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Abstract

In this thesis, we studied the enhancement factor of local field for pure spherical metal

composite, small spherical metal/dielectric composite and optical induced bistability

of metal/dielectric composites with interfacial layer in linear host matrices which has

not been studded in the literature so far. For relatively small intensity of electro-

magnetic radiation the local field inside the small particles can be enhanced up to

the inner atomic fields. This requires taking into account of the nonlinear part of the

dielectric function, which in majority cases is proportional to the square amplitude

of the incident electric field |E|2. For such cases the local field inside the particle is

determined from the cubic equation with respect to |E|2. The single value of |Eh|2 is

able to activate three different values of the local field |E|2.

Using the calculated enhancement factor of local field and the cubic equation

of the optical induced bistability of the composite material, the parameters of the

interfacial layer are calculated. We take positive, zero, and negative values which

represents dielectric like, no interfacial, and metal like, respectively for the pure metal

case. In the case of metal/dielectric for which we consider the interfacial layer particle

the above mentioned properties are reversed so that it will be positive to realize the

metal like properties of the interfacial layer. The analytical and numerical results

show that the enhancement factor of local field is extremely enhanced and the optical

induced bistability increased its domain.

Key words: Dielectric Function, Interfacial Layer, Enhancement Factor, Optical

Bistabilities.
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Chapter 1

Introduction

The interfacial layer with the linear and nonlinear response of the medium strongly

affects on the enhancement factor of local field and Optical Induced Bistability in the

optical material and may even result in the permanent modification of its physical

properties. Here, we analyzed the linear and nonlinear optical features of composite

materials with metal nanostructures that are dominated by surface plasma oscilla-

tions and the interfacial layer as well as the contribution due to the metallic and

dielectric properties of the composite material. It is well known that the properties

of the surface plasmon (SP) strongly depends on size, shape, distribution of metal

nanoparticles and the surrounding dielectric matrix offers an opportunity for the man-

ufacturing of new promising nonlinear materials, nano-devices and optical elements.

Composite materials consisting of small nonlinear metallic particles in the shape of

sphere which are randomly embedded in a linear dielectric host, are well known for

their complex responses to incident light fields [1, 2].

The combination of metals and dielectrics has two main purposes:

1. The first is to allow light to enter more deeply into metals, and

1
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2. The second is to achieve light localization which in turn leads to an enhanced

nonlinear response.

An interesting property of metal nanoparticle is the presence of extinction bands

in the visible or infrared that results from the so-called plasmon resonances. These

resonances do not exist in bulk metals and can be explained to be a consequence

of the confinement of free electrons in a space smaller than one-wavelength of light

which can be controlled by changing the shape of the nanoparticle and its orientation

with respect to the electric field.

The study of the effective optical properties of composite materials were first con-

cerned with the analysis of linear media [3]. The contribution of the local field of the

particle was extended studying the nonlinear properties of composite materials [4, 5]

with the contributions being treated as purely real and small perturbations which can

be assumed to be resulting in linear behavior [5, 7]. Due to these limitations, in the

case of relatively high concentration of the nonlinear components, these approxima-

tions are generally unable to properly predict the existence optical properties such as

the Optical Bistability associated with the nonlinear optical response of composite

materials [2, 4]. In this thesis, we are interested on the nonlinear characteristics of

composite materials by considering the interfaces that separates dielectric core from

concentric metallic particles embedded in linear dielectric host matrix. It is shown

that the interfacial effect plays an important role on the enhancement factor of local

field and the optical induced bistability (OIB) of such materials. In particular, we

discuss interfacial layer effect on the enhancement factor of local field and optical
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induced bistability (OIB) of spherical metal/dielectric composite containing interfa-

cial layer embedded in linear dielectric host; by making use of Laplace equation, the

Taylor expansion and the classical Drude model. The interfacial factor I is intro-

duced to characterize interfacial layer [7] and has been developed to discuss nonlinear

optical response of such types of composite systems [8, 9, 10]. In addition, for nu-

merical calculations the sample with silver/dielectric composite with interfacial layer

is utilized.

1.1 Statement of the Problem

In this thesis work, we seek to study the interfacial layer effect on the enhancement fac-

tor of local field and the optical induced bistability in small spherical metal/dielectric

composite which has not been discussed in the literature so far and to explore the

effects metallic and dielectric inclusions.

