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Abstract

In this research we have studied the squeezing and statistical properties of the cav-

ity light produced by a coherently driven nondegenerate three-level laser with an

open cavity and coupled to a two-mode vacuum reservoir via a single-port mir-

ror. We have carried out our analysis by putting the noise operators associated with

the vacuum reservoir in normal order. Applying the steady state solutions of the

stochastic differential equations of the atomic operators along with the quantum

Langavin equations for the cavity mode operators, we have calculated the mean,

variance of the photon number, photon number correlations, intensity difference

fluctuations, the quadrature squeezing, and entanglement for the two-mode cav-

ity light. We have found that the mean photon number of two mode is the sum of

the mean photon number of mode a and b and the photon number variance of two

mode is the square of mean photon number of two-mode. We have seen that the

maximum quadrature squeezing is found to be 62.19%. Moreover, the presence of

parametric amplifier enhances the quadrature squeezing.



Contents

1 INTRODUCTION 1

2 OPERATOR DYNAMICS 4

2.1 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Quantum Langevin equations . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Stochastic differential equations . . . . . . . . . . . . . . . . . . . . . 16

3 PHOTON STATISTICS 28

3.1 Single-mode photon statistics . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 The mean photon number . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 The photon number variance . . . . . . . . . . . . . . . . . . . 35

3.2 Two-mode photon statistics . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Two mode mean photon number . . . . . . . . . . . . . . . . . 41

3.2.2 Two-mode photon number variance . . . . . . . . . . . . . . . 46

4 QUADRATURE SQUEEZING 53

4.1 Single-mode quadrature variance . . . . . . . . . . . . . . . . . . . . 53

4.1.1 The quadrature variance of light mode a . . . . . . . . . . . . . 53



CONTENTS

4.1.2 The quadrature variance of light mode b . . . . . . . . . . . . . 57

4.2 Two-mode quadrature squeezing . . . . . . . . . . . . . . . . . . . . . 61

5 CONCLUSION 74



1

INTRODUCTION

Quantum optics deals mainly with the quantum properties of light generated by

various optical system such laser with the effects of light on the dynamics of the

atoms [1−5]. There has been a considerable interest in the analysis of squeezing and

statistical properties of light generated by three-level lasers [6−14]. Squeezing is one

of the interesting non classical features of light that has been attracting attention

and studied by many authors [15− 22].

In recent years, the topic of entanglement has received a significant amount of

attention as it plays an important role in all branches of quantum information pro-

cessing [2]. The efficiency of quantum information schemes highly depends on de-

gree of entanglement. Moreover, Eyob [3] has studied continuous variable entan-

glement in a non degenerate three-level laser with a parametric amplifier. In this

model the injected atomic coherence introduced by initially preparing the atoms in

a coherent superposition of the top and bottom levels. This combined system ex-

hibits a two-mode squeezed light and produces light in an entangled state. In one

model of such a laser, three-level atoms initially in the upper level are injected at

a constant rate in to the cavity and removed after they have decayed due to spon-
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taneous emission [8, 12, 21]. It appears to be quite difficult to prepare the atoms in

a coherent superposition of the top and bottom levels before they are injected into

the laser cavity. Besides, it should certainly be hard to find out that the atoms have

decayed spontaneously before they are removed from the cavity.

A parametric amplifier will consider as an important source of squeezed light

[19]. It is one of the most interesting and well characterized optical devices in quan-

tum optics. In this device a pump photon interacts with a nonlinear crystal inside

an open cavity. The three-level laser may be defined as a quantum optical system

in which three level atoms initially prepared in a coherent superposition of the two

levels, are injected into a cavity coupled to a vacuum reservoir via a single-port mir-

ror [7, 14]. The cascade system has an excited state coupled to intermediate state,

and the intermediate state one coupled to the ground state.

The three-level atom in a cascade configuration makes a transition from the top

to the bottom level via the intermediate level, two photons are generated. If the

two photons have the same frequency, then the three-level atom is called degener-

ate three level atom otherwise it is called non degenerate. We consider the case in

which N non degenerate three level atoms in cascade configuration are available in

an open cavity. The emission of light when the atoms makes the transition from the

top level to intermediate level is light mode a, and the emission of light when the

atoms makes the transition from the intermediate level to the bottom level is light

mode b.

In this thesis first we derive the master equation and the quantum langevin
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equations. Employing the master equation we obtain the stochastic differential

equations. Moreover, applying the large time approximation of the stochastic dif-

ferential equations,we get the steady state solutions of these equations. Finally, em-

ploying the solutions of the quantum langevin equations, we study the squeezing,

the entanglement and the photon statistics of the cavity light.



2

OPERATOR DYNAMICS

2.1 Master equation

In this chapter we consider a non degenerate three-level laser driven by coherent

light and with the cavity modes coupled to a two-mode vacuum reservoir via a

single-port mirror as shown in figure 2.1. We first obtain the master equation for

a coherently driven non degenerate three-level atom with the cavity modes and the

quantum langevin equations for the cavity mode operators. Moreover, employing

the master equation and the large approximation scheme, we drive the stochastic

differential equations of the atomic operators. Finally, we determine the steady-

state solutions of the resulting equations. Here we carry out our calculation by

putting the noise operators associated with the vacuum reservoir in normal order.

We consider the the case in which N non degenerate three-level atoms in cascade

configuration are available in an open cavity. We denote the top,intermediate and

bottom levels of the three-level atom by |a〉k, |b〉k and |c〉k respectively. For non de-

generate three-level cascade configuration, when the atom makes a transition from

level |a〉k to |b〉k and |b〉k to |c〉k two photons with different frequencies are emitted.

4



2.1 Master equation 5
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Figure 2.1: Schematic representation of a coherently driven non degenerate three-

level laser coupled to a two-mode vacuum reservoir.

The emission of light, when the atoms makes a transition from top level to the in-

termediate level is light mode a and the emission of light,when the atoms makes a

transition from intermediate level to the bottom level is light mode b. We assume

the cavity mode to be at resonance with the two transitions |a〉k → |b〉k and |b〉k →

|c〉k are dipole allowed, and with direct transition between levels |a〉k → |c〉k to be

dipole forbidden. The coupling of the top and bottom levels of a non degenerate

three-level atom by coherent light can be described by the Hamiltonian

Ĥ1 =
iΩ

2

[
σ̂†kc − σ̂k

c

]
, (2.1)

where

σ̂k
c = |c〉k k〈a|, (2.2)

is lowering atomic operator and

Ω = 2β0λ. (2.3)
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Here β0, considered to be real and constant, is the amplitude of the driving coher-

ent light and λ is the coupling constant between the driving coherent light and the

three-level atom. The interaction of a three level atom with the cavity modes can be

described by the Hamiltonian

Ĥ2 = ig
[
σ̂†ka â− â†σ̂k

a + σ̂†kb b̂− b̂†σ̂k
b

]
, (2.4)

where

σ̂k
a = |b〉k k〈a|, (2.5)

σ̂k
b = |c〉k k〈b|. (2.6)

This g is the coupling constant between the atom and the cavity mode a and b, and

the operators â and b̂ are the annihilation operators for light mode a and b. In ad-

dition, the interaction of Hamiltonian with parametric amplifier can be expressible

as

Ĥ3 = iε
[
â†b̂† − âb̂

]
, (2.7)

where ε is the amplitude of the driving coherent light that drives NLC. Thus, com-

bination of Eqs.(2.1), (2.4), and (2.7), we see that

ĤS =
iΩ

2

[
σ̂†kc − σ̂k

c

]
+ ig

[
σ̂†ka â− â†σ̂k

a + σ̂†kb b̂− b̂†σ̂k
b

]
+ iε

[
â†b̂† − âb̂

]
. (2.8)

The quantum analysis of the interaction of a system such as a cavity mode or a

three-level atom with the external environment is a relatively complex problem.

The external environment, usually referred to as a reservoir, can be thermal light,
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ordinary or squeezed vacuum. We are interested in the dynamics of the system and

this is describable by the master equation or quantum Langevin equations. Here,

we obtain the above set of dynamical equations for a cavity mode coupled to a two-

mode vacuum reservoir via a single-port mirror. The resulting equations are easily

adaptable to the case when the external environment is either a thermal or a vac-

uum reservoir. We then focus our study when the cavity mode is coupled to a two-

mode vacuum reservoir. A system coupled with a two-mode vacuum reservoir can

be described by the Hamiltonian

Ĥ = ĤS + ĤSR, (2.9)

where ĤS is the Hamiltonian of the system and ĤSR is the Hamiltonian of the sys-

tem and the reservoir. Suppose X̂(t) is the density operator for the system and the

reservoir. Then the equation of evolution of this density operator is given by

d

dt
X̂(t) = −i

[
ĤS + ĤSR, X̂(t)

]
. (2.10)

We are interested in the quantum dynamics of the system alone. Hence taking into

account (2.10), we see that the density operator for the system, also known as the

the reduced density operator,

ρ̂(t) = TrRX̂(t) (2.11)

evolves in time according to

d

dt
ρ̂(t) = −i

[
ĤS, ρ̂(t)

]
− iT rR

[
ĤSR, X̂(t)

]
, (2.12)
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where TrR indicates the trace over the reservoirs variables only. On the other hand,

a formal solution of Eq. (2.10) can be written as

X̂(t) = X̂(0)− i

∫ t

0

[
ĤS(t′) + ĤSR(t′), X̂(t′)

]
dt′. (2.13)

In order to obtain mathematically manageable that χ̂(t′) by some approximately

valid expression. Then, in the first place, we would arrange the reservoir in such

a way that its density operator R̂ remains constant in time. This can be achieved

by letting a beam of thermal light (or light in a vacuum state) of constant intensity

fall continuously on the system. Moreover, we decouple the system and reservoirs

density operators, so that

X̂(t′) = ρ̂(t′)R̂. (2.14)

Therefore, with the aid of this, one can rewrite Eq. (2.13) as

X̂(t) = ρ̂(0)− i

∫ t

0

[
ĤS(t′) + ĤSR(t′), ρ̂(t′)R̂

]
dt′. (2.15)

Now on substituting Eq.(2.15) into (2.12) there follows

d

dt
ρ̂(t) = −i

[
ĤSR(t), ρ̂(t)

]
− i

[
〈ĤSR(t)〉R, ρ̂(0)

]
−

∫ t

0

[
〈ρ̂SR(t)〉R,

[
ĤS(t′), ρ̂(t′)

]]
dt′

−
∫ t

0

TrR

[
ĤSR(t′),

[
ĤSR(t′), ρ̂(t′)R̂

]]
dt′, (2.16)

where the subscript R indicates that the expectation value is to be calculated using

the reservoirs density operator R̂. Furthermore, the master equation for a system

coupled to a reservoir takes the form

dρ̂(t)

dt
= −iT rA[ĤS, ρ̂AR(t, t′)]− h〈Ĥ2

SRR̂〉Rρ̂(t)

