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Abstract

In this thesis, we studied the enhancement factor of local field for ellipsoidal metal

composite, and optical induced bistability of metal/dielectric composites with in lin-

ear host matrices which has not been studied in the literature so far. Using the

calculated enhancement factor of local field and the cubic equation of the optical in-

duced bistability of the composite material, the parameters of the bistability domain

are calculated. The analytical and numerical results show that the enhancement fac-

tor of local field is extremely enhanced and the optical induced bistability increased

its domain. It is shown that the local field in metal ellipsoidal particles with dielectric

core in an external varying electric field has two maxima at two different frequencies.

The second maximum becomes more important with increment in the metal frac-

tion. At high metal fraction, the two bistability domains merge and form one entire

bistability domain.

Key words: Dielectric function, optical bistability, enhancement factor, depolar-

ization factor
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Chapter 1

Introduction

Recent advances in nanotechnology have allowed the development of robust, and

highly sensitive and selective detection methods that are expected to address some

deficiencies of conventional detection technologies. Within this context gold (Au),

and silver (Ag), nanoparticles have emerged as a powerful tool in sensing and imag-

ing optical applications due to their surprising optical properties. Although silver

exhibits many advantages over gold, such as higher extinction coefficients, sharper

extinction bands, higher ratio of scattering to extinction, and extremely high field

enhancements., it has been employed far less in the development of sensors, with

the exception of sensors based on surface enhanced spectroscopes. The reason for

this is the lower chemical stability of silver nanoparticles when compared to gold.

As a consequence, silver nanoparticles are rapidly gaining in popularity and several

research groups have began to explore alternative strategies for the development of

optical sensors and imaging labels based on the extraordinary optical properties of

these metal nanoparticles [1].

Interaction of light with nanocomposites reveals novel optical phenomena indicat-

ing unrivalled optical properties of these materials. The linear and nonlinear optical

1
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response of metal nanoparticles is specified by oscillations of the surface electrons

in the Coulomb potential formed by the positively charged ionic core. During the

last century optical properties of nanoparticles have extensively been studied and

metal-dielectric nanocomposites have found various applications in different fields of

science and technology. Since the optical properties of metal nanoparticles are gov-

erned by surface plasmon resonance (SPR), and they are strongly dependent on the

nanoparticles’ size, shape, concentration and spatial distribution as well as on the

properties of the surrounding matrix. Control over these parameters enables such

metal-dielectric nanocomposites to become promising media for development of novel

non-linear materials, nanodevices and optical elements [2].

The physical requirements for optical bistability (OB) are an intensity-dependence,

refractive index and an optical feedback mechanism. A system is said to be optically

bistable if it can exhibit two steady output states for the same input intensity over

some range of input values. The switching up and down operations typical in a hys-

teresis cycle originates from the rise of instability. A physical state is said to be

unstable when, after displaying the system a little from this steady point, the sys-

tem does not return to it and goes further from it. In other words, for an unstable

state, even the slightest perturbation removes the system from it. The searches for

instabilities turn out to be crucial in the study of optical bistability (OB) phenomena

not only from the theoretical viewpoint but also for the possibilities for practical and

technological applications. Since its first discovery in late 1970’s, optical bistability

has been found existing in many different optical systems. One of the simplest ex-

amples of bistable systems is a Fabry-Perot resonator with the cavity filled with a

medium that presents saturable absorption or nonlinear dispersion [3],[4, 5].
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These optical properties of silver nanoparticles have been recently studied exten-

sively and metal dielectric composite have found various applications in different fields

of science and technology site. The original study of the effective optical properties

of composite materials were to the analysis of linear media and by considering the

contribution of the local field of the particle it is extended to study of the materials

with nonlinear part. This is strongly dependent on the nanoparticles size, shape,

volume fraction, spatial distribution and the properties of the surrounding matrix.

Control over these parameters enables such metal/dielectric nanocomposite to be-

come promising media for development of precious/novel nonlinear materials in nano

devices and optical elements [6, 7, 8].

The two main purposes of metal/dielectric composite are: allowing light to enter

deeply in the metals, and achieving metal localization which in turn leads to an en-

hancement of nonlinear response. Another interesting property of metal nanoparticle

is the presence of extinction bands in the visible or infrared that results from the so-

called plasmon resonances. These resonances do not exist in bulk metals and can be

explained to be a consequence of the confinement of free electrons in a space smaller

than one-wavelength of light which can be controlled by changing the shape of the

nanoparticle and its orientation with respect to the electric field. Furthermore, very

small concentration of the nonlinear part contributions can be treated as real and as

small perturbations (low field approximation can be assumed) leading which can be

assumed to be resulting in linear behavior [9, 10, 11, 12].

Nonlinear optical properties are very important in many different applications in

areas of science and technology, such as nano nonlinear microscopy [13], ultra fast

laser system [14], wavelength conversion [15], optical routing and switching based on
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optically induced bistability both on network [16, 17], and on chips [18]. It is known

that metals have fast and strong nonlinear response [19], and can be good element

for nonlinear optical applications when they are composed with dielectrics [20, 21].

It has been commonly acknowledged that all-optical devices at the micrometer and

nanometer scales is a promising way towards realization of next-generation ultrafast

communication and signal processing systems beyond today’s microelectronics de-

vices, which have gradually encountered limitation in bandwidth and speed. Optical

switching is an essential component in the all-optical network. A feasible approach to

all-optical switching is based on optical bistability, an important subject in nonlinear

optics [22]. Optical bistability offers many intriguing applications, such as optical

memory and optical transistor [23, 24, 25, 26, 27], and among others. In recent

years there has been a great interest in exploring and realizing optical bistability in

nonlinear nanophotonic systems.

