The person to receive these letters was W.de Sitter who would then send them
to whomever they were addressed to. In this way de Sitter became part of the cosmo-
logical debate that was held in those days and was therefore one of the first the hear of
Einstein idea to reintroduce the cosmological constant. In 1917 de Sitter showed that
for an empty space this new constant leads to a universe which undergoes accelerate
expansion[13]. Since about far near decade,evidence has been accumulating that the
expansion of universe is actually speeding up[3]. One explanation could be that there
is a cosmological constant,Λ in the Einstein equations. Basically,Einstein introduced
the cosmological constant because of the prevalent philosophical bias that the uni-
verse should be forever stationary,whereas in standard general relativity,it needs to
either expand or contract. With Λ < 0,a stationary universe is possible,although
we know that it could not be stable against small perturbations,again it leading to
either expansion or construction[1,12]. Therefore,a non-stationary Universe is a pre-
diction of general relativity,with or without cosmological constant,Λ. After Hubble’s
discovered the expansion of the universe,in 1929,Einstein called the introduction of
the cosmological constant,”The biggest blunder of his life”. If Einstein had put more
trust in his equation,he could have predicted the expantion of the universe!However
recently the idea has been resurrected. Observations currently favor a small,positive
cosmological constant,Λ,which would make gravity slightly repulsive on large scales
and give spacetime a natural tendency to expand. Often the cosmological constant is
considered to be related to the vacuum energy density of some scalar field,ρΛ = Λ[ c2

8πG
].

Whatever,the origin might be it will in this thesis be assumed to exist and its effects
be discussed in Schwarzschild de-Sitter. A de Sitter spacetime describes an empty
universe which has a positive cosmological constant,Λ.

In 1915 Einstein derived a wonderful set of formulas called the Einstein Field Equa-
tions. In these equations the Newtonian force of gravity is replaced by the curvature
of space-time and related to the energy and momentum in the universe[10]. Unfor-
tunately,these equations are very difficult to solve,even for simple energy-momentum
configurations and we shall have to resort to approximations[7].

The success of the general theory of relativity in the deflection of light,the radar
echo delay,precession of planetary motion and gravitational redshift by gravity are
some of the success of astronomy and astrophysical studies. The discovery of the
expanding universe at an accelerating phase is another astounding progress in as-
tronomy and astrophysics. These past, present, and probably future astrophysical
phenomena predications and observations all, more or less, rely on stars or where
the stars evolve (like galaxies). Now days, the end products of stellar evolution (in
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particular star evolution) called compact objects serve as laboratory for the Theory
of General Relativity tests that extends its application over the large scale structure
phenomena in the universe for origins and future determinations. On the other hand,
the development of astronomy has led an expansion of human knowledge reaching
out, ever farther from our home. Up to date, the observational tools we use were
solely dependent on the information carried away or towards by EMWs. However,
due to EMWs interaction with matter there are limitations where these waves unable
to penetrate a great deal of compact objects or some of the most interesting events
in the universe where they lie hidden behind an impenetrable veil of dust and some
scattered light. However, the transparency of media to GWs, gravitational waves
provide a laboratory for general relativity and a window to energetic astrophysical
phenomena invisible with electromagnetic radiation. The deep interior of neutron
stars or the neighborhood of merging BHs can be probed as well as physical processes
in the very early universe. With this motivational scientific background,We work on
gravitational radiation emitted from binary compact object like NS-NS or NS-BH or
BH-BH binaries that possibly support a mechanism to test the effect of cosmological
constant at local level in Schwarzschild de-Sitter background.

The theoretical modeling of binary systems is the main topic of this thesis. As
is well known,binaries can be modelled using various approximation schemes. The
one approximation is the so-called quadrupole formula,in which the components of
the binary are considered as pointlike particles following Newtonian orbits,and the
emitted radiation is computed from the time variation of the quadrupole moment of
the system. The main point of this thesis is to show that relevant information on
the gravitational waves emitted by binary systems that can be gained using pertur-
bation approaches. In this thesis we started with gravitation and spacetime geom-
etry in general relatively. The Einstein field equations are related the matter with
spacetime geometry. Secondly,we deal with gravitational radiation in Schwarzschild
de-Sitter background. The weak gravitational field approximation for lineared field
equation and quadrupole radiation. Thirdly,gravitational radiation from binary sys-
tem in Schwarzschild de-Sitter background,the information carried by gravitational
wave from binary system. Finally,the the observational data was analyzed.



Chapter 1

Space-Time Geometry and
Gravitation

1.1 Tensor In General Relativity

1.1.1 Metric Tensor and Affine Connection

Affine connection is the field that determines the gravitational force and used as
to represent the gravitational field. It also call as Christoffel second symbol which
denoted as {µν, λ} or {λµν} or Γλ

µν . The metric tensor is use to determine the proper

time interval between two events with a given infinitesimal coordinate separation and
also the gravitational potential. Its derivatives helps to determine the field Γλ

µν as
well as denoted as gµν . The mathematical definition of gµν and Γλ

µν as,

gµν ≡
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ,

Γλ
µν ≡

∂xλ

∂ξα

∂2ξα

∂xµ∂xν
(1.1.1)

Where ξα and ξβ are local inertial coordinates. The infinitesimal line element and
the motion of particle in a gravitational field can be written as,

dτ 2 = −gµνdxµdxν ,

d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0 (1.1.2)

Now differentiating the metric tensor in a gravitational field with respect to the

4
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general coordinate system xλ,

∂gµν

∂xλ
=

∂

∂xλ

[
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ

]
∂gµν

∂xλ
=

∂2ξα

∂xλ∂xµ

∂ξβ

∂xν
ηαβ +

∂ξα

∂xµ

∂2ξβ

∂xλ∂xν
ηαβ (1.1.3)

Equation(1.1.3) can be written as,

∂gµν

∂xλ
= Γρ

λµ

∂ξα

∂xρ

∂ξβ

∂xν
ηαβ + Γρ

λν

∂ξα

∂xµ

∂ξβ

∂xρ
ηαβ (1.1.4)

Where,

Γρ
λµ =

∂xρ

∂ξα

∂2ξα

∂xλ∂xµ

Γρ
λν =

∂xρ

∂ξα

∂2ξα

∂xλ∂xν

Equation(1.1.4) can be written as,

∂gµν

∂xλ
= Γρ

λµgρν + Γρ
λνgρµ (1.1.5)

Where,

gρν =
∂ξα

∂xρ

∂ξβ

∂xν
ηαβ

gρµ =
∂ξα

∂xµ

∂ξβ

∂xρ
ηαβ

The two Γρ
λµ and Γρ

λν are the affine connections. If we considering freely falling
particles affine connection is field that determines the gravitational force. Now using
the symmetric property of affine connection with the exchange of lower indices,i.e
Γρ

λµ = Γρ
µλ. To solve for the affine connection,It is a matter of adding to equation

(1.1.5) the same equation with µ and λ interchange and subtract the same equation
with ν and λ interchange.It shows,

∂gµν

∂xλ
+

∂gλν

∂xµ
− ∂gµλ

∂xν
= Γρ

λµgρν + Γρ
λνgρµ + Γρ

µλgρν + Γρ
µνgρλ − Γρ

νµgρλ − Γρ
νλgρµ (1.1.6)



6

From the symmetric property of affine connection,Γρ
µν and metric tensor,gµν ,then

∂gµν

∂xλ
+

∂gλν

∂xµ
− ∂gµλ

∂xν
= 2Γρ

λµgρν (1.1.7)

.
Now let us define matrix gνσ as the inverse of gνσ.

gνσgρν = δσ
ρ

Where,δσ
ρ is the kronecker delta define as δσ

ρ = 1 for σ = ρ and zero for else.
Therefore,applying (σ = ρ) to kronecker delta,thus

Γσ
λµ =

1

2
gνσ

[
∂gµν

∂xλ
+

∂gλν

∂xµ
− ∂gµλ

∂xν

]
(1.1.8)

Equation (1.1.8) is the relation developed between the metric tensor and affine connec-
tion in a gravitational field. Here both of them represents the presence of gravitational
effect.

1.1.2 Curvature Tensor

If we use only gµν and its first derivatives,then no new tensor can be contracted,for at
any point we can find a coordinate system in which the first derivatives of the metric
tensor vanish,so in this coordinate system the desired tensor must be equal to one of
those that can constructed out of the metric tensor alone,and since this is an equality
between tensors it must be true in all coordinate system[7]. The simplest possibility
is to construct a tensor out of the metric tensor and its first and second derivatives.
To do this it is possible to write the transformation rule of affine connection as,

Γ
′λ
µν =

∂x
′λ

∂ξα

∂2ξα

∂x′µ∂x′ν

or it can be written as,

Γ
′λ
µν =

∂x
′λ

∂xρ

∂xρ

∂ξα

∂

∂x′µ

(
∂ξα

∂xσ

∂xσ

∂x′ν

)
(1.1.9)

but,

∂

∂x′µ

(
∂ξα

∂xσ

∂xσ

∂x′ν

)
=

∂ξα

∂xσ

(
∂2xσ

∂x′µ∂x′ν

)
+

∂xσ

∂x′ν

(
∂2ξα

∂xτ∂xσ

∂xτ

∂x′µ

)
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Therefore the transformation of affine connection becomes,

Γ
′λ
µν =

∂x
′λ

∂xρ

∂xρ

∂ξα
{∂ξα

∂xσ

∂2xσ

∂x′µ∂x′ν
+

∂xσ

∂x′ν

∂2ξα

∂xτ∂xσ

∂xτ

∂x′µ
}

=
∂x

′λ

∂xρ

∂xτ

∂x′µ

∂xσ

∂x′ν

(
∂xρ

∂ξα

∂2ξα

∂xτ∂xσ

)
+

∂x
′λ

∂xρ

∂xρ

∂ξα

∂ξα

∂xσ

(
∂2xσ

∂x′µ∂x′ν

)
(1.1.10)

Using the relation given by affine connection and kronecker delta into equation (1.1.10)
which are,

Γρ
τσ =

∂xρ

∂ξα

∂2ξα

∂xτ∂xσ
,

∂xρ

∂ξα

∂ξα

∂xσ
= δρ

σ

Where,δρ
σ = 1 for ρ = σ else zero.

Γ
′λ
µν =

∂x
′λ

∂xρ

∂xτ

∂x′µ

∂xσ

∂x′ν
Γρ

τσ +
∂x

′λ

∂xρ

(
∂2xρ

∂x′µ∂x′ν

)
(1.1.11)

According to the statement given by general coordinate transformation,equation
(1.1.11) implies that Γλ

µν is not a tensor. If Γλ
µν is a tensor the expected term will be,

∂x
′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρ

τσ.Now invert equation (1.1.11) as,

Γλ
µν =

∂xλ

∂x′τ

∂x
′ρ

∂xµ

∂x
′σ

∂xν
Γ
′τ
ρσ +

∂xλ

∂x′τ

∂2x
′τ

∂xµ∂xν

thus,

∂2x
′τ

∂xµ∂xν
=

∂x
′τ

∂xλ
Γλ

µν −
∂x

′ρ

∂xµ

∂x
′σ

∂xν
Γ
′τ
ρσ (1.1.12)

Differentiating this equation with respect to xκ gives,

∂3x
′τ

∂xκ∂xµ∂xν
=

∂2x
′τ

∂xκ∂xλ
Γλ

µν +
∂x

′τ

∂xλ

∂

∂xκ

(
Γλ

µν

)
− ∂2x

′ρ

∂xκ∂xµ

∂x
′σ

∂xν
Γ
′τ
ρσ

+
∂x

′ρ

∂xµ

∂2x
′σ

∂xκ∂xν
Γ
′τ
ρσ −

∂x
′ρ

∂xµ

∂x
′σ

∂xν

∂

∂xκ

(
Γ
′τ
ρσ

)
(1.1.13)
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According to the relation given by equation(1.1.12) it is possible to write the fol-
lowing,

∂2x
′τ

∂xκ∂xλ
=

∂x
′τ

∂xη
Γη

κλ −
∂x

′ρ

∂xκ

∂x
′σ

∂xλ
Γ
′τ
ρσ

,

∂2x
′ρ

∂xκ∂xµ
=

∂x
′ρ

∂xη
Γη

κµ −
∂x

′η

∂xκ

∂x
′ξ

∂xµ
Γ
′ρ
ηξ

,

∂2x
′σ

∂xκ∂xν
=

∂x
′σ

∂xη
Γη

κν −
∂x

′η

∂xκ

∂x
′ξ

∂xν
Γ
′σ
ηξ

Substitute those equation into equation (1.1.13),we get,

∂3x
′τ

∂xκ∂xµ∂xν
=

(
∂x

′τ

∂xη
Γη

κλ −
∂x

′ρ

∂xκ

∂x
′σ

∂xλ
Γ
′τ
ρσ

)
Γλ

µν

+
∂

∂xκ
Γλ

µν

∂x
′τ

∂xλ
− Γ

′τ
ρσ

∂x
′σ

∂xµ

(
∂x

′ρ

∂xη
Γη

κµ −
∂
′η

∂xκ

∂x
′ξ

∂xµ
Γ
′ρ
ηξ

)
−∂x

′ρ

∂xµ

∂x
′σ

∂xν

∂

∂xκ
Γ
′τ
ρσ − Γ

′τ
ρσ

∂x
′ρ

∂xµ

(
∂x

′σ

∂xη
Γη

κν −
∂x

′η

∂xκ

∂x
′ξ

∂xν
Γσ

ηξ

)
(1.1.14)

Now collect similar terms and juggle indices a bit gives,

∂3x
′τ

∂xκ∂xµ∂xν
=

∂x
′τ

∂xλ

(
∂

∂xκ
Γλ

µν + Γη
µνΓ

λ
κη

)
− ∂x

′ρ

∂xµ

∂x
′σ

∂xν

∂x
′η

∂xκ

(
∂

∂x′η
Γ
′τ
ρσ − Γ

′τ
ρλΓ

′λ
ησ − Γ

′τ
λσΓ

′λ
ηρ

)
−Γ

′τ
ρσ

∂x
′σ

∂xλ

(
Γλ

µν

∂x
′ρ

∂xκ
+ Γλ

κν

∂x
′ρ

∂xµ
+ Γλ

κµ

∂x
′ρ

∂xν

)
(1.1.15)

Then after subtract the same equation with interchanging ν ←→ κ ta drop out the
product of Γ and Γ

′
,so that

0 =
∂x

′τ

∂xλ

(
∂

∂xκ
Γλ

µν −
∂

∂xν
+ Γτ

µνΓ
λ
κη − Γη

µκΓ
λ
νη

)
−∂x

′ρ

∂xµ

∂x
′σ

∂xν

∂xη

∂xκ

(
∂

∂x′η
Γ
′λ
ρσ −

∂

∂x′σ
Γ
′τ
ρη − Γ

′τ
λσΓ

′λ
ηρ + Γ

′τ
ληΓ

′λ
σρ

)
(1.1.16)
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This may be written as a transformation rule,

R
′τ
ρση =

∂x
′τ

∂xλ

∂xµ

∂x′ρ

∂xν

∂xσ

∂xκ

∂x′η
Rλ

µνκ (1.1.17)

Now defining the term in the first bracket of (1.18) using the curvature tensor notation
as,

Rλ
µνκ =

∂

∂xκ
Γλ

µν −
∂

∂xν
Γλ

µκ + Γη
µνΓ

λ
κη − Γη

µκΓ
λ
νη (1.1.18)

Rλ
µνκ is called Riemann- Christoffel curvature tensor.

