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Abstract
We have analyzed the squeezing and statistical properties of the light produced

by one-mode subharmonic generator coupled to thermal reservoir. We first ob-

tain c-number Langevin equation with the aid of the master equation. The so-

lution of the resulting c-number Langevin equation is then used to determine

the anti-normally characteristic function. With the aid of the resulting charac-

teristic function, we obtain the Q function and the density operator. In addi-

tion, employing the Q function along with the density operator, we calculate

the mean photon number, the variance of the photon number, the power spec-

trum, the photon number distribution, and the quadrature variance. We found

that the squeezing of the one-mode subharmonic generator indeed affected by

the thermal light.
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Introduction

Light has played a special role in our attempts to understand nature both clas-

sically and quantum mechanically. Squeezing is one of the interesting non-

classical features of light that has been attracting attention and studied by many

authors [3-6, 8, 11, 17, 21]. In squeezed-state of light the noise in one quadra-

ture is below the vacuum or coherent-state level at the expense of enhanced

fluctuations in the other quadrature, with the product of the uncertainties in

the two quadratures satisfying the uncertainty relation. Squeezed light has po-

tential applications in low-noise communications and precision measurements

[18, 19]. Squeezed light can be generated by quantum optical processes such as

parametric oscillation [3-6, 8, 11, 21], second harmonic generation [3, 11], and

four-wave mixing [5, 11, 13, 27]. A subharmonic generator has been considered

as an important source of squeezed light. It is one of the most interesting and

well characterized optical device in quantum optics. In this device a pump pho-

ton interacts with a nonlinear crystal inside a cavity and is down-converted into

two highly correlated photons. If these photons have the same frequency the

device is called a one-mode subharmonic generator, otherwise it is called a two-

mode subharmonic generator. The quadrature squeezing and photon statistics

1
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of the signal mode produced by one-mode subharmonic generator coupled to

a squeezed vacuum reservoir have been analyzed by a number of authors [3, 5,

8, 21]. In this thesis, we wish to study the statistical and squeezing properties of

the light generated by a one-mode subharmonic generator coupled to thermal

reservoir via a single port mirror. We first determine the master equation and c-

number Langevin equation for the one mode subharmonic generator coupled

to thermal reservoir. Employing the solution of the c -number Langevin equa-

tion, we then obtain the Q function together with the density operator, with aid

of which we calculate the photon statistics and quadrature variance of the sys-

tem under consideration.



2

The Q Function

In this chapter, we study the squeezing and statistical properties of the one-

mode subharmonic generation coupled to thermal reservoir. In a one-mode

subharmonic generator, a pump photon of frequency 2ω is down converted into

a pair of signal photons each of frequency ω. We first derive the master equa-

tion of the system under consideration. Thus employing the master equation,

we determine the c-number Langevin equation. The solution of the resulting c-

number Langevin equation is then used to determine the antinormally ordered

characteristic function. With the aid of this antinormally ordered characteristic

function, we determine the Q function. Then, we obtain an expression for the

density operator in terms of the resulting Q function.

nonlinear crystal- - �thermal reservoirsignal modepump mode

Figure 2.1 One-mode subharmonic generator coupled to thermal reservoir.
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2.1 The master equation

The process of one-mode subharmonic generation is described by the

Hamiltonian

ĤS = iµ(b̂† − b̂) +
iλ

2
(b̂â2 − b̂†â†2), (2.1)

where µ is proportional to the amplitude of the coherent light driving the pump

mode, λ is the coupling constant, and â and b̂ are the annihilation operators for

the signal mode and the pump mode, respectively. With a pump mode repre-

sented by a real and constant c-number β, the process of one-mode subhar-

monic generation can be represnted by the Hamiltonian

ĤS =
iε

2
(â2 − â†2), (2.2)

where ε = λβ.

The master equation for a cavity mode coupled to a reservoir can be written as

[3]

dρ̂

dt
=−i[ĤS, ρ̂(t)]− h〈Ĥ2

SR〉Rρ̂(t)− hρ̂(t)〈Ĥ2
SR〉R

+2hTrR

(
ĤSRρ̂(t)R̂ĤSR

)
, (2.3)

where

Ĥ = iλ′(â†âin − â†inâ), (2.4)

is the Hamiltonian describing the interaction of a cavity mode with a reservoir,

TrR is the trace over reservoir variables. Taking into account Eq. (2.4) under

consideration, we note that

〈Ĥ2
SR〉=−λ′2〈

[
(â†âinâ

†âin)− (â†âinâ
†
inâ)− (â†inââ

†âin) + (â†inââ
†
inâ)

]
〉. (2.5)
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Employing the commutation relation

[âin, â
†
in]=1, (2.6)

one easily obtains

〈Ĥ2
SR〉=−λ′2

[
â†2〈â2

in〉R − 〈â
†
inâin〉Râ†â− â†â− ââ†〈â

†
inâin〉R + 〈â†2in〉Râ2

]
. (2.7)

Next we seek to calculate the expectation values of reservoir-mode operators.