1.2 Objectives

1.2.1 General Objectives

To study the interfacial layer effects on the enhancement factor of local field and

the optical induced bstability in the metal/dielectric composite with spherical shape

analytically and numerically.

1.2.2 Specific Objectives

In this study we have two specific objectives to be addressed:

1.To study the interfacial layer effect on the enhancement factor of the spherical

nanoparticle for metal/dielectric composite analytically and numerically.
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2. To study the interfacial layer effect on the Optical Induced Bistability of the spher-

ical nanoparticle for metal/dielectric composite analytically and numerically.

1.3 Significance of the Study

The interfacial layer effect on the optical properties of different material needs to

improve their properties by changing their size and shape. In our study we focussed

on the interfacial layer effects on the enhancement factor of local field and the Optical

Induced Bistability in small spherical metal/dielectric composite particle in a host

matrix which has not been discussed in the literature so far and may have potential

application for various optical systems such as optical swiching.



Chapter 2

Literature Review

2.1 Electrodynamical Properties of Composite

System

2.1.1 Maxwell Equations and Constitutive Relation

In order to completely describe the electromagnetic properties of materials, we need

to have the electric and magnetic constitutive relations, and the set of four equations

commonly referred as Maxwell’s equations. That is, the constitutive relations are:

~D(r, t) = ~E(r, t) + 4π ~P (r, t), (2.1.1)

~B(r, t) = ~H(r, t) + 4π ~M(r, t) (2.1.2)

where ~D(r, t) is electric displacement, ~B(r, t) is the magnetic induction, ~H(r, t) is

the magnetic field, ~P (r, t) and ~M(r, t) are the polarization and magnetization of the

medium respectively.

∇ · ~D(r, t) = 4πρ(r, t), (2.1.3)

5
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∇ · ~B(r, t) = 0. (2.1.4)

∇× ~E(r, t) = −1

c

∂ ~B(r, t)

∂t
, (2.1.5)

∇× ~H(r, t) =
4π

c
~J(r, t) +

1

c

∂ ~D(r, t)

∂t
, (2.1.6)

where r is the 3-dimensional coordinate vector and t is time. ρ(r, t) is the charge

density, ~E(r, t) is the electric field, ~J(r, t) is the current density.

In the optical frequency ranges most materials are usually non-magnetic, so that

the magnetic permeability is practically equal to unity practically and consequently

the magnetization can be ignored. Thus, for such cases, the optical response of a

medium to an electromagnetic perturbation is completely described solely by the

electric constitutive relation, Eq.(2.1.1)

2.2 Electric Susceptibility and Local Field of

Dielectric Media

In this section, we define the electric susceptibility (a measure of the electric polar-

ization properties of the material) and derive the most relevant optical constants of

interest. In addition, we introduce local field effects in a homogenous media, and

discuss the linear and nonlinear optical properties of composite materials with metal

nanostructures.
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2.2.1 Local Filed and Effective Medium Approximation In
Linear Optics

The macroscopic electric fields in a medium alone does not completely describe the

response of the medium to an applied external electric field. It is because that, the

external field drives the bound charges of the medium apart and induces a collection

of dipole moments [11]. In an optically dense medium, the interaction of the induced

dipoles in the medium is determined by taking into account of the local field factor.

The local field is dependent on the nature the macroscopic properties of the medium.

In particular, the linear polarization provides an extensive description of the light-

matter interaction when the intensity of the incident radiation is sufficiently small;

whereas the nonlinear optical response of a medium depends on the strength of the

applied optical field, ~E(t). In nonlinear optics, the polarization ~P (t) of a medium is

defined by

~P (t) = χ(1) ~E(t), (2.2.1)

where χ(1) is known as the linear susceptibility. In nonlinear optics, the optical

response can be described by generalizing equation of linear polarization by expressing

the polarization ~P (t) as a power series in the field strength ~E(t) as

~P (t) = χ(1) ~E(t) + χ(2) ~E2(t) + χ(3) ~E3(t) + ... = ~P 1(t) + ~P (2)(t) + ~P (3)(t) + ... (2.2.2)

The quantities χ(2)and χ(3)are known as the second- and third-order nonlinear optical

susceptibilities, respectively.

