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Abstract

Since the birth of General Relativity, (GR) the presence of compact objects (COs) as the

stellar evolutionary end points were remained with great debates for several decades. How-

ever, in the course of new observational techniques and capabilities our current understand-

ing is no more at debate at least in the presence of the COs. Today, the compact objects

are among the most astrophysical objects used to study other systems. Thus, there active

research interests in various respects of these objects. So, in this thesis we addressed some is-

sues related to the compact objects mass limit in relation to their masses. Methodologically,

we employed Einstein field equations to derive their equation of state. With the assumption

of high densities and low temperatures characteristics of the compacts polytropic the de-

rived equation of state is reduced to polytropic kind. Working out the polytropic equations

we have obtained similar physical implications, in agreement to earlier works by others.

But, we also noticed from our numerical results where the latest version Mathematica11 is

used, slight differences in accuracy.

Keywords: COs, CO-mass-limit, GR, EOS, Mass-radius-relationship.
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General Introduction

I. Background of The Study

In Astronomy, the term ” Compact star” (or ” Compact Object”) refers collectively to

White Dwarfs, Neutron stars, and Black holes. It would grow to include exotic stars if such

hypothetical dense bodies are confirmed. Most compact stars are the end points of stellar

evolution, and thus often referred to as stellar remnants, the form of the remnant depending

primarily on the mass of the star when it formed. All of these objects have a mass relative

to their radius, giving them very high density. The term compact star is often used when

the exact nature of the star is not known, but evidence suggests that it is very massive and

has a small radius. A compact star that is not a black hole may be called a degenerate star.

A compact star can become a white dwarf, a neutron star, or a black hole depending upon its

initial mass.The gravitational collapse of compact stars like white dwarf and neutron stars

is halted by the degeneracy pressure of fermions - a quantum mechanical phenomenon.The

theoretical analysis of the relation between the nature of a compact star and its mass was

done by S. Chandrasekhar. This led him to predict a limiting mass for white dwarf stars.

The nature of the remains of a star after death depends on its mass. The mass of a star

plays a crucial role in its evolution and determines its luminosity. Similarly, depending upon

its mass, a dying star can turn into any one of the three kinds of compact stars, namely a

white dwarf, neutron star or black hole.

1
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Compact stars are simply the end products of ordinary stars and are characterised by smaller

sizes and higher densities[2].

The final fate of a star depends mainly on its mass. Stars with a mass less than 4− 8M⊙
finish the nuclear burning in their center when the nuclei in the core are carbon or oxygen

(the lightest stars perhaps finish with helium and more heavy ones with silicon). Most of

their outer mass is ejected in strong stellar wind, leading to the formation of a so-called

planetary nebula; the cause of this instability is not well understood, however. The remnant

of the star becomes a white dwarf of typically 0.5 − 1.4M⊙. The neutrons are degenerate

at nuclear matter densities which induces a strong pressure. The increase in pressure stops

the collapse of the iron core; it expands slightly (like an elastic ball which has been squeezed

together), and sends a shock wave through the outer part of the star. The shock wave and

the copious emission of neutrinos from the collapsed core apparently provide enough energy

(originating from the released gravitational binding energy) to eject the outer mass of the

star (> 6M⊙) in a supernova explosion. In the center of the star there remains a compact

object with M ∼ 1.4M⊙ and R ∼ 10km. This compact remnant is called a neutron star.

If the original star was heavier than about 20M⊙, its inner core has too much mass for the

collapse to be stopped by the degeneracy pressure of the neutrons. In this case the collapse

continues until a black hole is formed [2].

II.Literature Review

Compact stars are the final stage of the evolution of an ordinary star, and they also consti-

tute a laboratory of tests in general relativity[4][3]. The compact stars are formed of matter

in high densities, in the case of the white dwarfs they are constituted of degenerate electron

gas or in the case of neutron star that are formed by neutron degenerate gas[4][3]. The mass
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of a white dwarf is typically 0.5 to 1M⊙(M⊙ represents the solar mass) and they have a

radii of the order of 10000 km, however the mass of the neutron stars is about 1.4 to 3M⊙
and the radii is typically 10 km[4][3].

Recently new massive White dwarfs was discovered[7] and also Supernovae type Ia [7] that

suggest the possibility that highly massive White dwarf with masses exceed the Chan-

drasekhar limit in which have many studies about them[7].

The first to propose and infer the General relativity effects for White dwarf were Kaplan

in 1949[7], these effects were calculated by S. Chandrasekhar and R. F.Topper in 1964[7].

They showed that General relativity breaks the dynamical instability for densities lower

than for Newtonian calculations. They also showed that the maximum stable mass due to

radial oscillations reduces in a small quantity if considering General relativity effects.

White dwarfs are stars of about one solar mass with a characteristic radius of 5000 km,

corresponding to a mean density of 106g/cm3[1].

Actual models of white dwarf stars, taking into account the special relativistic effects in the

degenerate electron equation of state were then constructed in 1930 by Chandrasekhar[1].

He made the fundamental discovery of a maximum mass of 1.4M⊙ for white dwarfs the

exact value somewhat depends on the chemical composition.

There is a unique relationship between the EoS of cold dense matter and the sequence of

compact star configurations in the mass-radius (M-R) diagram provided by the Tolman-

Oppenheimer- Volkof equations. It can be used to quantify the likelihood of EoS models by

Bayesian analysis using a selection of mass and radius measurements as priors[6]. Neutron

stars are relativistic compact objects formed by the collapsing cores of massive stars at the

end of their evolution[8]. The energy released by the collapsing core launches a shock that

ejects the outer layers of the progenitor star in a so-called supernova explosion[8].
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The masses of neutron stars are in the range M ' 1 − 3M⊙[8]. Accurately measured

masses in binary pulsars are clustered nearM ' 1.4M⊙[8]. The highest measured masses

are Mmax ' 2M⊙[8]. There is a firm theoretical upper limit to the mass of neutron stars

Mmax ' 3.2M⊙[8]. Lowered this so-called Oppenheimer-Volkoff limit slightly[8]. Statisti-

cal analysis suggests [8] the existence of neutron stars up to M ' 2.5M⊙ without a sharp

cut-off, implying that this value is set by astrophysical processes rather than the theoretical

upper limit. The radii of neutron stars are in the range of R ' 9− 15km[8].

III.Statement of the problem

Since the birth of General Theory of Relativity the presence of compact objects as the stellar

evolutionary end points were remained with great debates for several decades. However, in

the course of new observational techniques capabilities our current understanding is no more

at debate at least in the presence of the compact objects. There are a lot of noble works

that boost General Theory of Relativity for the observational tests of the theory. However,

still the physics of the compact objects is unfinished both theoretically and observationally.

The limiting masses of the types of the compacts is not fully addressed. Though there is

known that the compact objects mass limit is also related to their progenitor stars, the

accurate correlation is still at debates.

Research questions

• What is the fate of the end point of stellar evolution?

• What parameters do determine the type of the end product of stellar evolution?

• How does the progenitor stellar object mass enter in the analysis of formation of its
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end?

• In what way the radius of a progenitor stellar end product is incorporated to charac-

terize the type of the end?

IV.Objectives

a. General objective

• To study the Mass-Radius Relation of Compact Objects

b.Specific objectives

• To describe the fate of the end point of stellar evolution.

• To derive the parameters that determine the type of the end product of stellar evolu-

tion.

• To derive the progenitor stellar object mass enter in the analysis of formation of its

end.

• To describe the way of the radius of a progenitor stellar end product is incorporated

to characterize the type of the end.

V. Methodology

General Theory of Relativity is used to derive the appropriate TOV-equations. With sim-

plifying boundary conditions, the resulting TOV-equations be used to develop equation of

state. Since, compact objects are characterized with high densities and low temperatures,

we further impose conditions to derive polytropic kind of equations. Then, the resulting

equations are being used to analyze our work. Moreover, the latest version Mathematica11
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is used for numerical integration of the differential equations to derive the mass-radius rela-

tionship of the resulting compact objects. Finally, our numerical result is being compared

to data produced by others theoretically and observationally.



Chapter 1

Astrophysical compact objects

Astrophysical compact objects represent the final stages of stellar evolution: white dwarfs,

neutron stars, and black holes. They differ from normal stars in two basic ways.[9]

First, since they do not burn nuclear fuel, they cannot support themselves against gravi-

tational collapse by generating thermal pressure. Instead, either they are prevented from

collapsing by the degeneracy pressure (white dwarfs and neutron stars ) or they are com-

pletely collapsed (Black Holes). With the exception of the spontaneously radiating mini

black holes with masses M less than 1015g and radii smaller than a fermi, all three compact

objects are essentially static over the lifetime of the Universe.