The aim of this study is a detailed theoretical and numerical analysis of the lo-

cal field enhancement, induced optical bistability and the bistability domain in small

metal/semiconductor particles in the electrostatic approximation in the composite of

metal/dielectric core for ellipsoidal nanoparticle. We account for a cubic nonlinear-

ity in the polarization with respect to the local electric field. In unit 5, Section 1,

we analyze the local field enhancement inside an ellipsoidal metal/dielectric particle

embedded into a dielectric matrix when the incident electric field is parallel to one of

the ellipsoid axes. In unit 6, Section 1 we study the enhancement factor and IOB of

a two-layer nonlinear dielectric ellipsoidal particle covered by a metal shell. Lastly in

unit 6, Section 2, is devoted to the analysis of the IOB domain for these particles.
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1.1 Statement of the problem

In this thesis work, we have addressed the following:

• How the optical induced bistability is affected in small ellipsoidal metal/dielectric

composite embedded in host matrix.

• How to calculate and study the effect of the enhancement factor in optical bistability,

and to explore the effects in ellipsoidal metallic/dielectric composite inclusion.

1.2 Objectives

1.2.1 General objectives

The general objective of thesis work is:

• To study the enhancement and the optical induced bistability in the small ellip-

soidal metal/dielectric composite analytically and numerically.

1.2.2 Specific objectives

The specific objectives are:

• To study the optical induced bistability in small ellipsoidal nanometal/dielectric

composites embedded in dielectric host matrix.

• To investigate the enhancement of local field in small ellipsoidal nanometal/dielectric

composites embedded in dielectric host matrix.

1.3 Significance of the study

This study has a contribution for the advancement of Nanodevice and Nanotechnology

of the novel optical properties of nanomaterials. It will provide good opportunity on
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knowledge and application for the researcher and other who are interested to do more

investigation on the optical nanotechnology.

1.4 Scope of the study

The study have addressed enhancement factor that can have affected by varying

depolarization factor and frequency, and a dielectric core of host matrix, dependence

of induced optical bistability on the incident field supply.



Chapter 2

Literature Review

Nanoscience is a new emerging area of science that involves studying and working with

matter at nanoscale, on the order of 10−9m. Structures in nanoscale, called nanos-

tructures, are considered at the borderline of the smallest of human made-devices

and the largest molecules of living systems. Nanostructures include all shapes: wires,

rods, dots-formed from all of the industrially important semiconductor materials [7].

Nonlinear optics is the study of phenomena that occur as a consequence of the

modification of the optical properties of a material system by the presence of light.

Typically, only laser light is sufficiently intense to modify the optical properties of a

material system. The beginning of the field of nonlinear optics is often taken to be

the discovery of second-harmonic generation by Franken, et al. (1961), shortly after

the demonstration of the first working laser by Maiman in 1960 [28].

Nonlinear optical phenomena are ”nonlinear” in the sense that they occur when

the response of a material system to an applied optical field depends in a nonlinear

manner on the strength of the optical field. For example, second-harmonic generation

occurs as a result of the part of the atomic response that scales quadratically with the

strength of the applied optical field. Consequently, the intensity of the light generated

7
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at the second-harmonic frequency tends to increase as the square of the intensity of

the applied laser light [4].

Certain nonlinear optical systems can possess more than one output state for a

given input state. The term optical bistability refers to the situation in which two dif-

ferent output intensities are possible for a given input intensity, and the more general

term optical multistability is used to describe the circumstance in which two or more

stable output states are possible. Interest in optical bistability stems from its poten-

tial usefulness as a switch for use in optical communication and in optical computing.

Optical bistability was first described theoretically and observed experimentally using

an absorptive nonlinearity by Szke, et al. (1969). Optical bistability was observed ex-

perimentally for the case of a refractive nonlinearity real χ(3) by Gibbs, et al. (1976)

[4, 7, 5].

The first studies reported about optical bistability in laser diode come from the

sixties. Main works were done during eighties, most relevant are recompiled on mainly

in passive optical bistability; following some of the previous works on optical semi-

conductor oscillators and amplifiers. It has been an intensive research topic due to

the huge potential applications of these devices in different fields of technology, such

as optical computing and optical communications and for the practical advantages of

laser amplifiers: the presence of gain, fast response, low optical power requirements

to achieve bistability etc. As a matter of fact, in optical computing, the nonlinear

behavior exhibited by the laser amplifier leads to the possibility of using this kind of

devices as basic components in the developing of logic gates. In the other hand, in

optical communications these devices could be employed in optical switching applica-

tions, optical signal regeneration and optical head packet processing, in addition the
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usual use in long range links [29].

Optical bistability has been predicted by theory or demonstrated by experimental

studies to exist in waveguide-ring resonators [27], photonic crystal cavities [30, 31, 32],

subwavelength metallic gratings [33], metal gap waveguide nanocavities [34], and

nanoantenna with amorphous silicon filled in the gap [35]. It is important to achieve

a deeper understanding of the basic physics of optical bistability at the nanoscale in

order to design and realize high-performance nanophotonic switching devices.

The interaction of light with metal surface results in the collective oscillation of

the surface free electrons. This phenomenon is called surface plasmon resonance.

A strong resonance occurs roughly at the electromagnetic frequency, where, εr =

−2εm thus determining the surface plasmon resonance (SPR) frequency, where εr is

dielectric function at resonance occur,εm is metallic dielectric function. For gold (Au),

silver (Ag), and copper (Cu), the resonance condition is fulfilled at visible frequencies,

making them the plasmonic metals of choice for optical applications. Different from

the spectrum of bulk metals, the spectrum of noble nanoparticles have a very strong

UV/visible absorption band. This absorption band results when the incident photon

frequency is in resonance with the collective excitation of the conduction electrons

and is known as localized surface Plasmon resonance [36].