For an optically dense medium, it is essential to know the local field in order to

completely describe the response of the medium to electromagnetic fields. It is well-

known that the field, also known as the local field, driving an atomic transition in a
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material medium is in general different from both the external field and the average

field inside the medium. The variation of the local field from the average field does not

play a significant role when dealing with a low-density media, and hence to describe

the optical properties of such systems, one can use the macroscopic field. However,

if the atomic density of a system exceeds about 1015cm3 [12], the influence of local-

field effects becomes significant and must be taken into account when describing their

optical properties.

Let us consider a homogeneous dielectric medium with sufficiently large external

field applied on it. The local field in such homogeneous medium is related to the

macroscopic average field by the following equation:

~ELoc = L~E, (2.2.3)

where L is the local-field correction factor and ~E is the macroscopic average field. In

order to find the local field acting on a typical dipole of the medium, assume that the

dipole of interest is surrounded with an imaginary spherical cavity of radius much

larger than the distance between the dipoles, and much smaller than the wavelength

of the applied optical field. It is possible to show that the local electric field can be

expressed as [13, 14, 15].

~ELoc = ~E +
4π

3
~P , (2.2.4)

Eq.(2.2.4) is commonly known as the ”Lorentz local field”[12].

2.3 Optical Induced Bistability

Next, we will consider the phenomenon known as optical induced bistability (OIB).

It refers to the effect that some nonlinear optical systems can produce two different
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output intensities for a given input intensity [16]. In other words, in such media, a

given value of the external electric field applied on the media may produce several

values for the local field and polarization. Since its theoretical prediction in 1969 [17]

and experimental realization in 1976 [18, 19, 20], OIB has been intensively studied

because of its potential applications in the optical frequency ranges [21, 22, 23].

Composite materials, consisting of small, nonlinear metallic particles having a

spherical or cylindrical shape randomly embedded in linear dielectric host matrix, are

well known for their complex responses to incident light fields [24, 25]. It is shown that

both interfacial property and size of metallic particles can affect the optical bistability

behavior [26]. Practically, optical induced bistability can be realized in many types

of structures. In this thesis we will consider the detailed theoretical and numerical

analysis of the local field enhancement and optically induced bistability in small

metal and metal covered semiconductor particles in the electrostatic approximation

when a << λ, where a is a typical size of particles and λ is the wavelength of

the electromagnetic wave. In addition we assume that the particles size must be

large enough that the dielectric function preserve the physical meaning which can

be corresponds to the nano-scaled particles. A system consisting of pure metal and

metal covered dielectric nano-particles, is important as there will be a considerable

enhancement of the local field inside the particle when the frequency of incident

electromagnetic radiation is close to the surface plasmon frequency of the metal.



Chapter 3

Materials and Methods

3.1 Materials

The study is devoted to the theoretical study and numerical analysis of the interfacial

layer effect of the special composite media with metal covered dielectric inclusions,

with their possible combinations. The theory is supposed to be developed in the long

wave approximation, which means that the wavelength of radiation is much greater

than the typical size of inclusions. Because of the complexity of the equations of the

electrodynamics of the composite media even with usage of different approaches such

as Maxwell - Garnet formula it would be necessary to employ different mathematical

codes such as Matlab. The apparatus that we use to carry out the theoretical part are

high capacity computer and software’s (MatLab software version 7.10.0.499 (R2010a))

for simulating the dielectric functions of the composite materials.

3.2 Methodology

3.2.1 Analytical Method

In this thesis one of the important methods is solving the problem analytically which

is the most important input for the numerical computation.

10



11

3.2.2 Numerical Method

For determining the most important parameter for the interfacial layer effect we follow

to compute the analytical results with some computational tools in MatLab software

version 7.10.0.499 (R2010a) codes.



Chapter 4

Interfacial Layer Effect on
Enhancement Factor of Local Field
and Optical Induced Bistability in
small Spherical Metal/Dielectric
Composite

4.1 Analytical Description of Interfacial Layer

Effect on the Enhancement Factor

4.1.1 Enhancement Factor for Pure Metal Composite

The distribution of the electric potential in the system is described by the following

expressions

Φm = − ~EhArcosθ, r ≤ r1,

Φh = − ~Eh(r −B/r2)cosθ, r ≥ r1.
(4.1.1)

They are the solutions of the Laplace equations of the metal inclusion and the host

matrix, respectively. Here ~Eh is the applied field, r and θ are the coordinates of

12
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the observation point (the beginning of the coordinate in the center of the inclusion

and the z axis is along ~Eh). We obtain a system of linear algebraic equations for

unknown coefficients A and B from the continuity conditions of the potential and the

displacement vector at the boundaries: metal-host matrix.