The Riemann-Christoffel curvature tensor plays an important role in specifying the
geometrical properties of space-time. The space-time is considered flat,if the Riemann
tensor vanishes every where. It is also possible to write the Riemann curvature tensor
in its fully covariant form as,

Rλµνκ = gλσR
σ
µνκ (1.1.19)

Riemann curvature tensor can also be written directly in terms of the space-time

metric,using the definition of affine connection,

Γσ
µν =

1

2
gσρ

(
∂gρµ

∂xν
+

∂gρν

∂xµ

∂gµν

∂xρ

)
Thus,

Rλµνκ =
1

2
gλσ

∂

∂xκ
gσρ

(
∂gρµ

∂xν
+

∂gρν

∂xµ
− ∂gµν

∂xρ

)
−1

2
gλσ

∂

∂xν
gσρ

(
∂gρµ

∂xκ
+

∂gρκ

∂xµ
− ∂gµκ

∂xρ

)
+ gλσ

[
Γη

µνΓ
σ
κη − Γη

µκΓ
σ
νη

]
(1.1.20)

Now define the kronecker delta δρ
λ = 1,where ρ = λ and ,

gλσ
∂

∂xκ
gσρ = −gλρ ∂

∂xκ
gλσ = −gσρ

(
Γη

κλgησ + Γη
κσgηλ

)

Therefore most of ΓΓ terms cancel,then

Rλµνκ =
1

2

[
∂2gλν

∂xκ∂xµ
− ∂2gµν

∂xκ∂xλ
− ∂2gλκ

∂xν∂xµ
+

∂2gµκ

∂xν∂xλ

]
+gησ

[
Γη

νλΓ
σ
µκ−Γη

κλΓ
σ
µν

]
(1.1.21)
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This is the covariant form of Riemann-Christoffel curvature tensor.The algebraic
properties of the curvature tensor are,

1. symmetry
Rλµνκ = Rνκλµ (1.1.22)

2. Antisymmetry ,

Rλµνκ = −Rµλνκ = −Rλµκν = Rνκλµ (1.1.23)

3. Cyclicity

Rλµνκ + Rµκλν + Rλκµν = 0 (1.1.24)

Therefore,the Riemann tensor in 4-dimensional space-time has only 20 independent
components because of symmetries. Thus the general rule for computing the number

of independent components in a N-dimensional space-time is N2(N2−1)
12

[7].

1.1.3 Ricci Tensor,Ricci Scalar and Einstein Field Tensor

Ricci Tensor: Obtained from the Riemann curvature tensor by contracting over two
of the indices

Rµκ = Rλ
µλκ

Rµκ = gλνRλµνκ (1.1.25)

which can be also written as,

Rµκ =
1

2
gλν

[
∂2gλν

∂xκ∂xµ
− ∂2gµν

∂xκ∂xλ
− ∂2gλκ

∂xν∂xµ
+

∂2gµκ

∂xν∂xλ

]
+gλνgησ

[
Γη

νλΓ
σ
µκ−Γη

κλΓ
σ
µν

]
(1.1.26)

and also one can write the Ricci tensor as,

Rµκ =
∂

∂xκ
Γλ

µλ −
∂

∂xλ
Γλ

µκ + Γη
µλΓ

λ
κη − Γη

µκΓ
λ
λη (1.1.27)
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Ricci tensor is symmetric. Therefore,it has at most ten independent compo-
nents.

Rµκ = Rκµ

Ricci Scalar: By further contracting the Ricci tensor with the contravariant com-
ponents of the metric,one obtains the curvature scalar,

R = gµκRµκ = gλνgµκRλµνκ (1.1.28)

or
R = Rµ

µ (1.1.29)

Einstien Field Tensor: Einstien field tensor Gµκ is constructed only from the Rie-
mann tensor and the metric and is automatically divergence free as an identity.thus,

Gµκ = Rµκ −
1

2
gµκR (1.1.30)

Where,Gµκ is a linear combination of the metric tensor and its first and second
derivatives. Since the Ricci tensor and metric tensor are symmetric,so Einstien
field tensor also symmetric,thus

Gµκ = Gκµ (1.1.31)

1.1.4 Bianchi Identities

The Riemann curvature tensor obeys important differential identities. These can be
derived at a given point,x by adopting a locally inertial coordinate system in which
Γλ

µν vanishes at x thus at x,

Rλµνκ;η =
1

2

∂

∂xη

[
∂2gλν

∂xκ∂xµ
− ∂2gµν

∂xκ∂xλ
− ∂2gλκ

∂xν∂xµ
+

∂2gµκ

∂xν∂xλ

]
(1.1.32)

By permuting ν,κ and η cyclically,we obtain the Bianchi identities,

Rλµνκ;η + Rλµην;κ + Rλµκη;ν = 0 (1.1.33)

Now recalling that the covariant derivatives of gλν vanish,then we find on contraction
of λ with ν that,

Rµκ;η −Rµη;κ + Rν
µκη;ν = 0 (1.1.34)
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Again contracting gives,
R;η −Rµ

η;µ −Rν
η;ν = 0 (1.1.35)

or (
Rµ

η −
1

2
δµ
η R

)
;µ

= 0 (1.1.36)

An equivalent but more familiar form is,(
Rµν − 1

2
gµνR

)
;µ

= 0 (1.1.37)

or
Gµν

;µ = 0 (1.1.38)

1.1.5 Energy-Momentum Tensor

Some time Energy Momentum called as stress-energy tensor. It describes the density
and flows of the 4 momentum(−E, P1, P2, P3). The four velocity,Uµ is define as

Uµ =
dxµ

dτ
(1.1.39)

From line element,
dτ 2 = −ηµυdxµdxυ (1.1.40)

If we rearranging the above equation(1.1.40),

−1 = ηµυ
dxµ

dτ

dxυ

dτ
(1.1.41)

Comparing equation(1.1.41) to equation(1.1.39),we get,

−1 = ηµυU
µUυ (1.1.42)

In the rest frame of a particle,It’s four-velocity has components,

Uµ = (1, 0, 0, 0) (1.1.43)

A related vector is the energy-momentum four-vector as,

P µ = mUµ (1.1.44)
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where m =mass of the particle Uµ =four-velocity P µ =four-momentum
The energy of the particle is simply P o,the time-like component of its energy-

momentum vector.
P o = mc2 = E (1.1.45)

where dxo = dt is time-like and c = 1. The time-like component is not invariant
under lorentz transformation,since the particle’s at rest frame is not the same as that
of the same particle in motion. In a moving frame we can find the components of P µ

be performing a lorentz transformation;for a particle moving with velocity v along
the x axis is,

P µ = (γm, vγm, 0, 0) (1.1.46)

where γ = (1− v2)
−1
2 . For the case of v <<< c or small v. The energy of particle is

the sum of its mass and the kinetic energy,

P o = m +
1

2
mv2 (1.1.47)

As well as,
P 1 = mv (1.1.48)

In the Newtonian mechanics,the Newton’s second law is,

~f = m~a = m
d2x

dt2
=

d~P

dt
(1.1.49)

Analogous equation should hold in special relativity and it can be tensorial force
four-vector fµ,

fµ = m
d2xµ

dτ 2
=

dP µ

dτ
(1.1.50)

The simplest example of a force in Newtonian physics is the force due to gravity.
In relativity,however,gravity is not described by a force,but rather by the curvature
of spacetime itself. The P µ provides a complete description of the energy-momentum
of a particle,but now let us extend to go further to define the energy-momentum
tensor(sometime called as stress-energy tensor) T µυ[7]. This is a symmetric second
rank (2, 0) tensor which tells us all we need to know about the energy like aspects of a
system energy density,pressure,stress and so on. To make the idea more concrete,let us
consider the very general category of matter as a fluid. Fluid is a continuum of matter
described by macroscopic quantity such as temperature,pressure,entropy,viscosity,etc.
In general relativity essentially all interesting types of matter can be thought of
as perfect fluids,one with no heat conduction and no viscosity(schurt definition) or
which looks isotropic in its rest frame(Wienberg definition). Generally,a perfect fluid
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as one which may be completely characterized by its pressure and density. For more
understand of perfect fluids,let’s start with simpler example of dust,that is a collection
of particles at rest with respect to each other,or as a perfect fluid with zero pressure
(P = 0). Since the particles all have an equal velocity in any fixed inertial frame,we
can imagine a ”four−velocityfields” Uµ define all over spacetime.then the number-
flux four-vector Nµ can be,

Nµ = nUµ (1.1.51)

where,n = is number density of the particles as measured in their rest frame. N o is
the number density of particles as measured in any other frame. N i is flux of particles
in the xi direction. Assuming that each particles have the same mass m,then in the
rest frame the energy density of the dust is,

ρ = nm (1.1.52)

By the definition,the energy density completely specifies the dust. Where as n and
m are 0-component of four-vector in their rest frame. Specifically,

Nµ = (n, 0, 0, 0)

P µ = (m, 0, 0, 0) (1.1.53)

Therefore,ρ is the component of µ = 0 and v = 0 tensor P
⊗

N as measured in its
rest frame. The energy-momentum tensor for dust is the,

T µυ = P µNυ = ρUµUυ (1.1.54)

where,Nυ = nUυ,P µ = mUµ and ρ = nm
We also remember that ”perfect” take to mean ”isotropic in its rest frame.” This

in turn means that T µυ is diagonal. Furthermore the nonzero space like components
must all be equal,means,

T 11 = T 22 = T 33 (1.1.55)

The only two independent numbers are therefore T 00 and T ii. The first is energy
density ρ and the second is pressure P . The energy-momentum tensor of a perfect
fluid therefore takes the following form in its rest frame.

T µυ =


ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 (1.1.56)
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One thing is left,we would like,ofcourse,a formula which is good in any frame. For
dust,T µυ = ρUµUυ,we might guess (ρ + P )UµV υ which gives,

(ρ + P )UµV υ =


ρ + P 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (1.1.57)

To get the answer we want we must add the following equation to the above,

Pηµυ =


−P 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 (1.1.58)

Finally,the general form of the energy-momentum tensor for a perfect fluid is,

T µυ = (ρ + P )UµUυ + Pηµυ (1.1.59)

This is an important formula for applications such as stellar structure and cosmol-
ogy[7,11]. In fact,one way to define T µυ would be ” a(2,0) tensor with units of energy
per volume,which is conserved.”