+2hTrR(ĤSRρ̂(t)R̂ĤSR)− hρ̂(t)〈Ĥ2
SRR̂〉R. (2.17)
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A light mode confined in a cavity, usually formed by two mirrors, is called a cavity

mode. A commonly used cavity has a single-port mirror. One side of each cavity is a

mirror through which light can enter or leave the cavity. We now proceed to obtain

the equation of evolution of the reduced density operator, in short the master equa-

tion, for the cavity mode coupled to a thermal reservoir via a single port-mirror. We

consider the reservoirs to be composed of large number of submodes. Thus, the

interaction Hamiltonian for a two-mode cavity light coupled to thermal reservoir is

written as

ĤSR(t) = i
∑

k

gk

(
σ̂†ka âke

i(ω0−ωk)t − â†σ̂k
ae
−i(ω0−ωk)t

+ σ̂†kb b̂ke
i(ω0−ωk)t − b̂†σ̂k

b e
−i(ω0−ωk)t

)
, (2.18)

where ~ = 1, âk, and b̂k are annihilation operators for the reservoir submode and

gk =
[ ωk

2ε0v

]1/2
dab.uk (2.19)

is coupling constant. Furthermore, employing Eq. (2.18), we then see that

[
〈ĤSR(t)〉R, ρ̂(t′)

]
=

[
ĤSR(t),

[
ĤSR(t′), ρ̂(t′)R̂

]]
= 0. (2.20)

In view of this results, expression (2.16) reduces to

d

dt
ρ̂(t) = −i

[
ĤS, ρ̂(t)

]
− i

∫ t

0

TrR

[
ĤSR(t),

[
ĤSR(t′), ρ̂(t′)R̂

]]
dt′. (2.21)

It then follows that

d

dt
ρ̂(t) = −i

[
ĤS, ρ̂(t)

]
−

∫ t

0

TrR(R̂ĤSR(t)ĤSR(t′)ρ̂(t))dt′

−
∫ t

0

ρ̂(t)TrR(R̂ĤSR(t′)ĤSR(t))dt′

+

∫ t

0

TrR(ĤSR(t)ρ̂(t)R̂ĤSR(t′))dt′

+

∫ t

0

TrR(ĤSR(t′)ρ̂(t)R̂ĤSR(t))dt′. (2.22)
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where ρ̂(t′) = ρ̂(t). In addition, in view of Eq. (2.18), one can readily obtain

ĤSR(t′) = i
∑

k

gk′
(
σ̂†k

′

a âk′ei(ω0−ωk′ )t′ − â†k′σ̂
k′

a e−i(ω0−ωk′ )t′

+ σ̂†k
′

b b̂k′ei(ω0−ωk′ )t′ − b̂†k′σ̂
k′

b e−i(ω0−ωk′ )t′
)
. (2.23)

Using Eqs.(2.18) and (2.23) and applying the cyclic property of the trace operation,

one can write

TrR(R̂ĤSR(t)ĤSR(t′)) = −Γ1σ̂
†k
a σ̂†k

′

a + Γ2σ̂
†k
a σ̂k′

a − Γ3σ̂
†k
a σ̂†k

′

b + Γ4σ̂
†k
a σ̂k′

b

+ Γ5σ̂
k
a σ̂

†k′

a + Γ6σ̂
k
a σ̂

k′

a − Γ7σ̂
k
a σ̂

†k′
+ Γ8σ̂

k
a σ̂

k′

b

+ Γ9σ̂
†k
b σ̂†k

′

a + Γ10σ̂
†k
b σ̂k′

a + Γ11σ̂
†k
b σ̂†k

′ − Γ12σ̂
†k
b σ̂k′

− Γ13σ̂
k
b σ̂

†k′

a + Γ14σ̂
k
b σ̂

k′

a − Γ15σ̂
k
b σ̂

k′

a + Γ16σ̂
k
b σ̂

k′

b , (2.24)
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where

Γ1 =
∑
kk′

gkgk′〈âkâk′〉Rei(ω0−ωk)t+i(ω0−ωk′ )t′ , (2.25)

Γ2 =
∑
kk′

gkgk′〈âkâ
†
k′〉Rei(ω0−ωk)t−i(ω0−ωk′ )t′ , (2.26)

Γ3 =
∑
kk′

gkgk′〈âkb̂k′〉Rei(ω0−ωk)t+i(ω0−ωk′ )t′ , (2.27)

Γ4 =
∑
kk′

gkgk′〈âkb̂
†
k′〉Rei(ω0−ωk)t−i(ω0−ωk′ )t′ , (2.28)

Γ5 =
∑
kk′

gkgk′〈â†kâk′〉Re−i(ω0−ωk)t+i(ω0−ωk′ )t′ , (2.29)

Γ6 =
∑
kk′

gkgk′〈â†kâ
†
k′〉Re−i(ω0−ωk)t−i(ω0−ωk′ )t′ , (2.30)

Γ7 =
∑
kk′

gkgk′〈â†kb̂k′〉Re−i(ω0−ωk)t+i(ω0−ωk′ )t′ , (2.31)

Γ8 =
∑
kk′

gkgk′〈â†kb̂
†
k′〉Re−i(ω0−ωk)t−i(ω0−ωk′ )t′ , (2.32)

Γ9 =
∑
kk′

gkgk′〈b̂kâk′〉Rei(ω0−ωk)t+i(ω0−ωk′ )t′ , (2.33)

Γ10 =
∑
kk′

gkgk′〈b̂kâ
†
k′〉Rei(ω0−ωk)t−i(ω0−ωk′ )t′ , (2.34)

Γ11 =
∑
kk′

gkgk′〈b̂kb̂k′〉Rei(ω0−ωk)t+i(ω0−ωk′ )t′ , (2.35)

Γ12 =
∑
kk′

gkgk′〈b̂kb̂
†
k′〉Rei(ω0−ωk)t−i(ω0−ωk′ )t′ , (2.36)

Γ13 =
∑
kk′

gkgk′〈b̂†kb̂k′〉Re−i(ω0−ωk)t+i(ω0−ωk′ )t′ , (2.37)

Γ14 =
∑
kk′

gkgk′〈b̂†kâ
†
k′〉Re−i(ω0−ωk)t−i(ω0−ωk′ )t′ , (2.38)

Γ15 =
∑
kk′

gkgk′〈b̂†kb̂k′〉Re−i(ω0−ωk)t+i(ω0−ωk′ )t′ , (2.39)

Γ16 =
∑
kk′

gkgk′〈b̂†kâ
†
k′〉Re−i(ω0−ωk)t−i(ω0−ωk′ )t′ . (2.40)
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For a vacuum reservoir

〈âkâk′〉R = 〈b̂kb̂k′〉R = 0,

〈â†kâ
†
k′〉R = 〈b̂†kb̂

†
k′〉R = 0,

〈â†kâk′〉R = 〈b̂†kb̂k′〉R = 0,

〈âkb̂k′〉R = 〈âkb̂
†
k′〉R = 0,

〈b̂kâk′〉R = 〈b̂kâ
†
k′〉R = 0, (2.41)

and

〈âkâ
†
k′〉R =

(
〈â†kâk′〉R + 1

)
σ̂kk′ ,

〈b̂kb̂
†
k′〉R =

(
〈b̂†kb̂k′〉R + 1

)
σ̂kk′ . (2.42)

In view of Eq. (2.41) for vacuum reservoir, we have

Γ1 = Γ3 = Γ4 = Γ5 = 0,

Γ6 = Γ7 = Γ8 = Γ9 = Γ10 = 0,

Γ11 = Γ13 = Γ14 = Γ15 = Γ16 = 0. (2.43)

So that on account of these results, Eq. (2.24) takes the form

TrR(R̂ĤSR(t)ĤSR(t′)) = Γ2σ̂
†k
a σ̂k′

a + Γ12σ̂
†k
b σ̂k′

b . (2.44)

For the values k = k′, one can easily observe that

Γ2 =
(
〈â†kâk〉R + 1

) ∑
k

g2
ke

i(ω0−ωk)t−i(ω0−ωk′ )t. (2.45)

Furthermore, in view of Eq.(2.41), we see that

Γ2 =
∑

k

g2
ke

i(ω0−ωk)t−i(ω0−ωk′ )t. (2.46)
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In order to evaluate the dot product involved in Eq. (2.19), we adopt spherical co-

ordinates in k space with the electrical dipole matrix element dab taken to be along

z-axis. In addition, we take the unit vector uk to be in the plan formed by the vectors

dab and k. Since uk is normal to k3, the angle between uk and dab is (π
2
− θ). Then, we

see that

dab.uk = dab cos(
π

2
− θ) = dab sin θ. (2.47)

Employing the transformation, we have

∑
k

→ ν

(2π)3

∫
d3k =

ν

(2π)3

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ ∞

0

k2dk. (2.48)

It then follows that

Γ2 =
d2

ab

2(2π)3ε0c3

∫ 2π

0

dφ

∫ π

0

sin θ(1− cos2 θ))dθ

∫ ∞

0

ω3ei(ω0−ωk)(t−t′)dω, (2.49)

where k = ω/c and from trigonometry

sin2 θ = 1− cos2 θ, (2.50)

one can readily obtain

Γ2 =
d2

ab

2(6π2ε0c3)

∫ ∞

0

ω3ei(ω0−ωk)(t−t′)dω, (2.51)

in which

∫ 2π

0

dφ = 2π, (2.52)

∫ π

0

sin θ(1− cos2 θ) =
2

3
. (2.53)
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Now, we replace ω3 by ω3
0 and extending the lower limit of the integration to∞.Then

after setting ω′ = ω − ω0, we obtain

Γ2 = γσ(t− t′), (2.54)

where

γ =
ω0d

2
ab

3πε0c3
(2.55)

is γ is the spontaneous emission decay rate. In a similar procedure, one can easily

verify that

TrR(R̂ĤSR(t)ĤSR(t′)) = γσ̂†ka σ̂k
a + γσ̂†kb σ̂k

b . (2.56)

It then follows that

∫ t

0

TrR(R̂ĤSR(t)ĤSR(t′))ρ̂dt′ = γσ̂†ka σ̂k
a ρ̂ + γσ̂†kb σ̂k

b ρ̂ (2.57)

Following a similar fashion, we see that

∫ t

0

ρ̂(t)TrR(R̂ĤSR(t′)ĤSR(t))dt′ = γρ̂σ̂†ka σ̂k
a + γρ̂σ̂†kb σ̂k

b , (2.58)∫ t

0

TrR(ĤSR(t)ρ̂(t)R̂ĤSR(t′))dt′ = γσ̂k
a ρ̂σ̂†ka + γρ̂σ̂k

b ρ̂σ̂†kb , (2.59)∫ t

0

TrR(ĤSR(t′)ρ̂(t)R̂ĤSR(t))dt′ = γσ̂k
a ρ̂σ̂†ka + γσ̂k

b ρ̂σ̂†kb . (2.60)

Taking into account Eq. (2.57), (2.58), (2.59), and (2.60), the expression in Eq. (2.22)

takes the form

d

dt
ρ̂(t) = −i

[
ĤS(t), ρ̂(t)

]
− γσ̂†ka σ̂k

a ρ̂− γσ̂†kb σ̂k
b ρ̂− γρ̂σ̂†ka σ̂k

a − γρ̂σ̂†kb σ̂k
b

+ γρ̂σ̂k
a ρ̂σ̂†ka + γσ̂k

b ρ̂σ̂†kb + γσ̂k
a ρ̂σ̂†ka + γσ̂k

b ρ̂σ̂†kb . (2.61)
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It then follows

d

dt
ρ̂(t) = −i

[
ĤS(t), ρ̂(t)

]
+

γ

2

[
2σ̂k

a ρ̂σ̂†ka − σ̂†ka σ̂k
a ρ̂− ρ̂σ̂†ka σ̂k

a

]
+

γ

2

[
2σ̂k

b ρ̂σ̂†kb − σ̂†kb σ̂k
b ρ̂− ρ̂σ̂†kb σ̂k

b

]
. (2.62)