A =
3εh

2εh + εm

(4.1.2)

B =
εm − εh

2εh + εm

r3
1 (4.1.3)

The quantity |A|2, which we call the enhancement factor can be presented as

|A|2 =
9ε2

h

(2εh + ε′m)2 + ε′′2m

. (4.1.4)

4.1.2 Enhancement Factor for Pure Metal Composite with

Interfacial

The distribution of the electric potential in the system is described by the following

expressions

Φm = − ~EhArcosθ, r ≤ r1,

Φs = − ~Eh(Br − C/r2)cosθ, r1 ≤ r ≤ r1 + t.

Φh = − ~Eh(r −D/r2)cosθ, r ≥ r1 + t.

(4.1.5)

They are the solutions of the Laplace equations of the metal inclusion, interfa-

cial layer and the host matrix, respectively. We obtain a system of linear algebraic

equations of unknown coefficients A, B, C, and D from the continuity conditions

of the potential and the displacement vector at the boundaries: Metal-interfacial,
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Figure 4.1: Model of the three-component particle composite system. Where
εm=DF of metal, εs=DF of Interfacial Layer, εh= DF of Linear Host and and
Eh = AppliedF ield

interfacial-host matrix.

A =
3εh

2εh + εm + 2I/r1

B =
2εh

2εh + εm + 2I/r1

C =
−εh

2εh + εm + 2I/r1

r3
1

D =
εm + 2I/r1 − εh

2εh + εm + 2I/r1

r3
1

(4.1.6)

The quantity |A|2, which we call the enhancement factor can be presented as

|A|2 =
9ε2

h

(2εh + ε′m + 2I/r1)2 + ε′′2m

. (4.1.7)

This quantity 4.1.7 is calculated by considering the limiting transition parameters.

The limit, t → 0, while εs →∞, the interfacial property is concentrated on a surface

of zero thickness and only the quantity tεs is of significance, we take
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I = limt→0,εs→∞ εst

To characterize the interface between pure metal particle and linear host matrix. Here,

I is just called the interfacial factor. The interfacial layer is, in fact, the mixture of

metal and dielectric; since εs is a complex number, I is also a complex quantity. But,

the real part of the dielectric function of metallic particle is always a large negative

number, whereas the imaginary part is a small, positive one. Thus, for simplicity, in

the limit case, we may neglect the imaginary part.

A maximum of the enhancement factor |A|2 in this case is obtained by setting

zero the first term in the denominator 4.1.7. It gives the linear equation with respect

to ε′m

2εh + ε′m + 2I/r1 = 0 (4.1.8)

4.1.3 Enhancement Factor for Spherical Metal/Dielectric

composite

The distribution of the electric potential in the system is described by the following

expressions

Φd = − ~EhArcosθ, r ≤ r1,

Φm = − ~Eh(Br − C/r2)cosθ, r1 ≤ r ≤ r2,

Φh = − ~Eh(r −D/r2)cosθ, r ≥ r2.

(4.1.9)

They are the solutions of the Laplace equations of the dielectric core, metal and

the host matrix, respectively. Here ~Eh is the applied field, r and θ are the coordi-

nates of the observation point (the beginning of the coordinate in the center of the

inclusion and the z axis is along ~Eh). We obtain a system of linear algebraic equa-

tions for unknown coefficients A, B ,C, and D are from the continuity conditions of
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the potential and the displacement vector at the boundaries: dielectric -interfacial,

Interfacial-metal, metal-host matrix.

A =
9εhεm

2p∆

B =
3εh(εd + 2εm)

2p∆

C =
3εh(εd − εm)

2p∆
r3
1

D = {1− 3εh(εm(3− p) + εdp)

2p∆
}r3

2

(4.1.10)

where

∆ = ε2
m + qεm + εdεh. (4.1.11)

Here

q = εd(3/2p− 1) + εh(3/p− 1) (4.1.12)

The local field ~E in the dielectric core can be obtained with the help of relation

~E = |A| ~Eh, (4.1.13)

where |A| is given by Eq.(4.1.10). In general, it is a complex function. Further, it

would be convenient to deal with the real quantity |A|2, which we call the enhancement

factor. It can be presented as follows

|A|2 =
81

4p2

ε2
h(ε

′2
m + ε′′2m )

((ε′2m − ε′′2m + qε′m + εdεh)2 + ε′′2m (q + 2ε′m)2)
. (4.1.14)

The dielectric function (DF) of metal εm is chosen in the Drude form. Its real ε′m and

imagine ε′′m parts are

ε′m = ε∞ −
1

z2 + γ2
,

ε′′m =
γ

z(z2 + γ2)
.