The second characteristic distinguishing compact objects from normal stars is their exceed-

ingly small size. Relative to normal stars of comparable mass, compact objects have much

smaller radii and hence, much stronger surface gravitational fields.

Compact stars -white and neutron stars -are the ashes of luminous stars. A black hole is

the fate of the most massive stars - an inaccessible region of space-time in to which the star

falls at the end of its luminous phase. White Dwarf stars are the size of the Earth but have

mass comparable to that of the Sun. Neutron stars has density comparable to that of nuclei.

Most stars will eventually come to a point in their evolution when the outward radiation

7
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Table 1.1: Distinguishing Traits of Compact Objects
Objects Massa Radiusb Mean density(gcm−3) Surface potential(GM/Rc2)

(M) (R)
Sun M⊙ R⊙ 1 10−6

White Dwarf ≤M⊙ ∼ 10−2R⊙ ≤ 107 ∼ 10−4

Neutron Star ∼ 1− 3M⊙ ∼ 10−5R⊙ ≤ 1015 ∼ 10−1

Black Hole Arbitrary 2GM/C2 ∼M/R3 ∼ 1

M⊙ = 1.989× 1033g

R⊙ = 6.9599× 1010cm

pressure from the nuclear fusions in its interior can no longer resist the ever-present gravi-

tational forces. When this happens, the star collapses under its own weight and undergoes

the process of stellar death. For most stars, this will result in the formation of a very dense

and compact stellar remnant, also known as a compact star. Compact stars have no internal

energy production, but will- with the exception of black holes- usually radiate for millions

of years with excess heat left from the collapse itself.[1]

1.1 Classes of Compact Objects

The study of compact stars begins with the discovery of white dwarfs and the successful

description of their properties by the Fermi-Dirac statistics, assuming that they are held

up against gravitational collapse by the degeneracy pressure of the electrons, an idea first

proposed by Fowler in 1926[1]. A maximum mass for white dwarfs was found to exist in

1930 by the seminal work of Chandrasekhar due to relativistic effects[1]. In 1932 Chadwick

discovered the neutron. Immediately, the ideas formulated by Fowler for the electrons were

generalized to neutrons. The existence of a new class of compact stars, with a large core of

degenerate neutrons, was predicted-the neutron stars . The first neutron star model calcu-

lations were achieved by Oppenheimer and Volkoff[1] and Tolman[1] in 1939 ,describing the
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matter in such a star as an ideal degenerate neutron gas. Their calculations also showed

the existence of a maximum mass, like in the case of white dwarfs, above which the star is

not stable and collapses into a black hole. They found a maximum stable mass of 0.75M⊙[1].

1.1.1 White Dwarf

White dwarfs are stars of about one solar mass with a characteristic radius of 5000 km,

corresponding to a mean density of 106g/cm−3[1][9]. They are no longer burning nuclear

fuel, but are steadily cooling away their internal heat.

There are several ways to observe white dwarf stars. The first white dwarf ever to

be discovered was found because it is a companion star to Sirius, a bright star near the

constellation Canis Major. In 1844, astronomer Friedrich Bessel noticed that Sirius had

a slight back and forth motion, as if it were being orbited by an unseen object. In 1863,

this mysterious object was finally resolved by optician Alvan Clark and it was found to be

a white dwarf. This pair is now referred to as Sirius A and B, B being the white dwarf.

The orbital period of this system is about 50 years. Since white dwarfs are very small and

thus very hard to detect, binary systems are a helpful way to locate them. As with the

Sirius system, if a star seems to have some sort of unexplained motion, we may find that

the single star is really a multiple system. Upon close inspection we may find that it has a

white dwarf companion.

The black-body spectrum of Sirius B peaks at 110 nm, corresponding to a temperature

of 27,000 K [1]. From the known absolute magnitude (the distance of the system is 8.6

lightyears), the radius is calculated as 4200 km, smaller than the Earth, but as massive as

the Sun.
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Figure 1.1: Image of Sirius A and Sirius B taken by the Hubble Space Telescope. Sirius B,
which is a white dwarf, can be seen as a faint point of light to the lower left of the much
brighter Sirius A

In 1926, only three white dwarfs were firmly detected. In that year, Dirac formulated

the FermiDirac statistics, which was used by Fowler in the same year, in a pioneering pa-

per on compact stars to explain the puzzling nature of white dwarf stars. He identified

the pressure holding up the stars from gravitational collapse with the electron degeneracy

pressure[1].

Actual models of white dwarf stars, taking into account the special relativistic effects in the

degenerate electron equation of state were then constructed in 1930 by Chandrasekhar. He

made the fundamental discovery of a maximum mass of 1.4 M⊙ for white dwarfs the exact
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value somewhat depends on the chemical composition[1]. This maximum mass is called the

Chandrasekhar limit in honor of its discoverer.

The role of general relativity in modifying the mass-radius relation for massive white dwarfs

above about lMO was first discussed by Kaplan (1949). He concluded that general relativity

probably induces a dynamical instability when the radius becomes smaller than 1.1 ×lo3

km. The general relativistic instability for white dwarfs was discovered independently by

Chandrasekhar in 1964[9].

1.1.2 Neutron Stars

In 1932 Chadwick discovered the neutron. Immediately, the ideas formulated by Fowler for

the electrons were generalized to neutrons. The existence of a new class of compact stars,

with a large core of degenerate neutrons, was predicted the neutron stars (NS)[1].

In 1934 Baade and Zwicky proposed the idea of neutron stars, pointing out that they would

be at very high density and small radius, and would be much more gravitationally bound

than ordinary stars. They also made the remarkably prescient suggestion that neutron stars

would be formed in supernova explosions[9].

The first NS model calculations were achieved by Oppenheimer and Volkoff and Tolman

in 1939,[1] describing the matter in such a star as an ideal degenerate neutron gas. Their

calculations also showed the existence of a maximum mass, like in the case of white dwarfs,

above which the star is not stable and collapses into a black hole. They found a maximum

stable mass of 0.75M⊙[1]. Only nearly 30 years later, in 1967, was the first neutron The

prediction of the existence of neutron stars as a possible endpoint of stellar evolution was

independent of observations. Following the discovery of the neutron by Chadwick, it was

realized by many people that at very high densities electrons would react with protons to
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form neutrons via inverse beta decay. Neutron stars had been found at the end of 1960s as

radio pulsars and in the beginning of 1970s as X-ray stars. A firm upper limit for the mass

of neutron stars was then seen as evidence for the existence of even more exotic objects

- black holes. At the time of the discovery of Cyg X-1 by Uhuru (1970) the value of this

upper limit was, however, the subject of great debate[1].

Structure of Neutron stars

The cross-section of a neutron star can roughly be divided into four distinct regions (see

Fig. 1.2):

The atmosphere which is only a few cm thick.The outer crust which consists of a lattice of

atomic nuclei and Fermi liquid of relativistic degenerate electrons. This is essentially white

dwarf matter.The outer crust envelops the inner crust, which extends from the neutron drip

density to a transition density ρtr ' 1.7 × 1014g/cm3. Beyond the transition density one

enters the core, where all atomic nuclei have been dissolved into their constituents, neutrons

and protons. Due to the high Fermi pressure, the core might also contain hyperons, more

massive baryon resonances, and possibly a gas of free up, down and strange quarks. Finally,

π and K-meson condensates may be found there too.

The equation of state for the outer and inner crust is well-known and described by the

model of BPS [1] and Negele and Vautherin [1].

Today, neutron stars come in various flavors depending on the composition of the core. In

this respect, we speak now of traditional neutron stars (or hadronic stars),where the core

mainly consists of neutrons, protons and electrons. At high densities, however, also heavier

baryons are excited, the neutron star now becomes a hyperon star. Since these baryons
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Figure 1.2: Cross-section through the interior of a neutron star. The neutron star is sur-
rounded by a thin atmosphere and an outer crust consisting of heavy nuclei and electrons.
The inner crust consists of nuclei, neutrons and electrons, which at nuclear density make
a transition to a neutron fluid. The composition of the central core is still unclear, but
certainly consists in the outer part only of neutrons, protons, electrons and muons
.
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are so densely packed, a quark bag could be formed, and quarks are probably in a color-

superconducting state. Finally, Bose condensates of pions and K mesons might occur. All

these different internal structures lead to different mass-radii relations. For given mass, the

traditional neutron star has the biggest radius, while neutron stars including quark cores

are found to be more compact. Strange stars have the smallest radii.