On the other hand, employing Eq. (2.8), one can readily establish that

− i
[
ĤS, ρ̂(t)

]
= g

(
σ̂†ka âρ̂− ρ̂σ̂†ka â− â†σ̂aρ̂ + ρ̂â†σ̂k

a + σ̂†kb b̂ρ̂− ρ̂σ̂†kb b̂

+ b̂†σ̂k
b ρ̂ + ρ̂b̂σ̂k

b

)
+

Ω

2

(
σ̂†kc ρ̂− ρ̂σ̂†kc − σ̂k

c ρ̂ + ρ̂σ̂k
c

)
+ ε

(
â†b̂†ρ̂− ρ̂â†b̂† − âb̂ρ̂ + ρ̂âb̂

)
. (2.63)

Now the combination of Eqs. (2.62) and (2.63) results in

d

dt
ρ̂(t) = g

[
σ̂†ka âρ̂− ρ̂σ̂†ka â− â†σ̂aρ̂ + ρ̂â†σ̂k

a + σ̂†kb b̂ρ̂− ρ̂σ̂†kb b̂ + b̂†σ̂k
b ρ̂ + ρ̂b̂σ̂k

b

]
+

Ω

2

[
σ̂†kc ρ̂− ρ̂σ̂†kc − σ̂k

c ρ̂ + ρ̂σ̂k
c

)
+ ε

(
â†b̂†ρ̂− ρ̂â†b̂† − âb̂ρ̂ + ρ̂âb̂

]
+

γ

2

[
2σ̂k

a ρ̂σ̂†ka − σ̂†ka σ̂k
a ρ̂− ρ̂σ̂†ka σ̂k

a

]
+

γ

2

[
2σ̂k

b ρ̂σ̂†kb − σ̂†kb σ̂k
b ρ̂− ρ̂σ̂†kb σ̂k

b

]
.(2.64)

where γ is the spontaneous emission decay constant, which considered to be the

same for levels |a〉k and |b〉k. Therefore, Eq. (2.64) the master equation for a co-

herently driven nondegenerate three-level atom in an open cavity and coupled to a

two-mode vacuum reservoir.

2.2 Quantum Langevin equations

We recall that the laser cavity is coupled to a two-mode vacuum reservoir via a single

port mirror. In addition, we carry out our calculation by putting the noise operators

associated with the vacuum reservoir in normal order. Thus the noise operators will

not have any effect on the dynamics of the cavity mode operators. We can therefore
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drop the noise operators and write the quantum Langevin equations for the opera-

tors â and b̂ as

dâ

dt
= −κ

2
â− i

[
â, ĤS

]
, (2.65)

and

db̂

dt
= −κ

2
b̂− i

[
b̂, ĤS

]
, (2.66)

where κ is the cavity damping constant. In view of Eq.(2.8) the quantum Langevin

equations for cavity mode â and b̂ turns out to be

dâ

dt
= −κ

2
â− gσ̂k

a + εb̂†, (2.67)

and

db̂

dt
= −κ

2
â− gσ̂k

b + εâ†. (2.68)

2.3 Stochastic differential equations

Here we seek to derive the stochastic differential equations or the equations of evo-

lution of the expectation values of the atomic operators by applying the master

equation and the large-time approximation scheme. Moreover, we find the steady-

state solutions of the equations of evolution of the atomic operators. To this end,

employing the relation

d

dt
〈Â〉 = Tr

(dρ̂

dt
Â

)
, (2.69)
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along with the master equation described by Eq. (2.64), one can readily establish

that

d

dt
〈σ̂k

a〉 = g
[
〈η̂k

b â〉 − 〈η̂k
a â〉+ 〈b̂†σ̂k

c 〉
]
+

Ω

2
〈σ̂†kb 〉 − γ〈σ̂k

a〉, (2.70)

d

dt
〈σ̂k

b 〉 = g
[
〈η̂k

c b̂〉 − 〈η̂k
b b̂〉 − 〈â†σ̂k

c 〉
]
− Ω

2
〈σ̂†ka 〉 −

γ

2
〈σ̂k

b 〉, (2.71)

d

dt
〈σ̂k

c 〉 = g
[
〈σ̂k

a â〉 − 〈σ̂k
a â〉 − 〈âkb̂〉

]
+

Ω

2

[
〈η̂k

c 〉 − 〈η̂k
c 〉

]
− γ

2
〈σ̂k

c 〉, (2.72)

d

dt
〈η̂k

a〉 = g
[
〈σ̂†ka â〉+ 〈â†σ̂k

a〉+
Ω

2

[
〈σ̂k

c 〉+ 〈σ̂†kc 〉
]
− γ〈η̂k

a〉, (2.73)

d

dt
〈η̂k

b 〉 = g
[
〈σ̂†kb b̂〉+ 〈b̂†σ̂k

b 〉 − 〈σ̂†ka â〉 − 〈â†σ̂k
a〉

]
+ γ

[
〈η̂k

a〉,−〈η̂k
b 〉

]
(2.74)

in which

η̂k
a = |a〉k k〈a|, (2.75)

η̂k
b = |b〉k k〈b|, (2.76)

η̂k
b = |c〉k k〈c|. (2.77)

We see that Eqs. (2.70)-(2.74) are nonlinear differential equations and hence it is

not possible to find the exact time dependant solutions of these equations. We in-

tend to overcome this problem by applying the large-time approximation. There-

fore, employing this approximation scheme, we get from Eqs. (2.67) and (2.68) the

approximately valid relations

â =
−2g

κ
σ̂k

a +
2ε

κ
b̂†, (2.78)

b̂ =
−2g

κ
σ̂k

b +
2ε

κ
â†, (2.79)
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and the corresponding conjugates are

â† =
−2g

κ
σ̂†ka +

2ε

κ
b̂, (2.80)

b̂† =
−2g

κ
σ̂†kb +

2ε

κ
â, (2.81)

so that applying Eqs. (2.80) and (2.81) into (2.78) and (2.79) leads to

â =
−2gkσ̂k

a − 4gεσ̂†kb

κ2 − 4ε2
, (2.82)

b̂ =
−2gkσ̂k

b − 4gεσ̂†ka

κ2 − 4ε2
. (2.83)

These are the steady-state solutions of quantum Langevin equation.

Now introducing Eqs. (2.82) and (2.83) into Eqs. (2.70)-(2.74), the stochastic differ-

ential equations of the atomic operators takes the form

d

dt
〈σ̂k

a〉 = −(γ +
γcκ

2

κ2 − 4ε2
)〈σ̂k

a〉+ (
Ω

2
+

γcκε

κ2 − 4ε2
)〈σ̂†b〉, (2.84)

d

dt
〈σ̂k

b 〉 = −1

2
(γ +

γcκ
2

κ2 − 4ε2
)〈σ̂k

b 〉 −
Ω

2
〈σ̂†ka 〉, (2.85)

d

dt
〈σ̂k

c 〉 = −1

2
(γ +

γcκ
2

κ2 − 4ε2
)〈σ̂k

c 〉+
Ω

2

[
〈η̂k

c 〉 − 〈η̂k
a〉

]
, (2.86)

d

dt
〈η̂k

a〉 = −(γ +
γcκ

2

κ2 − 4ε2
)〈η̂k

a〉+ (
Ω

2
− γcκε

κ2 − 4ε2
)
[
〈σ̂k

c 〉+ 〈σ̂†kc 〉
]
, (2.87)

d

dt
〈η̂k

b 〉 = (γ +
γcκ

2

κ2 − 4ε2
)
[
〈η̂k

a〉 − 〈η̂k
b 〉+

γcκε

κ2 − 4ε2

[
〈σ̂k

c 〉+ 〈σ̂†kc 〉
]
, (2.88)

where

γc =
4g2

κ
, (2.89)
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is the stimulating emission constant. We next sum Eqs .(2.84)-(2.88) over the N

three-level atoms, so that

d

dt
〈m̂a〉 = −(γ +

γcκ
2

κ2 − 4ε2
)〈m̂a〉+ (

Ω

2
+

γcκε

κ2 − 4ε2
)〈m̂†

b〉, (2.90)

d

dt
〈m̂b〉 = −1

2
(γ +

γcκ
2

κ2 − 4ε2
)〈m̂b〉 −

Ω

2
〈m̂†k

a 〉, (2.91)

d

dt
〈m̂c〉 = −1

2
(γ +

γcκ
2

κ2 − 4ε2
)〈m̂c〉+

Ω

2

[
〈N̂c〉 − 〈N̂a〉

]
, (2.92)

d

dt
〈N̂a〉 = −(γ +

γcκ
2

κ2 − 4ε2
)〈N̂a〉+ (

Ω

2
− γcκε

κ2 − 4ε2
)
[
〈m̂c〉+ 〈m̂†

c〉
]
, (2.93)

d

dt
〈N̂k

b 〉 = +(γ +
γcκ

2

κ2 − 4ε2
)
[
〈N̂a〉 − 〈N̂b〉+

γcκε

κ2 − 4ε2

[
〈m̂c〉+ 〈m̂†

c〉
]
, (2.94)

in which

m̂a =
N∑

k=1

σ̂k
a , (2.95)

m̂b =
N∑

k=1

σ̂k
b , (2.96)

m̂c =
N∑

k=1

σ̂k
c , (2.97)

N̂a =
N∑

k=1

η̂k
a , (2.98)

N̂b =
N∑

k=1

η̂k
b , (2.99)

N̂c =
N∑

k=1

η̂k
c . (2.100)

The operators N̂a ,N̂b, N̂c represents the number of atoms in the top, intermediate

and the bottom levels respectively. In addition, employing the completeness rela-

tion

η̂a + η̂a + η̂a = Î , (2.101)
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we easily verified that

〈N̂a〉+ 〈N̂b〉+ 〈N̂c〉 = N. (2.102)

Furthermore, using the definition given by Eqs. (2.95)-(2.97) and setting for any k

σ̂a = |b〉〈a|, (2.103)

σ̂b = |c〉〈b|, (2.104)

σ̂c = |c〉〈a|, (2.105)

we have

m̂a = N |b〉〈a|, (2.106)

m̂b = N |c〉〈b|, (2.107)

m̂c = N |c〉〈a|. (2.108)

Following a similar procedure, one can easily verify that

N̂a = N |a〉〈a|, (2.109)

N̂b = N |b〉〈b|, (2.110)

N̂c = N |c〉〈c|. (2.111)

Using the definition

m̂ = m̂a + m̂b, (2.112)
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and taking into account Eqs. (2.106)-(2.111), it can be readily established that

m̂†m̂ = N(N̂a + N̂b), (2.113)

m̂m̂† = N(N̂b + N̂c), (2.114)

m̂2 = Nm̂c, (2.115)

m̂†2 = Nm̂†
c. (2.116)

On the other hand, combination of Eqs. (2.67) and (2.68) together with (2.78) and

(2.79), the cavity mode operators â and b̂ can be

dâ

dt
= −1

2

[κ2 − 4ε2

κ

]
â(t)− gσ̂k

a −
2gε

κ
σ̂†kb , (2.117)

db̂

dt
= −1

2

[κ2 − 4ε2

κ

]
b̂(t)− gσ̂k

b −
2gε

κ
σ̂†ka . (2.118)