(4.1.15)
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The dielectric function of the dielectric core and the dielectric function for the host

are taken to be linear for the sake of simplicity; that means we ignore the imaginary

parts of εd and εh.

A maximum of the enhancement factor |A|2 in this case is obtained by setting

zero the first term in the denominator 4.1.13. It gives the quadratic equation with

respect to ε′m

ε′2m − ε′′2m + qε′m + εdεh = 0 (4.1.16)

4.1.4 Enhancement Factor for Spherical Metal/Dielectric

Composite with Interfacial

Let us consider an individual composites of small metal/dielectric separated by inter-

facial layer embedded in linear host matrix. The four-component particles composite

system is established: small spherical metallic particle with radius of r2 and dielec-

tric constant of εm is randomly embedded in the linear host with dielectric constant

of εh, the dielectric core of radius r1 and dielectric constant of εd is interfaced with

interfacial layer with dielectric constant of εs and radius of r1 + t in small spherical

metallic particle. In the electrostatic approximation; when a wavelength of the inci-

dent electromagnetic radiation is much greater than a typical size of the inclusion,

the distribution of the electric potential in the system is described by the following

expressions

Φd = − ~EhArcosθ, r ≤ r1,

Φs = − ~Eh(Br − C/r2)cosθ, r1 ≤ r ≤ r1 + t,

Φm = − ~Eh(Dr − E/r2)cosθ, r1 + t ≤ r ≤ r2.

Φh = − ~Eh(r − F/r2)cosθ, r ≥ r2.

(4.1.17)
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Figure 4.2: Model of the four-component particle composite system. Where εd= DF
of dielectric core, εs= DF of Interfacial Layer, εm= DF of metal, εh= DF of Linear
Host and ~Eh= Applied Field

They are the solutions of the Laplace equations of the dielectric core, interfacial

layer, metal inclusion and the host matrix, respectively. Here ~Eh is the applied field,

r and θ are the coordinates of the observation point (the beginning of the coordinate

in the center of the inclusion and the z axis is along ~Eh), A, B, C,D, E, and F are

unknown coefficients.

From the continuity conditions of the potential and the displacement vector at the

boundaries: Dielectric core-interfacial layer, interfacial layer-concentric metal shell

and concentric metal shell-host matrix, we obtain a system of linear algebraic equa-

tions for A, B, C,D,E, and F given by Eq.(4.1.17). where r1, t and r2 are the radii

of the dielectric core, thickness of the interfacial layer and the radii of the metal shell

of the inclusion, respectively. Further, we need only the coefficient A that enter into

the potential of the local field in the dielectric core. They can be presented in the
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form

A = 9
εmεh

2p∆I

(4.1.18)

B =
6εhεm

2p∆I

,

C =
−3εhεm

2p∆I

r3
1,

D =
3εh(εd + 2I

r1
+ 2εm)

2p∆I

,

E =
3εh(εd + 2I

r1
− εm)

2p∆I

r3
1,

F =
εm[−εh(

3
p
− 1) + 2(εd + 2I

r1
)( 3

2p
− 1)] + ε2

m − εh(εd + 2I
r1

)

2∆I

r2
2,

(4.1.19)

∆I = ε2
m + Qεm + (εd +

2I

r1

)εh. (4.1.20)

Here

Q = (εd +
2I

r1

)(3/2p− 1) + εh(3/p− 1) (4.1.21)

where p = 1 − (r1/r2)
3 is a metal fraction in the inclusion, εd, εs, εm, and εh are

the dielectric functions (DFs) of the dielectric core, interfacial layer, metal shell and

the host matrix, respectively. We note that the expressions Eq.(4.1.18) have been

used in [27] while studying the optical induced bistability in dielectric matrix with

spherical metal inclusions with small nonlinear dielectric core. With interfacial layer;

the expression Eq.(4.1.18) gives the corresponding result of [1] for the polarizability

of a coated sphere. The local field E in the dielectric core can be obtained with the

help of relation

~E = |A| ~Eh, (4.1.22)
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where |A| is given by Eq.(4.1.18). In general, it is a complex function. Further, it

would be convenient to deal with the real quantity |A|2, which we call the enhancement

factor. It can be presented as follows

|A|2 =
81

4p2

ε2
h(ε

′2
m + ε′′2m )