1.1.3 Black Hole

Black holes were first proposed by John Michell (1784) and later by Laplace (1795) , based

on the idea of an object so dense that its escape speed is greater than the speed of light.

The radius at which this first occurs for an object of mass is given by:

C2 = 2
GM

R
=⇒ R = 2

GM

C2

This critical radius is now called the Schwarzschild radius and is the radius of the ”event

horizon” of non-rotating black holes.

The term ”Black Hole” is often attributed to JohnA. Wheeler, who wrote (American Sci-

entist, 56, 1, 1968) ’According to Einstein’s general theory of relativity, as mass is added

to a degenerate star a sudden collapse will take place and the intense gravitational field

of the star will close in on itself. Such a star then forms a ”black hole” in the universe.’

The first plausible evidence that Black Holes actually exist came from observations of the

binary X-ray source Cygnus X-1 in the early . As of , there are known stellar black holes

and stellar black hole candidates.



Chapter 2

Introduction to General Theory of
Relativity

2.1 Philosophical framework of the theory

General Relativity is the foundation for our understanding of compact stars. Neutron stars

and black holes Can be understood correctly only in General Relativity as formulated by

Einstein[5]. Dense objects like neutron stars could also exist in Newton’s theory, but they

would be very different objects. Chandrasekhar found (in connection with white dwarfs)

that all degenerate stars have a maximum possible mass[5]. In Newton’s theory such a

maximum mass is attained only asymptotically when all Fermions, whose pressure supports

the star, are ultra relativistic. Under such conditions, stars populated by the three heavy

quarks-known as charm, truth, and beauty-would exist. However, such stars do not occur

in Einstein’s theory because the maximum-possible mass star is not sufficiently dense, even

at its center;therefore they cannot exist in nature.[5]

In the case of relativistic stellar structure General relativity become important when con-

sidering the stability properties of white dwarfs and the equilibrium and stability properties

of neutron stars and black holes. Indeed, it is largely for this reason that compact objects

are of such great theoretical interest and have so many unique and fascinating dynamical

15
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features.[9]

General relativity is a relativistic theory of gravitation.One of Einsteins great insights was

to make general relativity a geometric theory of gravitation. We shall not recount here all

the motivations for this idea, but will simply start by examining the geometry of special

relativity.

In special relativity, spacetime is the arena for physics. Spacetime consists of events,

which require four numbers for their complete specification: three numbers to give the

spatial location with respect to some chosen coordinate grid, and one number to give the

time. Geometrically, spacetime is represented by a four-dimensional manifold (surface),

each point in the manifold corresponding to an event in spacetime.

The general theory of relativity is a classical field theory of gravitation in which all

variables are assumed to be continuous and are uniquely specified [10].

The basic philosophy of general relativity is to relate the geometry of space time, which

determines the motion of matter, to the density of matter-energy, known as the stress energy

tensor.

2.2 Expressions from General Relativity

Out of the special relativity (SR) we can deduce a generalized principle of relativity. This

means that not only in every inertial reference system (IS) the physical laws are valid in

the same way but also in accelerated frames of reference.

A further physical base for the GR is the equivalence principle. In conclusion this principle

deals with the equivalence between gravitational and inertial forces. Therefore gravitational

and inertial mass must be the same. Einstein generalized this principle in the way that in

all sufficiently small free falling reference frames (local IS) everything behaves as if there is
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no gravitational force at all.

Based on the equivalence principle we can define the principle of covariance. With this

principle we can derive physical laws containing gravitational effects out of general laws of

the special relativity. The valid equations in a gravitational field must satisfy the following

conditions: The equations are covariant under general transformation of coordinates and

valid for a local inertial system (all laws are equal to the ones of special relativity if the

metric tensor is equal to the Minkowski tensor).

General relativity is defined on a four dimensional Riemannian manifold. Coordinates in

this non-Euclidian space are denoted by xµ = (x0, x1, x2, x3). ξα denotes a flat tangential

space where in the laws of Special Relativity hold. The indices µ,ν,λ,...describe coordinates

of the Riemannian space, α, β,γ, ... coordinates of the Minkowski space. For every point

in the Riemannian manifold exists a coordinate transformation xµ = xµ(ξ) and it holds the

connection between Lorentz vector dxiα and Riemann vector dxµ

dxµ =
∂xµ

∂ξα
dξα (2.2.1)

Therefore we can rewrite the invariant line element ds2 in the following way

ds2 = ηαβdξαdξβ = gµν(x)dxµdxν (2.2.2)

with

gµν(x) = ηαβ
∂ξα∂ξβ

∂xµ∂xν

In contrast to the Minkowski tensor ηαβ in Special Relativity, the metric tensor gµν of Gen-

eral Relativity depends on the four dimensional space-time. Analogously to Eq.(2.2.2), we

can define a Riemann vector Aµ = ∂xµ/∂ξαAα by the Lorentz vector Aα. The metric tensor

can be used to transform any contravariant Riemann vector to its covariant counterpart and
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vice versa

Aµ = gµνA
ν , Aµ = gµνAν (2.2.3)

where gµν is the inverse of the metric tensor gµν .

The definition of covariant divergence for an arbitrary contravariant/covariant vector is

given by

Aµ
;ν = Aµ

,ν + Γµ
σνA

σ (2.2.4)

The Riemann(Christoffel curvature) tensor Rρ
σµν is defined as

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
νσ (2.2.5)

From the Riemann tensor we obtain the Ricci tensor

Rµν = Rρ
σµν (2.2.6)

Using the definition of the Riemann tensor (2.2.5), we rewrite the Ricci tensor as

Rµν = Γα
µα,ν − Γα

µν,α − Γα
µνΓ

β
αβ + Γα

µβΓβ
να (2.2.7)

We now define the scalar curvature R

R = gµνRµν (2.2.8)

By applying the above equation, one may acquire the third covariant derivative of an arbi-

trary covariant vector, and use the result to obtain the Bianchi identity

Rα
µνρ;σ + Rα

µσν;ρ + Rα
µρσ;ν = 0 (2.2.9)

2.3 The Einstein Field Equations

The Einstein field equations connect the space time curvature with the energy and mo-

mentum in this space time. The energy and momentum in space time is described by the
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energy- momentum-tensor Tµν . For an ideal fluid it has the following form

Tµν =
(
ρ +

p

c2

)
UµUν + pgµν (2.3.1)

with the density ρ, the pressure P and the fluid four-velocity Uµ = dxµ/dτ .

The Bianchi identity (2.2.9) can now be multiplied by gµν and transformed, so that we

arrive at (
Rµν −

1
2
gµνR

)
;ν

= 0 (2.3.2)

From the above equation, on may derive the Einstein field equations

Rµν −
1
2
gµνR ≡ Gµν = 8πGTµν (2.3.3)

where Gµν is the Einstein curvature tensor. Tµν denotes the energy-momentum tensor.

2.4 Spherically Static Isotropic Metric solution of Einstein
Field Equation

We seek solutions to Einstein’s field equations in static isotropic regions of spacetime such

as would be encountered in the interior and exterior regions of static stars. Under these

conditions the gµν are independent of time (xo ≡ t). We choose spatial coordinates xl = r,

x2 = θ, and x3 = φ.The most general form of the line element is then

dτ2 = B(r)dt2 −A(r)dr2 − r2(dθ2 + sin2 θdφ2) (2.4.1)

The metric tensor has the nonvanishing components

grr = A(r)

gθθ = r2 sin2 θ

gφφ = r2 sin2 θ
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gtt = −B(r) (2.4.2)

with function A(r) and B(r) that are to be determined by solving the field equations.

Since gµν is diagonal,it is easy to write down all the nonvanishing components of its inverse:

grr =
1

A(r)

gθθ =
1
r2

gφφ =
1

r2 sin2 θ

gtt =
1

−B(r)
(2.4.3)

Furthermore, the determinant of the metric tensor is -g, where

g = r4A(r)B(r) sin2 θ (2.4.4)

so the invariant volume element is

√
gdrdθdφ = r2

√
A(r)B(r) sin θdrdθdφ (2.4.5)

The affine connection can be computed from the usual formula

Γλ
µν =

1
2
gλρ

(
∂gρµ

∂xν
+

∂gρν

∂xµ
− ∂gµν

∂xρ

)
(2.4.6)

It is only nonvanishing components are

Γr
rr =

1
2A

dA(r)
dr

Γr
tt =

1
2A(r)

dB(r)
dr

Γr
θθ = − r

A(r)



21

,

Γr
φφ = −r sin2 θ

A(r)

Γφ
φr = Γφ

rφ =
1
r

Γθ
φφ = − sin θ cos θ

Γφ
φθ = Γφ

θφ = cot θ

Γt
tr = Γt

rt =
1

2B(r)
dB(r)

dr
(2.4.7)

Now we need to calculate the Ricci tensor of this metric. A silly way of doing this would

be to blindly calculate all the components of the Riemann tensor and to then perform all

the relevant contractions to obtain the Ricci tensor.