Hence the expectation value of â†inâin can be written as

〈â†inâin〉=TrR(ρ̂â†inâin), (2.8)

in which

ρ̂=
∞∑
n=0

n̄n

(1 + n̄)n+1
|n〉〈n|, (2.9)

is the density operator for thermal light. It then follows that

〈â†inâin〉R=
∞∑
n=0

n̄n

(1 + n̄)n+1
〈n|â†inâin|n〉. (2.10)

Eq. (2.8) leads to

〈â†inâin〉= n̄. (2.11)

The expectation value of the annihilation operator âin can also be written as

〈âin〉R=
∞∑
n=0

n̄n

(1 + n̄)n+1
〈n|âin|n〉. (2.12)

Then, we see that

〈âin〉= 〈â†in〉 = 0. (2.13)

Similarly, one can easily check that

〈â2
in〉= 〈â

†2
in〉 = 0. (2.14)
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Upon substituting Eqs. (2.11), (2.13), and (2.14) into (2.7), we find

〈Ĥ2
SR〉R=λ′2

(
(n̄+ 1)â†â+ n̄ââ†

)
. (2.15)

It then follows that

−h〈Ĥ2
SR〉Rρ̂(t)=−κ

2
(n̄+ 1)â†âρ̂(t)− κ

2
n̄ââ†ρ̂(t), (2.16)

where

κ=2hλ′2, (2.17)

is the cavity damping constant.

Following the same procedure, we observe that

−hρ̂(t)〈Ĥ2
SR〉R=−κ

2
(n̄+ 1)ρ̂(t)â†â− κ

2
n̄ρ̂(t)ââ†. (2.18)

Moreover, employing the Hamiltonian described by Eq. (2.4), we obtain

2hTrR

(
ĤSRρ̂(t)R̂ĤSR

)
=−2hλ2TrR

(
â†âinρ̂(t)R̂â†âin − â†âinρ̂(t)R̂â†inâ

−â†inâρ̂(t)R̂â†âin + â†inâρ̂(t)R̂â†inâ

)
. (2.19)

It then follows that

2hTrR

(
ĤSRρ̂(t)R̂ĤSR

)
=−2hλ2TrR

(
â†ρ̂(t)â†R̂â2

in − â†ρ̂(t)âR̂â†inâin

−âρ̂(t)â†R̂âinâ
†
in + âρ̂(t)âR̂â†2in

)
. (2.20)

One then readily obtains

2hTrR

(
ĤSRρ̂(t)R̂ĤSR

)
=
κ

2
(n̄+ 1)2âρ̂(t)â† +

κ

2
n̄(2â†ρ̂(t)â). (2.21)

Upon combining Eqs. (2.16), (2.18), (2.21), and (2.3), we arrive at

dρ̂

dt
=−i[ĤS, ρ̂(t)] +

κ

2
(n̄+ 1)

[
2âρ̂(t)â† − â†âρ̂(t)− ρ̂(t)â†â

]
+
κ

2
n̄

[
2â†ρ̂(t)â− ρ̂(t)ââ† − ââ†ρ̂(t)

]
. (2.22)
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This represents the master equation for a cavity mode coupled to thermal reser-

voir in which the effect of the reservoir is incorporated via the parameter n̄.

Finally, in view of Eq. (2.2), the master equation for one-mode subharmonic

generator coupled to thermal reservoir takes the form

dρ̂(t)

dt
=
ε

2

[
â2ρ̂(t)− ρ̂(t)â2 + ρ̂(t)â†2 − â†2ρ̂(t)

]
+
κ

2
(n̄+ 1)

[
2âρ̂(t)â† − â†âρ̂(t)− ρ̂(t)â†â

]
+
κ

2
n̄

[
2â†ρ̂(t)â− ρ̂(t)ââ† − ââ†ρ̂(t)

]
. (2.23)

2.2 C-number Langevin equation

Now employing the relation

d

dt
〈Â(t)〉=Tr

(
dρ̂

dt
Â(t)

)
(2.24)

and applying the cyclic property of the trace operation along with the master

equation, we readily obtain

d

dt
〈â(t)〉=−ε〈â†(t)〉 − κ

2
〈â(t)〉, (2.25)

d

dt
〈â†(t)â(t)〉=−ε〈â2(t)〉 − ε〈â†2(t)〉 − κ〈â†(t)â(t)〉+ κn̄, (2.26)

and

d

dt
〈â2(t)〉=−κ〈â2(t)〉 − 2ε〈â†(t)â(t)〉 − ε. (2.27)

The c- number equation corresponding to Eqs. (2.25), (2.26), and (2.27) are

d

dt
〈α(t)〉=−ε〈α∗(t)〉 − κ

2
〈α(t)〉, (2.28)

d

dt
〈α∗(t)α(t)〉=−ε〈α2(t)〉 − ε〈α∗2(t)〉 − κ〈α∗(t)α(t)〉+ κn̄, (2.29)
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and

d

dt
〈α2(t)〉=−κ〈α2(t)〉 − 2ε〈α∗(t)α(t)〉 − ε. (2.30)

On the basis of Eq. (2.28), one can write

d

dt
α(t)=−εα∗(t)− κ

2
α(t) + fα(t), (2.31)

where fα(t) is a noise force whose correlation properties remain to be deter-

mined. We note that Eq. (2.28) and the expectation value of Eq. (2.31) will have

the same form if

〈fα(t)〉=0. (2.32)

Using the mathematical relation

d

dt
〈α∗(t)α(t)〉=

〈
dα∗(t)

dt
α(t)

〉
+

〈
α∗(t)

dα(t)

dt

〉
, (2.33)

along with Eq. (2.31), and its complex conjugate, one can easily establish that

d

dt
〈α∗(t)α(t)〉=−ε〈α∗2(t)〉 − ε〈α2(t)〉 − κ〈α∗(t)α(t)〉

+〈α(t)f ∗(t)〉+ 〈α∗(t)f(t)〉. (2.34)