((ε′2m − ε′′2m + Qε′m + (εd + 2I
r1

)εh)2 + ε′′2m (Q + 2ε′m)2)
. (4.1.23)

This quantity Eq.(4.1.23) is calculated by considering the limiting transition pa-

rameters. The limit, t → 0, while εs → ∞, the interfacial property is concentrated

on a surface of zero thickness and only the quantity tεs is of significance, we take

I = limt→0,εs→∞ εst

To characterize the interface between dielectric core and the concentric metallic par-

ticles. Here, I is just called the interfacial factor. The interfacial layer is, in fact, the

mixture of metal and dielectric; since εs is a complex number, I is also a complex

quantity. But, the real part of the dielectric function of metallic particle is always a

large negative number, whereas the imaginary part is a small, positive one. Thus, for

simplicity, in the limit case, we may neglect the imaginary part.

The DF of metal εm is chosen in the Drude form.

εm = ε∞ −
ω2

p

ω(ω+iν)
.

where ωp is the plasma frequency given by ω2
p = Ne2

(ε0m)
, ω is the frequency of the inci-

dent wave, e is the charge of electron, m is the mass of electron, N is the concentration

of electron. Its real ε′m and imaginary ε′′m parts are

ε′m = ε∞ −
1

z2 + γ2
,

ε′′m =
γ

z(z2 + γ2)
.

(4.1.24)
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The dielectric function of the dielectric core and the dielectric function for the host are

taken to be linear for the seek of simplicity. That means we will ignore the imaginary

parts of εd and εh. For the analytic analysis, we consider the practically non-decaying

plasma vibrations in the metal when γ is negligible. A maximum of the enhancement

factor in this case is obtained setting zero the first term in the denominator 4.1.23.

It gives the quadratic equation with respect to ε′m

ε′2m + Qε′m + (εd +
2I

r1

)εh = 0. (4.1.25)

4.2 Numerical Description of Interfacial Layer

Effect of Enhancement Factor

4.2.1 Numerical Description for Pure Metal Composite with

Interfacial

We start our numerical calculations with the enhancement factor of a composite of

spherical metal with interfacial inclusion |A|2 obtained from Eq.(4.1.7) versus z for

different values interfacial factor I = −2, I = 0, and I = 2.

Table 4.1: Maximum values of enhancement factor of local field |A|2 verses the res-
onant frequency z for pure Metal composite with interfacial layer of different values
of I.

I |A|2 z
−2 671.3 0.354
0 470.6 0.33
2 343.9 0.316
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Figure 4.3: The enhancement factor |A|2 for composites of small spherical silver
metal particle embedded in dielectric host matrix versus z. We use the following
parameters of the system: ωp = 1.46×1016 (silver plasma frequency), ν = 1.68×1014,
γ = 1.15× 10−2; ε∞ = 4.5, εh = 2.25, εd = 6, I = −2, 0, 2.

In Fig.4.3, we present |A|2 of composites of pure small spherical Metal Composite

with Interfacial Layer embedded in linear host matrix verses the resonant frequency

Z for three different values of Interfacial Layers I = −2, I = 0 and I = 2.

It is shown that with the change of I from positive value to negative value, namely,

with the transition of the interfacial layer from dielectric property to metallic property,

the threshold values of the Enhancement factor of the local field increases.

4.2.2 Numerical Description for Metal/Dielectric composite

with Interfacial

In the real inclusions, γ is not extremely small but finite. The behavior of |A|2 as a

function z in this case can be analyzed only numerically. The results of this study
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Figure 4.4: The enhancement factor |A|2 for composites of small spherical silver
metal/dielectric nanoparticle separated by interfacial layer embedded in dielectric
host matrix versus z. We use the following parameters of the system: ωp = 1.46×1016

(silver plasma frequency), ν = 1.68 × 1014, γ = 1.15 × 10−2; ε∞ = 4.5, εh = 2.25,
p = 0.99, εd = 6, I = 0, I = 1, I = −1.