Rµν = Rλ
µλν =

∂Γλ
µλ

∂ν
−

∂Γλ
µν

∂λ
+ Γη

µλΓλ
ην − Γη

µνΓ
λ
ηλ (2.4.8)

Inserting in (2.4.8) the components of the affine connection given by (2.4.7),we find,

Rrr =
B′′(r)
2B(r)

− 1
4

(
B′(r)
B(r)

)(
A′(r)
A(r)

+
B′(r)
B(r)

)
− 1

r

(
A′(r)
A(r)

)
(2.4.9)

Rθθ = −1 +
r

2A(r)

(
−A′(r)

A(r)
+

B′(r)
B(r)

)
+

1
A(r)

(2.4.10)

Rφφ = sin2 θRθθ (2.4.11)

Rtt = −B′′(r)
2A(r)

+
1
4

(
B′(r)
A(r)

)(
−A′(r)
A(r)

+
B′(r)
B(r)

)
− 1

r

(
B′(r)
A(r)

)
(2.4.12)

Rµν = 0 for µ 6= ν

The prime denote differentiation with respect to r.



Chapter 3

The Tolman-Oppenheimer-Volkoff
Equations and Polytropes

The hydrostatic equilibrium equation is obtained via an approximation of the known Tolmann-

Oppenheimer-Volkof equation which, is derived directly from Einstein’s field equations.

Assuming a polytropic equation of state, these equations are the so called Lane-Emden

diferential equations, which have a solution depending on the polytropic index n.

3.1 The Tolman-Oppenheimer-Volkoff Equations

In astrophysics, the Tolman-oppenheimer-Volkoff (TOV)equation constrains the structure

of a spherically symmetric body of isotropic material which is in static gravitational equi-

librium, as modeled by general relativity.

The equation is derived by solving the Einstein equations for a general time invariant, spher-

ically symmetric metric. The TOV equation is the relativistic equivalent of the equation of

hydrostatic equilibrium for non relativistic stellar objects. It can be derived from Einsteins

field equations, (2.3.3)

Rµν −
1
2
gµνR =

8πG

c4
Tµν

Rµν =
8πG

c4

(
Tµν −

1
2
gµνT

)
(3.1.1)

22
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where

• Rµν is the Ricci tensor,

• Tµν is the energy-momentum tensor and

• gµν is the metric.

The following conditions are assumed:

Static,spherically symmetric interior The interior is assumed to be static and spheri-

cally symmetric, which can be described by the diagonal metric

ds2 = B(r)dt2 −A(r)dr2 − r2(dθ2 + sin2 θdφ2) (3.1.2)

where A(r) and B(r) are functions of r to be determined.The non-vanishing components of

the metric tensor are given by

grr = A(r)

gθθ = r2

gφφ = r2 sin2 θ

gtt = −B(r) (3.1.3)

gµν=0 for µ 6= ν

Perfect fluid The interior is assumed to consist of a perfect fluid with energy-momentum

tensor Tµν given as

Tµν = (ρc2 + P )UµUν + Pgµν (3.1.4)

with p the proper pressure, ρ the proper total energy density, and Uµ the velocity four-

vector,defined so that

gµνUµUν = −1
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Since the fluid is at rest, we take

Ur = Uθ = Uφ = 0,

Ut = −(−gtt)−1/2 (3.1.5)

Hence we can rewrite the energy momentum tensor for static stars

Tµν = diag(−ρc2B, pA, pr2, pr2 sin2 θ). (3.1.6)

With the metric tensor gµν we can compute the trace of the energy momentum tensor:

T = gµνTµν = −(ρc2 − 3P ) (3.1.7)

where the normalization condition gµνUµUν = -1 and gµνg
µν = 4 were used.

Inserting equation (3.1.7) into (3.1.1) gives

Rµν =
8πG

c4
(Tµν +

1
2
(ρc2 − 3p)gµν) (3.1.8)

By making use of Eq.(3.1.3)-(3.1.7) and the Ricci tensor components given by Eq.(2.4.9 -

2.4.12) inserting into equation (3.1.8) leads to

Rtt = −4πG(ρ + 3P )B (3.1.9)

Rrr = −4πG(ρ− P )A (3.1.10)

Rθθ = −4πG(ρ− P )r2 (3.1.11)

Rφφ = sinθ Rθθ (3.1.12)

In addition,we may recall the equation − ∂P
∂xλ = (P + ρ) ∂

∂xλ ln(−g00)1/2 for hydrostatic

equilibrium,
B′

B
= − 2P ′

P + ρ
(3.1.13)
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To find the TOV equation, the functions A(r) and B(r) should be found. Our first step in

solving these equations is to drive an equation for A(r) alone, by forming the quantity

Rrr

2A
+

Rθθ

r2
+

Rtt

2B
= − A′

rA2
− 1

r2
+

1
Ar2

= −8πG

c2
ρ = −8πGρ (3.1.14)

This equation can be written

d

dr

r

A(r)
= 1− 8πGρr2 (3.1.15)

If we integrate the above Equation from the center of the star r = 0 to the radius r with

the additional condition (r/A) |r=0 = 0 (A must be finite at r = 0 because of a continuous

mass distribution) we obtain

A(r) =
[
1− 2GM(r)

r

]−1

(3.1.16)

where M(r) is a mass function that describes the mass contained within a radius r.

M(r) =
∫ r

0
4πr′2ρ(r′)dr′ (3.1.17)

In a similar manner to how we found equation (3.1.14) one may also find the relation

Rrr

grr
+

Rtt

2gtt
− Rθθ

r2
=

1
r2
− 1

r2grr
− 1

rgrr

(
g′tt
gtt

)
= −8πGp (3.1.18)

An expression for B(r), inserting the expression we found for A(r) in equation (3.1.16) into

equation (3.1.18) and rearranging the terms yields

B′

B
=

2GM(r)
r2

(
1 + 4πr3p

M(r)

)
1− 2GM(r)

r

(3.1.19)

We can make further use of the stress-energy tensor for a perfect fluid by enforcing energy-

momentum conservation as well as hydrostatic equilibrium, yielding

−∂λp = (p + ρ)∂λ ln(−gtt)1/2 (3.1.20)
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and as before only the derivative with respect to r is non-zero, so in our case equation

(3.1.20) reads

−P ′ = (p + ρ)
B′

B
(3.1.21)

We eliminate B′/B from equation (3.1.21) by using the expression we found in equation

(3.1.19) to get the Tolman-Oppenheimer-Volkof(TOV) equation

− r2p′(r) = GM(r)ρ(r)
[
1 +

p(r)
ρ(r)

] [
1 +

4πr3p(r)
M(r)

] [
1− 2GM(r)

r

]−1

(3.1.22)

For a given equation of state P = P (ρ), the TOV equations can easily be integrated from

the origin with initial conditions M(0) = 0 and an arbitrary value for the central density

ρc = ρ(0), until the pressure P(r) will vanish at some radius R. To each possible equation of

state, there is a unique family of stars parameterized by the central density, i.e. we obtain

a sequence of stellar models M = M(ρc).

The TOV equations (3.1.22) simplifies

−r2p′(r) = GM(r)ρ(r) (3.1.23)

with M(r) defined by
dM

dr
= 4πr2ρ (3.1.24)

which when combined give us the Poisson equation ∇φ = 4πGρ in spherical coordinates

1
r2

d

dr

(
r2

ρ

dp

dr

)
= −4πGρ (3.1.25)

3.2 A Variational Form of The Equilibrium Condition

A particular stellar configuration, with uniform entropy per nucleon and chemical compo-

sition, will satisfy the TOV equations for equilibrium, if and only if the quantity M defined

by

M =
∫ ∞

0
4πr2ρ(r)dr (3.2.1)
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is stationary with respect to all variations of ρ(r) that leave unchanged the total number of

baryons, n(r) =ρ(0)(r) as the baryon density,

N =
∫ ∞

0
4πr2n(r)

[
1− 2GM(r)

r

]−1/2

dr (3.2.2)

To derive this theorem one uses the Lagrange multiplier method[10]: M will be stationary

with respect to all variations that leave N fixed if and only if there exist a constant λ for

which M -λN is stationary with respect to all variations. In general, we get

δM − λδN =
∫ ∞

0
4πr2ρ(r)dr − λ

∫ ∞

0
4πr2

[
1− 2GM(r)

r

]−1/2

δn(r)dr

− λG

∫ ∞

0
4πr

[
1− 2GM(r)

r

]−3/2

n(r)δM(r)dr (3.2.3)

These variations are supposed not to change the entropy per nucleon, i.e.