Chapter 3

Background

3.1 Fundamentals of the optics

In order to describe more precisely what we mean by an optical nonlinearity, let us

consider how the dipole moment per unit volume or polarization P̃ (t) of a material

system depends on the strength Ẽ(t) of an applied optical field. In particular, the

linear polarization provides an extensive description of the light-matter interaction

when the intensity of the incident radiation is sufficiently small; whereas the nonlinear

optical response of a medium depends on the strength of the applied optical field, Ẽ(t)

[28].

Polarization is the dipole moment per unit volume of a material system which

depends on the strength Ẽ(t) of an applied optical field. In the case of conventional

(i.e. linear) optics, the induced polarization depends linearly on the electric field

strength in a manner that can often be described by the relationship

P̃ (t) = εoχ
1Ẽ(t) (3.1.1)

where P̃ (t) is linear polarization, χ1 is a linear susceptibility and εo is the permit-

tivity of the free space.

10
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In nonlinear optics, the optical response can often be described by generalizing

the linear expression of polarization Ẽ(t) as a power series in the field strength Ẽ(t)

as

p̃(t) = εoχ
1Ẽ1(t) + εoχ

2Ẽ2(t) + εoχ
3Ẽ3(t) + ... (3.1.2)

where generalizing polarization

p̃(t) = P̃ 1 + P̃ 2 + P̃ 3 + ... (3.1.3)

where χ2 and χ3 are second order and third order nonlinear optical susceptibilities.

Nonlinear optics is a field of optics that describes the changes of the optical properties

of materials in the presence of light. This behavior is contrary to everyday experience,

but is firmly rooted in the interaction of light with matter at atomic scales. An effect

resulting from nonlinear optics arises from light at large intensities within materials.

These nonlinear properties produce a plethora of interesting phenomena such as wave

mixing and bistability. In this chapter, a basic introduction to nonlinear optics is

provided. Nonlinear optics is a rich field that provides many useful applications in

fundamental science and technology; however, focus is given on optical materials and

phenomena directly related to content of this thesis.

3.2 Nonlinear optical materials

Nonlinear optical materials give rise to a multitude of phenomena that have impor-

tant applications in technology and science. One fundamental example is harmonic

generation, in which light combines to form new light at integer multiples of the in-

put frequency. Materials capable of harmonic generation are of practical importance

since they are able to generate or detect light at frequencies that are not available in
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current optical devices. Another fundamental example is optical bistability, in which

the intensity of the output light can take two distinct stable values for a given input,

creating an optical two-state system. Bistable devices, such as optical logic gates and

memory, are critically important for optical computing, which promises much faster

computation than in current electronic devices [28].

The degree of optical nonlinearity in a material depends upon the strength of the

optical field, and varies in different materials. Due to very small nonlinearities in

naturally occurring materials, large optical fields are necessary to realize measurable

nonlinear phenomena. The necessity of high intensity sources to observe the effects

of optical nonlinearity severely limit its use in practical applications, especially in

low-powered devices. To realize such devices, the enhancement of nonlinear mate-

rial properties is required. Recently, there has been interest in characterizing the

optical response of subwavelength metallic structures containing nonlinear dielectric

materials [37].

According to preliminary evaluation, the enhancement factor can reach values

within the range 200-300. This means that for the laser radiation the local strength

of the electric fields inside the particles can reach the values of inter atomic fields.

This in turn requires account of the nonlinear part of the dielectric function of the

metal and dielectric. It is also planned to obtain the factor for the induced optical

bistability (IOB) effect which favor for the increasing the enhancement factor and

evaluate for the induced optical bistability[12].

The macroscopic electric field in a medium alone does not completely describe

the response of the medium to an applied external electric field. Because that, the

external field drives the bound charges of the medium apart and induces a collection
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of dipole moments. In an optically dense medium, the interaction of the induced

dipoles in the medium is determined by taking into account of the local field factor.

The local field is considered by starting from nature of macroscopic properties of the

medium [4].

In our work, the main objective is to obtain the enhancement factor for the metallic

particles of ellipsoidal shape: the ellipsoidal dielectric particles covered by the metal

shell for the host matrices with optical induced bistability effect. The results will be

presented in the form of 3D graphs with the aim to find the ranges of parameters where

enhancement factor has the largest value. This means that for the laser radiation, the

local strength of the electric fields inside the particles can reach the values of inter

atomic fields. This in turn requires account of the nonlinear part of the dielectric

function of the metal and dielectric. It is also planned to obtain the factor for the

optical induced bistability effect which favor for the increasing the enhancement factor

and evaluate for the OIB.



Chapter 4

Methodology and Materials

4.1 Methodology

We have employed numerical and computational simulation methods using MATLAB

program by developing suitable computer codes to study how depolarization factor L

affect the enhancement factor in the metal/dielectric/semiconductors. These research

works have been carried out analytically and numerically.

4.2 Materials

For the analytical and numerical simulation MATLAB Soft ware was used to develop

program code for our model equation and simulating the dielectric function of the

composite materials. To make our result effective we have compared with physics

thesis published nationally and internationally. Mathematica software was used to

manage long analytical and numerical expression for scientific work and to simplify

bulged equations into figural expressions.

14



Chapter 5

Analytically and numerically study
of enhancement factor in the small
ellipsoidal metal/dielectric with
composite of dielectric core

The optical response for a collection of free electrons can be obtained from the Lorentz

harmonic oscillator model by simply ’climbing the springs’ that is by setting the spring

constant k is equal to zero. Therefore, for ω is incident frequency and dielectric

function for free electron is given by;

ε(ω) = ε∞ −
ω2

p

ω2 + iνω
, (5.0.1)

where ε(ω) is dielectric function as a function angular velocity, ωp is plasma frequency

and ε∞ is a dielectric constant.