24

are presented below. They qualitatively confirm the above reported analytical ones.

Table 4.2: Maximum values of enhancement factor of local field |A|2 verses the res-
onant frequency z of Metal/Dielectric composite with interfacial layer for different
values of I at p = 0.99.

I |A|21 z1 |A|22 z2

−1 7633 0.335 5606 0.37
0 1.124× 104 0.336 8999 0.363
1 1.941× 104 0.337 1.677× 104 0.355

We start our numerical calculations with the enhancement factor of the local field

of composites of small spherical metal/dielectric inclusion with interfacial layer |A|2.

It can be obtained from Eq.(4.1.23) by setting I = 0, I = −1 and I = 1.

|A|2 =
81

4p2

ε2
h(ε

′2
m + ε′′2m )

((ε′2m − ε′′2m + Qε′m + εdεh)2 + ε′′2m (Q + 2ε′m)2)
. (4.2.1)

In Fig.4.4, we present |A|2 of composites of small spherical metal/dielectric separated

by interfacial layer verses the resonant frequency Z for three different interfacial layer

values; I = −1, I = 0 and I = 1. we find that the interfacial layer plays an important

role in enhancement factor behavior. It is shown that with the change of I from

negative value to positive value, namely, with the transition of the interfacial layer

from dielectric property to metallic property, the threshold values of the enhancement

factor of the local field increase. Compared with the case of no interfacial layer, the

metal-like interfacial layer makes the threshold values increase, while the dielectric-

like interfacial layer makes the threshold values decrease.
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4.3 Analytical Description of Interfacial Layer

Effect on the Optical Induced Bistability for

Metal/Dielectric Composite

Consider a composite; composed of four-component particles composite system: small

spherical metallic particle with radius of r2 and dielectric constant of εm is randomly

embedded in the linear host with dielectric constant of εh, The dielectric core of radius

r1 and dielectric constant of εd is interfaced with Interfacial layer with dielectric

constant of εs and radius of r1 + t in small spherical metallic particle. Then the

electrical potential in the system can be expressed by Eq.(4.1.17).

By introducing the interfacial factor I Now, we consider the effect of interfacial

layer through the limit, t → 0, while εs →∞, the interfacial property is concentrated

on a surface of zero thickness and only the quantity tεs is of significance, we take

I = limt→0,εs→∞ εst

To characterize the interface between dielectric core and the concentric shell of metal-

lic particles. Here, I is just called the interfacial factor. The interfacial layer is, in

fact, the mixture of metal and dielectric; since εs is a complex number, I is also a

complex quantity. But, the real part of the dielectric function of metallic particle

is always a large negative number, whereas the imaginary part is a small, positive

one. Thus, for simplicity, in the limit case, we may neglect the imaginary part. The

dielectric function for a metal in the inclusion is given to be in the Drude form equa-

tion (4.1.24). The DF of the core εd, in general case, includes a nonlinear part with
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respect to the local field.

εd = εd0 + χ|E|2, (4.3.1)

where εd0 is the linear part of DF, χ is the nonlinear Kerr coefficient, and E is the

local field in the core. The enhancement factor of the local field in the inclusion

for the weak incident fields χ|E|2 << εd0, the local field is presented as in the form

of equation E = |A|Eh. In this relation |A| is given by equation (4.1.18) which is

a complex quantity. Further, it would be convenient to consider with |A|2, which

represent a real quantity. We call |A|2 the enhancement factor and express it as

equation (4.1.23). Here ε′m and ε′′m are the real and imaginary part of εm given by

equation (4.1.24), respectively. For the sake of simplicity, we ignore the imaginary

parts of εh.