On comparing this with Eq. (2.29), we have

〈α(t)f ∗(t)〉+ 〈α∗(t)f(t)〉=κn̄. (2.35)

A formal solution of Eq. (2.31) and its complex conjugate can be written as

α(t)=α(0)e−
κ
2
t +

∫ t

0

e−κ(t−t′)/2(fα(t′)− εα∗(t′))dt′ (2.36)

and

α∗(t)=α∗(0)e−
κ
2
t +

∫ t

0

e−κ(t−t′)/2(f ∗α(t′)− εα(t′))dt′. (2.37)
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Multiplying Eq. (2.36) by f ∗α(t) and Eq. (2.37) by fα(t) from the right and taking

the expectation value of the resulting expressions

〈α(t)f ∗α(t)〉= 〈α(0)f ∗α(t)〉e−
κ
2
t +

∫ t

0

e−κ(t−t′)/2
(
〈fα(t′)f ∗α(t)〉

−〈εα∗(t′)f ∗α(t)〉
)
dt (2.38)

and

〈α∗(t)fα(t)〉= 〈α∗(0)fα(t)〉e−
κ
2
t +

∫ t

0

e−κ(t−t′)/2
(
〈f ∗α(t′)fα(t)〉

−〈εα(t′)fα(t)〉
)
dt′. (2.39)

On account of the assertion that a noise force at a later time does not affect

system variables at earlier times, we have

〈α(0)f ∗α(t)〉= 〈α(0)〉〈f ∗α(t)〉 = 0, (2.40)

〈α∗(t′)f ∗α(t)〉= 〈α∗(t′)〉〈f ∗α(t)〉 = 0, (2.41)

〈α∗(0)fα(t)〉= 〈α∗(0)〉〈fα(t)〉 = 0, (2.42)

and

〈α(t′)fα(t)〉= 〈α(t′)〉〈fα(t)〉 = 0. (2.43)

With the aid of these relations Eqs. (2.38) and (2.39) reduce to

〈α(t)f ∗α(t)〉=
∫ t

0

e−κ(t−t′)/2〈fα(t′)f ∗α(t)〉dt′ (2.44)

and

〈α∗(t)fα(t)〉=
∫ t

0

e−κ(t−t′)/2〈f ∗α(t′)fα(t)〉dt′. (2.45)
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Now taking into account Eqs. (2.35), (2.44), (2.45) and assuming that

〈fα(t′)f ∗α(t)〉= 〈f ∗α(t′)fα(t)〉, (2.46)

we arrive at ∫ t

0

e−κ(t−t′)/2〈f ∗α(t)fα(t′)〉dt′= κn̄

2
. (2.47)

Now on the basis of the relation∫ t

0

e−κ(t−t′)/2〈f(t)g(t′)〉dt′=D, (2.48)

we assert that

〈f(t)g(t′)〉=2Dδ(t− t′). (2.49)

Then on the basis of Eq. (2.48), we find

〈fα(t)f ∗α(t′)〉= 〈f ∗α(t)fα(t′)〉 = κn̄δ(t− t′). (2.50)

Furthermore, employing the relation

d

dt
〈α(t)α(t)〉= 〈dα(t)

dt
α(t) + 〈α(t)

d

dt
α(t)〉, (2.51)

along with Eq. (2.31), one can readily verify that

d

dt
〈α(t)α(t)〉=−κ〈α2(t)〉 − 2ε〈α∗(t)α(t)〉+ 2〈α(t)fα(t)〉. (2.52)

Now comparison of Eq. (2.30) and (2.52), we see that

〈α(t)fα(t)〉=−ε
2
. (2.53)

Multiplying Eq. (2.36) by fα(t) from the right and taking the expectation value

of the resulting expression, we obtain

〈α(t)fα(t)〉= 〈α(0)fα(t)〉e−
κ
2
t +

∫ t

0

e−κ(t−t′)/2
(
〈(fα(t′)fα(t)〉

−ε〈α∗(t′)fα(t)〉
)
dt′. (2.54)
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Since a noise force at a later time does not affect system variables at earlier

times, one can write

〈α(t)fα(t)〉=
∫ t

0

e−κ(t−t′)/2〈fα(t′)fα(t)〉dt′, (2.55)

so that in view of Eq. (2.53), it follows that

∫ t

0

e−κ(t−t′)/2〈fα(t)fα(t′)〉dt′=−ε
2
. (2.56)

Now with the aid of Eq. (2.48) and (2.49), we find

〈fα(t)fα(t′)〉=−εδ(t− t′). (2.57)

It is worth mentioning that Eqs. (2.32), (2.50), and (2.57) describe the correlation

properties of the noise force fα(t) associated with the normal ordering.

In order to obtain the solution of Eq. (2.31), we introduce a new variable defined

by

α±(t)=α∗(t)± α(t). (2.58)

Applying Eq. (2.31) and its complex conjugate, we see that

d

dt
α±(t)=−1

2
ξ±α±(t) + f ∗(t)± f(t), (2.59)

where

ξ±=κ± 2ε. (2.60)

According to Eq. (2.59) and Eq. (2.60), the equation of evolution of α−(t) does

not have a well behaved solution for κ < 2ε. We then identify κ = 2ε as a thresh-

old condition. For 2ε < κ, the solution of Eq. (2.59) can be written as

α±(t)=α±(0)e−ξ±t/2 +

∫ t

0

e−ξ±(t−t′)/2
(
f ∗(t′)± f(t′)

)
dt′. (2.61)