0 = δ
(ρ

n

)
+ pδ

(
1
n

)
(3.2.4)

or

δn(r) =
n(r)

p(r) + ρ(r)
δρ(r) (3.2.5)

And in addition we have

δM(r) =
∫ r

0
4πr′2δρ(r′)dr′ (3.2.6)

If we interchange the r and r′ integration in the last term of the total variation

δM − λδN =
∫ ∞

0
4πr2{1− λn(r)

p(r) + ρ(r)

(
1− 2GM(r)

r

)−1/2

− λG

∫ ∞

0
4πr′n(r′)

(
1− 2GM(r′)

r′

)−3/2

dr′}δρ(r)dr (3.2.7)

Thus δM − λδN will vanish if and only if

1
λ

=
n(r)

p(r) + ρ(r)

[
1− 2GM(r′)

r′

]−1/2

+ G

∫ ∞

r
4πr′n(r′)

[
1− 2GM(r′)

r′

]−3/2

dr′ (3.2.8)
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This will be the case for some multiplier λ if and only if the right-hand side is independent

of r,that is, if and only if

0 = { n′

p + ρ
− n(p′ + ρ′)

(p + ρ)2
}
[
1− 2GM

r

]−1/2

+
Gn

p + ρ
{4πrρ− M

r2
}
[
1− 2GM

r

]−3/2

− 4πGrn

[
1− 2GM

r

]−3/2

(3.2.9)

The condition for uniform entropy gives

d

dr

(ρ

n

)
+ p

d

dr

(
1
n

)
= 0 (3.2.10)

and therefore

n′(r) =
n(r)ρ′(r)

p(r) + ρ(r)
(3.2.11)

3.3 Polytropes

Here we assume P (r)= p(ρ(r)) (with dp
dρ 6= 0). In order that ρc= ρ(0) be finite, it is necessary

that p’(0) vanish.

ρ′(0) = 0.

Also note that the internal energy density is proportional to the pressure,that is

e = ρ−mNn =
1

γ − 1
p

Here (γ − 1)−1 is just a constant proportionality coefficient.

Using equation(3.2.10) we obtain

0 =
1

γ − 1

[
γP

d

dr

(
1
n

)
+
(

1
n

)
dp

dr

]
dp

p
= γ

dn

n

ln
p

nγ
= constant
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Then finally we obtain

P = Kρ1+ 1
n (3.3.1)

where K and n are constants, and n is called a polytropic index and γ=1 + 1/n.

Notice that the n = 1.5 case corresponds to an adiabatic star supported by pressure of non-

relativistic gas, and the n = 3 case corresponds to an adiabatic star supported by pressure

of ultra-relativistic gas.

Any star for which the equation of state takes the form of the above equation is called a

polytrope.

Differentiation of Eq.(3.3.1) gives

1
r2

d

dr

[
n + 1

n

r2

ρ
Kρ1/n dρ

dr

]
= −4πGρ

We can now rewrite this differential equation in its dimensionless form, by selecting the

transformations

ρ = ρ(0)θ1/γ−1, (3.3.2)

P = Kρ(0)γθγ/γ−1 (3.3.3)

The differential equation is now given by

(n + 1)
Kρ

1+1/n
0

4πGρ2
0

1
r2

d

dr

(
r2 dθ

dr

)
= −θn

By transforming variables from r,ρ to ξ, θ , we get a universal equation for polytropes

parameterized by the polytropic index γ.

The transformation is,

r = αξ (3.3.4)
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where

α =
(

kγ

4πG(γ − 1)

)1/2

ρ(0)(γ−2)/2 (3.3.5)

then the appropriate transformation takes the form

r =
(

kγ

4πG(γ − 1)

)1/2

ρ(0)(γ−2)/2ξ (3.3.6)

and the result is the Lane-Emden equation of index(γ − 1)−1 = n,

1
ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θ1/γ−1 (3.3.7)

The boundary conditions are

θ(0) = 1 (3.3.8)

θ′(0) = 0 (3.3.9)

The function θ(ξ) defined by the above is known as the Lane-Emden function of index

(γ − 1)−1 or n.

we can use the Lane-Emden Equation for any polytropic index n. Only three analytic

solutions exist, i.e for n = 0, 1 and 5, for which the solutions are:

θ0(ξ) = 1− ξ2

6
, n = 0, ξ1 =

√
6 ≈ 2.45

θ1(ξ) =
sin ξ

ξ
, n = 1, ξ1 = π ≈ 3.14

θ5(ξ) =
(

1 +
ξ2

3

)−1/2

, n = 5, ξ1 =∞ (3.3.10)

The solution is constructed monotonically decreases from the center,and for n < 5 has a

zero for some finite ξ = ξ1, θ has its first zero, and thus the configuration has a definite

boundary.For n=5, the configuration extends to infinity.

For ξ(0) with in series solution the Lane-Emden equation is integrated to yield

θ(ξ) = 1− ξ2

6
+

ξ4

120(γ − 1)
... (3.3.11)
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For γ > 6/5 ,θ(ξ) vanishes at some finite ξ1:

θ(ξ1) = 0 (3.3.12)

The Radius relation

The radius R of the star is given by R = r1 = αξ1 which translates to

R = αξ1 =
(

Kγ

4πG(γ − 1)

)1/2

ρ(0)(γ−2)/2ξ1 (3.3.13)

where ξ1 is defines the first zero of θn.

The Mass relation

We can also use the Lane-Emden solutions to calculate the stellar mass:

M =
∫ R

0
4πr2ρ(r)dr

M = 4π

(
Kγ

4πG(γ − 1)

)3/2

ρ
(3γ−4)/2
0

∫ ξ1

0
ξ2θ1/(γ−1)(ξ)dξ (3.3.14)

Using the Lane-Emden equation, the integral is easily evaluated:∫ ξ1

0
ξ2θ1/(γ−1)dξ = −

∫ 1

0

d

dξ
ξ2 dθ

dξ
dξ = −ξ2θ′(ξ1) (3.3.15)

Hence, the mass is found as

M = 4πρ
(3γ−4)/2
0

(
Kγ

4πG(γ − 1)

)3/2

ξ2|θ′(ξ1)| (3.3.16)

Mass-Radius Relation for Polytropes

By eliminating the central density between (3.3.13) and (3.3.16), we obtain a relation be-

tween mass M and radius R:

M = 4πR(3γ−4)/(γ−2)

(
Kγ

4πG(γ − 1)

)−1/(γ−2)

ξ−(3γ−4)/(γ−2)ξ2
1 |θ′(ξ1)|. (3.3.17)



32

or

GM
− (γ−2)

(γ−1)2 R(3γ−4) =
γK

(γ − 1)4π(γ−1)

[
−ξ

− γ
γ−2

dθ

dξ
|ξ=ξ1

]−(γ−2)

(3.3.18)

We shall denote by w0n the quantity

won = −ξ
−( γ

γ−2
)

1

(
dθn

dξ

)
ξ=ξ1

(3.3.19)

We can rewrite eq.(3.3.18)as

K = NnGM
− γ−2

(γ−1)2 (3.3.20)

Where Nn stands for the numerical coefficient

Nn =
1

n + 1

[
4π

wn−1
0n

]1/n

(3.3.21)

or

Nn =
γ − 1

γ

 4π

w
− (γ−2)

(γ−1)

0n

γ−1

(3.3.22)

The Relation of the mean density to the central density Let ρ denotes the mean

density of matter interior to r=αξ .Then

ρ =
M

4
3πα3ξ3

(3.3.23)

or

ρ = −3
ξ

(
dθ

dξ

)
ρ(0) (3.3.24)

From this the central density is

ρ(0) = −
∣∣∣∣ξ3 1

dθn/dξ

∣∣∣∣
ξ=ξ1

ρ (3.3.25)

This relation shows that for a polytrope of a given index ,n the central density is a definite

multiple of the mean density.

ρ(0)
ρ

= −
[

3
ξ1

(
dθ

dξ
)ξ1

]−1

(3.3.26)
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A second useful relationship is between mass and radius. We start by expressing the central

density ρ0 in terms of the other constants in the problem and our length scale α:

ρ0 =
[
(n + 1)K
4πGα2

]n/(n−1)

The central pressure can be expressed trivially as

pc = Kρ
(n+1)/n
0 = Wn

GM

R4
(3.3.27)

where Wn stands for the quantity

Wn =
1

4π(n + 1)
[(

dθn
dξ

)
ξ=ξ1

]2 (3.3.28)

The value of Wn are given in table.