From E = |A|Eh we obtain the cubic equation for the square modulus of the local

field X = χ|E|2 in the form

αX3 + βX2 + δX = ηY, (4.3.2)

where
α = d2

2 + d2
4,

β = 2(d1d2 + d3d4),

Y = χ|Eh|2,
δ = d2

1 + d2
3,

η =
81ε2

h(ε′2
m+ε′′2

m )

4p2 ,

(4.3.3)

with a = 3/p− 1, b = 3/2p− 1, c = εd0 + 2I/r1, d1 = ε′mεha + ε′mbc + ε′2m − ε′′2m + εhc

d2 = ε′mb + εh, d3 = ε′′mεha + ε′′mbc + 2ε′mε′′m,and d4 = ε′′mb. The quantity X depends

on the applied field Eh and the parameters of the composite. If the cubic equation

Equation (4.3.2) has one real positive root, the local field in the nanoparticle is a

single-valued function of the applied field. If it has three real positive roots, the
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local field is not a single-valued function of the applied field and the system becomes

unstable. This is what we called optical induced bistability (OIB) [16]. OIB is usually

illustrated in the Y −X plane and connected with S-like curves showing that single

value of |Eh|2 is able to activate three different values of the local field |E|2. This

phenomenon is called the Induced Optical Bistability [1, 28].

4.4 Numerical Description of Interfacial Layer

Effect on the Optical Induced Bistability for

Metal/Dielectric Composite

Now, I is only a real number. When I is taken as a negative (or positive) value,

the interface exhibits dielectric-like (or metal-like); and I = 0 corresponds to no

interface. Numerical results for three different interfacial layers I = −2, 0 and 2 by

Eq. (4.3.2) and MatLab software version 7.10.0.499 (R2010a) codes we obtain the

following Fig 4.5. Interfacial effect plays an important role in a variety of systems,

and it can dramatically alter the systems’ optical behavior. In this paper, the effect of

interfacial layer on the optical bistability is qualitatively studied, by introducing the

interfacial factor I. It is shown that interfacial property can dramatically affect the

optical bistable behavior. This plot (fig 4.5) exhibits bistable response clearly, and the

part of the curves with negative slope are unstable. We find that the interfacial layer

plays an important role in bistable behavior. It is shown that with the change of I from

positive value to negative value, namely, with the transition of the interfacial layer

from metallic property to dielectric property, the threshold values of the bistability

decrease. Compared with the case of no interfacial layer, the metal-like interfacial
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Figure 4.5: Optical Induced Bistability (IOB)in composites of small spherical
metal/dielectric separated by interfacial layer in linear host matrix : εd0 = 6.,
ε∞ = 4.5, εh = 2.25, p = 0.99, γ = 0.0115, I = −2, 0, 2; The local field χ |E|2
versus the applied field χ |Eh|2 at z = 0.2.

layer makes the threshold values increase, while the dielectric-like interfacial layer

makes the threshold values decrease. It is shown in Fig.5.1 that, with increasing I,

both the threshold values and bistable region are increasing, and we have known that

the threshold values will increase for the case of metal-like interfacial layer; hence,

the threshold values will increase.



Chapter 5

Conclusion and Recommendation

In this thesis, we studied the effect of interfacial layers on the enhancement fac-

tor of local field for pure spherical metal composite in host matrix, small spherical

metal/dielectric composite randomly embedded in linear host matrix and the Opti-

cal induced Bistability (OIB) of small spherical metal/dielectric composite randomly

embedded in linear host matrix. We have solved the enhancement factor of local

fields for pure metal with interfacial layer, the enhancement factor of local field for

metal/dielectric composites with interfacial embedded in a linear host matrix and

Optical Induced Bistability (OIB) metal/dielectric composites with interfacial em-

bedded in a linear host matrix. We have solved Laplace equation with Drude model

together with Taylor. In this we have found Several interesting phenomena which are

related with the enhancement factor and Optical Induced Bistability. Furthermore,

we noted interfacial Layer I with thickness t and dielectric function εs in between

dielectric core and concentric metal shell, the enhancement factor of a composites

of small spherical metal/dielectric composite with Interfacial in between randomly

29
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embedded in linear host matrix; |A|2 is extremely increased, meanwhile the corre-

sponding peak is enhanced when the interfacial layer is changed from dielectric-like

to metal-like, the peak corresponding to metal-like interfacial layer can be enhanced

strongly.

For a given applied field; the square amplitude of the incident electric field |E|2,

the effect of dielectric-like interfacial layer on the induced optical bistability (IOB) is

less than metal-like and (or without) interfacial layer.

Generally the analytical and numerical results show that the interfacial layer can

greatly affect the Enhancement Factor of the local field and Optical Induced Bistabil-

ity in metal inclusions with small dielectric cores, and that the metal-like interfacial

layer is favorable to increase the threshold value of the OIB domain.

The future work will aim at studying the change that will be observed by varying

the parameters considered in this study such as the metal fraction in the inclusion p.
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