1.2 Einstein Field Equations

In Newtonian theory, gravity can only exist where there exists matter. However
Einstein showed that matter and energy are only different faces of the same coin.
This encouraged him to make the conclusion that gravity is not only created by
the presence of matter, it is in fact the product of the presence of energy. General
relativity must present appropriate analogues of the two parts of the dynamics,one
how particles move in the response to gravity,and secondly,how particles generate
gravitational effects[7]. The analogue of the poisson equation of the second idea can
be,

∇2φ(~x) = 4πGρ(~x) (1.2.1)

Consider the case where a particle is moving slowly in a weak stationary gravitational
field. For sufficiently slow motion of a particle,the equation of motion of a particle
can be written as,

d2xµ

dτ 2
+ Γµ

00

(
dt

dτ

)2

= 0 (1.2.2)
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This is from the equation of motion of the particle in a gravitational field which can
be given by,

d2xµ

dτ 2
+ Γµ

λν

dxλ

dτ

dxν

dτ
= 0

For which λ = ν = 0 and dx0 = dt. Recall the relation given by,

Γσ
λµ =

1

2
gνσ{∂gµν

∂xλ
+

∂gλν

∂xµ
− ∂gµλ

∂xν
}

Since the field is stationary,all time derivatives of gµν vanish,so that

Γλ
00 =

1

2
gλν ∂g00

∂xν
(1.2.3)

For a weak static field produced by non-relativistic mass density ρ,

gαβ = ηαβ + hαβ

where,‖hαβ‖ << 1 and ηαβ is minkowski metric tensor. For α = β = 0 and applying
the relation η00 = −1.

g00 = −1 + h00 (1.2.4)

Therefore we have,

Γα
00 = −1

2
ηαβ ∂h00

∂xβ
(1.2.5)

Now the equation of motion has take the form of,

d2xµ

dτ 2
=

1

2
ηαβ{∂h00

∂xβ
}{ dt

dτ
}2 (1.2.6)

For α = β = 1, 2, 3 the minkowski metric tensor,ηαβ = ηαβ,then the above equation
can be written as,

d2x

dτ 2
=

1

2
{ dt

dτ
}2{∂h00

∂x
}

It is possible to write as,
d2x

dτ 2
=

1

2
{ dt

dτ
}2∇h00 (1.2.7)

Where, ∂h00

∂x
= ∇h00. Once rearranging the equation that gives,

d2x

dτ 2
=

1

2
∇h00 (1.2.8)

Now the corresponding Newtonian result is,

d2x

dτ 2
= −∇φ (1.2.9)
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Where, φ is the Newtonian potential. The comparison of equations result,

1

2
∇h00 = −∇φ

∇h00 = −2∇φ

h00 = −2φ + constant (1.2.10)

Furthermore,the coordinates system must become Minkowskian at great distance
so h00 vanish at infinity. Then if φ| defined to vanish at infinity (where φ = −GM

r
,r

is the distance from the center of a spherical body of mass M. By recall the relation
for a weak static field given by,

gαβ = ηαβ + hαβ

Therefore,
g00 = −1 + h00 (1.2.11)

Using the value of h00 for zero constant and

g00 = −(1 + 2φ) (1.2.12)

Now we start to derive Einstein field equation under the approximation of a weak
static field produced by a non-relativistic mass density ρ[7,11]. Therefore,the energy
density for non-relativistic matter is,

T00 = ρ = T 0
0 (1.2.13)

One can write the poisson equation as,

∇2φ = 4πGT00 (1.2.14)

From equation,
g00 = −1 + h00

And we get,

∇2φ = −1

2
∇2g00 (1.2.15)

Therefore the poisson equation result,

−1

2
∇2g00 = 4πGT00

∇2g00 = 8πGT00 (1.2.16)
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From this fact the weak field equation for a general distribution of energy and mo-
mentum Tαβ will take the form,

Gαβ = −8πGTαβ (1.2.17)

Where, Gαβ is a linear combination of the metric tensor and its first and second
derivatives. The principle of equivalence that the equation which govern gravitational
fields of arbitrary strength must take the form,

Gµν = −8πGTµν (1.2.18)

Therefore,equation (1.2.17) is the approximated form of equation (1.2.18) in a
weak static gravitational field as equivalence principle states. Here Gµν is a tensor
which reduce to Gαβ for a weak fields and since Tµν is symmetric Gµν also.

To go further consider the nature of Gµν ;

1. By definition Gµν is a tensor

2. By assumption Gµν contain terms that are linear in the second derivative of the
metric tensor or quadratic in the first derivative of the metric.

3. Since Tµν is symmetric so does Gµν .

4. Since T µν is conserved in the absence of external forces,so does Gµν .

5. For a weak stationary field produced by non-relativistic matter ,the 00 compo-
nent must satisfy.

G00
∼= ∇2g00 (1.2.19)

Hence (1) and (2) require Gµν to take the form

Gµν = C1Rµν + C2gµνR (1.2.20)

Where,C1 and C2 are constants.
Since this is symmetric condition(3) is automatically satisfied. It follows from the
above relation that.

gσµGµν = C1g
σµRµν + C2g

σµgµνR (1.2.21)



19

Equivalent to,

Gσ
ν = C1R

σ
ν + C2δ

σ
ν R (1.2.22)

this follows as

Gσ
ν;σ = C1R

σ
ν;σ + C2δ

σ
ν R;σ (1.2.23)

Using the result,Rσ
ν;σ = 1

2
δσ
ν R;σ in to the above equation and it follows,

Gσ
ν;σ =

1

2
C1δ

σ
ν Rσ

;σ + C2δ
σ
ν R;σ

If ν = σ

Gσ
ν;σ =

(
C1

2
+ C2

)
R;σ (1.2.24)

By the conservation of Gµν we have Gσ
ν;σ = 0 and this yields the relation,

(
C1

2
+ C2)R;σ = 0

C1

2
= −C2 (1.2.25)

Therefore we can rewrite Gµν as,

Gµν = C1Rµν −
C1

2
gµνR

Gµν = C1(Rµν −
1

2
gµνR) (1.2.26)

To fix the constant C1,use the property[5]. A non-relativistic system always has
|Tij| << |T00| and here look the case where |Gij| << |G00| thus,

Gij
∼= 0 (1.2.27)
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From equation(1.2.20) we can be write as,

Rij −
1

2
gijR = 0

Rij =
1

2
gijR (1.2.28)

Since we deal here with a weak field approximation(i.e gαβ
∼= ηαβ) as well as gij

∼= ηij.
Therefore,this lead to write as,

Rij
∼=

1

2
ηijR (1.2.29)

By applying the property of metric tensor ηij = 1,for i = j = 1, 2, 3 and taking the
sum over each indices,

Rij =
3∑

i,j=1

1

2
ηijR ∼=

3

2
R

Rkk =
3

2
R (1.2.30)

The curvature scalar is therefore given by,

R ∼= Rkk −R00 =
3

2
R−R00

R ∼= 2R00 (1.2.31)

Thus in the weak field approximation we have the following information,

R ∼= 2R00

gαβ
∼= ηαβ
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Gµν = C1

(
Rµν −

1

2
gµνR

)
(1.2.32)

For the 00 component of Gµν equals to,

G00 = C1

(
R00 −

1

2
g00R

)
= C1

(
R00 −

1

2
η00

)
,

G00 = C1R = 2C1R00 (1.2.33)

Now the task is to calculate R00. Recall the expression given by the Riemann curva-
ture tensor Rλµνκ that is,

Rλµνκ =
1

2

[
∂2gλν

∂xκ∂xµ
− ∂2gµν

∂xκ∂xλ
− ∂2gλκ

∂xν∂xµ
+

∂2gµκ

∂xν∂xλ

]
+ gησ

[
Γη

νλΓ
σ
µκ − Γη

κλΓ
σ
µν

]
Since we are looking for a weak field approximation,it is better to use the linear part
of Rλµνκ,given by

Rλµνκ =
1

2

[
∂2gλν

∂xκ∂xµ
− ∂2gµν

∂xκ∂xλ
− ∂2gλκ

∂xν∂xµ
+

∂2gµκ

∂xν∂xλ

]
(1.2.34)

When the field is static all the time derivatives vanish,and the components that we
need are,

R0000
∼= 0

Ri0j0
∼=

1

2

∂2g00

∂xi∂xj
=

1

2
∇2g00 (1.2.35)

Where ∂2g00

∂xi∂xj = ∇2g00 From the contraction of curvature tensor over the two indices,

R00 = gλνRλ0ν0 = ηλνRλ0ν0

R00 = Ri0j0 −R0000 (1.2.36)
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By using this relation in to equation(1.2.33)for Gµν ,

G00 = 2C1

(
Ri0j0 −R0000

)

G00 = 2C1

(
1

2
∇2g00 − 0

)
= C1∇2g00 (1.2.37)

Comparing equation (1.2.19) to equation (1.2.37),

G00 = C1∇2g00 = ∇2g00 (1.2.38)

This gives the value of C1 = 1,and therefore we can write the equation for Gµν as,

Gµν =

(
Rµν −

1

2
gµνR

)
= −8πGTµν

Rµν −
1

2
gµνR = −8πGTµν (1.2.39)

Equation (1.2.39) is Einstein field equation. This shows that the metric of spacetime
is dependent upon the matter present in that spacetime.



Chapter 2

Gravitational Radiation In
Schwarzschild de-Sitter
Background

The Theory of General Relativity is a relativistic theory of gravitation and predicts
the existence of gravitational radiation[7,11,12]. Unfortunately,it is extremely difficult
to explore gravitational radiation from the full Einstein field equations,not only in
mathematics but even conceptually. This could be explained qualitatively as follow;In
electromagnetic radiation,it is the electric and magnetic fields that propagate as waves
with the speed of light. What propagates in gravitational radiation? The answer
unfortunately is not as clear as the electromagnetic waves. The gravitational effects
in relativity are intimately related to the geometric structure of space-time[9]. Hence
we expect the structural changes in space-time to propagate as gravitational waves.
In practice,it is very difficult to single out any particular quantity that relates to
such changes of space-time structure and that we can claim to be propagating as
waves. The difficulty lies partly in the coordinate description of space and time.
Einstein field equations have the beautiful property that they have the same formal
structure,whatever the coordinate frame of reference used. But every observer uses
a coordinate system to describe the geometric properties of space-time. The above-
mentioned property gets in the way of deciding whether a particular solution does
represent a gravitational wave or it is a result of the choice of a particular frame of
reference. When gravitational fields are strong and the geometric properties of space-
time are very different from Euclidians,the problem of interpreting a disturbance as
a gravitational wave becomes very difficult. But in the case of weak gravitational
fields it is simpler to identify certain disturbances as gravitational waves[11]. For
examples,massive bodies undergoing acceleration and two (binary) stars going around
each other emit gravitational waves. It is best to regard the weak field solutions not

23
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as approximate solutions to the full equations,but as solutions to give an idea of
the behavior expected in the full theory. In this chapter we will reformulate the
Einstein equations so that they can be expressed as a wave equation. This is done
by linearizing the equations by assuming that the gravitational field is weak,and by
choosing appropriate coordinates in which to express the equations. This chapter
will be divided into two sections.In the first section the linearization of the Einstein
equations with cosmological constant will be discussed. In the second section it will
be proved that one always can choose a set of coordinates, such that the linearized
equations take on the form of an inhomogeneous wave equation.

2.1 Linearization Of Einstein Field Equations In

Schwarzschild de-Sitter Background

The spacetime metric as gµν = ηµν + hµν and treating hµν as a small perturbation.
For most of the astrophysical applications,such an approximation is adequate if we
are interested in the propagation of gravitational wave disturbances in a(nearly) flat
background spacetime. There are,however,situations in which one would like to study
the gravitational waves propagating in a curved spacetime like Schwarzschild de-
Sitter. In this section we shall see such spacetime. It is certainly possible formally to
separate any spacetime metric as,

gµν = g(B)
µν + hµν (2.1.1)

Where,hµν is treat as a perturbation and g
(B)
µν is treat as background[11]. But since a

given metric gµν could be separated into a background and a perturbation in many
different ways,it is not possible to treat hµν as a well-defined gravitational wave with-
out further physical input.
The line element in the Schwarzschild de-Sitter has a form of,

ds2 = V (r)dt2 + V (r)−1dr2 + r2dΩ2 (2.1.2)

Where,

V (r) = 1− 2M

r
− Λ

3
r2

and Λ is cosmological constant with Λ > 0.
To linearize the field equation with Schwarzschild de-sitter background,we start with
the metric,

gµν = ηµν + h(w)
µν + h(Λ)

µν (2.1.3)
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where,h
(w)
µν is Newtonian perturbation and h

(Λ)
µν is cosmological perturbation. The

contravariant of the metric can be as,

gµν = ηµν − h(w)µν − h(Λ)µν (2.1.4)

2.1.1 Linearization of Affine Connection

The affine connection is given by,

Γλ
µν =

1

2
gλσ

(
gσµ;ν + gσν;µ − gµν;σ

)
(2.1.5)

Then the first order linearize affine connection where the higher orders are omitted
in Schwarzschild de-Sitter has the form of,

Γλ(1)
µν =

1

2

(
hλ(w)

µ;ν + hλ(w)
ν;µ − h;λ(w)

µν

)
−1

2

(
hλ(Λ)

µ;ν + hλ(Λ)
ν;µ − h;λ(Λ)

µν

)
(2.1.6)

Here we are adopting the convenient convention tha t indices on hlmuν ,Γ
λ
µν ,Rµν and

∂
∂xλ are raised and lowered with η′s
Examples,

hλ
λ ≡ ηλνhλν ≡ h

and
∂

∂xλ

≡ ηλν ∂

∂xν

2.1.2 Linearization Of Ricci Tensor

We know that the Ricci curvature tensor is obtained from the Riemann curvature
tensor by,

Rµν = gλκRλµκν

Rµν =
1

2
gλκ

[
∂2gλκ

∂xν∂xµ
− ∂2gµκ

∂xν∂xλ
− ∂2gλν

∂xκ∂xµ
+

∂2gµν

∂xκ∂xλ

]
+ gλκgησ

[
Γη

κλΓ
σ
µν − Γη

νλΓ
σ
µκ

]
(2.1.7)

To Linearize the Ricci Tensor to the first and second orders,we use,

gµν = ηµν + h(w)
µν + h(Λ)

µν



26

and
gµν = ηµν − hµν(w) − hµν(Λ)

As well as,η′s are raised and lowered the indices on hµν ,R
(1)
µν ,R

(2)
µν and ∂

∂xλ as before,then
the product of,

gλκgησ = ηλκηησ+ηλκh(w)
ησ +ηλκh(Λ)

ησ −ηησh
λκ(w)−ηησh

λκ(Λ)−
[(

hλκ(w)+hλκ(Λ)

)(
h(w)

ησ +h(Λ)
ησ

)]
(2.1.8)
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Therefore by ignoring the higher order than second,the Ricci tensor linearize to,

Rµν =
1

2

[
∂2h

λ(w)
λ

∂xν∂xµ
−∂2h

λ(w)
µ

∂xν∂xλ
− ∂2h

κ(w)
ν

∂xκ∂xµ
+

∂2h
(w)
µν

∂xλ∂xλ

]
+

1

2

[
∂2h

λ(Λ)
λ

∂xν∂xµ
− ∂2h

λ(Λ)
µ

∂xν∂xλ
− ∂2h

κ(Λ)
ν

∂xκ∂xµ
+

∂2h
(Λ)
µν

∂xλ∂xλ

]

−1

2
hλκ

(w)

[
∂2h

(w)
λκ

∂xν∂xµ
− ∂2h

(w)
µκ

∂xν∂xλ
− ∂2h

(w)
λν

∂xκ∂xλ
+

∂2h
(w)
µν

∂xκ∂xλ

]
−1

2
hλκ

(w)

