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Abstract

In this thesis, the Hamiltonian and wave functions of parabolic quantum wells with

applied electric field are developed. Then the Schrödinger equation is solved an-

alytically and numerically for determining the energy eigenvalue using variational

method. The energy eigenvalues are decreasing with the increment of an applied

electric field. However, the energy spacing between two states are constant. By using

the compact-density matrix formalism and iterative procedure, the optical rectifica-

tion χ
(2)
0 is calculated for the parabolic quantum wells. Numerical results show that,

optical rectification (OR) coefficient is strongly affected by the magnitude of applied

electric field. The magnitude of optical rectification was decreasing with the incre-

ment of the magnitude of applied electric field F. Furthermore, the phenomenological

damping constant has a great influence on second-order nonlinear optical rectification

(OR). With increase of damping constant, the magnitude of optical rectification de-

creases. Again, the maxima of optical rectification shifts towards the higher energy,

as a confinement frequency of parabolic quantum well increases.

x



Chapter 1

1. Introduction

1.1 Back ground of the study

A quantum well is a particular kind of heterostructure in which one thin ”well” layer is

surrounded by two ”barriers” layers. Quantum wells are one example of heterostruc-

tures - structures made by sandwiching different materials, usually in layers, and

with the materials joined directly at the atomic level [1]. The quantization of the

particle motion occurs in one direction, while the particle is free to move in other two

directions. The optical properties of quantum wells specially optical absorption are

strongly affected by the material and as well as the external factors such as incidence

optical intensity, electric and magnetic field, laser fields, temperature and pressure

[2]. The properties of quantum wells make them unique materials in the field of non-

linear optics and electro-optics.

Parabolic quantum wells are very interesting structure both from fundamental and

technological points of view [3]. Parabolic quantum well is a symmetrical quantum

system, while semi-parabolic quantum well is asymmetric quantum system. Parabolic

quantum wells have the particular property of equally spaced electronic states, which

makes possible an accurate determination of the band offsets parameters. Recently,
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parabolic quantum wells have been implemented to study nonlinear optical proper-

ties. ZnMgO-ZnO-ZnMgO is quantum well made from zinc oxide (a narrow band gap

material) sandwiched between two barriers of zinc magnesium oxide (a wide band gap

material). Bearing this idea, we will study the influence of electric field on the optical

rectification and second-order nonlinear optical properties of ZnMgO-ZnO-ZnMgO

parabolic quantum wells.

1.2 Statement of the problems

Quantum well has found widespread use in light emitting diodes and laser diode ap-

plications for a number of years now. In quantum wells, quantization of the particle

motion occurs in one direction, while the particle is free to move in other two di-

rections. The application of quantum well structures to semiconductor laser diodes

has received considerable attention because of physical interest as well as its superior

characteristics such as low threshold current density, low temperature dependence

of threshold current, lasing wavelength tenability and excellent dynamic properties

[4]. By controlling the width of the quantum wells, one can modify the electron and

hole wave functions, which leads to the modification of materials parameters. Het-

erostructures are the building blocks of many of the most advanced semiconductor

devices presently being developed and produced. Heterostructures are able to im-

prove the performance of semiconductor because they permit the device designer to

locally modify the energy band structure of the semi-conductor and so control the

motion of the charge carriers [5]. Optical measurements provide a direct evidence for

the low dimensional behavior of electrons and holes in the quantum well. The Fermi-

edge singularity was predicted theoretically and experimentally demonstrated for an
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expressive number semiconductor heterostructure [6]. The Fermi-edge singularity

leads to a strong enhancement of the oscillator strength for the transitions involving

states at the Fermi energy, giving rise to a sharp excite on like emission in the optical

spectral. In this thesis work, we seek to calculate the energy eigenvalue of parabolic

quantum well and to understand the optical rectification and second order nonlin-

ear optical properties of ZnMgO-ZnO-ZnMgO parabolic quantum well with applied

electric field.

Research Questions

1. How can we calculate the energy eigenvalue of parabolic quantum well varying

the magnitude of applied electric field?

2. How can we study the optical rectification of ZnMgO-ZnO-ZnMgO parabolic

quantum wells in applied electric field?

3. How can we describe the second order nonlinear optical properties of ZnMgO-

ZnO-ZnMgO parabolic quantum wells in applied electric field?

1.3 Objective

1.3.1 General objective

• To study the optical rectification and second order nonlinear optical properties

of ZnMgO-ZnO-ZnMgO parabolic quantum wells with applied electric field.

1.3.2 Specific objective

• To calculate the energy eigenvalue of parabolic quantum well varying the mag-

nitude of applied electric field.

3



• To study the optical rectification of ZnMgO-ZnO-ZnMgO parabolic quantum

wells in applied electric field

• To describe the second order nonlinear optical properties of ZnMgO-ZnO-ZnMgO

parabolic quantum wells in applied electric field.

1.4 Significance of the study

This study helps to calculate, the energy eigenvalue of parabolic quantum well with

applied electric field. It also helps to understand, the lowest-order nonlinearity, such

as second-order nonlinear optical property.