3.3.1 Thermal and Gravitational Energy for Polytropes

For general Newtonian Stars total internal energy as

E = T + V (3.3.29)

with the thermal energy T and gravitational energy V given by

T =
∫ R

0
4πr2e(r)dr (3.3.30)

V = −
∫ R

0
4πGM(r)ρ(r)dr (3.3.31)

Derive these energies for polytropes. From fundamental hydrostatic equilibrium (TOV)condition

dP (r)
dr

=
GM(r)ρ(r)

r2

(
1 +

P

ρ

)(
1 +

4πr3P

M

)(
1− 2GM(r)

r

)−1

For Newtonian Star

dP (r)
dr

= −GM(r)ρ(r)
r2

(3.3.32)
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Then

V = −
∫ R

0
4πrGMρdr

= −4π

∫ R

0
(
dP

dr
)r3dr

Integrating this by part

V = −12π

∫ R

0
r2P (r)dr (3.3.33)

Multiplying and dividing in the integral by ρ(r)

V = 3
∫ R

0
M(r)d

(
P (r)
ρ(r)

)
dr

We assume here that γ > 1, so that P/ρ vanishes at R. This can be evaluated by using the

equation of state to calculate

d

dr

(
P (r)
ρ(r)

)
=

1
ρ

dP

dr
− P

ρ

dp

dr

=
(

1
ρ
− P

ρ

)
dP

dr

=
1
ρ

(
1− P

ρ

)
dP

dr

= −
(

γ − 1
γ

)
GM(r)

r2

So

V = −3
(

γ − 1
γ

)∫ R

0

GM2(r)
r2

dr (3.3.34)

Since dr/r2 = -d(1/r),we can integrate by parts once again, and find

V = 3
(

γ − 1
γ

)
GM2

R
− 2

∫ R

0

GMdM

r

V = 3
(

γ − 1
γ

)
GM2

R
+ 2V
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V = −3(γ − 1)
(5γ − 6)

GM2

R
(3.3.35)

To calculate T, we use the approximation, e(r) ' ρ(r)

T =
∫ R

0
4πr2ρ(r)dr

=
∫ R

0
4πr2 P (r)

γ − 1
dr

=
4π

γ − 1

∫ R

0
r2P (r)dr

Multiplying both sides by (-3/3)

T =
1

3(γ − 1)

[
12
∫ R

0
r2P (r)dr

]

T =
−V

3(γ − 1)
(3.3.36)

By using eq.(3.3.35) finally we obtain

T =
1

(5γ − 6)
GM2

R
(3.3.37)

From eqn.(3.3.36) gravitational energy rewrite as

V = −3(γ − 1)T (3.3.38)

So the total internal energy is

E = T + V

= −(3γ − 4)T

E = −(3γ − 4)
(5γ − 6)

GM2

R
(3.3.39)



36

To see the stability configuration

we try the assumption of

ρ ≡ constant

T =
∫

4πr2e(r)dr

but we have e(r) ' ρ(r) and ρ(r) ' ρ
γ−1

T =
1

γ − 1

∫
4πr2ρ(r)dr

=
4πρ

(γ − 1)

∫ R

0
r2dr

=
4π

3
ρR3

(γ − 1)

T =
4π

3
(γ − 1)−1 KργR3 (3.3.40)

From this and the above finally we obtain

T =
KM

γ − 1
ργ−1 (3.3.41)

V = −16π2

15
Gρ2R5 (3.3.42)

So,eliminating R,

E = T + V (3.3.43)

= aργ−1 − bρ1/3 (3.3.44)

Where

a =
KM

(γ − 1)
(3.3.45)

b =
3
5

(
4π

3

)1/3

GM5/3 (3.3.46)
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For γ > 4/3 , E has a minimum at

ρ =
(

b

3a(γ − 1)

)1/(γ−4/3)

=

(
M2/3G(4π/3)1/3

5K

)1/(γ−4/3)

(3.3.47)

corresponding to a configuration of stable equilibrium.

For γ = 4/3 , E is stationary with respect to ρ only if it vanishes every where, which requires

that a=b, or

M =
(

5K

G

)3/2(4π

3

)−1/2

(3.3.48)

For γ < 4/3, E has a maximum at the point(3.3.47), corresponding to a state of unstable

equilibrium.

Incidentally,Eq.(3.3.47) gives an estimate for the mass

M ' 4π

3
ρ(3γ−4)/2

(
15K

4πG

)3/2

which may be compared with the exact result (3.3.16).The ratio of these two expressions is

M(variational)
M(exact)

=
(15(γ − 1)/γ)3/2

3ξ2
1 |θ′(ξ1)|

For γ=5/3 this ratio is 1.8; for γ = 4/3 it is 1.2.Not only does the variational method give

the correct dependence of M on ρ (including the fact that for γ = 4/3, M is independent

of ρ, and E vanishes),but it even provides a fair approximation to the exact numerical re-

sults. We can accept with confidence its prediction that a polytropic is stable or unstable

according to whether γ > 4/3 or γ < 4/3.



Chapter 4

Mass- Radius Relation of Compact
Objects

4.1 White Dwarfs

The equation of state of a degenerate gas

When the temperature is sufficiently law (T → 0) the electrons will be frozen into the lowest

available energy levels. The Pauli Principle tell us: that there will be two electrons in each

levels(because of the two spin states available) and there are 4πk2

(2π~)3
dk levels per unit volume

with momenta between k and k+dk

The number of electrons per unit volume related to the maximum momentum KF is

n =
8π

(2π~)3

∫ kF

0
k2dk =

k3
F

3π2~3
(4.1.1)

The mass density of the star is given by

ρ = nmNµ (4.1.2)

where mN =1.67 × 10−24gm is the mass of the nucleons and µ is the number of nucleons

per electron µ ' 2 for stars that have used up their hydrogen.This gives

kT � [k2
F + m2

e]
1/2 −me (4.1.3)

38
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kF = ~
(

3π3ρ

mNµ

)1/3

(4.1.4)

Then the kinetic energy density and pressure of these electrons are

e =
8π

3(2π~)3

∫ kF

0
[(k2 + m2

e −me]1/2k2dk (4.1.5)

P = ρ
3 , ρ = T 00 =

∫ kF

0
k2

(k2+m2
e)1/2 dk

P =
1
3

8π

(2π~)3

∫ kF

0

k2

(k2 + m2
e)1/2

k2dk (4.1.6)

However, the equation of state reduces to a polytrope in the two extreme cases, distinguished

by the criteria ρ � ρc or ρ � ρcrit,where ρcrit is the critical density at which kF becomes

equal to me (kF = me) (in c.g.s. units):

ρcrit =
mNµm3

ec
3

3π2~3
= 0.97× 106µgm/cm3 (4.1.7)

A.If ρ � ρc. In non In the relativistic,kF � me,and electrons are non relativistic.Then

equation (4.1.5)and (4.1.6) respectively yield

e =
8π

(2π~)3

∫ kF

0
me[1 +

1
2

k2

m2
e

+ ...]−mek
2dk

e ' 8π

(2π~)3
× 1

m2
e

×
k5

F

5
(4.1.8)

P ' 1
3

8π

(2π~)3
× 1

me
×

k5
F

5
(4.1.9)

e =
3
2
p (4.1.10)

P =
8πk5

F

15me(2π~)3
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P =
~2

15meπ2

(
3π2ρ

mNµ

)5/3

(4.1.11)

This is a polytrope, with γ = 5
3 ,

K =
~2

15meπ2

(
3π2

mNµ

)5/3

(4.1.12)

B. If ρ� ρc.In the relativistic limit kF � me,then

e ' 8π

(2π~)3

∫ kF

0
k3dk =

8π

(2π~)3
×

k4
F

4

P ' 1
3

8π

(2π~)3

∫ kF

0
k3dk =

8π

3(2π~)3
×

k4
F

4
(4.1.13)

e = 3P (4.1.14)

P =
8πk4

F

12(2π~)3

P =
~

12π2

(
3π2ρ

mNµ

)4/3

(4.1.15)

This is a polytrope,with γ = 4
3

K =
~

12π2

(
3π2

mNµ

)4/3

(4.1.16)

4.2 Neutron Stars

Equation Of State(EOS)

In order to formulate the quantitative theory of neutron stars,we begin by writing down

expressions for the total energy density and pressure of an ideal Fermi gas of neutrons with



41

maximum momentum KF :