Let an electromagnetic wave shined/impinge on a metal particle in the form of

a rotational ellipsoid embedded in a dielectric host matrix. The dielectric function

of the particle is assumed to depend on the frequency ω and the local electric field

(inside the particle) and can be presented in the form

ε(ω,
−→
E ) = ε(ω) + χ(ω)|

−→
E |2, (5.0.2)

15
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where ε(ω,
−→
E ) is a dielectric function as the function of angular frequency and elec-

tric field, χ(ω) is the complex Kerr coefficient, and the linear parts of the dielectric

function is

ε(ω) = ε
′
(ω) + iε

′′
(ω). (5.0.3)

And let us have both real and imaginary parts from above equations as follows

for real parts we have the following equation

ε
′
(ω) = ε∞ −

ω2
p

ω2 + ν2
, (5.0.4)

and for imaginary parts also we have the following equation

ε
′′
(ω) = ε

′′

∞ +
ω2

pν

ω(ω2 + ν2)
. (5.0.5)

5.1 The Enhancement Of Local Field In The Small

Ellipsoidal Metal/Dielectric Particles

In a dilute gas of atoms the electric field
−→
E that produces the induced dipole moment

on an atom is simply the applied electric field. In a solid, however, all of the dipole

moments produced on other atoms in the solid make a contribution to the field acting

on a given atom. The value of this microscopic field at the position of the atom is

called the local field. The local field
−→
E LF (−→r ) is different from the applied electric field

−→
E0 and from the macroscopic electric field

−→
E (which is the average of the microscopic

field
−→
E LF (−→r ) over a region that is large compared to a unit cell). Clearly, the

contributions to the microscopic field from the induced dipoles on neighboring atoms

vary considerably over the unit cell [6].
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From the size dependence of the surface plasmon (SP) frequency, it is quite obvious

that metal nanoparticles with non-spherical shape will show several SP resonances in

their spectra. For instance, ellipsoidal particles with axes a = b = c spherical posses

three SP modes corresponding to polarizabilities along the principal axes. Moreover,

an increase in the axis length leads to the minimization of the depolarization factor

(L). For a spherical particle La = Lb = Lc = 1
3

[5]. Thus, if the propagation direction

and polarization of the electromagnetic wave do not coincide with the axes of the ellip-

soid, the extinction spectra can demonstrate three separate SP bands corresponding

to the oscillations of the free electrons along these axes.

However, if the incident light is polarized parallel to one of the axes, only one

single SP band exist corresponding to the appropriate axis. Tn the case where two

SP resonances are observed the band lying at higher wavelengths is referred to as

the long axis, while the small axis demonstrates resonance at shorter wavelengths

compared to the single resonance of a nanosphere of the same volume. The spectral

separation of the two surface plasmon bands of the ellipsoidal nanoparticle strongly

depends on its aspect ratio which is defined as the ratio of the long to the short axes.

At the same time, it is clearly seen that for prolate and oblate spheroids having the

same aspect ratio, the positions of SP resonances are different. Namely, the spectral

separation between SP bands is higher for the nanoparticles having a zeppelin-like

shape [5].

5.1.1 Depolarization factor

The most general smooth particle, one without edges or corners of regular shape, is

an ellipsoid with semiaxes a > b > c. To check these results we notes that the sphere
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Figure 5.1: Ellipsoid for length axes for a > b > c and depolarization factor for b =
c and L2 = L3, and b = a and L1 = L2

is a special ellipsoid for a = b = c. Only when the particle is in free space (εm = ε0)

are its depolarization factors independent of composition. In the nature we note that

there is no perfect sphere. Therefore, as we said a special class of sphere is ellipsoid

when its depolarization is given by,

L1 = L2 = L3 =
a3

2

∫ ∞

0

dq

(a2 + q)
5
2

=
1

3
(5.1.1)

where dq is coordinate derivation along the length axis. q is coordinate , a is an axis

length.

A special class of ellipsoids is the spheroids, which have two axes of equal length;

therefore, only two of the geometrical factors of L1, L2, L3 is independent because of

the relation

L1 + L2 + L3 = −abc

∫ ∞

0

dq

f(q)
= 1 (5.1.2)

where a, b and c are the length of the axes.

The prolate (cigar-shaped) spheroids, for which b = c and L2 = L3, are generated

by rotating an ellipse about its major axis; the oblate (pancake-shaped) spheroids,
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for which b = a and L1 = L2, are generated by rotating an ellipse about its minor

axis.

5.2 Enhancement Factor Of Local Field For Metal/Dielectric

Composite

Consider a composite system that consists of an ellipsoidal shaped dielectric core

of dielectric constant εd, a metal/semiconductor particle with dielectric function εm

embedded in host matrix having a dielectric function εh is as shown Fig.5.1. Using

this we will derive the enhancement factor A.

For the derivation, we use Laplace’s equation in spherical coordinate. For our case

we want to derive enhancement factor A for ellipsoid particle by using this spherical

coordinates as reference. Now, we have to use the depolarization factor to shift

spherical into ellipsoid shape particle [5].

To simplify our derivation we have set the following two basic cases :

1. The potential is the same for r = r1 and r = r2 and it is continuous at boundary

2. Displacement vector is continuous and the same at the boundary for r = r1 and r

= r2.

Using Laplace’s equation in spherical coordinates [5, 6] the potential is given by:

Φ(r, θ) =
∑

(Anr
n + Bnr

−n+1)Pn(cos θ) (5.2.1)

where A and B are constants that can be determined using boundary conditions.