[
∂2h

(Λ)
λκ

∂xν∂xµ
− ∂2h

(Λ)
µκ

∂xν∂xλ
− ∂2h

(Λ)
λν

∂xκ∂xλ
+

∂2h
(Λ)
µν

∂xκ∂xλ

]
−1

2
hλκ

(Λ)

[
∂2h

(w)
λκ

∂xν∂xµ
− ∂2h

(w)
µκ

∂xν∂xλ
− ∂2h

(w)
λν

∂xκ∂xλ
+

∂2h
(w)
µν

∂xκ∂xλ

]
−1

2
hλκ

(Λ)

[
∂2h

(Λ)
λκ

∂xν∂xµ
− ∂2h

(Λ)
µκ

∂xν∂xλ
− ∂2h

(Λ)
λν

∂xκ∂xλ
+

∂2h
(Λ)
µν

∂xκ∂xλ

]
+

1

4

[
2
∂h

κ(w)
σ

∂xκ
−∂h

κ(w)
κ

∂xσ

][
∂h

σ(w)
µ

∂xν
+

∂h
σ(w)
ν

∂xµ
−∂h

(w)
µν

∂xσ

]
+

1

4

[
2
∂h

κ(w)
σ

∂xκ
−∂h

κ(w)
κ

∂xσ

][
∂h

σ(Λ)
µ

∂xν
+

∂h
σ(Λ)
ν

∂xµ
−∂h

(Λ)
µν

∂xσ

]
+

1

4

[
2
∂h

κ(Λ)
σ

∂xκ
−∂h

κ(Λ)
κ

∂xσ

][
∂h

σ(w)
µ

∂xν
+

∂h
σ(w)
ν

∂xµ
−∂h

(w)
µν

∂xσ

]
+

1

4

[
2
∂h

κ(Λ)
σ

∂xκ
−∂h

κ(Λ)
κ

∂xσ

][
∂h

σ(Λ)
µ

∂xν
+

∂h
σ(Λ)
ν

∂xµ
−∂h

(Λ)
µν

∂xσ

]

−1

4

[
∂h

(w)
σν

∂xλ
+

∂h
(w)
σλ

∂xν
−

∂h
(w)
µλ

∂xσ

][
∂h

σ(w)
µ

∂xλ

+
∂hσλ

(w)

∂xµ
− ∂h

λ(w)
µ

∂xσ

]

−1

4

[
∂h

(w)
σν

∂xλ
+

∂h
(w)
σλ

∂xν
−

∂h
(w)
µλ

∂xσ

][
∂h

σ(Λ)
µ

∂xλ

+
∂hσλ

(Λ)

∂xµ
− ∂h

λ(Λ)
µ

∂xσ

]

−1

4

[
∂h

(Λ)
σν

∂xλ
+

∂h
(Λ)
σλ

∂xν
−

∂h
(Λ)
µλ

∂xσ

][
∂h

σ(w)
µ

∂xλ

+
∂hσλ

(w)

∂xµ
− ∂h

λ(w)
µ

∂xσ

]

−1

4

[
∂h

(Λ)
σν

∂xλ
+

∂h
(Λ)
σλ

∂xν
−

∂h
(Λ)
µλ

∂xσ

][
∂h

σ(Λ)
µ

∂xλ

+
∂hσλ

(Λ)

∂xµ
− ∂h

λ(Λ)
µ

∂xσ

]
(2.1.9)

Now if we ignore the cosmological perturbation h
(Λ)
µν of the order above the first,finally

1. The Ricci tensor is linearize to the first order is,

R(1)
µν =

1

2

[
∂2h

λ(w)
λ

∂xν∂xµ
− ∂2h

λ(w)
µ

∂xν∂xλ
− ∂2h

κ(w)
ν

∂xκ∂xµ
+

∂2h
(w)
µν

∂xλ∂xλ

]
+

1

2

[
∂2h

λ(Λ)
λ

∂xν∂xµ
− ∂2h

λ(Λ)
µ

∂xν∂xλ
− ∂2h

κ(Λ)
ν

∂xκ∂xµ
+

∂2h
(Λ)
µν

∂xλ∂xλ

]
(2.1.10)

2. The Ricci tensor that linearize to the second order is,

R(2)
µν = −1

2
hλκ(w)

[
∂2h

(w)
λκ

∂xν∂xµ
− ∂2h

(w)
µκ

∂xν∂xλ
− ∂2h

(w)
λν

∂xκ∂xλ
+

∂2h
(w)
µν

∂xκ∂xλ

]
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−1

2
hλκ(w)

[
∂2h

(Λ)
λκ

∂xν∂xµ
− ∂2h

(Λ)
µκ

∂xν∂xλ
− ∂2h

(Λ)
λν

∂xκ∂xλ
+

∂2h
(Λ)
µν

∂xκ∂xλ

]

−1

2
hλκ(Λ)

[
∂2h

(w)
λκ

∂xν∂xµ
− ∂2h

(w)
µκ

∂xν∂xλ
− ∂2h

(w)
λν

∂xκ∂xλ
+

∂2h
(w)
µν

∂xκ∂xλ

]

+
1

4

[
2
∂h

κ(w)
σ

∂xκ
− ∂h

κ(w)
κ

∂xσ

][
∂h

σ(w)
µ

∂xν
+

∂h
σ(w)
ν

∂xµ
− ∂h

(w)
µν

∂xσ

]

+
1

4

[
2
∂h

κ(w)
σ

∂xκ
− ∂h

κ(w)
κ

∂xσ

][
∂h

σ(Λ)
µ

∂xν
+

∂h
σ(Λ)
ν

∂xµ
− ∂h

(Λ)
µν

∂xσ

]

+
1

4

[
2
∂h

κ(Λ)
σ

∂xκ
− ∂h

κ(Λ)
κ

∂xσ

][
∂h

σ(w)
µ

∂xν
+

∂h
σ(w)
ν

∂xµ
− ∂h

(w)
µν

∂xσ

]

−1

4

[
∂h

(w)
σν

∂xλ
+

∂h
(w)
σλ

∂xν
−

∂h
(w)
µλ

∂xσ

][
∂h

σ(w)
µ

∂xλ

+
∂hσλ(w)

∂xµ
− ∂h

λ(w)
µ

∂xσ

]

−1

4

[
∂h

(w)
σν

∂xλ
+

∂h
(w)
σλ

∂xν
−

∂h
(w)
µλ

∂xσ

][
∂h

σ(Λ)
µ

∂xλ

+
∂hσλ(Λ)

∂xµ
− ∂h

λ(Λ)
µ

∂xσ

]

−1

4

[
∂h

(Λ)
σν

∂xλ
+

∂h
(Λ)
σλ

∂xν
−

∂h
(Λ)
µλ

∂xσ

][
∂h

σ(w)
µ

∂xλ

+
∂hσλ(w)

∂xµ
− ∂h

λ(w)
µ

∂xσ

]
(2.1.11)

2.1.3 Coordinate Transformations

Suppose that the coordinates are varied at the same time that the metric tensor is
varied. Thus,the coordinates become,

x
′µ = xµ + ξµ(xν) (2.1.12)

This new coordinate is generated by a vector ξµ,where the components are function
of position. If we demand that ξµ be small in the sense that

‖ξµ
;ν‖ << 1

Therefore,the metric in new coordinate,x
′µ is,

g
′µν =

∂x
′µ

∂xλ
gλρ ∂x

′ν

∂xρ
(2.1.13)
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Generally,the new metric is differ from that of flat background spacetime,now in the
Schwarzschild de-Sitter background it has a form of,

g
′µν = ηµν − hµν(w) − hµν(Λ) +

∂ξµ

∂xλ
ηλν +

∂ξν

∂xρ
ηµρ (2.1.14)

This implies that,
g
′µν = ηµν − h

′µν(w) − h
′µν(Λ) (2.1.15)

Where,

h
′µν(w) + h

′µν(Λ) = hµν(w) + hµν(Λ) − ∂ξµ

∂xλ
ηλν − ∂ξν

∂xρ
ηµρ

or

h
′(w)
µν + h

′(Λ)
µν = h(w)

µν + h(Λ)
µν −

∂ξµ

∂xν
− ∂ξν

∂xµ
(2.1.16)

Now back to the metric variation,in the new coordinate,x
′µ is,

δgµν = h(w)
µν + h(Λ)

µν −
∂ξµ

∂xν
− ∂ξν

∂xµ
(2.1.17)

This is differ from the variation,

δgµν = h(w)
µν + h(Λ)

µν (2.1.18)

Therefore,they represents the same spacetime geometry as a change of the form,

h(w)
µν + h(Λ)

µν −→ h(w)
µν + h(Λ)

µν −
∂ξµ

∂xν
− ∂ξν

∂xµ
(2.1.19)

This is called a gauge transformation because it should have no effect on the physical
law (gauge invariance).

2.1.4 Harmonic Coordinate Conditions

The gauge invariance is not easy when it comes to actually solving the field equa-
tions. However,the difficulty can be removed by choosing some particular gauge. i.e
coordinate system. The most convenient choice is to work in a harmonic coordinate
system,

gµνΓλ
µν = 0 (2.1.20)
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Using the affine connection of the first order and definition of metric in Schwarzschild
de-Sitter,yield that

∂

∂xµ
hµ(w)

ν +
∂

∂xµ
hµ(Λ)

ν =
1

2

∂

∂xν
hµ(w)

µ +
1

2

∂

∂xν
hµ(Λ)

µ (2.1.21)

If hµν does not satisfy the above equation,then we can find an h′
µν that does,by

performing the coordinate transformation,therefore

22ξν =
∂

∂xµ
hµ(w)

ν +
∂

∂xµ
hµ(Λ)

ν − 1

2

∂

∂xν
hµ(w)

µ − 1

2

∂

∂xν
hµ(Λ)

µ (2.1.22)

2.1.5 Linearization The Einstein Field Equations

We are looking for the forms of field equations that can be tested observationally in
the context of quadrupole formalism. The simplest assumption to start with is,that at
least the theory to be developed must be in agreement with Newtonian approximation
of gravitational whenever the later gives a successful account of observations. So in a
region where we are going to implement the linearzation theory with the Schwarzschild
metric be subjected to this assumption. But this is possible in a region where the
effect of ,Λ is so small. Recall that the metric of the Schwarzschild de-Sitter,

gµν = ηµν + h(w)
µν + h(Λ)

µν (2.1.23)

We have the first order affine connection and Ricci tensor are given by

Γλ(1)
µν =

1

2

[
∂h

λ(w)
µ

∂xν
+

∂h
λ(w)
ν

∂xµ
− h

(w)
µν

∂xλ

]
− 1

2

[
∂h

λ(Λ)
µ

∂xν
+

h
λ(Λ)
ν

∂xµ
− h

(Λ)
µν

∂xλ

]
(2.1.24)

R(1)
µν =

1

2

[
∂2h

λ(w)
λ

∂xν∂xµ
−∂2h

λ(w)
µ

∂xν∂xλ
− ∂2h

κ(w)
ν

∂xκ∂xµ
+

∂2h
(w)
µν

∂xλ∂xλ

]
+

1

2

[
∂2h

λ(Λ)
λ

∂xν∂xµ
− ∂2h

λ(Λ)
µ

∂xν∂xλ
− ∂2h

κ(Λ)
ν

∂xκ∂xµ
+

∂2h
(Λ)
µν

∂xλ∂xλ

]
(2.1.25)

Further also applied the D’Alembertial operator of the form,

ηµν ∂

∂xµ

∂

∂xν
= − ∂2

∂t2
+∇2 = 22 (2.1.26)

The field equation with cosmological constant can be written as,

Rµν −
1

2
ηµνR− Λgµν = −8πGTµν (2.1.27)
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Rµν −
1

2
ηµνR = −8πG(Tµν −

Λ

8πG
gµν)

= −8πG(Tµν − T (vacuum)
µν ) (2.1.28)

Where T
(vacuum)
µν = Λ

8πG
gµν and also known as energy-momentum tensor of vacuum.

We may reduced the energy-momentum tensor as follow,

Rµν −
1

2
ηµνR = −8πGT̃µν (2.1.29)

where T̃µν = Tµν − T
(vacuum)
µν as energy-momentum of matter and vacuum.

Therefore the Einstien field equations to first order can be written as,

R(1)
µν −

1

2
ηµνR

(1)λ
λ = −8πGT̃µν (2.1.30)

R(1)
µν = −8πGT̃µν +

1

2
ηµνR

(1)λ
λ

= −8πG[T̃µν −
1

2
ηµνT̃

λ
λ ] (2.1.31)

.
Note that the vacuum energy-momentum T (vacuum) to the first order leave with a cos-
mological constant since it take as perturbation,meaning T

(vacuum)
µν = Λ

8πG
ηµν . There-

fore one can write the linearized field equation as,

R(1)
µν = −8πG ˜̃Tµν (2.1.32)

Where ˜̃Tµν is the source define as,

˜̃Tµν = T̃µν −
1

2
ηµνT̃

λ
λ

Here we rewrite the field equation in the first order with the approximation we men-
tioned above for cosmological constant and also the harmonic coordinate(Lorentz
gauge)and ignoring the higher order of cosmological than first order the above equa-
tion reduce to,

22h(w)
µν = −16πG ˜̃Tµν (2.1.33)
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The well known one solution of equation is retarded potential given by the following
relation,

h(w)
µν (x, t) = 4G

∫
d3x′

|x− x′|
˜̃Tµν(x

′, t− |x− x′|) (2.1.34)

In the above equation the time argument t− |x− x′| shows that gravitational radia-
tion propagate with a unit velocity,i.e,with speed of light. If we concerned with the

conservational law for ˜̃Tµν is equivalent to

∂

∂xµ

˜̃T µ
ν =

1

2

∂

∂xν

˜̃T µ
µ (2.1.35)

As a result the solution of retarded potential for a source ˜̃Tµν confined to a finite
volume will be satisfies the harmonic coordinate condition.