ρ =
8π

(2π~)3

∫ kF

0
(k2 + m2

n)1/2k2dk (4.2.1)

= 3ρc

∫ kF /mn

0
(u2 + 1)1/2u2du (4.2.2)

P =
8π

3(2π~)3

∫ kF

0

k2

(k2 + m2
n)1/2

k2dk (4.2.3)

= ρc

∫ kF /mn

0
(u2 + 1)−1/2u4du (4.2.4)

where

ρc =
8πm4

nc3

3(2π~)3
= 6.11× 1015gm/cm3 (4.2.5)

Now by eliminating kF /mn in the above equation,we obtain the equation of state in the

form
p

ρc
= F

(
ρ

ρc

)
(4.2.6)

where F is a definite transcendental function.The structure of neutron star with given central

density ρ(0) is to be calculated by the TOV equation with p given as a function of ρ by the

above equation. Since the only dimensional quantities in these equations are ρ(0),ρc,and G,

the solution must give the mass and radius as functions of ρ(0) of the form,

M = M0f

(
ρ(0)
ρc

)
(4.2.7)

R = R0g

(
ρ(0)
ρc

)
(4.2.8)

where(in c.g.s.units)

R0 = c(8πGρc)−1/2 = 3.0km (4.2.9)

M0 =
c2R0

G
= 2M⊙ (4.2.10)
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where f and g are unknown dimensionless functions.

For ρ(0)� ρc,

M =
1
2

(
3π

8

)1/2

(2.71406)

(
~3/2

m2
nG3/2

)(
ρ(0)
ρc

)1/2

M =
1
2
(2.71406)M0

(
ρ(0)
ρc

)1/2

(4.2.11)

and the radius of the star is

R =
(

3π

8

)1/2

(3.65375)

(
~3/2

m2
nG3/2

)(
ρ(0)
ρc

)1/6

R = (3.65375)R0

(
ρ(0)
ρc

)1/6

(4.2.12)

with ρc given by eq.(4.2.5)

For ρ(0) � ρc, the neutrons near the center of the star have kF � mn, so the above two

equations give

ρ =
3ρc

4

(
kF

mn

)5

, (4.2.13)

p =
ρc

4

(
kF

mn

)5

(4.2.14)

Therefore,from equation(4.2.13) and (4.2.14) the relation between P and ρ is

p =
ρ

3
(4.2.15)

as would be expected for a gas of highly relativistic particles.Using this equation of state in

the fundamental differential equation(3.1.22) gives

− r2ρ′(r) = 4πM(r)ρ(r)

[
1 +

4πr3ρ(r)

3M(r)

] [
1− 2GM(r)

r

]−1

(4.2.16)
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ρ′(r) =
−1
r2

4GM(r)ρ(r)
[
1 + 4π3ρ(r)

3M(r)

]
[1− 2GM(r)

r ]


=

−1
r2

[
4GM(r)ρ(r) + 16π3ρ2(r)G

3

[1− 2GM(r)
r ]

]
dρ(r)
dr

=
−1
r2

[
4GM(r)ρ(r) + 16π3ρ2(r)G

3

[r − 2GM(r)]

]

∫
dρ(r) =

∫ r

0

−1
r2

[
4GM(r)ρ(r) + 16π3ρ2(r)G

3

[r − 2GM(r)]

]
dr (4.2.17)

Then the direct integration of equation(4.2.17) and rearranging, we get exact solution.

ρ(r) =
3

56πGr2
(4.2.18)



Chapter 5

Results and Discussion

Using General Theory of Relativity we have developed the fundamental TOV equations.

Then, with simplifying boundary conditions such as high density and low temperature

characteristics were used to develop the compact objects equation of state as polytropic

kinds. Here, we summarize the important equations so far developed to analyze and describe

the Mass-Radius relationships of the compact objects to exist. Furthermore, the differential

equations are numerically integrated to discuss the limiting masses of the compact objects

with their boundary conditions. Finally, the results be compared with the work of the

others.

5.1 Summary of the important equations

5.1.1 Tolman-Oppenheimer-Volkof(TOV) equations from EFEs

The Tolman-Oppenheimer-Volkof(TOV) equation are

− r2p′(r) = GM(r)ρ(r)
[
1 +

p(r)
ρ(r)

] [
1 +

4πr3p(r)
M(r)

] [
1− 2GM(r)

r

]−1

(5.1.1)

dM

dr
= 4πr2ρ (5.1.2)

44
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5.1.2 Application of Variational technique and polytropes

P = Kρ1+ 1
n (5.1.3)

where K and n are constants, and n is called a polytropic index and γ=1 + 1/n.

By transforming variables from r,ρ to ξ, θ , we get a universal equation for polytropes

parameterized by the polytropic index γ.

The transformation is,

r = αξ (5.1.4)

where

α =
(

kγ

4πG(γ − 1)

)1/2

ρ(0)(γ−2)/2 (5.1.5)

then the appropriate transformation takes the form

r =
(

kγ

4πG(γ − 1)

)1/2

ρ(0)(γ−2)/2ξ (5.1.6)

and a new dependent variables θ,by

ρ = ρ(0)θ1/γ−1, (5.1.7)

P = Kρ(0)γθγ/γ−1 (5.1.8)

5.1.3 Lane-Emden equation

The Lane-Emden equation given as

1
ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θ1/γ−1 (5.1.9)

The boundary conditions are

θ(0) = 1 (5.1.10)

θ′(0) = 0 (5.1.11)



46

we can use the Lane-Emden Equation for any polytropic index n. Only three analytic

solutions exist, i.e for n = 0, 1 and 5, for which the solutions are:

θ0(ξ) = 1− ξ2

6
, n = 0, ξ1 =

√
6 ≈ 2.45

θ1(ξ) =
sin ξ

ξ
, n = 1, ξ1 = π ≈ 3.14

θ5(ξ) = (1 +
ξ2

3
)−1/2, n = 5, ξ1 =∞ (5.1.12)

For ξ(0) with in series solution the Lane-Emden equation is integrated to yield

θ(ξ) = 1− ξ2

6
+

ξ4

120(γ − 1)
... (5.1.13)

For γ > 6/5 ,θ(ξ) vanishes at some finite ξ1:

θ(ξ1) = 0 (5.1.14)

5.2 Obtaining the Mass and Radius of the compacts in terms
of the homology transformation parameters ξ and θ)

The radius R of the star is given by R = r1 = αξ1 which translates to

R =
(

Kγ

4πG(γ − 1)

)1/2

ρ(0)(γ−2)/2ξ1 (5.2.1)

The Mass relation

We can also use the Lane-Emden solutions to calculate the stellar mass:

M = 4πρ
(3γ−4)/2
0

(
Kγ

4πG(γ − 1)

)3/2

ξ2|θ′(ξ1)| (5.2.2)

Mass-Radius Relation for Polytropes

By eliminating the central density between (5.1.15) and (5.1.16), we obtain a relation be-

tween mass M and radius R:

M = 4πR(3γ−4)/(γ−2)

(
Kγ

4πG(γ − 1)

)−1/(γ−2)

ξ−(3γ−4)/(γ−2)ξ2
1 |θ′(ξ1)|. (5.2.3)
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The Relation of the mean density to the central density Let ρ denotes the mean

density of matter interior to r=αξ .Then

ρ = −3
ξ

(
dθ

dξ

)
ρ(0) (5.2.4)

From this the central density is

ρ(0) = −
∣∣∣∣ξ3 1

dθn/dξ

∣∣∣∣
ξ=ξ1

ρ (5.2.5)

This relation shows that for a polytrope of a given index ,n the central density is a definite

multiple of the mean density.

ρ(0)
ρ

= −
[

3
ξ1

(
dθ

dξ

)
ξ1

]−1

(5.2.6)

5.3 Energy and Stability conditions

The thermal energy T and gravitational energy V for polytropes are given by

V = −3(γ − 1)
(5γ − 6)

GM2

R
(5.3.1)

T =
−V

3(γ − 1)

T =
1

(5γ − 6)
GM2

R
(5.3.2)

The total internal energy is

E = T + V (5.3.3)

Then Combining eqn.(5..21) and eqn.(5.1.22) we obtain,

E = −(3γ − 4)T = −(3γ − 4)
(5γ − 6)

GM2

R
(5.3.4)
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For Stability Configuration

E = T + V (5.3.5)

= aργ−1 − bρ1/3 (5.3.6)

Where

a =
KM

(γ − 1)
(5.3.7)

b =
3
5

(
4π

3

)1/3

GM5/3 (5.3.8)

For γ > 4/3 , E has a minimum corresponding to a configuration of stable equilibrium.