After certain manipulations, we got the following three basic equations for my

numerical manipulation for certain range of radius difference.
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Figure 5.2: The construction of ellipsoidal by the combination of dielectric εd in core,
metallic dielectric εm outside coverage of dielectric and finally host matrix εh external
coverage of dielectric and metallic

However,the distribution of the electric potential in the system is described by

the following expressions for they are the solutions of the Laplace equations of the

dielectric core, metal and the host matrix, respectively.

Φ1 = −EhAr cos θ, r ≤ r1 (5.2.2)

Φ2 = −Eh(Br − C

r2
) cos θ, r1 ≤ r ≤ r2 (5.2.3)

Φh = −Eh(r −
D

r2
) cos θ, r > r2 (5.2.4)

Here Φ1 ,Φ2, and Φh are potentials in the dielectric core, metal,and the host matrix,

respectively,
−→
E h is the applied field, r and θ are the spherical coordinates of the

observation point(the z-axis is chosen along the vector
−→
E h), r1 ,r2 are radiuses of the

dielectric core and the metal shell,respectively. A,B,C,D are unknown coefficients.
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Their solutions are derived using Laplace equations of the metal/dielectric inclusion

and the host matrix, respectively. Here Φ is potential,
−→
E h is the applied field, r and

θ are the coordinates of the spherical coordinates (the beginning of the coordinate in

the center of the inclusion and the z axis is along
−→
E h). We obtain a system of linear

algebraic equations for unknown coefficients A and B from the continuity conditions

of the potential and the displacement vector at the boundaries: metal-host matrix.

From the continuity conditions of the potential at the boundaries of dielectric core

and metal/dielectric cover equation (5.2.2) and (5.2.3) becomes

A = B − C

r3
1

(5.2.5)

Then, also from continuity conditions of the potential at the boundaries of metal/dielectric

and host equation (5.2.3) and (5.2.4) also becomes,

B − C

r3
2

= 1− D

r3
2

(5.2.6)

From the continuity conditions of the displacement vector at the boundaries of di-

electric core and metal/dielectric cover

Aεd = εm(B + 2
C

r3
1

) (5.2.7)

and equation (5,2.9) of metal/dielectric function and host matrix.

By introducing the depolarization factor L in the equation (5.2.7) of spherical

equation setting that have ellipsoidal shape and comparing with spherical shape of

metal/dielectric particles,

LAεd = LεmB + (1− L)
C

r3
1

(5.2.8)
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Applying the boundary condition for the displacement vector at the metal/dielectric

and host matrix interface, we get from equation (5.2.2) and (5.2.3)

εm(B +
2C

r3
2

) = εh(1 +
2D

r3
2

) (5.2.9)

And introducing depolarization factor in equation (5.2.9),

LεmB + εm(1− L)
C

r3
2

= Lεh + (1− L)
D

r3
2

(5.2.10)

Let us put equation (5.2.6) into (5.2.10),

B =
C

r3
1

(1− L)εm + Lεd

Lεd − εm

(5.2.11)

Also, put this equation (5.2.11) into (5.2.8), Here, new definition is happened what

we called volume fraction in which it is the volume difference of two radial of

r1

r2

= 1− P

.

Again put (5.2.11)into (5.2.6),

C

r3
1

Lεd + εm(1− L)− (1− P )(Lεd + Lεm)

L(εd + Lεd

= 1− D

r3
2

(5.2.12)

And the equation (5.2.10) is become,

C

r3
2

ε2
mL(1− L) + L2εmεd + L(εd + εm)(1− L)(1− P )εm

L(εd + εm)
= Lεh + εh(1− L)

D

r3
2

(5.2.13)

By taking their ratio of (5.2.12) and (5.2.13) two equation we get,and simplifying

we arrived on,

εm + LP (εd − εm)

(L)εdεm(1− P ) + LPεm(εd − εm) + Pε2
m

=
1− D

r3
2

Lεh + εh(1− L) D
r3
2

(5.2.14)
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Let

a = εmεd − Pεm(εd − εm) + LPεm(εd − εm)

b = εm + LP (εd − εm)

Now, the equation (5.2.14) is reduced into

b

a
=

1− D
r3
2

Lεh + εh(1− L) D
r3
2

(5.2.15)

Rearranging this (5.2.15) we get

D

r3
2

=
(a− bεh)

La + bεh(1− L)
(5.2.16)

And also, putting (5.2.15) value we get

C

r3
2

=
(εd − εm)εh

La + bεh(1− L)
(5.2.17)

By collecting all together we get the constant value of ’A’ as,

A =
εhεm

La + bεh(1− L)
(5.2.18)

To summarize from continuity condition for the potential and displacement at bound-

aries we obtained a constants A, B, C, and D using equation (2),(3)and (4).

A =
εhεm

La + bεh(1− L)
(5.2.19)

B =
C

r3
1

(1− L)εm + Lεd

εd − εm

(5.2.20)

D =
(a− bεh)

a + bεh(1− L)
r3
2 (5.2.21)

C =
(εd − εm)εh

La + bεh(1− L)
r3
2 (5.2.22)



24

Here by substituting the value of both ’a’ and ’b’ into A value equation in which

it is multiplied each terms to simplify into

A =
εhεm

ε2(LP (1− L)) + εm[εh(1− L)− εhLP (1− L) + Lεd(1− P ) + L2Pεd] + εhεdLP (1− L)

(5.2.23)

Let us introduce the following notation:

a1 = LP (1− L),

a2 = εh(1− L)− εhLP (1− L) + Lεd(1− P ) + L2Pεd

a3 = εhεdLP (1− L)

Therefore, the enhancement factor which is complex becomes

A =
εhεm

a1ε2
m + a2εm + a3

(5.2.24)

Recall that the dielectric function of the metal/dielectric inclusion is given by

εm = ε
′

m + iε
′′

m (5.2.25)

The modulus of this equation is

ε2
m = ε

′2
m − ε

′′2
m + 2iε

′

mε
′′

m (5.2.26)