In a vacuum,the only energy-momentum tensor is the vacuum energy-momentum
tensor T

(vacuum)
µν . Now the linearize Einstein field equation in a vacuum become to,

22h(w)
µν = 16πGT (vacuum)

µν (2.1.36)

Where T
(vacuum)
µν = Λ

8πG
ηµν finally,the field equation can be written as,

22h(w)
µν = 2Ληµν (2.1.37)

2.2 Gravitational Wave

The general approach to solving inhomogeneous wave equations like, 22h
(w)
µν −2Ληµν =

0 is to use the technique of Green’s function. Now,we are interested in obtaining the
solutions to the inhomogeneous linearized field equations in schwarzschild de-sitter
spacetime.

22h(w)
µν (x, t)− 2Ληµν(x, t) = 0

where h
(w)
µν and ηµν are function of space and coordinates. The retarded solution is

then

h(w)
µν (x, t) =

1

2π

∫
2Λd3x′ηµν(x

′, t− |x− x′|)
|x− x′|

(2.2.1)

where t−|x−x′| is retarded time shows that effects propagate with unit velocity that
is,with speed of light. This also written as Fourier integral,

h(w)
µν (x, t) =

Λ

π

∫
d3x′

|x− x′|
ηµν(x

′, ω)e−iωt+iω|x−x′| (2.2.2)
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Having in mind that this radiation is observed in the wave zone,that is at distance
r ≡ |x| much larger than the dimension R = |x|max,then the denominator |x−x′| can
be replaced by r,while in the exponent we may approximate,

|x− x′| ' r − x′ · x̂ and x̂ ≡ x

r

The field become,

h(w)
µν (x, t) =

Λ

πr
eiωr−iωt

∫
d3x′

|x− x′|
ηµν(x

′, ω)e−iωx′·x̂ (2.2.3)

Since rω is assumed large,the above equation just looks like a plane wave of,

h(w)
µν (x, t) = eµν(x, ω)exp(ikµx

µ) (2.2.4)

where ”wave vector ” and ”polarization tensor” are given by,

k ≡ ωx̂ and ko = ω

and

eµν(x, ω) =
Λ

πr

∫
d3x′ηµν(x, ω)e−ik·x′ (2.2.5)

From Fourier transformation,

ηµν(k, ω) =

∫
ηµν(x, ω)e−ik·x′

Then the polarization tensor has the form of

eµν(x, ω) =
Λ

πr
ηµν(k, ω) (2.2.6)

Therefore the field can be written as,

h(w)
µν (x, t) =

Λ

πr
ηµν(k, ω)eiωr−iωt (2.2.7)



34

Where,|x − x′|3 and |x − x′|2 are much larger than |x − x′| We approximate to firs
order,then

kµk
µ = 2πreiωt−iωr

,
The harmonic coordinates condition in the weak field approximationgµνΓλ

µν = 0 that
is equivalently,

∂

∂xµ
hµ(w)

ν − 1

2

∂

∂xν
hµ(w)

µ = 0 (2.2.8)

This equation lead to,
kµe

µ
ν = kνe

µ
µ (2.2.9)

This reduces the number of independent components of the symmetric tensor eµν to
two. And it can be shown that the only non-zero components are e11, e12, e21 and e22.

2.3 Energy and Momentum of Gravitational Wave

We can now interpret Einstein field equation as having two sources,one being the
conventional matter source given by Tµν and the other arising out of the energy-
momentum tensor of the gravitational wave perturbations tµν [7]. The solution of
plane wave leads to calculating the energy and momentum it carries. The energy
momentum tensor of gravitation given by the second order of hµν .

tµν ≡
1

8πG

[
− 1

2
hµνη

λρR
(1)
λρ +

1

2
ηµνhλρR(1)+R(2)

µν −
1

2
ηµνη

λρR
(2)
λρ +Ληµν +Λhµν

]
(2.3.1)

where R
(n)
µν is the term in Ricci tensor of order n in hµν ,the metric gµν = ηµν + hµν

satisfies the first-order Einstien equation,R
(1)
µν = Ληµν ,thus we can write the above

equation as,

tµν '
1

8πG

[
R(2)

µν −
1

2
ηµνη

λρR
(2)
λρ + Ληµν −

1

2
Λhµν

]
(2.3.2)

The approximation of cosmological constant to the first order yield that,

tµν '
1

8πG

[
R(2)

µν −
1

2
ηµνη

λρR
(2)
λρ + Ληµν

]
(2.3.3)

The second order Ricci is given by,

R(2)
µν = −1

2
hλκ(w)

[
∂2h

(w)
λκ

∂xν∂xµ
− ∂2h

(w)
µκ

∂xν∂xλ
− ∂2h

(w)
λν

∂xκ∂xλ
+

∂2h
(w)
µν

∂xκ∂xλ

]
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−1

2
hλκ(w)

[
∂2h

(Λ)
λκ

∂xν∂xµ
− ∂2h

(Λ)
µκ

∂xν∂xλ
− ∂2h

(Λ)
λν

∂xκ∂xλ
+

∂2h
(Λ)
µν

∂xκ∂xλ

]

−1

2
hλκ(Λ)

[
∂2h

(w)
λκ

∂xν∂xµ
− ∂2h

(w)
µκ

∂xν∂xλ
− ∂2h

(w)
λν

∂xκ∂xλ
+

∂2h
(w)
µν

∂xκ∂xλ

]

+
1

4

[
2
∂h

κ(w)
σ

∂xκ
− ∂h

κ(w)
κ

∂xσ

][
∂h

σ(w)
µ

∂xν
+

∂h
σ(w)
ν

∂xµ
− ∂h

(w)
µν

∂xσ

]

+
1

4

[
2
∂h

κ(w)
σ

∂xκ
− ∂h

κ(w)
κ

∂xσ

][
∂h

σ(Λ)
µ

∂xν
+

∂h
σ(Λ)
ν

∂xµ
− ∂h

(Λ)
µν

∂xσ

]

+
1

4

[
2
∂h

κ(Λ)
σ

∂xκ
− ∂h

κ(Λ)
κ

∂xσ

][
∂h

σ(w)
µ

∂xν
+

∂h
σ(w)
ν

∂xµ
− ∂h

(w)
µν

∂xσ

]

−1

4

[
∂h

(w)
σν

∂xλ
+

∂h
(w)
σλ

∂xν
−

∂h
(w)
µλ

∂xσ

][
∂h

σ(w)
µ

∂xλ

+
∂hσλ(w)

∂xµ
− ∂h

λ(w)
µ

∂xσ

]

−1

4

[
∂h

(w)
σν

∂xλ
+

∂h
(w)
σλ

∂xν
−

∂h
(w)
µλ

∂xσ

][
∂h

σ(Λ)
µ

∂xλ

+
∂hσλ(Λ)

∂xµ
− ∂h

λ(Λ)
µ

∂xσ

]

−1

4

[
∂h

(Λ)
σν

∂xλ
+

∂h
(Λ)
σλ

∂xν
−

∂h
(Λ)
µλ

∂xσ

][
∂h

σ(w)
µ

∂xλ

+
∂hσλ(w)

∂xµ
− ∂h

λ(w)
µ

∂xσ

]
(2.3.4)

To find out R
(2)
µν ,the result is extremely complicated,however to simplify,it is better

to take the average of tµν over a region of space and time much larger than |k|−1.
From this approximation the averaging kills all terms proportional to exp(±2ikλx

λ)
and left with only the xµ-independent cross-terms. That mean,

1.
[eµνexp(ikλx

λ) + c.c][eσκexp(ikλx
λ) + c.c] = eµνeσκ[exp(2ikλx

λ)]

2. 〈
[eµνexp(ikλx

λ) + c.c][eσκexp(ikλx
λ) + c.c]

〉
= 2Re∗µνeσκ

Where R is real part and 〈..〉 denotes time-average as well as c.c is complex
part.

3. For plane wave solutions derivateves correspond to multiplication with k.

∂hµν

∂xλ
= ikλhµν
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Now the second order of Ricci tensor of average can be reduced to,

〈R(2)
µν 〉 = Re

{
eλρ∗

[
kµkνeλρ − kµkλeνρ − kνkρeµλ + kλkρeµν

]
+

[
eλ

ρkλ −
1

2
eλ

λ

]
∗

[
kµe

ρ
ν + kνe

ρ
mu− kρeµν

]
(2.3.5)

−1

2

[
kλeρν + kνeρλ − kρeλν

]
∗

[
kλeρ

µ + kµe
ρλ − kρeλ

µ

]}
Now applying the harmonic coordinate conditions kµk

µ = 2πreiωt−iωr and kµe
µ
ν =

1
2
kνe

µ
µ then we find that,

〈R(2)
µν 〉 ≡

kµkν

2
[eλρ∗eλρ −

1

2
|eλ

λ|2] +
Λ2

2πr
η2(k, ω)eiωr−iωt (2.3.6)

and Similarly,

ηµν〈R(2)
µν 〉 ≡

kνkν

2
[eλρ∗eλρ −

1

2
|eλ

λ|2] +
Λ2

2πr
η2(k, ω)eiωr−iωt (2.3.7)

Thus the time average of energy-momentum tensor of the gravitational wave reads,

〈tµν〉 ≡ −
kµkν

16πG
[eλρ∗eλρ −

1

2
|eλ

λ|2] +
Λ2

16π2Gr
η2(k, ω)eiωr−iωt +

Ληµν

8πG
(2.3.8)

We know that our approximation of cosmological constant to first order,thus

〈tµν〉 ≡ −
kµkν

16πG
[eλρ∗eλρ −

1

2
|eλ

λ|2] +
Ληµν

8πG
(2.3.9)

In particular,for a wave traveling in the z-direction,with wave vector,

k1 = k2 = 0 and k3 = k0 = k > 0

And polarization tensor

e01 = −e31, e02 = e32,−
1

2
(e33 + e00) and e22 = −e11

,Therefore,the energy momentum tensor can be reduced to

〈tµν〉 ≡ −
kµkν

8πG
[|e11|2 + |e12|2] +

Ληµν

8πG
(2.3.10)

where e11 and e12 are couplled with cosmological constant,Λ.
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2.4 Gravitational Quadrupole Radiation

Long-wavelength gravitational waves far from a non-relativistic source (wavelengths
much larger than the characteristic source size imply low velocities for mass in the
source relative to that of light)[5,7]. In the Schwarzschild de-Sitter spacetime the
retarded potential where matter energy-momentum tensor included can be,

h(w)
µν (x, t) = 4G

∫
d3x′

|x− x′|
˜̃Tµν(x

′, t− |x− x′|) (2.4.1)

If we use the relation

−iωtr = iω[t− |x− x′|] = −iωt + iω|x− x′|

Then the field emitted by source is

h(w)
µν (x, t) = 4G

∫
d3x′

|x− x′|
˜̃Tµν(x

′, ω)e−iωt+iω|x−x′| (2.4.2)

Assuming that we observe the radiation in wave zone,that is,at a distance r ' |x|
much larger than the dimension R = |x′|max of the source and also much larger than
ωR2 and 1

ω
. Therefore the denominator |x − x′| approximate to r and the exponent

may approximate to

|x− x′| ' r − x′ · x̂ and x̂ ≡ x

r

Then

h(w)
µν (x, t) =

4G

r
exp(iωr − iωt)

∫
d3x′ ˜̃Tµν(x

′, ω)e−iωx̂·x′ (2.4.3)

Since rω is assumed large,this looks just like a plane wave

hµν(x, t) = eµν(x, ω)exp(ikλx
λ) + c.c (2.4.4)

Where wave vector,

k = ωx̂ and k0 = ω

And polarization tensor ,

eµν(x, ω) ' 4G

r

∫
d3x′ ˜̃Tµν(x, ω)e−ik·x′

The polarization tensor may written explicitly in terms of the Fourier transform of
T̃µν ,

eµν(x, ω) =
4G

r
[T̃µν(k, ω)− 1

2
ηµνT̃

λ
λ (k, ω)] (2.4.5)
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The conservational law for T̃µν(x, t) is,

∂

∂xµ
T̃ µ

ν (x, t) = 0 (2.4.6)

Applying the Fourier transformation,gives,

∂

∂xi
T̃ i

ν(x, ω)− iωT̃ 0
ν (x, ω) = 0 (2.4.7)

where we multiply both sides with e−ik·x and integrating over x,∫
∂

∂xi
T̃ i

ν(x, ω)e−ik·xd3x− iω

∫
T̃ 0

ν (x, ω)eik·xd3x = 0 (2.4.8)

This also equivalent to,

ikµ

∫
T̃ µ

ν (x, ω)e−ik·xd3x = ikµT̃
µ
ν (x, ω) = 0 (2.4.9)

where kµ is given by,

k = ωx̂ and k0 = ω

Therefore one can read,
kµT̃

µ
ν = 0 (2.4.10)

This equation verifies that (2.2.5) obeys the harmonic coordinate condition.
We now stand to move on to found out the quadrupole moment,we know that in

the linear approximation,the T̃ µν satisfies the conservational law as well as harmonic
condition. That is,

∂

∂xµ
T̃ µν = 0 (2.4.11)

To simplify our calculations,let we separate this equations in to space and time com-
ponents like,

∂

∂x0
T̃ µ0 +

∂

∂xk
T̃ µk = 0 where k = 1, 2, 3 (2.4.12)

Integrating over the volume V,∫
V

∂

∂t
T̃ µ0d3x =

∫
V

∂

∂xk
T̃ µkd3x (2.4.13)



39

When we apply the Gauss’s theorem to the R.H.S∫
V

∂

∂t
T̃ µ0d3x =

∫
S

T̃ µkdSk (2.4.14)

Where S is the surface that encloses,V. We assume that on the surface S,far T̃ µν → 0,
Therefore,

∫
V

∂

∂t
T̃ µ0d3x =

∂

∂t

( ∫
V

T̃ µ0d3x

)
= 0 (2.4.15)

This equation indicate that, the the term in the bracket is constant,
i.e ∫

V

T̃ µ0d3x = constant ⇒ hµ0 = constant (2.4.16)