2.3 The Q function 12

Finally, applying Eqs. (2.59) and (2.60), it can be readily established that

α(t)=F+(t)α(0) + F−(t)α∗(0) +G+(t)−G−(t), (2.62)

in which

F±=
1

2

(
e−ξ+t/2 ± e−ξ−t/2

)
(2.63)

and

G±(t)=
1

2

∫ t

0

e−ξ±(t−t′)/2
(
f ∗(t′)± f(t′)

)
dt′. (2.64)

2.3 The Q function

We now proceed to calculate the Q function applying the anti-normally ordered

characteristic function for the signal mode assumed to be initially in the vac-

uum state. The Q function is expressible in terms of the anti-normally ordered

characteristic function as

Q(α, α∗, t)=
1

π2

∫
d2zφa(z

∗, z, t)ez
∗α−zα∗ . (2.65)

Employing the identity

eÂeB̂ =eB̂eÂe[Â,B̂], (2.66)

the characteristic function φa(z∗, z, t), defined in the Heisenberg picture by

φa(z
∗, z, t)=Tr

(
ρ̂(0)e−z

∗â(t)ezâ
†(t)

)
, (2.67)

can be written in terms of c-number variable associated with the normall order-

ing as

φa(z
∗, z, t)=e−z

∗z〈ezα∗(t)−z∗α(t)〉. (2.68)
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It is easy to see that α(t) is Gaussian variable with zero mean. Thus according to

Ref. [3], one can put Eq. (2.68) in the form

φa(z
∗, z, t)=e−z

∗zexp

(
1

2
〈[zα∗(t)− z∗α(t)]2〉

)
. (2.69)

It then follows that

φa(z
∗, z, t)=e−z

∗zexp

[
1

2
〈(z2α∗2(t) + z∗2α2(t)− 2z∗zα∗(t)α(t))〉

]
. (2.70)

Using Eqs. (2.62) and (2.64), one obtains

〈α∗(t)α(t)〉= 〈G∗+(t)G+(t)〉 − 〈G∗+(t)G−(t)〉

−〈G∗−(t)G+(t)〉+ 〈G∗−(t)G−(t)〉, (2.71)

〈α2(t)〉= 〈G2
+(t)〉+ 〈G2

−(t)〉 − 〈G+(t)G−(t)〉 − 〈G−(t)G+(t)〉, (2.72)

and

〈α∗2(t)〉= 〈G∗2+ (t)〉+ 〈G∗2− (t)〉 − 〈G∗+(t)G∗−(t)〉 − 〈G∗−(t)G∗+(t)〉. (2.73)

Applying Eq. (2.64), it can be readily established that

〈G2
+(t)〉= 1

4

∫ t

0

e−ξ+(2t−t′−t′′)/2
[
〈f ∗α(t′)f ∗α(t′′)〉+ 〈f ∗α(t′)fα(t′′)〉

+〈fα(t′)f ∗α(t′′)〉+ 〈fα(t′)fα(t′′)〉
]
dt′dt′′. (2.74)

Taking into account Eqs. (2.50) and (2.57), we get

〈G2
+(t)〉= 1

4

∫ t

0

e−ξ+(2t−t′−t′′)/
[
2κn̄δ(t′′ − t′)− 2εδ(t′′ − t′)

]
dt′dt′′, (2.75)

so that upon carrying out the integration, we find

〈G2
+(t)〉= (κn̄− ε)

2ξ+

(1− e−ξ+t). (2.76)
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Similarly, one can check that

〈G2
−(t)〉=−(κn̄+ ε)

2ξ−
(1− e−ξ−t), (2.77)

〈G∗+(t)G+(t)〉= (κn̄− ε)
2ξ+

(1− e−ξ+t), (2.78)

〈G∗−(t)G−(t)〉=−(κn̄+ ε)

2ξ−
(1− e−ξ−t), (2.79)

and

〈G+(t)G−(t)〉= 〈G−(t)G+(t)〉 = 0. (2.80)

Now on account of these results, we have

〈α2(t)〉= 〈α∗2(t)〉 =
(κn̄− ε)

2ξ+

(1− e−ξ+t)− (κn̄+ ε)

2ξ−
(1− e−ξ−t) (2.81)

and

〈α∗(t)α(t)〉= (κn̄− ε)
2ξ+

(1− e−ξ+t) +
(κn̄+ ε)

2ξ−
(1− e−ξ−t). (2.82)

Thus in view of Eqs. (2.81) and (2.82), Eq. (2.68) takes the form

φa(z
∗, z, t)=exp

(
− az∗z +

1

2
b(z∗2 + z2)

)
, (2.83)

in which

a=1 +
(κn̄− ε)

2ξ+

(1− e−ξ+t) +
(κn̄+ ε)

2ξ−
(1− e−ξ−t) (2.84)

and

b=
(κn̄− ε)

2ξ+

(1− e−ξ+t)− (κn̄+ ε)

2ξ−
(1− e−ξ−t). (2.85)

We now proceed to determine the Q function for the one-mode subharmonic

generator coupled to thermal reservoir. Then upon substituting Eq. (2.83) into

Eq. (2.65), we see that

Q(α, α∗, t)=
1

π2

∫
d2ze(−az∗z+z∗α−zα∗+b(z∗2+z2)/2). (2.86)
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Thus upon performing the integration by employing the relation∫
d2z

π
exp

(
− azz∗ + bz + cz∗ + Az2 +Bz∗2

)
=

[
1

a2 − 4AB

] 1
2

exp

[
abc+ Ac2 +Bb2

a2 − 4AB

]
, a > 0

(2.87)

we find

Q(α, α∗, t)=
1

π
(u2 − v2)

1
2 exp

[
− uαα∗ − v(α2 + α∗2)/2

]
, (2.88)

where

u=
a

(a2 − b2)
(2.89)

and

v=
b

(a2 − b2)
. (2.90)

This represents the Q function for the one-mode subharmonic generator cou-

pled to thermal reservoir.