By substituting this metallic dielectric into enhancement factor value of A, we get

the following equation:

|A|2 =
[|εh|2ε

′2
m + εm]

′′2

(a1(ε
′2
m − ε′′2

m ) + a2ε
′
m + a3)2 + (2a1 + ε′

mε′′
m + a2ε

′′
m)2

(5.2.27)

This equation is called enhancement factor of unknown coefficient from our initial

equation, where the metallic dielectric function from Lorentz classical model is given
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by

ε
′

m = ε
′

∞ −
1

z2 + γ2
(5.2.28)

ε
′′

m = ε
′′

∞ +
γ

z(z2 + γ2)
(5.2.29)

Where, ε
′
∞ and ε

′′
∞ are constants that can be depend on the type of metal and z is a

dimensionless frequency, where (z= ω
ωp

and γ = ν
ωp

).



Chapter 6

Result and Discussion

6.1 Enhancement factor of local field for ellipsoidal

metal/dielectric composite core

Let us consider an individual composite of small metal/dielectric function and let an

electromagnetic wave impinge on a metal particle in the form of a rotational ellipsoid

embedded in a dielectric host matrix. The dielectric function of the particle is assumed

to depend on the frequency ω and the local electric field E (inside the particle) and

can be presented in the form

ELF = A · Eh, (6.1.1)

where A is enhancement factor which is obtained to be:

A =
εhεm

a1ε2
m + a2εm + a3

(6.1.2)

where

a1 = LP (1− L)

a2 = εh(1− L)− εhLP (1− L) + Lεd(1− P ) + L2Pεd

a3 = εhεdLP (1− L)

26
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Used physical quantities V alue assigned for each
εh 2.25
εd 0.5
P 0.99

ε
′
∞ 4.6

ε
′′
∞ 0
γ 0.0115
a1 L · P (1− L)
a2 εh(1− L)− εhLP (1− L) + Lεd(1− P ) + L2Pεd

a3 εhεdLP (1− P )
ε′m ε∞ − 1

(z2+γ2)

ε′′m
γ

z(z2+γ2)

z 0.38 - 0.54
L 0.34 - 0.38

Table 6.1: The list of physical quantities and their value used to draw the figure

Now, we have to assign value for the parameters in (6.1.2) and set their value in table

form;

Using above listed numerical value we have use to draw enhancement factor by varying

depolarization factor L versus dimensionless frequency z of the following figure.

where, ωp is plasma frequency, in which it given by: ωp =
√

Ne2

meε0
, which is called

Drude plasma frequency, me mass of electron, N is used for number of electrons per

unit volume (or is the concentration), e is the charge of an electron, P is the fraction

volume.

From figure 6.1 we have to understood that for dielectric function εd kept at center

of small ellipsoidal particle. The depolarization factor L and dimensionless frequency
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Figure 6.1: 3D plot for enhancement factor |A|2 of a silver nanoparticle versus z and L;
ε

′

h = 2.25, P = 0.99, ε
′′

h = 0, ε
′
∞ = 4.6, ε

′
∞ = 0, γ = 0.0115, ωp = 1.46× 1016rad/sec,

ν = 1.68× 1014rad/sec.

z play a key role for enhancement by fixing depolarization as example at point z1 =

0.38, z2 = 0.54 and L1 = 0.34, L2 = 0.38. Therefore, as we see from fig 6.1 the

dielectric function have an effect to enhance by presence local field in the region, to

increased enhancement factor.

6.2 Enhancement factor of local field for ellipsoidal

metal/dielectric composite in 2D for depolar-

ization factor L

Now here, we will study (explore) the enhancement factor drawn for two dimension

(2D), while Fig 6.1 is drawn for three dimensions (3D). The physical quantities used

in fig 6.1 the same to Fig 6.2. But they have difference in plotting 2D and 3D in
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Figure 6.2: 2D plot of the enhancement factor |A|2 of a silver particle versus z, L =
0.37; ωp = 1.46× 1016rad/sec,ν = 1.68× 1014rad/sec

using depolarization factor. From, fig 6.2 it is shown that with the change of L from

lower value to high value, namely, with the transition of from dielectric property to

metallic property, the level values of the enhancement factor of the local field increase.

Compared with the case of no dielectric layer, the metal-like dielectric layer makes

the threshold values increase, while the dielectric like layer makes the level values

decrease. Therefore,from Fig 6.2 enhancement factor for metallic dielectric function

increased, while dielectric function make enhancement factor to decrease.

6.3 Enhancement factor of focal field for ellipsoidal

metal/dielectric composite for oblate and pro-

late

The oblate shaped object have the equatorial diameter greater than the polar diame-

ter, whereas, prolate having the polar diameter greater than the equatorial diameter.

Using geometrical factor L for oblate L1 = 0.3 and prolate L2 = 0.44, as we have to
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Figure 6.3: Enhancement factor for the oblate and prolate shape, when L1 = 0.3 and
L2 = 0.44 and other quantities are the same to figure 6.2

see from figure 6.3 no effective change seen, except when the number value of L is

increased and the enhancement increase from the transition of dielectric to metallic.

6.4 Enhancement factor of local field for ellipsoidal

metal/dielectric composite for sphere, oblate

and prolate shape

And let us see by combining for depolarization factor for perfect sphere, oblate and

prolate shaped and it look like the following; In Fig.6.4, we present |A|2 of composites

of small ellipsoidal metal/dielectric separated by dielectric layer verses the resonant

frequency z for three different depolarization factor values; L1 = 0.3, L2 = 0.37

and L3 = 0.44. We find that the depolarization factor plays an important role in

enhancement factor behavior. It is shown that with the change of L for oblate, prolate
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Figure 6.4: Enhancement factor for the oblate, pure Sphere and prolate shape respec-
tively, when L1 = 0.3, L2 = 0.37 and L3 = 0.44 and other quantities are the same to
figure 6.2

and sphere, namely, with the transition of dielectric property to metallic property, the

values of the enhancement factor of the local field stay the same in three of shapes.