Since we are interested in the time-dependent part of the field,we put,

hµ0(x, t) = hµ0(x, t) = 0 (2.4.17)

Now let us consider the space component and time component conservational law
separatively,
1. Space component of the conservational law has the form of,

∂

∂x0
T̃ k0 +

∂

∂xi
T̃ ki = 0 where k = 1, 2, 3 (2.4.18)

Multiplying both side equation by xj then integrating over all space,and leaving the
surface terms on the assumption that goes to zero sufficiently rapidly at spatial in-
finity, ∫

V

∂

∂t
T̃ k0xjd3x = −

∫
V

∂

∂xi
T̃ kid3x

= −
[ ∫

V

∂

∂xi
(T̃ kixj)d3x−

∫
V

T̃ ki ∂xj

∂xi
d3x

]
(2.4.19)

where
∂xj

∂xi
= δj

i = 1
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This may written as

∂

∂t

∫
V

T̃ k0xjd3x = −
∫

S

T̃ kixjdSi +

∫
V

T̃ kjd3x (2.4.20)

As before
∫

S
T̃ kixjdSi = 0 then

∂

∂t

∫
V

T̃ k0xjd3x =

∫
V

T̃ kjd3x (2.4.21)

Since T̃ jk is symmetric in j and k,

∂

∂t

∫
V

T̃ k0xjd3x =

∫
V

T̃ jkd3x (2.4.22)

Adding equations (2.5.21) and (2.5.22), We get

1

2

∂

∂t

∫
V

[T̃ k0xj + T̃ j0xk]d3x =

∫
V

T̃ jkd3x (2.4.23)

2. Similarly use the time-component of the conservational law,

∂

∂x0
T̃ 00 +

∂

∂xi
T̃ 0i = 0 where i = 1, 2, 3 (2.4.24)

Multiplying both side by xjxk and integrate over the volume,d3x,

∫
V

∂

∂t
T̃ 00xjxkd3x = −

∫
V

∂

∂xi
T̃ 0ixjxkd3x

= −
[ ∫

V

∂

∂xi
(T̃ 0ixjxk)d3x−

∫
V

(T̃ 0i ∂xj

∂xi
xk + T̃ 0i ∂xk

∂xi
xj)d3x

]
= −

∫
S

T̃ 0ixixkdSi +

∫
V

[T̃ 0jxk + T̃ 0kxj]d3x (2.4.25)

Now also as before
∫

S
T̃ 0ixixkdSi = 0,then,

∂

∂t

∫
V

T̃ 00xjxkd3x =

∫
V

[T̃ 0jxk + T̃ 0kxj]d3x (2.4.26)

Differentiate this equation with respect to x0 = ct

∂2

∂t2

∫
V

T̃ 00xjxkd3x =
∂

∂t

∫
V

[T̃ 0jxk + T̃ 0kxj]d3x (2.4.27)
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Comparing equations (2.5.23) and (2.5.27) we get,

∂2

∂t2

∫
V

T̃ 00xjxkd3x = 2

∫
V

T̃ jkd3x (2.4.28)

The quantity,
∫

V
T̃ 00xjxkd3x is the Quadrupole Moment Tensor of the system,

Djk(t) =

∫
V

T̃ 00(x, t)xjxkd3x (2.4.29)

Where,

T̃ 00 = T 00 − T 00
vacuum = T 00 − Λ

8πG

For non-relativistic matter,(λ� R) and v � cwe can approximate T 00 as an energy
density that call as rest mass density,ρ

T̃ 00 = ρc2 − Λ

8πG
c2

The term T 00
vacuum may assumed as the cosmological density in vacuum as ρΛ in

Schwarzschild de-Sitter space. Then the Quadrupole moment tensor has two parts as
D(w)jk(t) and D(Λ)jk(t) that explicitly write as,

Djk(t) = D(w)jk(t) + D(Λ)jk(t)

=

∫
V

T 00(x, t)xjxkd3x−
∫

V

T 00
vacuumxjxkd3x

=

∫
V

ρ(w)(x, t)xjxkd3x−
∫

V

ρΛxjxkd3x (2.4.30)

Where D(w)jk(t) is the quadrupole moment tensor to Newtonian as well as D(Λ)jk(t)
is the quadrupole moment tensor to cosmological constant,

To make a sense we return to the Transversa-Traceless(TT-gauge),or trace-reversed,as

h̃µν = hµν −
1

2
ηµνh (2.4.31)

and h̃µ
µ = −hµ

µ

By using the above form of perturbation,we can rewrite the Einstein Field Equations
under the harmonic coordinates condition as,

22h̃µν = −16πGT̃µν (2.4.32)
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Now using the fact that in the TT−gauge,only the spatial components of h̃µν are non-
zero (hence h̃µ0 = 0),which means that the wave is transverse to its own direction of
propagation,and, additionally,the sum of the diagonal components is zero(traceless).
Due to this property and equation(2.5.31),in this gauge there is no deference between
hµν(the perturbation of the metric) and h̃µν(the gravitational field),therefore

22hTT
µν (x, t) = [−16πGT̃µν(x, t)]TT (2.4.33)

Where T̃µν is the energy-momentum tensor of matter and cosmological constant.

T̃µν = Tµν + T (vacuum)
µν

From equation (2.5.28),we have

hTT
jk (x, t) =

[
4G

r

∫
d3x′T̃jk(x

′, t− r)

]TT

=

[
2G

r

∂2

∂t2

∫
T̃00(x

′, t− r)x′jx′kd3x′
]TT

=
2G

r

[
∂2

∂t2
Djk(t− r)

]TT

(2.4.34)

we also write the above equation as,

hTT
jk (x, t) =

2G

r
[D̈jk(t− r)]TT (2.4.35)

Where,D̈jk(t− r) is the second moment of the source’s mass distribution and cosmo-
logical constant and the dotes denotes time derivatives.We can define the quadrupole
moments in a traceless form as,

Qjk =

∫
d3x′T̃ 00(t− r)[x′jx′k − 1

3
δj
kr

′2] (2.4.36)

Note that Djk and Qjk are only differ by a trace which is logically removed in the
TT-gauge. Thus one can write the gravitational and cosmological as,

hTT
jk =

2G

r
[Q̈jk(t− r)]TT (2.4.37)
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2.5 Energy Carried by Gravitational Wave

The energy density in gravitational wave is defined as,

T̃ 00 =
1

16πG
〈hTT

jk,0h
TT
jk,0〉

=
1

16πG
〈 ˙hTT

jk
˙hTT
jk 〉 (2.5.1)

Where dote denotes the time components of this can be also written as

T̃ 00 =
1

16πG
〈h2

+ + h2
×〉 (2.5.2)

The associated radial flux T̃ 0r is given by,

T̃ 0r =
1

16πG
〈hTT

jk,0h
TT
jk,r〉 (2.5.3)

The energy flow across the surface that has radius of r and the area element of r2dΩ
with in a time at a rate, ∫

r2dΩT̃ 0r

The rate of energy decrease is then given by,

dE

dt
= −

∫
r2dΩT̃ 0r (2.5.4)

Then after,the energy radiated by the system per unit solid angle and unit time in
the radial direction is then,

d2E

dtdΩ
= −r2T̃ 0r = −r2〈hTT

jk,0h
TT
jk,0〉 (2.5.5)

hTT
jk =

2G

r
[Q̈jk(t− r)]TT

As a result,

hTT
jk,0 =

2G

r
[
...
Qjk(t− r)]TT (2.5.6)

hTT
jk,r = −2G

r
[
...
Qjk(t− r)]TT (2.5.7)

Put equations (2.6.6) and (2.6.7) into equation (2.6.3),then the radial flux is,

T̃ 0r =
1

8πGr2
〈[

...
Qjk(t− r)]TT [

...
Qjk(t− r)]TT 〉 (2.5.8)

Here also the dot denotes the time derivatives.



Chapter 3

Gravitational Radiation From
Massive Compact Binary
Stars In Schwarzschild de-Sitter
Background

Sources of gravitational waves include collapsing stars,exploding stars,stars in orbit
around one another,and the big bang. Neither electromagnetic waves nor gravity
waves result from a spherically symmetric distribution of charge(for electromagnetic
waves)or matter(for gravitational waves),even when that spherical distribution pulses
symmetrically in and out[3,9]. Therefore,symmetric collapses or explosions emit no
waves,either electromagnetic or gravitational. The most efficient source of electro-
magnetic radiation is oscillating pairs of electric charges of opposite sign,the result
technically called dipole radiation. But mass has only one ”polarity;” there is no
gravity dipole radiation from masses that oscillate back and forth along a line. Emis-
sion of gravity waves requires asymmetric movement or oscillation;the technical name
for the result is quadrupole radiation[4]. Happily,most collapses and explosions are
asymmetric;even the motion in a binary system is sufficiently asymmetric to emit
gravitational waves. We study here gravity waves emitted by a binary system con-
sisting of two black hole stars or-neutron stars-or a neutron star and a black hole
orbiting about one another. All such pairs that we have detected are too far away
to see directly;As the two objects orbit,they also emit gravity waves that cause the
binary system to lose energy,so that the orbiting objects gradually spiral in toward
one another.

44
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3.1 The Newtonian Two-Body Problem

We shall begin studying the two-body problem in the case of Newtonian mechanics.
This is necessary,because a lot of the techniques used in this chapter will have their
analogies in later ,the Newtonian theory will serve as a limiting case of the general
theory of relativity. More explicitly,the Newtonian theory should reappear when
velocities are negligible(v << 1) and the fields are weak (Φ << 1). We will start by
deriving the radial equation,which describes the change of the distance between the
two bodies. This expression can be written in the form ṙ = E + V ,where V is the
effective potential. A plot of this potential gives a visual representation of the types
of orbits that are possible in our system (circular, elliptical, parabolic and hyperbolic
orbits). Finally we shall calculate the paths of the elliptical orbits explicitly.

We shall now apply some of the results obtained to study Newtonian mechanics.
This can be modeled as a two body system of a neutron star or black hole. Since the
pulsar is orbiting near a strongly gravitating compact remnant, its orbit will be an
ellipse (unlike in the case of Newtonian gravity) but will precess. We shall work out
the effect of the emission of gravitational radiation on the orbital parameters of the
system and will then describe how such a system can be used to test the predictions of
general relativity. Let us consider two bodies of masses m1 and m2 which are orbiting
around the common centre of mass in a Newtonian elliptical orbit. We know from the
standard Newtonian analysis,valid to the lowest order,that the orbital parameters are
completely determined by the energy (E < 0) and the angular momentum J . The
radial equation of motion is given by,

ṙ2 =
2

µ

(
E − V − J2

2µr2

)
(3.1.1)

Where µ = m1m2

m1+m2
is reduced mass,V potential and J angular momentum,the poten-

tial is written as,

V =
G(m1 + m2)

r
=

M

r
,

where M = m1 + m2.Thus,

ṙ2 =
2

µ

(
E − M

r
− J2

2µr2

)
(3.1.2)

The above equation may written as,

ṙ2 =
2

µ
(E − Veff ) (3.1.3)

Where,

Veff =
M

r
− J2

2µr2
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We derive the shape of the orbits by looking over how the angle θ and radius r are
related,

dθ = dθ̇
dt

dr
dr =

θ̇

ṙ
dr but J = µr2θ̇

dθ =
J

µr2ṙ
dr ⇒ ṙ =

dr

dθ

J

µr2
(3.1.4)

From equations (3.2.1) and (3.2.2),we get

θ(r) = ±
∫

J/µr2

2
µ
(E + M

r
− J2

2µr
)

(3.1.5)

Then the solution to this equation is,

r =
(J/µ)2

M(1 + e cos θ)
, and e =

√
1 +

2EJ2

µ3M2
(3.1.6)

where e is the eccentricity. For elliptical orbits we have 0 < e < 1. In this case the
elliptical orbits we can rewrite equation (3.2.6) in terms of the semi-major axis a(the
longest radius of the ellipse). This is the famous orbital equation for the ellipse:

r =
a(1− e2)

1 + ecosθ
, a =

J2/µ2

M(1− e2)
(3.1.7)

It also enable us to write the energy and the angular momentum interms of the
semi-major axis and the eccentricity as,

E = −m1m2

2a
, J2 = −(m1m2)

2

M
a(1− e2) (3.1.8)

Now let us look how the radius is dependent on time. The radial equation can be
written as,

dr

dt
= ±

(
2

µ
(E +

m1m2

r
)− J2

µ2r2

) 1
2

(3.1.9)

Thus,

t =

√
µ

2

∫ r

0

dr(
2
µ
(E + m1m2

r
)− J2

2µr2

) 1
2

(3.1.10)
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In case of elliptical motion this is most conveniently integrated through an auxiliary
variable u(t),called the eccentric anomaly. Therefore,

r = a(1− e cos u) (3.1.11)

Inserting eqn (3.2.11) into the orbital eqns (3.2.7),We get,

cos θ =
cos u− e

1− e cos u

1 + e cos θ =
1− e2

1− e cos u
(3.1.12)

We can rewrite the above equations,using trigonometric identities as,

θ = Ae(u), Ae ≡ 2 arctan

[√
1 + e

1− e
tan

u

2

]
Now we can rewrite the time integral eqn (3.2.10) in terms of u,a and e.

t =

√
µa3

m1m2

∫ u

0

(1− e cos u)du (3.1.13)

Integrating this from 0 to 2π we find Kepler’s Law;

ω0 =
2π

T
=

√
m1 + m2

a3
(3.1.14)

Integrating with out fixing u in the integral we arrive at the Kepler equation,

ω0t = u− e sin u (3.1.15)

3.2 Gravitational Radiation From Binaries

Among the most interesting source of gravitational waves are system containing bi-
nary compact object(BH-BH,BH-NS,NS-NS). Now we want to calculate the power
radiated as gravitational wave in Schwarzschild de-Sitter space. To do this we as-
sume in the first approximation is that the motion is Keplerian.Therefore we take the
parametric representation of the motion,

r = a(1− e cos u), x = a(cos u− e)

y = a(1− e2)
1
2 sin u, ωt = u− e sin u (3.2.1)
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Where a is semi-major axis,e is eccentricity and (x, y) are (x1, x2) respectively,as
assumption we will take the orbital plane to be rectangular plane with the centre of
mass at the origin. To compute the quadrupole moment,We found that,