Now applying the steady-state solutions of Eqs. (2.117) and (2.118), we get

â =
−2gkσ̂k

a − 4gεσ̂†kb

κ2 − 4ε2
, (2.119)

b̂ =
−2gkσ̂k

b − 4gεσ̂†ka

κ2 − 4ε2
. (2.120)

The commutation relation of the cavity mode operators â and â† as well as b̂ and b̂†

can be

[
â, â†

]
k

=
γcκ

κ2 − 4ε2

[
κ2(η̂k

b − η̂k
a) + 4ε2(η̂k

b − η̂k
c )− 2εκ(σ̂k

c + σ̂†kc )
]
, (2.121)

and on summing over all atoms, we have

[
â, â†

]
=

γcκ

κ2 − 4ε2

[
κ2(N̂b − N̂a) + ε2(N̂b − N̂c)− 2εκ(m̂c + m̂†

c)
]
, (2.122)

where

[
â, â†

]
=

N∑
k=1

[
â, â†

]
k
.
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In the absence of parametric amplifier (when ε = 0), Eq. (2.122) takes the form

[
â, â†

]
=

γc

κ

[
N̂b − N̂a

]
. (2.123)

Similarly for light mode b, we see that

[
b̂, b̂†

]
k

=
γcκ

[κ2 − 4ε2]2
[
κ2(η̂k

c − η̂k
b ) + 4ε2(η̂k

a − η̂k
b ) + 2εκ(σ̂k

c + σ̂†kc )
]
, (2.124)

from which follows

[
b̂, b̂†

]
=

γcκ

[κ2 − 4ε2]2
[
κ2(N̂c − N̂b) + 4ε2(N̂a − N̂b) + 2εκ(m̂c + m̂†

c)
]
. (2.125)

In the absence of parametric amplifier, for ε = 0, Eq. (2.125) reduces to

[
b̂, b̂†

]
=

γc

κ

[
N̂c − N̂b

]
. (2.126)

The cavity light modes a and b are interacting with all N three-level atoms or in the

presence of N three-level atoms, we rewrite Eqs. (2.117) and (2.118) as operators as

dâ(t)

dt
= −1

2

[κ2 − 4ε2

κ

]
â(t) + λ1m̂a + λ2m̂

†
b, (2.127)

db̂(t)

dt
= −1

2

[κ2 − 4ε2

κ

]
b̂(t) + β1m̂b + β2m̂

†
a, (2.128)

in which λ and β are constants whose values remain to be fixed. We note that the

steady state solutions of Eqs. (2.117) and (2.118) are,

â =
2λ1κ

κ2 − 4ε2
m̂a +

2λ2κ

κ2 − 4ε2
m̂†

b, (2.129)

b̂ =
2β2κ

κ2 − 4ε2
m̂b +

2β1κ

κ2 − 4ε2
m̂†

a. (2.130)

Now taking in to account Eqs. (2.129) and (2.130), the commutation relations for

the cavity mode operators are found to be

[
â, â†

]
=

4Nκ3

[κ2 − 4ε2]2
[
λ2

1(N̂b − N̂a) + λ2
2(N̂b − N̂c)− λ1λ2(m̂c + m̂†

c)
]
, (2.131)[

b̂, b̂†
]

=
4Nκ3

[κ2 − 4ε2]2
[
β2

1(N̂c − N̂b) + β2
2(N̂b − N̂c) + β1β2(m̂c + m̂†

c)
]
. (2.132)
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Thus on account of Eqs. (2.122) with (2.131) and (2.125) with (2.132), we see that

λ1 = β1 = ± g√
N

, (2.133)

λ2 = β2 = ± 2gε

κ
√

N
. (2.134)

Hence in view of these two results, the equations of evolution of the light modes a

and b operators given by Eqs. (2.127) and (2.128) can be written as

dâ

dt
= −1

2

[κ2 − 4ε2

κ

]
â +

g√
N

m̂a +
2gε

κ
√

N
m̂†

b, (2.135)

db̂

dt
= −1

2

[κ2 − 4ε2

κ

]
b̂ +

g√
N

m̂b +
2gε

κ
√

N
â†b. (2.136)

Moreover, the steady-state solutions of Eqs. (2.135) and (2.136) are

â =
2gκ√

N(κ2 − 4ε2)
m̂a +

4gε√
N(κ2 − 4ε2)

m̂†
b, (2.137)

b̂ =
2gκ√

N(κ2 − 4ε2)
m̂b +

4gε√
N(κ2 − 4ε2)

m̂†
a. (2.138)

Now adding Eqs. (2.135) and (2.136) results in

dĉ(t)

dt
= −

[κ2 − 4ε2

κ

]
ĉ(t) +

g√
N

m̂ +
2gε

κ
√

N
m̂†, (2.139)

in which

ĉ = â + b̂, (2.140)

m̂ = m̂a + m̂b. (2.141)

The steady state solution of Eq. (2.139) is found to be

ĉ =
2gκ√

N(κ2 − 4ε2)
m̂ +

4gε√
N(κ2 − 4ε2)

m̂†. (2.142)

The commutation for ĉ and ĉ† can be expressible as

[
ĉ, ĉ†

]
=

γcκ
3(N̂c − N̂a) + 4γcκε2(N̂a − N̂c)

[κ2 − 4ε2]2
, (2.143)
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Furthermore, in the absence of parametric amplifier (when ε = 0), we see that

[
ĉ, ĉ†

]
=

γc

κ
(N̂c − N̂a).

Next we proceed to calculate the solution the stochastic differential equations of

the cavity operators. Now , the steady-state solutions of Eqs. (2.90) - (2.94) are

〈m̂a〉 =
(Ω

2
+

γcκε

κ2 − 4ε2

)
〈m̂†

b〉, (2.144)

〈m̂b〉 = − Ω

γc + γcκ2

κ2−4ε2

〈m̂†
b〉, (2.145)

〈m̂c〉 = − Ω

γc + γcκ2

κ2−4ε2

[
〈N̂c〉 − 〈N̂a〉

]
, (2.146)

〈N̂a〉 =
(Ω

2
− γcκε

κ2 − 4ε2

)[
〈m̂c〉+ 〈m̂†

c〉
]
, (2.147)

〈N̂b〉 = 〈N̂a〉 −
γcκ2

κ2−4ε2

γc + γcκ2

κ2−4ε2

[
〈m̂c〉+ 〈m̂†

c〉
]
. (2.148)

The conjugates of Eqs. (2.144) - (2.146) are

〈m̂†
a〉 =

(Ω

2
+

γcκε

κ2 − 4ε2

)
〈m̂b〉, (2.149)

〈m̂†
b〉 = − Ω

γc + γcκ2

κ2−4ε2

〈m̂b〉, (2.150)

〈m̂†
c〉 = − Ω

γc + γcκ2

κ2−4ε2

[
〈N̂c〉 − 〈N̂a〉

]
, (2.151)

Now compering Eqs. (2.146) and (2.151) yields

〈m̂c〉 = 〈m̂†
c〉. (2.152)

It then follows that

〈N̂a〉 = 2
(Ω

2
− γcκε

κ2 − 4ε2

)
〈m̂c〉, (2.153)

〈N̂b〉 = 〈N̂a〉 − 2
γcκ2

κ2−4ε2

γc + γcκ2

κ2−4ε2

〈m̂c〉, (2.154)



2.3 Stochastic differential equations 25

Now substituting Eq. (2.150) into (2.90) and (2.149) into (2.91), we get

d

dt
〈m̂a〉 = −

(
γ +

γcκ
2

κ2 − 4ε2
+

Ω

2
+

γcκε

κ2 − 4ε2

)
〈m̂a〉, (2.155)

d

dt
〈m̂b〉 = −1

2

(
γ +

γcκ
2

κ2 − 4ε2
+

Ω

2
+

γcκε

κ2 − 4ε2

)
〈m̂b〉, (2.156)

The steady-state solution of Eqs. (2.155) and (2.156) are

〈m̂a〉 = 0, (2.157)

〈m̂b〉 = 0. (2.158)

Furthermore, the formal solution of Eqs.(2.135) and (2.136) are found to be

〈â(t)〉 = 〈â(0)〉e−µ0t′/2 +
g√
N

e−µ0t/2

∫ t

0

eµ0t/2〈m̂a(t
′)〉dt′

+
2gε

κ
√

N
e−µ0t/2

∫ t

0

eµ0t/2〈m̂†
b(t

′)〉dt′, (2.159)

and

〈b̂(t)〉 = 〈b̂(0)〉e−µ0t′/2 +
g√
N

e−µ0t/2

∫ t

0

eµ0t/2〈m̂b(t
′)〉dt′

+
2gε

κ
√

N
e−µ0t/2

∫ t

0

eµ0t/2〈m̂†
a(t

′)〉dt′, (2.160)

where µ0 = k2−4ε2

k
.

In view of Eqs. (2.157) and (2.158), and the assumption that the cavity mode light is

initially in vacuum state Eqs. (2.159) and (2.160) reduces to

〈â(t〉 = 0, (2.161)

〈b̂(t)〉 = 0. (2.162)

In view of these results, we see that

〈ĉ(t)〉 = 0. (2.163)
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We observe on the basis of equations (2.159) and (2.160) along with Eqs. (2.161),

(2.162), and (2.163), â, b̂, and ĉ are a Gaussian variable with zero mean. We next

seek to calculate the steady-state solutions of the expectation values for the atomic

operators N̂a, N̂b, N̂c, and m̂c, from Eqs. (2.92)-(2.94), we get

〈N̂a〉ss =
[ 2Ω(Ω

2
− γcκε

κ2−4ε2 )

(γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2

]
N, (2.164)

〈N̂b〉ss =
[ Ω2

(γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2

]
N, (2.165)

〈N̂c〉ss =
[ (γ + γcκ2

κ2−4ε2 )
2 + 2Ω(Ω

2
− γcκε

κ2−4ε2 )

(γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2

]
N, (2.166)

〈m̂c〉ss =
[ Ω(γ + γcκ2

κ2−4ε2 )

(γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2

]
N. (2.167)

For the case in which when the parametric amplifier is absent ( when ε = 0), we

have

〈N̂a〉ss =
[ Ω2

(γ + γc)2 + 3Ω2

]
N, (2.168)

〈N̂b〉ss =
Ω2

(γ + γc)2 + 3Ω2
N, (2.169)

〈N̂c〉ss =
[ Ω2 + (γ + γc)

2

(γ + γc)2 + 3Ω2

]
N, (2.170)

〈m̂c〉ss =
Ω(γ + γc)

(γ + γc)2 + 3Ω2
N. (2.171)

These equations represent the steady-state solutions of the equations of evolu-

tion of the atomic operators. Furthermore, upon setting γ = 0, for the case in

which spontaneous emission is absent, the steady-state solutions described by Eqs.
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(2.168)-(2.171), has the form

〈N̂a〉ss =
Ω2

γ2
c + 3Ω2

N, (2.172)

〈N̂b〉ss =
Ω2

γ2
c + 3Ω2

N, (2.173)

〈N̂c〉ss =
[ Ω2 + γ2

c

γ2
c + 3Ω2

]
N, (2.174)

〈m̂c〉ss =
Ωγc

γ2
c + 3Ω2

N. (2.175)

When Ω >> γc, these results take the form

〈N̂a〉ss =
1

3
N, (2.176)

〈N̂b〉ss =
1

3
N, (2.177)

〈N̂c〉ss =
1

3
N, (2.178)

〈m̂c〉ss = 0. (2.179)

Moreover, when Ω = 0 Eqs. (2.172)- (2.175) turns out to be

〈N̂a〉ss = 0, (2.180)

〈N̂b〉ss = 0, (2.181)

〈N̂c〉ss = N, (2.182)

〈m̂c〉ss = 0. (2.183)



3

PHOTON STATISTICS

In this chapter, we seek to study the statistical properties of the light produced by

the coherently driven non degenerate three-level laser with an open cavity and cou-

pled to a two-mode vacuum reservoir via a single-port mirror. Applying the solu-

tions of the equations of evolution of the expectation values of the atomic opera-

tors and the quantum Langevin equations for the cavity mode operators, we obtain

the photon statistics for light modes a and b. In addition, we determine the photon

statistics of the two-mode cavity light.