2.4 The density operator

Here we seek to determine the density operator for a signal mode. Suppose

ρ̂(â†, â) is density operator for a certain light beam. The normally-ordered den-

sity operator has the form

ρ̂(t)=
∑
kl

Cklâ
†kâl. (2.91)

Now, we introduce the completeness relation for coherent state as [3]

1

π

∫
d2α|α〉〈α|= Î . (2.92)

The expectation value of an operator function Â(â†, â, t) can be expressed in the

form

〈Â(â†, â, t)〉=Tr(ρ̂(â†, â, t)Â(0)). (2.93)
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Then, using the completeness relation for coherent state twice, we have [3]

ρ̂(â†, â, t)=

∫
d2α

π

d2β

π
|α〉〈α|ρ̂(â†, â, t)|β〉〈β|. (2.94)

Thus we obtain

ρ̂(â†, â, t)=
1

π

∫
d2αd2βQ(α∗, β, t)〈α|β〉|α〉〈β|, (2.95)

in which

Q(α∗, β, t)=
1

π
〈α|ρ̂(â†, â, t)|β〉. (2.96)

Therefore, in view of Eq. (2.93) and (2.95), the expectation value of a given op-

erator function Â(â†, â) is expressible as [3]

〈Â(â†, â)〉= 1

π

∫
d2αd2βQ(α∗, β, t)

×exp
[
− α∗α− β∗β + β∗α + α∗β

]
An(α, β∗), (2.97)

where Ân(α, β∗) is a c-number function corresponding to the operator Â(â†, â)

in the normal order. Then the expectation value of a given operator function

Â(â†, â, t) for the signal mode coupled to thermal reservoir in terms of the Q

function can be rewritten as

〈Â(â†, â, t)〉=(u2 − v2)
1
2

∫
d2α

π

d2β

π
exp

[
− uα∗β − v

2
(α∗2 + β2)

−α∗α− β∗β + β∗α + α∗β

]
An(α, β∗). (2.98)



3

Photon Statistics

It would be helpful to classify the Photon statistics of light modes based on

the relation between the variance of the photon number and the mean pho-

ton number. Hence the photon statistics of a light mode for which (∆n)2 = n̄

referred to as Poissonian and the photon statistics of a light mode for which

(∆n)2>n̄ is called supper Poissonian. Otherwise the photon statistics is said

to be sub-Poissonian [3]. Then in this chapter we seek to calculate the mean

photon number, variance of the photon number, power spectrum, and photon

number distribution for the light produced by one mode subharmonic genera-

tion.

3.1 The mean photon number

The mean photon number of a light mode is expressible as

〈â†â〉=Tr(ρ̂(t)â†â). (3.1)

With the aid of Eq. (2.97), we can write

〈â†(t)â(t)〉= 1

π

∫
d2αd2βQ(α∗, β, t)

×exp
(
− α∗α− β∗β + β∗α + α∗β

)
β∗α, (3.2)

17
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so that taking into account Eq. (2.98), we have

〈â†(t)â(t)〉=(u2 − v2)
1
2

∫
d2α

π

d2β

π
exp

[
− uβα∗ − v

2
(β2 + α∗2)

−α∗α− β∗β + β∗α + α∗β

]
β∗α. (3.3)

This can be rewritten as

〈â†(t)â(t)〉=(u2 − v2)
1
2
d

dp

∫
d2α

π
exp

(
− α∗α− v

2
α∗2 + pα

)
× d

dq

∫
d2β

π
exp

(
− β∗β + α∗β + β∗α− uβα∗ − v

2
β2 + qβ∗

)
p=q=0

. (3.4)

Then leads to

〈â†(t)â(t)〉=(u2 − v2)
1
2
d

dp

∫
d2α

π
exp

(
− α∗α + pα− v

2
α∗2
)

× d

dq

∫
d2β

π
exp

(
− β∗β + ((1− u)α∗)β + (α + q)β∗ − v

2
β2

)
p=q=0

. (3.5)

Upon performing the integration over β and carrying out the differentiation

with respect to q, one finds

〈â†(t)â(t)〉=(u2 − v2)
1
2
d

dp

∫
d2α

π
e−uα

∗α+pα− v
2

(α2+α∗2)

(
(1− u)α∗ − vα

)
p=0

. (3.6)

This can be written as

〈â†(t)â(t)〉=(u2 − v2)
1
2

[
(1− u)

d2

dpdγ

∫
d2α

π
e−uα

∗α+pα+γα∗− v
2

(α2+α∗2)

−v d2

dqdγ

∫
d2α

π
e−uα

∗+(p+γ)α− v
2

(α2+α∗2)

]
p=γ=0

. (3.7)

One can then readily verify that

〈â†(t)â(t)〉= u

u2 − v2
− 1, (3.8)

so that using Eqs. (2.89) and (2.90), we obtain

〈â†(t)â(t)〉=a− 1. (3.9)
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And in view of Eq. (2.84), the mean photon number takes the form

〈â†(t)â(t)〉= (κn̄− ε)
2ξ+

(1− e−ξ+t) +
(κn̄+ ε)

2ξ−
(1− e−ξ−t). (3.10)

Thus at steady state, we see that

〈â†â〉= κ2n̄

κ2 − 4ε2
+

2ε2

κ2 − 4ε2
. (3.11)

Figure 3.1: A plot of the mean photon number versus ε [Eq. 3.11] for κ=0.8 and

n̄=10.