Dkl(t) =
1

c2

∫
V

T̃ 00(x′, t)x′kx′ld3x′ (3.2.2)

where,T̃ 00(x, t) = T 00(x, t) − T 00
Λ (x, t) we may use T µν

vacuum as simply T µν
Λ . Using

the reduced mass of the system of two bodies,µ = m1m2

m1+m2
,We will get the following

quadrupoles,

D11(t) = µ(x1(t))2 = µa2(cos u− e)2

D22(t) = µ(x2(t))2 = µa2(1− e2) sin2 u

D12(t) = D21(t) = µx1(t)x2(t) = µa2(1− e2)
1
2 sin u(cos u− e) (3.2.3)

It is better to take the following conversion on the expression for the time-average
of function. So that its integration on du,

〈f(t)〉 ≡ 1

T

∫ T

0

dtf(t) (3.2.4)

From eqn (3.2.16) we have,

dt =
T

2π
(1− e cos u)du (3.2.5)

Where ω = 2π
T

and if we let f(t) = g(u(t)),Then eqn (3.2.18) rewrite as,

〈f(t)〉 =
1

2π

∫ 2π

0

g(u)(1− e cos u)du (3.2.6)

We know that,

Dk
k = D1

1 + D2
2 = µ

(
(x1)2 + (x2)2

)
= µr2

Dk
k = µa2(1− e cos u)2 (3.2.7)

From the relation of,

d

dt
=

du

dt

d

du
=

2π

T
(1− e cos u)−1 d

du
(3.2.8)
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Therefore,

Ḋk
k = 2µa2e(

2π

T
) sin u

D̈k
k = 2µa2e(

2π

T
)2(1− e cos u)−1 cos u

...
D

k

k = −2µa2e(
2π

T
)3(1− e cos u)−3 sin u (3.2.9)

If we squared the third time derivative of eqn (3.2.24),

(
...
D

k

k)
2 = 4µ2a4e2(

2π

T
)6(1− e cos u)−6 sin2 u (3.2.10)

The formulation of Keplerian period and areal relation is,

ω2 =
4π2

T 2
=

G(m1 + m2)

a3

Then eqn (3.2.25) as,

(
...
D

k

k)
2 =

4G3

a5
(m1m2)

2(m1 + m2)e
2 sin2u

(1− e cos u)6
(3.2.11)

Using eqn (3.2.21) for averaging,Thus

〈
...
D

k

k〉2 =
4G3

πa5
(m1m2)

2(m1 + m2)e
2

∫ T

0

sin2u

(1− e cos u)6
du (3.2.12)

Where we have used also the symmetry of the integrand over the range of integration.∫ 2π

0

sin2 u

(1− e cos u)6
=

π

8

4 + e2

(1− e2)
7
2

(3.2.13)

Therefore eqn(3.2.27) become

〈
...
D

k

k〉2 =
1

2

4G3

a5
(m1m2)

2(m1 + m2)e
2 4 + e2

(1− e2)
7
2

(3.2.14)

Now turn on to find,
...
D

kl...
Dkl by using eqn(3.2.18) and plane approximation,

...
D

kl...
Dkl = (

...
D

11
)2 + 2(

...
D

12
)2 + (

...
D

22
)2 (3.2.15)
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So that from eqn(3.2.18) and (3.2.23) we know that

D11(t) = µa2(cos u− e)2

d

dt
=

du

dt

d

du
=

2π

T
(1− e cos u)−1 d

du

Then,

Ḋ11 = −2µa2(
2π

T
)
sin u(cos u− e)

1− e cos u

D̈11 = −2µa2(
2π

T
)2(1− e cos u)−3(2 cos2 u− e cos u− e cos3 u + e2 + 1)

...
D

11
= −2µa2(

2π

T
)3 sin u

(1− e cos u)5
(e cos2 u + 2e2 cos u− 4 cos u− 3e2 + 4e) (3.2.16)

The second term of eqn(3.2.18) and (3.2.23) also give us,

D22(t) = µa2(1− e2) sin2 u

d

dt
=

du

dt

d

du
=

2π

T
(1− e cos u)−1 d

du

Then,

Ḋ22 = 2µa2(
2π

T
)

1− e2

1− e cos u
sin u cos u

D̈22 = 2µa2(
2π

T
)2 1− e2

(1− e cos u)3
(cos2 u− sin2 u− e cos3 u)

...
D

22
= 2µa2(

2π

T
)3 1− e2

(1− e cos u)5
sin u(3e− 4 cos u + e cos2 u) (3.2.17)

Similarly for

D12(t) = D21(t) = µa2(1− e2)
1
2 sin u(cos u− e)

d

dt
=

du

dt

d

du
=

2π

T
(1− e cos u)−1 d

du
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Then,

Ḋ12 = µa2(
2π

T
)

(1− e)
1
2

1− e cos u
(2e cos2 u− e cos u− 1)

D̈12 = µa2(
2π

T
)2 (1− e)

1
2

(1− e cos u)3
sin u(2e cos2 u− 2 cos u + 2e)

...
D

12
= µa2(

2π

T
)3 (1− e)

1
2

(1− e cos u)5
(e cos3 u + e2 cos2 u + 3e cos u− 3e2 − 4 cos2 u + 2)

(3.2.18)

Now turn to the averaging of
...
D

kl...
Dkl by using equations (3.2.31),(3.2.32) and

(3.2.33),in (3.2.30). Thus,

〈
...
D

kl...
Dkl〉 = 〈(

...
D

11
)2〉+ 2〈(

...
D

12
)2〉+ 〈(

...
D)2〉

=
4

π
µ2(

2π

T
)6

∫ 2π

0

8(1− e2) + e2 sin2 u

(1− e cos u)6
(3.2.19)

Using the relations of ω2 = 2π
T

= G(m1+m2)
a3 and µ = m1m2

m1+m2
.The above eqn becomes,

〈
...
D

kl...
Dkl〉 =

4

π
(m1m2)

2(m1+m2)
G3

a5

[
8(1−e2)

∫ 2π

0

du

(1− ecosu)6
+e2

∫ 2π

0

sin2u

(1− ecosu)6
du

]
(3.2.20)

Using the relation that,∫ 2π

0

du

(1− e cos u)6
=

π

8

(3e4 + 24e2 + 8)

(1− e2)
9
2∫ 2π

0

sin2u

(1− e cos u)6
du =

π

8

4 + e2

(1− e2)
7
2

(3.2.21)

From the property of eqn (3.2.36) into eqn (3.2.35) ,We have the average,

〈
...
D

kl...
Dkl〉 =

1

2

G3

a5

(25e4 + 196e2 + 64)

(1− e2)
7
2

(m1m2)
2(m1 + m2) (3.2.22)

The above eqn is for the Newtonian part of the quadrupole moment D
(w)
kl and may

written as,

〈
...
D

kl

(w)

...
D

(w)

kl 〉 =
1

2

G3

a5

(25e4 + 196e2 + 64)

(1− e2)
7
2

(m1m2)
2(m1 + m2) (3.2.23)
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We know that the quadrupole moment has two parts since it is in Schwarzschild
de-Sitter. The one found above and the cosmological part,Now let move on the
cosmological part,by defining,as

D
(Λ)
11 (t) =

Λ

8πG
r3(x1(t))2 =

Λ

8πG
r3a2(cos u− e)2

D
(Λ)
22 (t) =

Λ

8πG
r3(x2(t))2 =

Λ

8πG
r3a2(1− e2) sin2 u

D
(Λ)
12 (t) = D21(t) =

Λ

8πG
r3x1(t)x2(t) =

Λ

8πG
r3a2(1− e2)

1
2 sin u(cos u− e)

(3.2.24)

Here we can also follow the conversion function that expressed for average-time from
eqns(3.2.19) to (3.2.22).

D
k(Λ)
k = D1

1 + D2
2 =

Λ

8πG
r3

(
(x1)2 + (x2)2

)
=

Λ

8πG
r5

D
k(Λ)
k =

Λ

8πG
r3a2(1− e cos u)2 (3.2.25)

We have the relation of,

d

dt
=

du

dt

d

du
=

2π

T
(1− e cos u)−1 d

du
(3.2.26)

Now the time derivative of Dk
k from the first to third is read as

Ḋ
k(Λ)
k =

Λ

4πG
r3a2e(

2π

T
) sin u

D̈
k(Λ)
k =

Λ

4πG
r3a2e(

2π

T
)2(1− e cos u)−1 cos u

...
D

k(Λ)

k = − Λ

4πG
r3a2e(

2π

T
)3(1− e cos u)−3 sin u (3.2.27)

If we squared the third time derivative of eqn (3.2.43),

(
...
D

k(Λ)

k )2 =
Λ2

16π2G2
r6a4e2(

2π

T
)6(1− e cos u)−6 sin2 u (3.2.28)

From the Keplerian relation of period and areal relation is,then eqn (3.2.44) written
as,

(
...
D

k(Λ)

k )2 =
Λ2G

16π2a5
r6(m1 + m2)

3e2 sin2 u

(1− e cos u)6
(3.2.29)
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The time-averaging also become,

〈
...
D

k(Λ)

k 〉2 =
Λ2G

16π2a5
r6(m1 + m2)

3e2

∫ T

0

sin2 u

(1− e cos u)6
du (3.2.30)

Using the relation of eqn(3.2.29) we have,

〈
...
D

k(Λ)

k 〉2 =
Λ2G

128πa5
r6(m1 + m2)

3e2 4 + e2

(1− e2)
7
2

(3.2.31)

Now we come to findout,
...
D

kl

(Λ)

...
D

(Λ)

kl by using eqn(3.2.39),

...
D

kl

(Λ)

...
D

(Λ)

kl = (
...
D

11

(Λ))
2 + 2(

...
D

12

(Λ))
2 + (

...
D

22

(Λ))
2 (3.2.32)

From eqn(3.2.39) and the relation of (3.2.23) one can read the first to third time
derivative of D11

(Λ),D
12
(Λ) and D22

(Λ) as follows,

Ḋ11
(Λ) = − Λ

4πG
r3a2(

2π

T
)
sin u(cos u− e)

1− e cos u

D̈11
(Λ) = − Λ

4πG
r3a2(

2π

T
)2(1− e cos u)−3(2cos2u− e cos u− e cos3 u + e2 + 1)

...
D

11

(Λ) = − Λ

4πG
r3a2(

2π

T
)3 sin u

(1− e cos u)5
(e cos2 u + 2e2 cos u− 4 cos u− 3e2 + 4e)

(3.2.33)

Ḋ22
(Λ) =

Λ

4πG
r3a2(

2π

T
)

1− e2

1− e cos u
sin u cos u

D̈22
(Λ) =

Λ

4πG
r3a2(

2π

T
)2 1− e2

(1− e cos u)3
(cos2 u− sin2 u− e cos3 u)

...
D

22

(Λ) =
Λ

4πG
r3a2(

2π

T
)3 1− e2

(1− e cos u)5
sin u(3e− 4 cos u + e cos2 u) (3.2.34)

Similarly for

Ḋ12
(Λ) =

Λ

4πG
r3a2(

2π

T
)

(1− e)
1
2

1− e cos u
(2e cos2 u− e cos u− 1)

D̈12
(Λ) =

Λ

4πG
r3a2(

2π

T
)2 (1− e)

1
2

(1− e cos u)3
sin u(2e cos2 u− 2 cos u + 2e)

...
D

12

(Λ) =
Λ

4πG
r3a2(

2π

T
)3 (1− e)

1
2

(1− e cos u)5
(e cos3 u + e2 cos2 u + 3e cos u− 3e2 − 4 cos2 u + 2)

(3.2.35)
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The average of
...
D

kl

(Λ)

...
D

(Λ)

kl by using equations (3.2.49),(3.2.50) and (3.2.51),in to (3.2.48),

〈
...
D

kl

(Λ)

...
D

(Λ)

kl 〉 = 〈(
...
D

11

(Λ))
2〉+ 2〈(

...
D

12

(Λ))
2〉+ 〈(

...
D)2

(Λ)〉

=
Λ2

16π2G2
r6a4(

2π

T
)6

∫ 2π

0

8(1− e2) + e2 sin2 u

(1− e cos u)6
(3.2.36)

Using the relations of ω2 = 2π
T

= G(m1+m2)
a3 ,We get,

〈
...
D

kl

(Λ)

...
D

(Λ)

kl 〉 =
Λ2G

16π2a5
r6(m1+m2)

3

[
8(1−e2)

∫ 2π

0

du

(1− e cos u)6
+e2

∫ 2π

0

sin2 u

(1− e cos u)6
du

]
(3.2.37)

Using the properties of eqn (3.2.36) into eqn (3.2.53),We have the time-average,

〈
...
D

kl

(Λ)

...
D

(Λ)

kl 〉 =
Λ2

128π

G

a5
r6 (25e4 + 196e2 + 64)

(1− e2)
7
2

(m1 + m2)
3 (3.2.38)

We know that the rate of Energy radiated is given by,

−dE

dt
=

1

5

G

c5
〈

...
Qkl

...
Qkl〉 (3.2.39)

Where the negative sign indicated energy loss of the system. we can write as follow
interms of Dkl,

−dE

dt
=

1

5

G

c5
〈3(

...
Dkl)

2 − (
...
Dk

k)
2〉 (3.2.40)

The total energy radiated in the Schwarzschild de-Sitter bacground has two parts
which is Newtonian as well as cosmological constant part. The total energy radiated
is the sum of the two. So using eqns (3.2.29) and (3.2.38) into (3.2.56) and eqns
(3.2.47) and (3.2.55) into (3.2.56). Thus

−
(

dE

dt

)(w)