3.1 Single-mode photon statistics

3.1.1 The mean photon number

Here we seek to calculate the mean photon number for light mode a and b.

A, Mean photon number for light mode a

Now we seek to calculate the mean photon number of light mode a. Employing the

steady-state solution of Eq. (2.135)

â =
2gκ√

N(κ2 − 4ε2)
m̂a +

4gε√
N(κ2 − 4ε2)

m̂†
b, (3.1)

28
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and it’s conjugate is

â† =
2gκ√

N(κ2 − 4ε2)
m̂†

a +
4gε√

N(κ2 − 4ε2)
m̂b. (3.2)

The mean photon number of light mode a is defined by

n̄a = 〈â†â〉. (3.3)

In view Eqs. (3.1) and (3.2), we get

n̄a =
γcκ

3〈N̂a〉+ 4γcκε2〈N̂c〉+ 4γcκ
2ε〈m̂c〉

(κ2 − 4ε2)2
. (3.4)

On account of Eqs. (2.164), (2.166), and (2.67) we found

n̄a = q
[
2κ2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)

+4ε2[(γ +
γcκ

2

κ2 − 4ε2
)2 + 2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)] + 4κεΩ(γ +

γcκ
2

κ2 − 4ε2
)
]
, (3.5)

where

q =
γcκN

[κ2 − 4ε2]2((γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2)
.

For the case ε = 0, we see that

n̄a =
γc

κ
N

[ Ω2

(γ + γc)2 + 3Ω2

]
, (3.6)

in the absence of spontaneous emission (γ = 0), we have

n̄a =
γc

κ
N

Ω2

γ2
c + 3Ω2

, (3.7)

in addition, for Ω >> γc, we get

n̄a =
γc

3κ
N. (3.8)
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Figure 3.1: plots of the mean photon number of light mode a [Eq. (3.5)] versus Ω

for γc = 0.4, κ = 0.8, ε = 0.3, N = 50 and for different values of γ.
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Figure 3.2: plots of the mean photon number of light mode a [Eq.(3.5)] versus Ω

for γc = 0.4, κ = 0.8, γ = 0.2, N = 50, for different values of ε.
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Figure 3.3: plots of the mean photon number of light mode a [eq.(3.5)] versus γ for

γc = 0.4, κ = 0.8, Ω = 2, N = 50 and for different values of ε.
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B. Mean photon number for light mode b

Here we seek to calculate the mean photon number of light mode b. Employing the

steady-state solution of Eq. (2.136)

b̂ =
2gκ√

N(κ2 − 4ε2)
m̂b +

4gε√
N(κ2 − 4ε2)

m̂†
a (3.9)

and it’s conjugate is

b̂† =
2gκ√

N(κ2 − 4ε2)
m̂†

b +
4gε√

N(κ2 − 4ε2)
m̂a. (3.10)

The mean photon number of light mode b can be expressed as

n̄b = 〈b̂†b̂〉. (3.11)

On account of Eqs. (3.9) and (3.10), we get

n̄b =
γcκ

3〈N̂b〉+ 4γcκε2〈N̂b〉
(κ2 − 4ε2)2

. (3.12)

In view of Eq. (2.165) we found

n̄b = q
[
κ2 + 4ε2

]
, (3.13)

where

q =
γcκN

[κ2 − 4ε2]2((γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2)
.

For the case ε = 0, we have

n̄b =
γc

κ
N

[ Ω2

(γ + γc)2 + 3Ω2

]
, (3.14)

in the absence of spontaneous emission (γ = 0), we get

n̄b =
γc

κ
N

[ Ω2

γ2
c + 3Ω2

]
, (3.15)
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Figure 3.4: plots of the mean photon number of light mode b [Eq.(3.13)] versus Ω

for γc = 0.4, κ = 0.8, ε = 0.3, N = 50 and for different values of γ.

Figure 3.5: plots of the mean photon number of light mode b [Eq.(3.13)] versus Ω

for γc = 0.4, κ = 0.8, γ = 0.2, N = 50 and for different values of ε.
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Figure 3.6: plots of the mean photon number of light mode b [Eq.(3.13)] versus γ

for γc = 0.4, κ = 0.8, Ω = 2, N = 50 and for different values of ε.

moreover, for Ω >> γc, we see that

n̄b =
γc

3κ
N. (3.16)

3.1.2 The photon number variance

Now, we proceed to obtain the photon number variance of light mode a and b.

A, The photon number variance of light mode a

The photon number variance of light mode b is defined by

(∆na)
2 = 〈n2

a〉 − 〈na〉2. (3.17)

We have

n̂a = â†â.
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Since the operator â is a Gaussian variable with zero mean, we verified that

(∆na)
2 = 〈â†â〉〈ââ†〉. (3.18)

We easily establish that

〈ââ†〉 =
γcκ

[κ2 − 4ε2]2
[
κ2〈N̂b〉+ 4ε2〈N̂b〉

]
. (3.19)

Now, combining Eqs. (3.4) and (3.19), we obtain

(∆na)
2 = (

γcκ
3〈N̂a〉+ γcκε2〈N̂c〉+ 4γcκ

2ε〈m̂c〉
[κ2 − 4ε2]2

)(
γcκ

3〈N̂b〉+ γcκε2〈N̂b〉
[κ2 − 4ε2]2

). (3.20)

In view of Eqs. (2.165)-(2.167), we get

(∆na)
2 = q2

[
(2κ2Ω(

Ω

2
− γcκε

κ2 − 4ε2
) + 4κεΩ(γ +

γcκ
2

κ2 − 4ε2
)

+4ε2[(γ +
γcκ

2

κ2 − 4ε2
)2 + 2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)])(κ2Ω2 + 4ε2Ω2)

]
, (3.21)

where

q =
γcκN

[κ2 − 4ε2]2((γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2)
.

When ε = 0, Eq. (3.21) reduces to

(∆na)
2 =

[γc

κ
N

]2[ Ω2

(γ + γc)2 + 3Ω2

]2
, (3.22)

in the absence of spontaneous emission (γ = 0), we get

(∆na)
2 =

[γc

κ
N

]2[ Ω2

γ2
c + 3Ω2

]2
, (3.23)

in addition, we note that, for Ω >> γc we obtain

(∆na)
2 =

[ γc

3κ
N

]2
. (3.24)
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Figure 3.7: plots of the photon number variance for mode a [Eq.(3.21)] versus Ω

for γc = 0.4, κ = 0.8, ε = 0.3, N = 50 and for different values of γ.

Figure 3.8: plots of the photon number variance for mode a [Eq.(3.21)] versus Ω

for γc = 0.4, κ = 0.8, γ = 0.2, N = 50 and for different values of ε.
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Figure 3.9: plots of the photon number variance for mode a [Eq.(3.21)] versus γ for

γc = 0.4, κ = 0.8, Ω = 2, N = 50 and for different values of ε.

In view of eq.(3.8) we have

(∆na)
2 = n̄2

a. (3.25)

This represents the normally ordered variance of the photon number for chaotic

light.

B, The photon number variance of light mode b

The photon number variance of light mode b is defined by

(∆nb)
2 = 〈n2

b〉 − 〈nb〉2. (3.26)

We have

n̂b = b̂†b̂.



3.2 Two-mode photon statistics 39

Since the operator b̂ is a Gaussian variable with zero mean, we verified that

(∆nb)
2 = 〈b̂†b̂〉〈b̂b̂†〉. (3.27)

We easily establish that

〈b̂b̂†〉 =
γcκ

3〈N̂c〉+ 4γcκε2〈N̂a〉+ 4γcκ
2ε〈m̂c〉

[κ2 − 4ε2]2
. (3.28)

Now, combining Eqs. (3.12) and (3.28), we have

(∆nb)
2 = (

γcκ
3〈N̂b〉+ 4γcκ

3ε2〈N̂b〉
[κ2 − 4ε2]2

)(
γcκ

3〈N̂c〉+ 4γcκε2〈N̂a〉+ 4γcκ
2ε〈m̂c〉

[κ2 − 4ε2]2
). (3.29)

In view of Eqs. (2.164) - (2.167) we get

(∆nb)
2 = q2

[(
κ2Ω2 + 4κ2ε2Ω2

)(
κ2[(γ +

γcκ
2

κ2 − 4ε2
)2 + 2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)]

+4κεΩ(γ +
γcκ

2

κ2 − 4ε2
) + 8ε2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)
)]

, (3.30)

where

q =
γcκN

[κ2 − 4ε2]2((γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2)
.

For the case ε = 0, Eq. (3.30) reduces to

(∆nb)
2 =

[γc

κ
N

]2[ Ω2 + (γ + γc)
2

(γ + γc)2 + 3Ω2

]2
, (3.31)

in the absence of spontaneous emission (γ = 0), we get

(∆nb)
2 =

[γc

κ
N

]2[ Ω2 + γ2
c

γ2
c + 3Ω2

]2
, (3.32)

in addition, we note that, for Ω >> γc we see that

(∆nb)
2 =

[ γc

3κ
N

]2
. (3.33)

In view of Eq. (3.16) we have

(∆nb)
2 = n̄2

b . (3.34)
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Figure 3.10: plots of the photon number variance for mode b [Eq.(3.30)] versus Ω

for γc = 0.4, κ = 0.8, ε = 0.3, N = 50 and for different values of γ.

Figure 3.11: plots of the photon number variance for mode b [Eq.(3.30)] versus Ω

for γc = 0.4, κ = 0.8, γ = 0.2, N = 50 and for different values of ε.
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Figure 3.12: plots of the photon number variance for mode b [Eq.(3.30)] versus γ

for γc = 0.4, κ = 0.8, Ω = 2, N = 50 and for different values of ε.

3.2 Two-mode photon statistics

Applying the steady state solutions of the equations of evolution of the expectation

values of the atomic operators and the quantum Langevin equations for the cavity

mode operators. We seek to obtain the mean and variance of the photon number

for the two mode light.

3.2.1 Two mode mean photon number

Here we seek to calculate the steady-state solution of the mean photon number of

the two mode cavity light beam.