6.5 Analytical description of induced optical bista-

bility for ellipsoidal metal/dielectric composite

core

As input intensity is increased, the field inside the cavity also increases, lowering

the absorption that the field experiences and thus increasing the field intensity still

further. If the intensity of the incident field is subsequently lowered, the field inside

the cavity tends to remain large because the absorption of the material system has

already been reduced. Note that over some range of input intensities more than one



32

output intensity is possible. This is called induced optical bistability which means

that some nonlinear optical systems can produce two different output intensities for

a given input intensities or, in particular, the given value of an external electric field

may produce several values for the local field and the polarization. In this section, we

consider the local field in metal ellipsoidal particles while accounting for the nonlinear

part of ε(ω,E) and it is used in the presence of small field χ|E|2.consider that

A =
εhεm

La + bεh(1− L)
(6.5.1)

By substituting the value of ’a’ then ,

a = εdεm − Pεm(εd − εm) + LP (εd − εm)εm (6.5.2)

where εd = εdo + χ|E|2 and εdo is the real part of dielectric function

After multiplying the above equation we have to separate it in to its real and imaginary

as

a = a1 + Xa3 + i(a2 + Xa4) (6.5.3)

where

a1 = εdoε
′
m(1− P + LP ) + (ε

′2
d − ε

′′2
m (P − LP )),

a2 = εdoε
′′
m(1− P + LP ) + 2ε

′
mε

′′
m(P − LP ),

a3 = ε
′
m(1− P + LP ),

a4 = |E|2ε′′
m(1− P + LP ) and

X = χ|
−→
E |2

And from value of ’b’,

b = εm + LP (εd − εm) (6.5.4)

By substituting dielectric and metallic function and multiplying, we get

b = (a5 + Xa7) + ia6 (6.5.5)
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where

a5 = ε
′
m(1− LP ) + εdoLP ,

a6 = ε
′′
m(1− LP ),

a7 = LP

Substituting the above value for the enhancement factor A, (6.5.1) and taking its

modulus, we get

|A|2 =
ε2

h(ε
′2
m + ε

′′2
m )

(a8 + Xa9)2 + i(a10 + a11)2
(6.5.6)

where,

a8 = La1 + (1− L)εha5,

a9 = La3 + εh(1− L)a7,

a10 = La2 + a6(1− L)εh, and

a11 = La4

The combination of all the above equation led us to find the particle at the par-

ticular point, starting from

−−→
ELF = A|

−→
Eh| (6.5.7)

Now by multiplying by χ both sides of the above equation after squaring

χ|E|2 = |A|2χ|Eh|2 (6.5.8)

letting X = χ|E|2, and Y = χ|E|2 we obtain the following cubic equation for X;

aX3 + bX2 + cX

ε2
h(ε

′2
m + ε′′2

m )
= Y (6.5.9)

where,

a = a2
9 + a2

11,

b = 2(a8a9 + a10a11)

c = a2
8 + a2

10
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Figure 6.5: Induced optical bistability in composites of small ellipsoidal
metal/dielectric in a linear host matrix for L1 = 0.37, εdo = 0.6, ε∞ = 4.5, where the
rest quantities are the same as figure 6.1 above and this figure is drawn for the local
field χ|E|2 as a function of the applied field χ|E|2h at z = 0.2

Using the above equation we will draw the optical bistability curve. From fig 6.5

we understand that when we supply an intensity from an external source we get two

stable output intensities. Therefore from (6.5.9) this stability we called bistability

that is a real numbers, And there is one imaginary part which is absorbed. Further,

we are interested only in the real and positive roots of the cubic equation above.

If this equation has one real positive root, then the local field in the inclusion is a

single-valued function of the applied field. If this (6.5.9) equation has three positive

roots, then the local field is not a single-valued function of the applied field, and

the system becomes unstable. This situation is called the induced optical bistability

(IOB). IOB is usually illustrated in the Y - X plane and connected with S-like curves

showing that three different values of the local field correspond to one value of the

applied field.
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Figure 6.6: Induced optical bistability in composites of small ellipsoidal
metal/dielectric in a linear host matrix for L1 = 0.34, L2 = 0.37, εdo = 0.6, ε∞ = 4.5,
where the rest quantities are the same as figure 6.1 above and this figure is drawn for
local field χ|E|2 as a function of the applied field χ|E|2h at z = 0.2

To obtain the general picture of the connection between the applied field, local

field, and the frequency (z is constant), we decided to present a 2D graph involving

these quantities. The 2D graph depicted in Fig. 6.6 is obtained with the help of

above equation (6.5.9) and shows the most interesting region of these parameters

(bistability), when three different values of the local field correspond to one value of

the applied field.

While analyzing the bistability phenomena in the system, it is more convenient

to consider the dependence of a local field on the applied field. Figure 6.6 shows such

dependence for different depolarization factors obtained with the help of equation

(6.6.9) at z = 0.2. One can see that the bistability region (three different values of

χ|E|2 for one value of χ|Eh|2 widens, as the depolarization factor L increases.

The 2D graph depicted in Fig. 6.7 is obtained with the help of (6.5.9) equation
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Figure 6.7: Induced optical bistability in composites of small ellipsoidal
metal/dielectric in a linear host matrix for L1 = 0.34, L2 = 0.37, L3 = 0.4, εdo = 0.6,
ε∞ = 4.5,where the rest quantities are the same as figure 6.1 above and this figure is
drawn by local field χ|E|2 as a function of the applied field χ|E|2h at z=0.2

and shows the most interesting region of these parameters (bistability), when three

different values of the local field correspond to one value of the applied field.