For γ = 4/3 , E is stationary with respect to ρ only if it vanishes every where.

For γ < 4/3, E has a maximum corresponding to a state of unstable equilibrium.

Some numerical solutions of Lane-Emden equation is generated computationally by Math-

ematica and the roots of the equation for a range of polytropic indices(n=0 , 1 , ... , 6) are

as the seen below.

This graph shows numerical solutions to the Lane-Emden equation for n = 0,1,2,3,4,5,6 .

Using this graph by numerical integration of the Lane-Emden equation we find a family of

solutions parameterized with different values of the central density , the radii and masses

of compact objects.

The Lane-Emden equation solutions exist only for n=0, 1 and 5.

The rest can be integrated.

The radius of the star is determined from the numerical integration by the fast convergence

to θ(ξ1)=0.

Then ξ1 is converted back to give the radius of the compact. and M is determined by

equation ξ2|θ′(ξ1)|.
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Figure 5.1: The plot of polytropic solutions for Mass-Radius relationship for compact objects
with integral polytropic index, n = 0-6. As we see from the plot stable compact object
solutions exit for the case of integral polytropic indices of n = 0 - 4, but higher indices n =
5 - 6 do not have. The lower plot is the LogLogPlot of the upper one, where it is used just
for clarity indication of the behavior of the polytropes
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Figure 5.2: The upper table is the numerical solutions of the Lane-Emden equation that
determine the radius and mass of the polytropes for n = 0, 1,2,3,4 & 5 produced by numerical
integration using Mathematica 11 in this work. The lower table is taken from the work of
Schuster-Emeden, Chandrasekhar presented in the book by Chandrasekhar 1967
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5.4 Limiting Radius and Mass of White Dwarfs and Neutron
stars

5.4.1 White Dwarfs

For the nonrelativistic case ,γ = 5/3.

ξ2|θ′(ξ1)|=2.71406 and ξ1 = 3.65375 Mass and radius of white dwarfs are

By using eq.(3.3.16)

M =
1
2

(
3π

8

)1/2

(2.71406)

(
~3/2c3/2

mNµ2G3/2

)(
ρ(0)
ρc

)1/2

(5.4.1)

M = 2.79µ−2

(
ρ(0)
ρc

)1/2

M⊙

By using equation(3.3.13) the radius of the star is

R =
(

3π

8

)1/2

(3.65375)

(
~3/2

c1/2G1/2memNµ

)(
ρ(0)
ρc

)−1/6

(5.4.2)

R = 2.0× 104µ−1

(
ρ(0)
ρc

)−1/6

km

In the γ = 5/3 range of white dwarfs, the mass is an increasing function of central density,

and the radius is a decreasing function (for any γ < 2). A decrease of radius with an increase

of mass is quite a general property of degenerate stars, and the physical reason is simple.

The gravitational attraction grows as the mass increases, causing a greater compaction of

the star.

For the relativistic case From the graph with the numerical value for γ = 4/3.

ξ2|θ′(ξ1)|= 2.01824 and ξ1 = 6.89685 gives a unique mass

M =
1
2
(3π)1/2(2.01824)

(
~3/2c3/2

G3/2m2
Nµ2

)
(5.4.3)

M = 5.87µ−2M⊙ = 1.4675M⊙
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Whereas equation of the radius of the star is

R =
1
2
(3π)1/2(6.89685)

(
~3/2

c1/2G1/2memNµ

)(
ρc

ρ(0)

)1/3

(5.4.4)

R = 5.3× 104µ−1

(
ρc

ρ0

)1/3

km

We note that γ > 4/3 for ρ(0)� ρc,so the least massive white dwarfs are definitely stable.We

also see that M appears to grow monotonically with increasing central density,reaching a

maximum when ρ(0) →∞,so there is no point where the star can become unstable.So the

stable white dwarfs can exist for any mass less than the above unique mass equation.This

maximum mass is known as the chandrasekhar limit

For a typical white dwarf composition ' 2 and the limiting mass works out to be 1.46M⊙.

5.4.2 Neutron Star

For ρ(0)� ρc,

M =
1
2

(
3π

8

)1/2

(2.71406)

(
~3/2

m2
nG3/2

)(
ρ(0)
ρc

)1/2

M =
1
2
(2.71406)M0

(
ρ(0)
ρc

)1/2

(5.4.5)

and the radius of the star is

R =
(

3π

8

)1/2

(3.65375)

(
~3/2

m2
nG3/2

)(
ρ(0)
ρc

)1/6

R = (3.65375)R0

(
ρ(0)
ρc

)1/6

(5.4.6)

with ρc given by eq.(4.2.5)

From equation (4.2.18)

ρ(r) =
3

56πGr2
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corresponding to the limit ρ(0) →∞. However,even in the limit of infinite central density,

this ρ(r) will drop ρ0 at a radius r of order R0,so that the equation of state (4.2.13) is

not valid for the outer layers of any neutron star.To deal with the crust of nonrelativistic

neutrons,it is necessary to solve the full equation of (3.1.22) using the equation of state

(4.2.6);the condition of infinite central density is imposed by (4.2.15) for r � R0.The im-

portant points are that the solution has a finite radius R where ρ vanishes, and that the

mass M within this radius is finite, because the singularity is integrable at r=0. Thus the

mass and radius of a neutron star approach finite limits as ρ(0)→∞.Numerical solution of

the fundamental equation (3.1.22) gives the limits as

M∞ = 0.171M0 (5.4.7)

R∞ = 1.06R0 (5.4.8)

There remains the question of stability. For ρ(0) � ρc, a pure neutron star is simply a

Newtonian polytrope with γ = 5/3(like a small white dwarf) and is therefore stable.

Equation eq.(4.2.11) shows that M is a monotonically increasing function of ρ(0) for these

small central densities. If M continues to increase monotonically to the value M∞, then

no transition to instability can occur.But eq.4.2.11) shows that when ρ(0)=0.016 ρc (which

is small enough for eq.(4.2.11) to be a good approximation),the mass M is already greater

than M∞.Thus we expect that M rises to a maximum value M > M∞ at some central

density ρm of order ρc,and then dropes to the value M∞ at finite central density.

The mass M of a pure ideal-gas neutron star reaches a maximum

Mm = 0.7M⊙ (5.4.9)

at a radius

Rm = 9.6km (5.4.10)
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Since this is a point where ∂M/∂ρ(0) vanishes, we expect the transition here from stability

to instability with respect to radial oscillations.Thus characterize a neutron star with the

greatest mass and central density allowed by the requirement that the star be stable.Thus

mass is known as the Oppenheimer-Volkoff limit.



Chapter 6

Summary and Conclusion

General Theory of Relativity is used to derive the appropriate TOV-equations. With sim-

plifying boundary conditions, the resulting TOV-equations be used to develop equation

of state. Since, compact objects are characterized with high densities and low temper-

atures.By applying boundary conditions of high density,Polytropic equation of states are

developed.Using the polytrope we develops the Lane-Emden equations and together with

quantum mechanical theory(Fermi gas) to find to an expression for the EOS. This provides

results for mass and radii of stars with different central pressure(i.e central density) the

more accurate results from General Relativity of the TOV equations.

We have modeled white dwarfs and neutron stars as a non-interacting Fermi gas at zero

temperature, supported against gravitational collapse by electron and neutron degeneracy

pressure, respectively. With a non-relativistic polytropic equation of state, P = Kρ5/3, this

model produced white dwarf radii and masses which fit observational data for low mass

white dwarfs. Using a relativistic polytropic equation of state, P = Kρ4/3, reproduced the

Chandrasekhar limit, but gave no predictions for low mass white dwarfs. This showed that

a simple polytropic equation of state worked well in the regime it was made for, but that

the difference in conditions within a white dwarf are too large to be wholly described by

such a simple equation of state.
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We calculated mass-radius relations for White Dwarfs using for relativistic and non rela-

tivistic polytropic approximations.For the relativistic case we find the computed masses to

be constant the result is 1.4675M⊙ and in a very good agreement with the chandrasekhar

mass limit.

The properties of neutron star since the correct description of the equilibrium structure of

these kinds of compact objects imposes the consideration of general relativity effects.The

correct description of the equilibrium properties of neutron stars are provided by the TOV

equations, which are derived from Einstein field equations applied to a time-invariant and

spherically symmetric mass distribution. As a purely general relativity effect,neutron stars

must have a maximum mass, for finite values of the central density and radius.For cold(T=0)

neutron star entirely composed of free neutrons,the maximum mass is around 0.7M⊙ with

the radius 9.6M⊙.
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