The mean photon number of two mode light represented by the operators ĉ and ĉ†
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is defined by

n̄ = 〈ĉ†ĉ〉. (3.35)

From Eq. (2.142), we have

ĉ =
2gκ√

N(κ2 − 4ε2)
m̂ +

4gε√
N(κ2 − 4ε2)

m̂† (3.36)

and it’s conjugates

ĉ† =
2gκ√

N(κ2 − 4ε2)
m̂† +

4gε√
N(κ2 − 4ε2)

m̂. (3.37)

Eq. (3.35) gives as

n̄ =
γcκ

3[〈N̂a〉+ 〈N̂b〉] + 4γcκ
2ε〈m̂c〉+ 4γcκε2[〈N̂b〉+ 〈N̂c〉]

(κ2 − 4ε2)2
. (3.38)

In view of Eq.(2.164) - Eq.(2.167) we obtain

n̄ = q
[
2κ2Ω(

Ω

2
− γcκε

κ2 − 4ε2
) + κ2Ω2 + 4κεΩ(γ +

γcκ
2

κ2 − 4ε2
)

+4ε2[Ω2 + (γ +
γcκ

2

κ2 − 4ε2
)2 + 2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)]
]
, (3.39)

where

q =
γcκN

[κ2 − 4ε2]2((γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2)

For the case ε = 0, we easily shows

n̄ =
γc

κ
N

[ 2Ω2

(γ + γc)2 + 3Ω2

]
, (3.40)

in the absence of spontaneous emission (γ = 0), we get

n̄ =
γc

κ
N

[ 2Ω2

γ2
c + 3Ω2

]
. (3.41)
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Figure 3.13: plots of the mean photon number for two mode [Eq.(3.39)] versus Ω

for γc = 0.4, κ = 0.8, ε = 0.3, N = 50 and for different values of γ.
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Figure 3.14: plots of the mean photon number for two mode [Eq.(3.39)] versus Ω

for γc = 0.4, κ = 0.8, γ = 0.2, N = 50 and for different values of ε.
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Figure 3.15: plots of the mean photon number for two mode [Eq.(3.39)] versus γ

for γc = 0.4, κ = 0.8, Ω = 2, N = 50 and for different values of ε.
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Moreover, for Ω >> γc, we obtain

n̄ = 2
γc

3κ
N. (3.42)

Therefore

n̄ = n̄a + n̄b. (3.43)

This is, the mean photon number of two-mode light is the sum of the mean photon

number of the separate single-mode light.

Fig. 3.13, shows that the mean photon number for two-mode cavity light in the

presence of spontaneous emission (when γ 6= 0) and in the absence of spontaneous

emission (when γ = 0). It is found that the mean photon number of the two-mode

cavity light increases with Ω in both cases. Moreover, the mean photon number of

the two-mode cavity light is greater when γ = 0, than when γ 6= 0 at Ω ≤ 1.25, and

the mean photon number of the two-mode cavity light is smaller when γ = 0, than

when γ 6= 0 for ε = 0.3 at 1.25 ≤ Ω ≤ 3.

fig. 3.14, shows that the mean photon number for two-mode cavity light is greater

when in the presence of parametric amplifier (when ε 6= 0), than when in the ab-

sence of parametric amplifier (when ε = 0). Therefore the parametric amplifier

increase the mean photon number of two-mode cavity light.

3.2.2 Two-mode photon number variance

Here we seek to obtain the photon number variance of the two mode light beam.

The photon number variance of two mode cavity light can be expressed as

(∆n)2 = 〈(ĉ†ĉ)2〉 − 〈ĉ†ĉ〉2. (3.44)
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Since ĉ is a Gaussian variable with zero mean, the variance of the photon number

can be put in the form

(∆n)2 = 〈ĉ†ĉ〉〈ĉĉ†〉+ 〈ĉ†2〉〈ĉ2〉. (3.45)

Using Eq. (3.36) and Eq. (3.37), we get

〈ĉĉ†〉 =
γcκ

3[〈N̂b〉+ 〈N̂c〉] + 4γcκ
2ε〈m̂c〉+ 4γcκε2[〈N̂a〉+ 〈N̂b〉]

(κ2 − 4ε2)2
, (3.46)

〈ĉ†2〉 =
γcκ

κ2 − 4ε2

[
2κε(N + 〈N̂b〉) + (κ2 + 4ε2)〈m̂c〉

]
, (3.47)

〈ĉ2〉 =
γcκ

κ2 − 4ε2

[
2κε(N + 〈N̂b〉) + (κ2 + 4ε2)〈m̂c〉

]
. (3.48)

Now, combining Eq. (3.38), (3.46), (3.47), (3.48), and taking into account ε = 0, we

obtain

(∆n)2 = [
γcN

κ
]2

[4Ω4 + 3Ω2(γ + γc)
2

[(γ + γc)2 + 3Ω2]2
]
. (3.49)

In the absence of spontaneous emission (γ = 0) we have

(∆n)2 = [
γcN

κ
]2

[4Ω4 + 3Ω2γ2
c

[(γ2
c + 3Ω2]2

]
, (3.50)

moreover, for Ω >> γc we get

(∆n)2 = [
2γcN

3κ
]2. (3.51)

On account of Eq. (3.42) we see that

(∆n)2 = n̄2. (3.52)

fig. 3.16, shows that the photon number variance for two-mode is greater when

γ = 0, than when γ 6= 0 for ε = 0.3 at 0 ≤ Ω ≤ 0.75. Therefore the presence of
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Figure 3.16: plots of the photon number Variance for two mode [Eq.(3.49)] versus

Ω for γc = 0.4, κ = 0.8, ε = 0, N = 50 and for different values of γ.
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spontaneous decrease the photon number variance of two-mode cavity light.

Photon number correlation

The photon number correlation is defined by

g(2)(n̄a, n̄b)(0) =
〈n̄an̄b〉
〈n̄a〉〈n̄b〉

, (3.53)

where

〈n̄a〉 = 〈â†â〉,

〈n̄b〉 = 〈b̂†b̂〉

Since â and b̂ are a Gaussian variable

〈n̄an̄b〉 = 〈â†â〉〈b̂†b̂〉+ 〈â†b̂†〉〈âb̂〉+ 〈â†b̂〉〈âb̂†〉, (3.54)

g(2)(n̄a, n̄b)(0) = 1 +
〈â†b̂†〉〈âb̂〉
〈â†â〉〈b̂†b̂〉

, (3.55)

where

〈â†b̂〉〈âb̂†〉 = 0. (3.56)

Therefore, it is correlated.

Fluctuations of intensity difference

Intensity difference is defined as

ÎD = n̂a − n̂b, (3.57)

then

ÎD = â†â− b̂†b̂. (3.58)
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The fluctuations of intensity difference can be expressed as

(∆ÎD)2 = 〈Î2
D〉 − 〈ÎD〉2. (3.59)

〈Î2
D〉 = 〈â†ââ†â〉+ 〈b̂†b̂b̂†b̂〉 − 〈â†âb̂†b̂〉 − 〈b̂†b̂â†â〉 (3.60)

and

〈ÎD〉2 = 〈â†â〉2 − 〈â†â〉〈b̂†b̂〉 − 〈b̂†b̂〉〈â†â〉+ 〈b̂†b̂〉2. (3.61)

Since the cavity mode operators â and b̂ are a Gaussian variables

〈â†ââ†â〉 = 〈â†â〉2 + 〈â†â〉〈ââ†〉, (3.62)

〈b̂†b̂b̂†b̂〉 = 〈b̂†b̂〉2 + 〈b̂†b̂〉〈b̂b̂†〉, (3.63)

〈â†âb̂†b̂〉 = 〈â†â〉〈b̂†b̂〉+ 〈â†b̂†〉〈âb̂〉, (3.64)

〈b̂†b̂â†â〉 = 〈b̂†b̂〉〈â†â〉+ 〈b̂†â†〉〈b̂â〉. (3.65)

In view of Eqs. (3.62) - (3.65), Eq. (3.59) reduces to

(∆ÎD)2 = 〈â†â〉〈ââ†〉+ 〈b̂†b̂〉〈b̂b̂†〉 − 〈â†b̂†〉〈âb̂〉 − 〈b̂†â†〉〈b̂â〉. (3.66)

We vitrified that

〈âb̂〉 =
4γcκ

2ε〈N̂b〉
[κ2 − 4ε2]2

, (3.67)

〈b̂†â†〉 =
4γcκ

2ε〈N̂b〉
[κ2 − 4ε2]2

, (3.68)
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〈â†b̂†〉 =
2γcκ

2ε(〈N̂a〉+ 〈N̂c〉) + (γcκ
3 + 4γcκε2)〈m̂c〉

[κ2 − 4ε2]2
, (3.69)

〈b̂â〉 =
2γcκ

2ε(〈N̂a〉+ 〈N̂c〉) + (γcκ
3 + 4γcκε2)〈m̂c〉

[κ2 − 4ε2]2
. (3.70)

Now combining Eqs. (3.4), (3.12), (3.19), and (3.28), together with Eqs. (3.67)-(3.70)

and for the case ε = 0, we obtain

(∆ÎD)2 = [
γc

κ
N ]2

[2Ω4 + Ω2(γ + γc)
2

[(γ + γc)2 + 3Ω2]2
]
, (3.71)

for γ = 0

(∆ÎD)2 = [
γc

κ
N ]2

[2Ω4 + Ω2γ2
c

[γ2
c + 3Ω2]2

]
, (3.72)

in addition, for Ω >> γc we get

(∆ÎD)2 = 2[
γc

3κ
N ]2. (3.73)

In view of Eq. (3.8) we see that

(∆ÎD)2 = 2n̄2
a. (3.74)

Fig. 3.17, shows that the fluctuations of intensity difference is greater when γ = 0,

than when γ 6= 0 at 0 ≤ Ω ≤ 3. Therefore the presence of spontaneous emission

decrease the fluctuations of intensity difference.
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Figure 3.17: plots of Intensity Fluctuation Difference [Eq.(3.71)] versus Ω for γc =

0.4, κ = 0.8, ε = 0, N = 50 and for different values of γ.



4

QUADRATURE SQUEEZING

In this chapter we seek to study the quadrature variance and the quadrature squeez-

ing of the light produced by the coherently driven nondegenerate three-level laser

with an open cavity and coupled to a two-mode vacuum reservoir via a single-port

mirror. Applying the steady-state solutions of the equations of evolution of the ex-

pectation values of the atomic operators and the quantum Langevin equations for

the cavity mode operators, we obtain the quadrature variances for light modes a

and b. In addition, we determine the quadrature squeezing of the two-mode cavity

light.

4.1 Single-mode quadrature variance

In this section we seek to study the quadrature variance of the light mode a and b.

4.1.1 The quadrature variance of light mode a

Now we proceed to calculate the quadrature variance of light mode a in the entire

frequency interval.