This shows that the mean photon number of the system under consideration

does not happens to be the sum of the mean photon number of the thermal

light and the signal mode. If we consider the case in which n̄ = 0, we see that

〈â†â〉= 2ε2

κ2 − 4ε2
. (3.12)

This is the mean photon number of the signal mode coupled to vacuum reser-

voir.
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Figure 3.2: A plot of the mean photon number versus n̄ [Eq. 3.11] for κ=0.8 and

ε=0.35.

The plots in fig. 3.1 and fig. 3.2 shows the mean photon number of the system

increases rapidly with increasing ε and n̄. Moreover, upon comparing Eqs. (3.11)

and (3.12), we see that the intensity of the light produced by the system under

consideration increases by κ2n̄
κ2−4ε2

.

3.2 The variance of the photon number

We next proceed to obtain the variance of the photon number of the signal

mode. The photon number variance is defined by

(∆n)2 = 〈(â†(t)â(t))2〉 − 〈â†(t)â(t)〉2. (3.13)

Since â(t) is Gaussian variable with zero mean, one can easily check that

〈(â†(t)â(t))2〉=2〈(â†(t)â(t)〉2 + 〈(â†(t)â(t)〉+ 〈â†2(t)〉〈â2(t)〉. (3.14)
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The expectation value of â2(t) can be written as

〈â2(t)〉=(u2 − v2)
1
2

∫
d2α

π
exp(−α∗α− v

2
α∗2)

× d

dp

∫
d2β

π
exp(−β∗β + ((1− u)α∗)β + αβ∗ − (

v

2
+ p)β2)p=0. (3.15)

Upon carrying out the the integration and performing the differentiation, we

find

〈â2(t)〉=(u2 − v2)
1
2

∫
d2α

π
exp

(
− uα∗α +

v

2
α2 − v

2
α∗2
)
α2. (3.16)

Then Eq. (3.16) can be rewritten as

〈â2(t)〉=(u2 − v2)
1
2
d

dp

∫
d2α

π
exp

(
− uα∗α + (

v

2
+ p)α2 − v

2
α∗2
)
p=0

. (3.17)

Upon carrying out the integration and performing the differentiation, one can

get

〈â2(t)〉=b. (3.18)

In a similar way, we find

〈â†2(t)〉=b. (3.19)

On account of (3.18) and (3.19), Eq. (3.14) reduced to

〈(â†(t)â(t))2〉=2〈(â†(t)â(t)〉2 + 〈(â†(t)â(t)〉+ b2. (3.20)

Upon substituting Eq. (3.20) into (3.13), we get

(∆n)2 = 〈(â†(t)â(t)〉2 + 〈(â†(t)â(t)〉+ b2. (3.21)

In view of Eqs. (3.10) and (2.85), we observe that

(∆n)2 =

[
(κn̄− ε)

2ξ+

(1− e−ξ+t)− (κn̄+ ε)

2ξ−
(1− e−ξ−t)

]2

+

[
(κn̄− ε)

2ξ+

(1− e−ξ+t) +
(κn̄+ ε)

2ξ−
(1− e−ξ−t)

]2

+
(κn̄− ε)

2ξ+

(1− e−ξ+t) +
(κn̄+ ε)

2ξ−
(1− e−ξ−t). (3.22)
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Finally, the variance of the photon number, at steady state, takes the form

(∆n)2 =

[
2κn̄ε+ κε

κ2 − 4ε2

]2

+

[
κ2n̄

κ2 − 4ε2
+

2ε2

κ2 − 4ε2

][
κ2n̄

κ2 − 4ε2
+

2ε2

κ2 − 4ε2
+ 1

]
. (3.23)

We observe from Eqs. (3.11) and (3.23) that the photon statistics of the light

produced by one-mode subharmonic generator coupled to thermal reservoir is

super-Poissonian. One can easily check that the variance of the photon number

of the signal mode coupled to vacuum reservoir is found to be

(∆n)2 =

[
κε

κ2 − 4ε2

]2

+

[
2ε

κ2 − 4ε2

]2

+

[
2ε

κ2 − 4ε2

]
. (3.24)

3.3 Power spectrum

In nearly all cases the frequency of a single-mode light is not sharply defined.

In general, there is some variation about the central frequency. We wish here to

obtain the spectrum of the mean photon number, usually known as the power

spectrum, of a light mode represented by the operators â and â†. We define the

power spectrum of a single-mode light with central frequency ω0 by [3]

P (ω)=
1

π
Re

∫ ∞
0

〈(â†(t)â(t)〉ssei(ω−ω0)τdτ. (3.25)

We now proceed to determine the two time correlation function that appears

in Eq. (3.25) for the cavity light. To this end, we realize that Eq. (2.62) can be

expressible as

α(t+ τ)=F+(τ)α(t) + F−(τ)α∗(t) +G+(t+ τ)−G−(t+ τ). (3.26)

Then multiplying both sides of this on the left by α∗(t) and taking the expecta-

tion value of the resulting equation, we have

〈α∗(t)α(t+ τ)〉ss=F+(τ)〈α∗(t)α(t)〉ss + F−(τ)〈α∗2(t)〉ss

+〈α∗(t)G+(t+ τ)〉 − 〈α∗(t)G−(t+ τ)〉, (3.27)
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so that in view of Eq. (2.63) and the fact that