6.6 Bistability Domain in Ellipsoidal Particles with

Nonlinear Metal/dielectric Composite Core

The bistability domain in the plane (z; χ|Eh|2) can be specified from an analysis of

the roots of the cubic equation (6.5.9). We have two ways of finding the root location

of a cubic equation for cubic equation (6.5.9). Now, we analyze the roots of (6.5.9)

and find the IOB domain in the plane (z; χ|Eh|2). And from (6.5.9), its solution is

Y =
−2

9
((b2 − 3ac)(−b±

√
b2 − 3ac

3a
) +

bc

2
) (6.6.1)



37

Figure 6.8: The ellipsoidal silver nanparticle with the parameters L = 0.37,εh = 2.25,
P = 0.99,γ = 1.15 × 10−2,ε∞ = 4.5.The induced optical bistability in the plane
(z, χ|E|2)
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Figure 6.9: The ellipsoidal silver nanparticle with the parameters L1 = 0.33, L2 =
0.37, L3 = 0.39, εh = 2.25, P = 0.99, γ = 1.15× 10−2, ε∞ = 4.5. The induced optical
bistability domain in the plane for oblate, sphere and prolate (z, χ|E|2)

As we see from Fig 6.8 taken depolarization for spherical shape is L = 1
3

as we

saw [5]. Now for geometrical factor L the bistability domain have M-like shape where

it start increasing from point (0.75 to 3) for χ|Eh|2 and (0.33 to 0.35) and decreased

from (0.36 t0 0.4) for z. Between a point of z (0.34 to 0.36) we have the bistability

domain in which we find a particle at a particular point.

As we have to see from Fig 6.8, for as we set z and L a particle have M-like shape.

However, from Fig 6.9 we have seen the combined shape for oblate (bulged at its

center) and prolate(bulged at its major axis),share the same characteristics of Fig 6.8

as we seen.

From fig 6.9 we understand for (z, χ|E|2) frequency and intensity there is no change

in bistability domain of silver nanparticle. Here, we have to see that from Fig 6.9 the

combination of three nanoparticles shape display similar behavior and characteristics

except they are different for different depolarization factor. The most interesting
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Figure 6.10: The ellipsoidal silver nanparticle with the parameters L1 = 0.33, L2 =
0.37, L3 = 0.39, εh = 2.25, P = 0.99, γ = 1.15× 10−2, ε∞ = 4.5. The induced optical
bistability in the plane (z, χ|E|2)

feature of these graphs is the appearance of two peaks of the enhancement factor

at two (z=0.3,0.4); different frequencies. The positions and values of these maxima

strongly depend on volume fraction P (for fixed other parameters).For P = 0.99. It

becomes more important and with further increase in P, three of them become higher

and move closer to each other along positive x-axis, where as further increase in P,

three of them become lower and move parallel to each other and decrease to zero.

Generally, we conclude that the metallic/dielectric composite core for ellipsoidal

nanoparticle shows induced optical bistability and bistability domain have the same

result as spherical nanoparticle metallic/dielectric composite core. Instead of using

the mathematical derivation of ellipsoidal shape, due to high degree of of or (due

to symmetry) it is simple to use spherical nanoparticles to find enhancement factor,

depolarization, IOB and bistability domain. Therefore, using spherical nanoparticle

is preferable than ellipsoidal nanoparticle.



Chapter 7

Conclusions and Recommendation

We now discussed the main theoretical conclusions that follow from this study. From

the first section we have to observed that for incident radiation (EMW) the dielectric

function in ellipsoidal nanoparticle have a great effect on enhancement factor and it

have two maximum peaks for depolarization factor L and dimensionless frequency

z. The another fundamental point we discussed is optical bistability, in which the

intensity of output light can take two distinct stable values for a given input incident

radiation, creating optical bistable for real states output and one absorbed for imagi-

nary part. The degree of optical nonlinearity in a material depends upon the strength

of the optical field, and varies in different materials. From in third section as we have

seen bistability domain for spherical and ellipsoidal nanoparticle are show the output

result the same for input local electric field but they are not overlap one another,

and shift their place to the left for oblate and to right for prolate in compared to

spherical. However, even if they give us the same result for both geometrical shape,

hence, using spherical shape is recommended than ellipsoidal. It is shown that the

enhancement factor of the local electric field in metal spherical or ellipsoidal nanopar-

ticles with dielectric cores imbedded in a dielectric matrix have two maxima on two
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resonant frequencies. The second maximum for the inclusions with large dielectric

cores covered by a thin metal shell is comparatively small. With increasing in a metal

fraction in the inclusion, enhancement factor grow.

7.1 Recommendation

Due to very small nonlinearities in naturally occurring materials, large optical fields

are necessary to realize measurable nonlinear phenomena. The necessities of high

intensity sources to observe the effects of optical nonlinearity severely limit its use

in practical applications, especially in low-powered devices. To realize such devices,

the enhancement of nonlinear material properties is required. Therefore we recom-

mend you anybody who interested to do his/her research related to nonlinear optics

of nanoparticles in regard of enhancement factor, IOB and domain factor using exper-

iment because future, generation need computer aided services without losing more

time and energy using optical technology and nanotechnology. Our 21th century gen-

eration interested to use nanotechnological devices because of their smaller in size,

faster in accessory, lighter to take everywhere, and cheaper to purchase with a great

functionality. Therefore, let us unite and change our theoretical concept into prac-

tical to solve problem of our society that help them to use fewer raw materials and

consuming less energy. We have recommended academic professionals and graduate

students to do their research to solve problem of their community but not simply for

graduation.
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