53
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The squeezing properties of light mode a are described by two quadrature operators

â+ = â† + â (4.1)

and

â− = i(â† − â). (4.2)

where â+ and â− are Hermitian operators representing physical quantities called

plus and minus quadratures, respectively, while â† and â are the creation and an-

nihilation operators for light mode a. With the help of Eqs. (4.1) and (4.2), we can

show that the two quadrature operators satisfy the commutation relation

[
â−, â+

]
= −2i

[
â, â†

]
, (4.3)

On account of Eq. (2.122), we have

[
â, â†

]
=

γcκ
3(N̂b − N̂a) + 4γcκε2(N̂b − N̂c)− 2γcκ

2ε(m̂c + m̂†
c)

(κ2 − 4ε2)2
, (4.4)

then

[
â−, â+

]
= −2i

γcκ
3(N̂b − N̂a) + 4γcκε2(N̂b − N̂c)− 2γcκ

2ε(m̂c + m̂†
c)

(κ2 − 4ε2)2
. (4.5)

When ε = 0 one can write

[
â−, â+

]
= 2i

γc

κ

[
N̂a − N̂b

]
. (4.6)

In view of this result, the uncertainty relation for the plus and minus quadrature

operators of mode a is expressed as

∆â+∆â− ≥
1

2

∣∣〈[â+, â−]〉
∣∣. (4.7)
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It then follows

∆â+∆â− ≥
∣∣〈ââ†〉 − 〈â†â〉

∣∣, (4.8)

On account of Eqs. (3.19) and (3.4) we get

∆â+∆â− ≥
[γcκ

3〈N̂b〉+ 4γcκε2〈N̂b〉]
[κ2 − 4ε2]2

− γcκ
3〈N̂a〉 − γcκε2〈N̂c〉 − 4γcκ

2〈m̂c〉
(κ2 − 4ε2)2

. (4.9)

In view of Eqs. (2.164) - (2.167) it shows

∆â+∆â− ≥ q
[
κ2Ω2 + 4ε2Ω2 − 2κ2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)

−ε2[(γ +
γcκ

2

κ2 − 4ε2
)2 + 2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)]

−4κε(γ +
γcκ

2

κ2 − 4ε2
)2

]
, (4.10)

where

q =
γcκN

[κ2 − 4ε2]2((γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2)
,

When ε = 0 we see that

∆â+â− ≥
γc

κ
N

[ Ω2

(γ + γc)2 + 3Ω2
− Ω2

(γ + γc)2 + 3Ω2

]
. (4.11)

Therefore

∆â+â− ≥ 0. (4.12)

Then, we proceed to calculate the quadrature variance of light mode a.

The variance of the plus and minus quadrature operators are

(∆â+)2 = 〈â2
+〉 − 〈â+〉2. (4.13)
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On account of Eq. (4.1) we get

(∆â+)2 = 〈ââ†〉+ 〈â†â〉+ 〈â2〉+ 〈â†2〉 − 〈â〉2 − 〈â†〉2 − 2〈ââ†〉. (4.14)

And

(∆â−)2 = 〈â2
−〉 − 〈â−〉2. (4.15)

On account of Eq. (4.2) we obtain

(∆â−)2 = 〈ââ†〉+ 〈â†â〉 − 〈â2〉 − 〈â†2〉+ 〈â〉2 + 〈â†〉2 − 2〈ââ†〉. (4.16)

In view of Eq. (4.12) and (4.14) one can write

(∆â±)2 = 〈ââ†〉+ 〈â†â〉 ± 〈â2〉 ± 〈â†2〉 ∓ 〈â〉2 ∓ 〈â†〉2 − 2〈ââ†〉, (4.17)

but

〈â〉 = 〈â†〉 = 〈â2〉 = 〈â†2〉 = 0.

Therefore

(∆â±)2 = 〈ââ†〉+ 〈â†â〉. (4.18)

In view of Eq. (3.19) and Eq. (3.4) it shows

(∆â±)2 =
γcκ

3〈N̂b〉+ 4γcκε2〈N̂b〉
[κ2 − 4ε2]2

+
γcκ

3〈N̂a〉+ γcκε2〈N̂c〉+ 4γcκ
2ε〈m̂c〉

(κ2 − 4ε2)2
. (4.19)

In view of Eq. (2.164), Eq. (2.165), and Eq. (2.167) we get

(∆â±)2 = q
[
2κ2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)

+ε2[(γ +
γcκ

2

κ2 − 4ε2
)2 + 2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)]

+4κεΩ(γ +
γcκ

2

κ2 − 4ε2
) + κ2Ω2 + 4ε2Ω2

]
, (4.20)
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where

q =
γcκN

[κ2 − 4ε2]2((γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2)
.

When ε = 0 we obtain

(∆â±)2 =
2γc

κ
N

[ Ω2

(γ + γc)2 + 3Ω2

]
, (4.21)

for γ = 0 and Ω >> γc we can write

(∆â±)2 =
2γc

3κ
N. (4.22)

In view of Eq. (3.8) we see that

(∆â±)2 = 2n̄a. (4.23)

4.1.2 The quadrature variance of light mode b

Here we wish to obtain the quadrature variance of light mode b in entire frequency

interval.

The squeezing properties of light mode b are described by two quadrature operators

b̂+ = b̂† + b̂ (4.24)

and

b̂− = i(b̂† − b̂), (4.25)

where b̂+ and b̂− are Hermitian operators representing physical quantities called

plus and minus quadratures, respectively, while b̂† and b̂ are the creation and an-

nihilation operators for light mode b. With the help of Eqs. (4.24) and (4.25), we can
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show that the two quadrature operators satisfy the commutation relation

[
b̂−, b̂+

]
= −2i

[
b̂, b̂†

]
. (4.26)

On account of Eq. (2.125) we have

[
b̂, b̂†

]
=

γcκ
3(N̂c − N̂a) + 4γcκε2(N̂a − N̂b) + 2γcκ

2ε(m̂c + m̂†
c)

(κ2 − 4ε2)2
, (4.27)

then

[
b̂−, b̂+

]
= −2i

γcκ
3(n̂c − N̂a) + 4γcκε2(N̂a − N̂b)− 2γcκ

2ε(m̂c + m̂†
c)

(κ2 − 4ε2)2
. (4.28)

when ε = 0

[
b̂−, b̂+

]
= 2i

γc

κ

[
N̂b − N̂c

]
. (4.29)

In view of this result, the uncertainty relation for the plus and minus quadrature

operators of mode b is expressed as

∆b̂+∆b̂− ≥
1

2

∣∣〈[b̂+, b̂−]〉
∣∣, (4.30)

it then follows

∆b̂+∆b̂− ≥
∣∣〈b̂b̂†〉 − 〈b̂†b̂〉∣∣. (4.31)

In view of Eq. (3.12) and Eq. (3.28) we found

∆b̂+∆b̂− ≥
γcκ

3〈N̂c〉+ 4γcκε2〈N̂a〉+ 4γcκ
2ε〈m̂c〉

[κ2 − 4ε2]2
− γcκ

3ε〈N̂b〉 − 4γcκε2〈N̂b〉
[κ2 − 4ε2]2

. (4.32)

On account of Eqs. (2.164) - (2.167) we get

∆b̂+∆b̂− ≥ q
[
κ2[(γ +

γcκ
2

κ2 − 4ε2
)2 + 2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)] + 4κεΩ(γ +

γcκ
2

κ2 − 4ε2
)

+8ε2Ω(
Ω

2
− γcκε

κ2 − 4ε2
)− κ2Ω2 − 4ε2Ω2

]
. (4.33)
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When ε = 0 it shows

∆b̂+∆b̂− ≥
γc

κ
N

∣∣ (γ + γc)
2

(γ + γc)2 + 3Ω2

∣∣, (4.34)

for γ = 0 we have

∆b̂+∆b̂− ≥
γc

κ
N

∣∣ γ2
c

γ2
c + 3Ω2

∣∣, (4.35)

for Ω >> γc we get

∆b̂+∆b̂− ≥ 0. (4.36)

Therefore the product of the uncertainties in the two quadratures satisfies the min-

imum uncertainty relation.

Then, we proceed to calculate the quadrature variance of light mode b.

The variance of the plus and minus quadrature operators of light mode b are

(∆b̂+)2 = 〈b̂2
+〉 − 〈b̂+〉2 (4.37)

and

(∆b̂−)2 = 〈b̂2
−〉 − 〈b̂−〉2. (4.38)

In view of eqs. (4.24) and (4.25) it shows

(∆b̂+)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉+ 〈b̂2〉+ 〈b̂†2〉 − 〈b̂〉2 − 〈b̂†〉2 − 2〈b̂b̂†〉, (4.39)

(∆b̂−)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 − 〈b̂2〉 − 〈b̂†2〉+ 〈b̂〉2 + 〈b̂†〉2 + 2〈b̂b̂†〉. (4.40)

On account of Eqs. (4.39) and (4.40) we can write

(∆b̂±)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 ± 〈b̂2〉 ± 〈b̂†2〉 ∓ 〈b̂〉2 ∓ 〈b̂†〉2 ∓ 2〈b̂b̂†〉, (4.41)
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we have

〈b̂〉 = 〈b̂†〉 = 〈b̂2〉 = 〈b̂†2〉 = 0.

Therefore

(∆b̂±)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉. (4.42)

In view of Eq. (3.12) and Eq. (3.28) we get

(∆b̂±)2 =
γcκ

[κ2 − 4ε2]2
[
κ2〈N̂b〉+ 4κε2〈N̂b〉] +

γcκ
3〈N̂c〉+ γcκε2〈N̂a〉+ 4γcκ

2ε〈m̂c〉
(κ2 − 4ε2)2

.(4.43)

In view of Eq. (2.164) - Eq. (2.167) we obtain

(∆b̂±)2 = q
[
κ2[(γ +

γcκ
2

κ2 − 4ε2
)2 + 2Ω(

Ω

2
− γcκε

κ2 − 4ε2
)]

+4κεΩ(γ +
γcκ

2

κ2 − 4ε2
)

+8ε2Ω(
Ω

2
− γcκε

κ2 − 4ε2
) + κ2Ω2 + 4ε2Ω2

]
, (4.44)

where

q =
γcκN

[κ2 − 4ε2]2((γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2)
.

when ε = 0 we get

(∆b̂±)2 =
γc

κ
N

[(γ + γc)
2 + 2Ω2

(γ + γc)2 + 3Ω2

]
, (4.45)

for γ = 0 one can write

(∆b̂±)2 =
γc

κ
N

[γ2
c + 2Ω2

γ2
c + 3Ω2

]
, (4.46)

for Ω >> γc we see that

(∆b̂±)2 = 2
γc

3κ
N. (4.47)
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In view of Eq. (3.16) we have

(∆b̂±)2 = 2n̄b. (4.48)

4.2 Two-mode quadrature squeezing

Now, we proceed to study the quadrature variance and the quadrature squeezing of

the two mode light beam produced by the coherently driven non degenerate three

level laser with an open cavity and coupled to a two mode vacuum reservoir.

Here we seek to determine the quadrature variance of the two mode light beam.

The squeezing properties of the two mode cavity light described by two operators

ĉ+ = ĉ† + ĉ (4.49)

and

ĉ− = i(ĉ† − ĉ), (4.50)

where ĉ+ and ĉ− are Hermitian operators representing physical quantities called

plus and minus quadratures, respectively, while ĉ† and ĉ are the creation and anni-

hilation operators for light two-mode. With the help of Eqs. (4.49) and (4.50), we

can show that the two quadrature operators satisfy the commutation relation

[
ĉ−, ĉ+

]
= −2i

[
ĉ, ĉ†

]
, (4.51)

[
ĉ−, ĉ+

]
= (−2i)

γcκ
3(N̂c − N̂a) + 4γcκε2(N̂a − N̂c)

[κ2 − 4ε2]2
. (4.52)

For ε = 0

[
ĉ−, ĉ+

]
= 2i

γc

κ

[
N̂a − N̂c

]
. (4.53)
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Then, the uncertainty relation for the plus and minus quadrature operators of two

mode is expressed as

∆ĉ+∆ĉ− ≥
1

2

∣∣〈[ĉ+, ĉ−]〉
∣∣, (4.54)

it then follows

∆ĉ+∆ĉ− ≥
∣∣〈ĉĉ†〉 − 〈ĉ†ĉ〉∣∣. (4.55)

In view of Eqs. (3.38) and (3.46) we obtain

∆ĉ+∆ĉ− ≥
γcκ

3〈N̂c〉+ 4γcκε2〈N̂a〉
[κ2 − 4ε2]2

− γcκ
3〈N̂c〉 − 4γcκε2〈N̂a〉

[κ2 − 4ε2]2
, (4.56)

therefore

∆ĉ+∆ĉ− ≥ 0. (4.57)

Next, we proceed to calculate the quadrature variance of two mode cavity light.