〈α∗(t)G+(t+ τ)〉= 〈α∗(t)G−(t+ τ)〉 = 0, (3.28)

there follows

〈α∗(t)α(t+ τ)〉ss= 〈α∗(t)α(t)〉ss
1

2

[
e−

1
2

(κ+2ε)τ + e−
1
2

(κ−2ε)τ

]
+〈α∗2(t)〉ss

1

2

[
e−

1
2

(κ+2ε)τ − e−
1
2

(κ−2ε)τ

]
, (3.29)

in which 〈α∗(t)α(t+ τ)〉ss is the c-number function corresponding to

〈â†(t)â(t+τ)〉ss in the normal order. On account of Eqs. (2.81) and (2.82), we can

write Eq. (3.29) at steady state as

〈α∗(t)α(t+ τ)〉ss=
(κn̄− ε)
2(κ+ 2ε)

e−
1
2

(κ+2ε)τ +
(κn̄+ ε)

2(κ− 2ε)
e−

1
2

(κ−2ε)τ . (3.30)

Substituting Eq. (3.30) into Eq. (3.25), we get

P (ω)=
1

2π

(
κn̄− ε
κ+ 2ε

)
Re

∫ ∞
0

dτ e
−

(
1
2

(κ+2ε)−i(ω−ω0)

)
τ

+
1

2π

(
κn̄+ ε

κ− 2ε

)
Re

∫ ∞
0

dτ e
−

(
1
2

(κ−2ε)−i(ω−ω0)

)
τ

. (3.31)

Upon carrying out the integration by employing the identity

P (η)=
1

π
Re

∫ ∞
0

dz e
−

(
Γ
2
−i(η−η0)

)
z

≡
Γ
2π

(η − η0)2 + (Γ
2
)2
, (3.32)

we find

P (ω)=
1

2π

(
κn̄− ε
κ+ 2ε

)[ (κ+2ε)
2

(ω − ω0)2 + (κ+2ε
2

)2

]
+

1

2π

(
κn̄+ ε

κ− 2ε

)[ (κ−2ε)
2

(ω − ω0)2 + (κ−2ε
2

)2

]
. (3.33)

Upon integrating both sides of Eq. (3.33) over ω, we readily get∫ ∞
−∞

P (ω)dω= 〈â†(t)â(t)〉ss (3.34)
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in which

〈â†â〉ss=
κ2n̄

κ2 − 4ε2
+

2ε2

κ2 − 4ε2
, (3.35)

is the steady state mean photon number of the one-mode subharmonic gener-

ator coupled to thermal reservoir. From this result, we observe that P (ω)dω is

the steady state mean photon number in the interval between ω and ω + dω.

We next seek to calculate the mean photon number in a given frequency in-

terval. We thus realize that the steady state mean photon number in the interval

between ω′ = −λ and ω′ = +λ can be written as [3]

〈â†â〉±λ=

∫ +λ

−λ
P (ω′)dω′, (3.36)

where ω′ = ω − ω0. Therefore, using Eq. (3.33) and the fact that [3]

∫ +λ

−λ

dω′

ω2 + a2
=

2

a
tan−1(

λ

a
), (3.37)

we readily obtain

〈â†â〉±λ= 〈â†â〉ssz(λ), (3.38)

where

z(λ)=
1

π(κ2n̄+ 2ε2)

[
(κn̄− ε)(κ− 2ε)tan−1

(
2λ

κ+ 2ε

)
+(κn̄+ ε)(κ+ 2ε)tan−1

(
2λ

κ− 2ε

)]
. (3.39)

On the other hand, when n̄ = 0, z(λ) tends to

z(λ)=
1

2πε

[
(κ+ 2ε)tan−1

(
2λ

κ− 2ε

)
− (κ− 2ε)tan−1

(
2λ

κ+ 2ε

)]
. (3.40)

One can easily get from fig. 3.3 that
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Figure 3.3: A plot of z(λ) versus λ [Eq. 3.39] for κ=0.8 and n̄=2.

z(0.2) = 0.8165, z(0.8) = 0.9425, z(2.2) = 0.9779, z(3.6) = 0.9865,

z(4.8) = 0.9899. Then combination of these results with Eq. (3.38) yields

〈â†â〉±0.2 = 0.8165〈â†â〉ss, 〈â†â〉±0.8 = 0.9425〈â†â〉ss,

〈â†â〉±2.2 = 0.9779〈â†â〉ss, 〈â†â〉±3.6 = 0.9865〈â†â〉ss,

〈â†â〉±4.8 = 0.9899〈â†â〉ss.

We observe that a large part of the total mean photon number is confined in a

relatively small frequency interval.

3.4 The photon number distribution

We wish to obtain the explicit expression for the photon number distribution

employing the Q function along with the density operator for the signal mode

coupled to thermal reservoir. The photon number distribution for the single

mode light can be defined as

P (n)= 〈n|ρ̂(â†, â, t)|n〉. (3.41)



3.4 The photon number distribution 26

Introducing Eq. (2.95) into (3.41), we see that

P (n)=
1

π

∫
d2zd2ηQ(z∗, η, t)〈n|z〉〈η|n〉〈z|η〉. (3.42)

Now using the Q function described by Eq. (2.88), Eq. (3.42) can be rewritten as

P (n)=
(u2 − v2)

1
2

n!