=
32

5

G5

a5c5

(1 + 37
24

e2 + 37
96

e4)

(1− e2)
7
2

(m1m2)
2(m1 + m2)

=
32

5

G5

a5c5
(m1m2)

2(m1 + m2)f(e) (3.2.41)

−
(

dE

dt

)(Λ)

=
Λ2

10

G2

a5c5
r6 (1 + 37

24
e2 + 37

96
e4)

(1− e2)
7
2

(m1 + m2)
3

=
Λ2

10

G2

a5c5
r6(m1 + m2)

3f(e) (3.2.42)
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where(dE
dt

)(w) is Newtonian part and (dE
dt

)(Λ) as cosmological part,we can also define
the function f(e) as follows,

f(e) =
(1 + 37

24
e2 + 37

96
e4)

(1− e2)
7
2

(3.2.43)

−dE

dt
= −

((
dE

dt

)(w)

+

(
dE

dt

)(Λ))
(3.2.44)

−dE

dt
=

32

5

G5

a5c5
(m1m2)

2(m1 + m2)f(e) +
Λ2

10

G2

a5c5
r6(m1 + m2)

3f(e) (3.2.45)

We know that the gravitational wave radiation also carried the angular momentum
from the system. We use the fact that the orbital parameters θ and r vary as,

θ̇ =
[Ma(1− e2)]

1
2

r2

ṙ = e sin θ

[
M

a(1− e2)

] 1
2

The classical approach to angular momentum as J = µr2θ̇. The angular momentum
is related to the quadrupole moment by,

dJ

dt
= −2

5
εilk(D̈j

l

...
Djk)

= −2

5
[D̈12(

...
D22 −

...
D11) +

...
D12(D̈11 − D̈22)] (3.2.46)

The rate of angular momentum radiated can be written interms of both Newtonian
and cosmological as, [

dJ

dt

](w)

= −32

5

µ2G4

c5

M
5
2

a
7
2

1 + 7
8
e

(1− e2)2[
dJ

dt

](Λ)

= −Λ2

10

G

c5

M
5
2

a
7
2

r6 1 + 7
8
e

(1− e2)2
(3.2.47)

From eqn (3.2.8),we can determine how the orbital parameters of the binary sys-
tem changes,that is E = −m1m2

2a
,thus

〈
da

dt

〉
=

2a2

m1m2

〈
dE

dt

〉
= −64

5

G5

a3c5
(m1m2)(m1 + m2)f(e)− Λ2

5

G2

a3c5
r6 (m1 + m2)

3

m1m2

f(e) (3.2.48)
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〈
de

dt

〉
=

(m1 + m2)

m1m2e

[
a(1− e2)

m1 + m2

〈
dE

dt

〉
− (1− e2)12

a
1
2 (m1 + m2)

1
2

〈
dJ

dt

〉]
(3.2.49)

The period of orbit T ∼ a
3
2 decreases due to gravitational emission by amount of

Ṫ
T

= 3ȧ
2a

= Ė
2E

,

1

T

dT

dt
= −96

5

G4

a4c5
m1m2(m1 + m2)f(e)− 3

20

Λ2G

a4c5
r6m1 + m2

m1m2

f(e) (3.2.50)



Chapter 4

Result and Discussion

We are interested in solutions far from an isolated source,r � Rsource and whose
size is much smaller than the emitted gravitational wave wavelength,λ � Rsource.
In the context of gravitational wave astronomy the limitation of being far from the
source is not much of a hindrance. However,the limitation that the source is small
does imply that it must not contain relativistic motions. This follows directly from
vsource ≈ 2πRsource/λ. The perturbation has part of Newtonian and cosmological
constant,Λ that approximated to the first order. We defined this perturbation in
Schwarzschild de-Sitter with the quadrupole formalism of binary system as the second
time derivatives. hjk = 2G

c4r
[D̈jk(t − r)]. The quadrupole has the Newtonian and

cosmological parts. The most famous example of the effects of gravitational radiation
on an orbiting system is the HulseTaylor Binary Pulsar, PSR B1913+16. In this
system, two neutron stars orbit in a close eccentric orbit.

Back to the gravitational field perturbation from eqn (2.4.35) has non-vanish com-
ponents

hTT
11 = −hTT

22 =
G

c4r
[D̈11(t− r)− D̈22(t− r)]TT

hTT
12 = −hTT

21 =
2G

c4r
[D̈12(t− r)]TT (4.0.1)

The quadrupole moment,Djk has the components of Newtonian and cosmological.
Thus using eqns (3.2.31), (3.2.32), (3.2.33), (3.2.48)(3.2.49) and (3.2.50),

D̈11(t− r) = −a2(
2π

T
)2

(
2µ− Λ

3G
r3

)
β

D̈22(t− r) = a2(
2π

T
)2

(
2µ− Λ

3G
r3

)
α

D̈12(t− r) = a2(
2π

T
)2

(
µ− Λ

6G
r3

)
γ (4.0.2)
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Where,

β =
2 cos2 u− e cos u− e cos3 u + e2 + 1

(1− e cos u)3

α =
(1− e)2(cos2 u− sin2 u− e cos3 u)

(1− e cos u)3

γ =
(1− e)

1
2 sin u(2e cos2 u− 2 cos u + 2e)

(1− e cos u)3
(4.0.3)

Therefore our perturbation components become,

h11 =
2G

c4r

[
a2(

2π

T
)2

(
2µ− Λ

3G
r3

)]
(β − α)

h12 =
2G

c4r

[
a2(

2π

T
)2

(
µ− Λ

6G
r3

)]
γ (4.0.4)

We are at turning point to test our derivation with the Observation. To do these we
simplify our approximation to binary system on circular orbit (e = 0),we get

h ∼ 2G

c4r

[
a2(

2π

T
)2

(
2µ− Λ

3G
r3

)]
2

∼ G

c4r

[
a2(2ωo)

2

(
2µ− Λ

3G
r3

)]
(4.0.5)

Where,ωo is the orbital speed that related to orbital frequency (νo) by ωo = 2πνo.

From the Keplerian we have,ω2
o = (2π

T
)2 = G(m1+m2)

a3 . Clearly,the gravitational wave
frequency is twice of orbital frequency in this case. ΩGW = 2ωo,Now

h ∼ 8G2Mµ

ac4r
− 4

3

Λ

ac4
Gr2 (4.0.6)

Where,M = m1 + m2 and µ = m1m2

m1+m2
. From observation,the data of binary pulsar

PSR1931+16(Taylor-Weisberg,1982)

m1 ∼ m2 ∼ 1.4M⊙
T = 7hr45m7s

νo = 3.58× 10−5Hz

a = 0.19× 1012cm ' 2R⊙
r = 5Kpc, 1pc = 3.08× 1018cm

Λ = 10−49cm−1to10−56cm−1
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Where m1,m2 are masses of pulsar,M⊙ solar mass,R⊙ solar radius,a daimeter of
circular orbit,νo orbital frequency,T period and Λ is cosmological constant. The
perturbation from this data result,

h ∼ 8G2Mµ

ac4r
− 4

3

Λ

a
Gr3

= 1.19654× 10−22

We know that the perturbation has newtonian and cosmological parts,

h(w) ∼ 1.19654× 10−22

h(Λ) ∼ 1.30078× 10−72

The frequency of orbit,νo = 3.70465× 10−5Hz,since the gravitational wave frequency
is twice to orbital,we have νGW = 7.41×10−5Hz. Therefore the potential perturbation
h,and gravitational wave frequency are approximately comparable to observation.If
the orbit is elliptic,waves are emitted at frequency multiple of the orbital frequency
and the number of equal spaced spectral lines increases with ellipticity.

Finally,eqn(3.2.61) is the rate of total energy radiated in Schwarzschild de-Sitter
background. From the data what we have,the gravitational power radiated from the
pulsar PSR1931+16 for circular orbit(e = 0) is

P = −dE

dt
=

32

5

G5

a5c5
(m1m2)

2(m1 + m2) +
Λ2

10

G2

a5c5
r6(m1 + m2)

3

P ≈ 7.0621× 1030erg/s (4.0.7)

,where we write this explicitly,

P (w) ≈ 7.0621× 1030erg/s

P (Λ) ≈ 1.456× 10−2erg/s

From observational data we may compute the rate of angular momentum radiation
as,

dJ

dt
= −32

5

µ2G4

c5

M
5
2

a
7
2

1 + 7
8
e

(1− e2)2
− Λ2

10

G

c5

M
5
2

a
7
2

r6 1 + 7
8
e

(1− e2)2

dJ

dt
≈ −7.84× 1030 (4.0.8)

Separately the cosmological constant part can be,[
dJ

dt

](Λ)

= −Λ2

10

G

c5

M
5
2

a
7
2

r6 1 + 7
8
e

(1− e2)2[
dJ

dt

](Λ)

≈ −2.1259× 10−128 (4.0.9)
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From eqn (3.2.8),we can determine how the orbital parameters of the binary sys-
tem changes,that is E = −m1m2

2a
,thus

〈
da

dt

〉
=

2a2

m1m2

〈
dE

dt

〉
= −64

5

G5

a3c5
(m1m2)(m1 + m2)f(e)− Λ2

5

G2

a3c5
r6 (m1 + m2)

3

m1m2

f(e) (4.0.10)

〈
de

dt

〉
=

(m1 + m2)

m1m2e

[
a(1− e2)

m1 + m2

〈
dE

dt

〉
− (1− e2)12

a
1
2 (m1 + m2)

1
2

〈
dJ

dt

〉]
(4.0.11)

From observational data the orbital parameters decay,

da

dt
≈ −6.5757× 10−14cm/s

de

dt
≈ −6.4029× 10−25cm/s (4.0.12)

The cosmological part read as,[
da

dt

](Λ)

≈ −1.1903× 10−179cm/s[
de

dt

](Λ)

≈ −2.4037× 10−183cm/s (4.0.13)

The period of orbit T ∼ a
3
2 decreases due to gravitational emission by amount of

Ṫ
T

= 3ȧ
2a

= Ė
2E

,

1

T

dT

dt
= −96

5

G4

a4c5
m1m2(m1 + m2)f(e)− 3

20

Λ2G

a4c5
r6m1 + m2

m1m2

f(e) (4.0.14)

From observational data the rate of period decay,and part of cosmological constant
can be,

dT

dt
≈ −2.171× 10−13s−1[

dT

dt

](Λ)

≈ −6.341× 10−113s−1 (4.0.15)



Chapter 5

Summary and Conclusion

General theory of relativity is the theory of gravitation and geometry of spacetime.
It generalizes the spacial theory of relativity and Newton’s law of universal grav-
itation. The matter and geometry of spacetime are related by the Einstein field
equations(Gµν − Λgµν = −8πTµν),where Gµν is Einstein’s field tensor that tales ge-
ometry of spacetime and Tµν is energy-momentum tensor that is matter. Techniques
equivalent this energy-momentum tensor is deduce from perfect fluid that is important
to stellar structure and cosmology(Tµν = (ρ + p)UµUν + pηµν). Generally, the space-
time geometry and gravitation are described by tensors specially second rank (0, 2)
tensors like Metric tensor,Reiman curvature tensor,Ricci tensor,Ricci scalar,Einstein
field tensor and energy-momentum tensor in addition to Affine connections. The
existence of gravitational wave predicted through general relativity,which have since
been measured indirectly. It implies that the solutions to linearized Einstein equa-
tion suggests the existence of gravitational wave since these waves take away energy
and angular momentum from the system. The weak Gravitational field radiative so-
lution of Einstein field equations,which describe waves carrying not enough energy
and momentum that affect their own propagation was studied with linearize Ein-
stein equation in the Schwarzschild de-Sitter background. The approximation were
done by keeping the cosmological constant to the first order and the metric also lin-
earized to,gµν = ηµν + h

(w)
µν + h

(Λ)
µν .In vacuum,the linearize field equation has a form

of(22hµν = 2Ληµν). The gravitational plane wave solution of this inhomogeneous
linearize field equation was solved by the technique of Green’s function. It carried
energy-momentum. The quadrupole formalism approximation is used for the sys-
tem,in which energy density T̃ 00(x, t) is dominated by the rest-mass density of the
system. Since the Energy and momentum are conserved,we are freely approximate
T̃ 00(x, t) to the rest-mass density. In Schwarzschild de-Sitter,we have the rest-mass
density and vacuum energy density related to (Λ). The potential perturbation(hµν)
and the rate energy radiated(dE

dt
) from the system are related to quadrupole moment
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tensor(Dµν) as the second and third time derivatives respectively.

The gravitational wave radiated from binary system in Schwarzschild de-Sitter
background was approximated to Keplerian and quadrupole. We observed that from
observational data for binary Pulsar PSR 1931+16 the perturbation,h ∼ 1.19654 ×
10−22,that fit. The perturbation has the cosmological part,hΛ ∼ 1.30018 × 10−73

that is too small. Since the binary emitted gravitational wave energy,the rate of
energy(power) radiated,dE

dt
∼ 7.0621 × 1030erg/s that has cosmological part,[dE

dt
]Λ ∼

1.456 × 10−2,an also the rate of orbital period decay,dT
dt
∼ 2.17 × 10−13 with cos-

mological part,[dT
dt

]Λ ∼ 6.341 × 106−113. We concluded that the cosmological con-
stant contribute insignificant amount. The rate of angular momentum lost from the
system,dJ

dt
∼ 7.84×1030erg/s that has cosmological part,[dJ

dt
]Λ ∼ 2.171×10−128erg/s,and

the orbital parameters also decay as time rate,da
dt
∼ 6.5757× 10−14 and de

dt
∼ 2.1259×

10−25 with their respective cosmological part,[da
dt

]Λ ∼ 1.1903 × 10−179 and [de
dt

]Λ ∼
2.4037× 10−183.

Generally,Gravitational wave radiation has effect on orbital parameters. We saw
that where two masses are moving in an elliptic orbit with eccentricity e and semi-
major axis a lose energy and angular momentum due to radiations wave leading to a
change in orbital period.
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