The variance of the plus and minus quadrature operators of two mode cavity light

is expressed as

(∆ĉ+)2 = 〈ĉ2
+〉 − 〈ĉ+〉2 (4.58)

and

(∆ĉ−)2 = 〈ĉ2
−〉 − 〈ĉ−〉2. (4.59)

In view of Eqs.(4.49) and (4.50), and since ĉ is a Gaussian variable

(∆ĉ+)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉+ 〈ĉ2〉+ 〈ĉ†2〉 − 〈ĉ〉2 − 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉 (4.60)

and

(∆ĉ−)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 − 〈ĉ2〉 − 〈ĉ†2〉+ 〈ĉ〉2 + 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉. (4.61)
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On account of Eqs.(4.60) and (4.61) we get

(∆ĉ±)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 ± 〈ĉ2〉 ± 〈ĉ†2〉 ∓ 〈ĉ〉2 ∓ 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉, (4.62)

we have

〈ĉ〉 = 〈ĉ†〉 = 0.

Therefore

(∆ĉ±)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 ± 〈ĉ2〉 ± 〈ĉ†2〉. (4.63)

On account of Eqs. (3.39), (3.46), (3.47), and (3.48) we get

(∆ĉ±)2 =
γcκ

[κ2 − 4ε2]2
[
κ2(N + 〈N̂b〉) + 4ε2(N + 〈N̂b〉)

±4κε(N + 〈N̂b〉)± 2(κ2 + 4ε2 + 4κε)〈m̂c〉
]
. (4.64)

In view of Eqs. (2.165) - (2.167) the quadrature variance two mode cavity light takes

the form

(∆ĉ−)2 =
γcκN

[κ2 − 4ε2]2[(γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2][
κ2[(γ +

γcκ
2

κ2 − 4ε2
)2 + 4Ω(

Ω

2
− γcκε

κ2 − 4ε2
) + 2Ω2]

+4ε2[(γ +
γcκ

2

κ2 − 4ε2
)2 + 4Ω(

Ω

2
− γcκε

κ2 − 4ε2
) + 2Ω2]

−4κε[(γ +
γcκ

2

κ2 − 4ε2
)2 + 4Ω(

Ω

2
− γcκε

κ2 − 4ε2
) + 2Ω2]

−2Ω(κ2 + 4ε2 + 4κε)(γ +
γcκ

2

κ2 − 4ε2
)
]
. (4.65)

When ε = 0, we obtain

(∆ĉ−)2 =
γc

κ
N

[(γ + γc)
2 + 4Ω2 − 2Ω(γ + γc)

(γ + γc)2 + 3Ω2

]
, (4.66)
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Figure 4.1: plots of the Quadrature variance of two mode [Eq.(4.65)] versus Ω for

γc = 0.4 ,κ = 0.8, ε = 0.5, N = 50 and for different values of γ.
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Figure 4.2: plots of the Quadrature variance of two mode [Eq.(4.65)] versus γ for

γc = 0.4, κ = 0.8, Ω = 2, N = 50 and for ε = 0.
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for γ = 0

(∆ĉ−)2 =
γc

κ
N

[γ2
c + 4Ω2 − 2Ωγc

γ2
c + 3Ω2

]
. (4.67)

In addition, we consider the case in which the driving coherent light is absent, thus

Ω = 0, Eq. (4.67) reduces to

(∆ĉ−)2 =
γc

κ
N. (4.68)

Therefore

(∆ĉ+)2
v =

γc

κ
N, (4.69)

and

(∆ĉ−)2
v =

γc

κ
N. (4.70)

Which is the normal ordered quadrature variance of the two-mode cavity vacuum

state.

The uncertainty in the plus and minus quadratures are equal and satisfy the mini-

mum uncertainty relation.

Fig. 4.1, shows that quadrature variance for two mode cavity light is greater when

γ = 0, than when γ 6= 0 for ε = 0.5 at Ω > 0.25. Therefore the presence of sponta-

neous emission decrease the quadrature variance of two-mode cavity light.

Next, we proceed to calculate the quadrature squeezing of the two mode cavity light

in the entire frequency interval relative to the quadrature variance of the two mode

vacuum state.

The quadrature squeezing of the two mode cavity light is expressed as

S =
(∆ĉ−)2

v − (∆ĉ−)2

(∆ĉ−)2
v

, (4.71)
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it then follows

S = 1− (∆ĉ−)2

(∆ĉ−)2
v

. (4.72)

In view of Eqs.(4.65) and (4.70), we obtain

S = 1− 1

[κ2 − 4ε2]2[(γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2][
κ2[(γ +

γcκ
2

κ2 − 4ε2
)2 + 4Ω(

Ω

2
− γcκε

κ2 − 4ε2
) + 2Ω2]

+4ε2[(γ +
γcκ

2

κ2 − 4ε2
)2 + 4Ω(

Ω

2
− γcκε

κ2 − 4ε2
) + 2Ω2]

−4κε[(γ +
γcκ

2

κ2 − 4ε2
)2 + 4Ω(

Ω

2
− γcκε

κ2 − 4ε2
) + 2Ω2]

−2Ω(κ2 + 4ε2 + 4κε)(γ +
γcκ

2

κ2 − 4ε2
)
]
. (4.73)

For ε = 0, this reduces to

S =
2Ω(γ + γc)− Ω2

(γ + γc)2 + 3Ω2
. (4.74)

Moreover, for γ = 0, we get

S =
2Ωγc − Ω2

γ2
c + 3Ω2

. (4.75)

Fig. 4.3, shows that the quadrature squeezing for two-mode cavity light is greater

when γ 6= 0, than when γ = 0 for ε = 0.3 at Ω > 0.2. Therefore the presence

of spontaneous emission increase the quadrature squeezing for two-mode cavity

light. Moreover, the maximum quadrature squeezing when γ = 0.3 and γ = 0.2 is

62.19%.

Entanglement

A quantum system is said to be entangled, if it can not be separable. That is if the
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Figure 4.3: plots of the Quadrature Squeezing [Eq.(4.73)] versus Ω for γc = 0.4,

κ = 0.1, ε = 0.3, N = 50 and for different values of γ.
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Figure 4.4: plots of the Quadrature Squeezing [Eq.(4.74)] versus Ω for γc = 0.4,

ε = 0, N = 50 and for different values of γ.
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density operator for the combined state can not be described as a combination of

the product density operators of the constituents.

ρ̂ 6=
∑

k

pkp̂
1
k ⊗ p̂2

k, (4.76)

in which pk >> 0 and
∑

k pk = 1 to verify the normalization of the combined density

states, on the other hand , a maximally entangled continuous variable (cv) state can

be expressed as the quadrature operator,such as x̂2 − x̂1 and p̂2 − p̂1.

The total variance of these two operators reduces to zero for maximally entangled

cv states.According to the criteria given by Duan [12], the cavity photons of a system

are entangled, if the sum of the variance of the quadrature operators

ŝ = x̂2 − x̂1, (4.77)

t̂ = p̂2 − p̂1, (4.78)

where

x̂1 =
1√
2
(â + â†), (4.79)

x̂2 =
1√
2
(b̂ + b̂†), (4.80)

p̂1 =
i√
2
(â− â†), (4.81)

p̂2 =
i√
2
(b̂− b̂†), (4.82)

are quadrature operators â and b̂ satisfy,

(∆s)2 + (∆t)2 < 2N. (4.83)
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Since the cavity operators â and b̂ are a Gaussian variable with zero mean, we get

(∆s)2 + (∆t)2 =
[
〈â†â〉+ 〈ââ†〉+ 〈b̂†b̂〉+ 〈b̂b̂†〉

]
−

[
〈âb̂〉+ 〈â†b̂†〉+ 〈b̂â〉+ 〈b̂†â†〉

]
,(4.84)

this gives

(∆s)2 + (∆t)2 < 2(∆a−)2. (4.85)

On the other hand, cavity atomic states of a system are entangled, if sum of the

variance of the quadrature operators

û = x̂′2 − x̂′1, (4.86)

ν̂ = p̂′2 + p̂′1, (4.87)

where

x̂′1 =
1√
2
(m̂a + m̂†

a), (4.88)

x̂′2 =
1√
2
(m̂b + m̂†

b), (4.89)

p̂′1 =
i√
2
(m̂†

a − m̂a), (4.90)

p̂′2 =
i√
2
(m̂†

b − m̂b), (4.91)

are the quadrature operators for the cavity atoms, satisfy,

(∆u)2 + (∆ν)2 < 2N. (4.92)

Since m̂a and m̂b are a Gaussian atomic operators with zero means, we can find

(∆u)2 + (∆ν)2 =
[
〈m̂†

am̂a〉+ 〈m̂am̂
†
a〉+ 〈m̂†

bm̂b〉+ 〈m̂bm̂
†
b〉

]
−

[
〈m̂am̂b〉+ 〈m̂†

bm̂
†
a〉

]
,(4.93)
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this gives

(∆u)2 + (∆ν)2 = 〈N̂a〉+ 2〈N̂b〉+ 〈N̂c〉, (4.94)

(∆u)2 + (∆ν)2 = N + 〈N̂b〉, (4.95)

it then follows

(∆u)2 + (∆ν)2 = 2N − 〈N̂a〉 − 〈N̂c〉. (4.96)

From Eq. (4.96) we have

(∆u)2 + (∆ν)2 = N
[
1 +

Ω2

(γ + γcκ2

κ2−4ε2 )2 + 4Ω(Ω
2
− γcκε

κ2−4ε2 ) + Ω2

]
. (4.97)

The plots 4.5 shows that (∆u)2 + (∆ν)2 decrease when the spontaneous emission

increase.
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Figure 4.5: plots of the Sum of Variance of Operators [Eq.(4.97)] versus Ω for γc =

0.4, κ = 0.8, ε = 0.3, N = 50 and for different values of γ.
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CONCLUSION

In this thesis we have studied the squeezing and statistical properties of the light

produced by the coherently driven nondegenerate three-level laser with an open

cavity and coupled to a two-mode vacuum reservoir via a single-port mirror. We

have carried out our calculation by putting the noise operators associated with the

vacuum reservoir in normal order. Applying the steady state solutions of the atomic

operators and the quantum Langavin equations for the cavity mode operators, we

have determined the mean , the variance of the photon number,the quadrature

squeezing, photon state entanglement as well as atom and photon number correla-

tion. It is found that the photons and the atoms in the system are strongly entangled

at steady state. Results show that the presence of parametric amplifier is to increase

the squeezing and the mean photon number of the two- mode cavity light signifi-

cantly.

Moreover, we have shown that the mean photon number of the two-mode light is

the sum of the mean photon numbers of the separate single-mode light. However,

we have observed that the photon number variance of the two-mode light beam

does not happen to be the sum of the photon number variance of the separate

74
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single-mode light beams. We have found that the light generated by the three-level

laser is in a squeezed state and the squeezing occurs in the minus quadrature. The

plots in Fig 4.3, show that the maximum quadrature squeezing when γ = 0.2 and

γ = 0.3 is 62.19% at Ω = 0.101 for ε = 0.3. The quadrature squeezing when γ = 0.3 is

greater than when γ = 0.2 at Ω > 0.102.
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