∂2n

∂α∗n∂αn

∫
d2z

π
exp

[
− z∗z − v

2
z∗2 + α∗z

]
×
∫
d2η

π
exp

[
− η∗η − v

2
η2 − uz∗η + z∗η + αη∗

]
α∗=α=0

, (3.43)

where

〈z|η〉=e−
z∗z
2
− η
∗η
2

+z∗η (3.44)

〈n|z〉=e
−z∗z

2
zn√
n!
, (3.45)

and

〈η| n〉=e
−η∗η

2
η∗n√
n!
. (3.46)

Upon carrying out the integration, we readily obtain

P (n)=
(u2 − v2)

1
2

n!

∂2n

∂α∗n∂αn
exp

[
(1− u)α∗α− v

2
(α∗2 + α2)

]
α∗=α=0

. (3.47)

Upon expanding the exponential functions in power series, we have

P (n, t)=
(u2 − v2)

1
2

n!

∑
l,k,p

(−1)(k+p)(1− u)lvk+p

2k+pl!k!p!

× ∂2n

∂α∗n∂αn
(α∗l+2kαl+2p)α∗=α=0. (3.48)

Upon performing the differentiation by employing the relation

∂m

∂αm
xn=

n!

(n−m)!
xn−m, (3.49)

we notice that

∂2n

∂αn∂αn
α∗l+2kαl+2p=

(l + 2k)!α∗l+2k−n

(l + 2k − n)!

(l + 2p)!αl+2p−n

(l + 2p− n)!
. (3.50)
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Thus the combination of Eq. (3.41) and (3.43) leads to

P (n, t)=
(u2 − v2)

1
2

n!

∑
l,k,p

(−1)(k+p)(1− u)lv(k+p)(l + 2k)!(l + 2p)!

2k+pl!k!p!(l + 2k − n)!(l + 2p− n)!

×(α∗(l+2k−n)α(l+2p−n))α∗=α=0. (3.51)

Imposing the condition α∗ = α = 0, we find

P (n, t)=
(u2 − v2)

1
2

n!

∑
l,k,p

(−1)(k+p)(1− u)lvk+p(l + 2k)!(l + 2p)!

2k+pl!k!p!(l + 2k − n)!(l + 2p− n)!

×δl+2k,nδl+2p,n. (3.52)

Finally, in view of the fact that p = k and l = n − 2k, the photon number distri-

bution can be written as

P (n)=(u2 − v2)
1
2

[n]∑
k=0

n!(1− u)n−2kv2k

22k(k!)2(n− 2k)!
, (3.53)

where [n] = n/2 for even n and [n] = (n−1)/2 for odd n. From this result, we note

that there is a finite probability to find odd number of signal photons. Although

the signal photons are generated in pairs, it is possible for an odd number of

signal photons to leave the cavity via the port mirror. This must be then the

reason for the possibility to observe an odd number of signal photons inside

the cavity [3].
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Quadrature Fluctuations

4.1 Quadrature variance

We now proceed to calculate the variance of the plus and minus quadratures of

the signal mode produced by the one-mode subharmonic generator coupled to

thermal reservoir. The variance of the plus and minus quadratures is expressible

as

(∆a±)2 =1 + 〈: (â±(t), â±(t)) :〉, (4.1)

where :: stands for normal ordering, â+ = â† + â and â− = i(â† − â) are respec-

tively the plus and minus quadrature operators.

Since â(t) is Gaussian variable with zero mean, Eq. (4.1) can be rewritten as

(∆a±)2 =1 + 2〈â†(t)â(t)〉 ± 2〈â2(t)〉. (4.2)

In view of Eqs. (2.81) and (3.10), we readily obtain

(∆a±)2 =1 +
2κn̄∓ 2ε

κ± 2ε
, (4.3)

is the steady-state quadrature variance of the signal-mode coupled to thermal

reservoir.

28
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Figure 4.1: A plot of (∆a+)2 versus n̄ [Eq. 4.3] for κ=0.8 and ε = 0.35.

Figure 4.2: A plot of (∆a−)2 versus n̄ [Eq. 4.3] for κ=0.8 and ε = 0.35.
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We immediately observe from fig. 4.1 and fig. 4.2 that the signal-mode coupled

to thermal reservoir is not in a squeezed state. In light of this, the squeezing of

the signal mode indeed affected by the presence of the thermal light. It is prac-

tically seen that squeezing in optical fibers is limited by phase noise associated

with thermal fluctuations of the refractive index [28].

Upon setting n̄ = 0, we observe that

(∆a±)2 =1∓ 2ε

κ± 2ε
. (4.4)

We see that the signal mode is in a squeezed state and the squeezing occurs in

the plus quadrature.
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Conclusion

We have obtained the master equation and c-number Langevin equation for

a one-mode subharmonic generator coupled to thermal reservoir. Applying

the solution of the resulting c-number Langevin equation, we have obtained

the anti-normally ordered characteristic function. By using this characteristic

function, we have determined the Q function as well as the density operator for

the light produced by the one-mode subharmonic generator coupled to thermal

reservoir.

Furthermore, employing the Q function together with the density operator,

we have calculated the mean photon number, the variance of the photon num-

ber, the power spectrum, the photon number distribution, and the quadrature

variance. We have found that the intensity of the light produced by the system

under consideration increases due to the thermal light. On the other hand, the

squeezing of the subharmonic light indeed affected by the presence of the ther-

mal light. Moreover, we have clearly shown that the mean photon number is

confined in a relatively small frequency interval.
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