1.5 Limitation of the study

Due to time constraint, the scope of the study is limited to the calculation of energy

eigenvalue of parabolic quantum well with applied electric field and study, the prop-

erties of second-order nonlinear optical properties; such as optical rectification and

second-harmonic generation.

.
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Chapter 2

2. Literature Review

2.1 Nonlinear Optics

Nonlinear optics is the study of phenomena that occurs as a sequence of modification

of the optical properties of a material system by presence of light [7]. Nonlinear

optics is also the area of optics that studies the interaction of light with matter in

the regime where the response of the material to the applied electromagnetic field is

nonlinear in the amplitude of this field. In nonlinear optics, optical properties are

dependent of light (light interact with nonlinear medium). Nonlinear optics takes

place, when a material interacts with an intense light. Nonlinear optics is the branch

of optics that describes the behavior of light in nonlinear media. Nonlinear media is

media in which the dielectric polarization P responds nonlinearly to the electric field

E of the light.

When you shine light at one frequency on nonlinear optical medium, you get out

light with twice frequency and when you shine light at one frequency on linear optical

medium, you get out light with the same frequency.
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Figure 2.1: Nonlinear medium produce double frequency.

Figure 2.2: Linear medium produce the same frequency.

Both linear and nonlinear optical effects can be understood as resulting from

the interaction of the electric field component of electromagnetic radiation with the

charged particles of the material. An applied electric field moves positively charged

particles in the direction of the field and negative charges in the opposite direction.

Nonlinear optical phenomena are ”nonlinear” in the sense that they occurs when the

response of material system to an applied optical field depends in a nonlinear manner

on the strength of the optical field. In order to describe more precisely what we mean
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by an optical nonlinearity, let us consider how the dipole moment per unit volume,

or polarization E(t), of a material system depends on the strength P(t) of an applied

optical field. In the case of conventional (i.e, linear) optics, the induced polarization

depends linearly on the electric field strength in manner that often be described by

the relation ship

P(t) = ε0χ
(1)E(t) (2.1.1)

Where the constant of proportionality χ(1) is known as the linear susceptibility and ε0

is the permittivity of free space. In nonlinear optics, the optical response can often be

described by generalizing Eq. (2.1.1) by expressing the polarization P(t) as a power

series in the field strength E(t) as

P(t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...

]
≡ P(1)(t) + P(2)(t) + P(3)(t) + ... (2.1.2)

The quantities χ(2) and χ(3) are known as the second and third order nonlinear opti-

cal susceptibility respectively. Second-order susceptibility is a nonlinear property of

the material describing how the polarization develops due to the product of two field

components. We shall refer to P(2)(t) = ε0χ
(2)E2(t) as the second-order nonlinear

polarization and P (3)(t) = ε0χ
(3)E3(t) as the third-order nonlinear polarization [7].

Second-order nonlinear optical interactions can occur only in non centrosymmetric

crystals. That is, in crystal that does not display inversion symmetry. Since, liquid,

gases, amorphous solid (such glass), and even many crystals display inversion symme-

try, χ(2) vanishes identically for such media, and consequently such materials cannot

produce second-order nonlinear optical interactions. On the other hand, third-order

nonlinear optical interactions (i.e. those described by a χ(3) susceptibility) can occurs

for both centrosymmetric and non centrosymmetric media. The most usual procedure
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for describing nonlinear optical phenomena is based on expressing polarization P(t)

in terms of the applied electric field strength E(t) as we have done in Eq.(2.1.2). The

reason why the polarization plays a key role in the description of nonlinear phenom-

ena is that time-varying polarization can act as the source of new components of the

electromagnetic field. The wave equation in nonlinear optical media often has the

form

∇2E− n2∂2E

c2∂t2
=

1

ε0c2
∂2PNL

∂t2
(2.1.3)

Where n is the usual linear refractive index and c is speed of light in vacuum we can

interpret this expansion as an inhomogeneous wave equation in which the polarization

PNL associated with the nonlinear response drives the electric field E. Since ∂2PNL

∂t2

is the measure of the acceleration of the charges that constitute the medium, this

equation is consistent with Larmor’s theorem of electromagnetism which states that

accelerated charges generate electromagnetic radiation.

The general principle here is that carriers created optically will change the field across

the quantum wells, hence changing their optical properties through the Quantum

Confined Stark Effect [8]. Nonlinearities are certainly non-local (because a light

beam at one place can influence the optical properties at another), and for this rea-

son cannot strictly be described by the usual local nonlinear susceptibility formalism.

They are similar to those involved in photorefractive materials where displacement

of charges toward traps generates large electric field which in turn modifies the op-

tical properties through the normal electro-optic effect. Consequently, in order to

obtain the enhanced second-order nonlinear optical susceptibility in quantum wells,

externally applied electric fields are used to remove the symmetry or the quantum

wells structures are produced with a built in asymmetry using advanced material
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growing technology. Among the nonlinear optical properties, it is attracted much at-

tention to the second-order nonlinear optical properties, such as optical rectification

and second-harmonic generation. It is because the second-order nonlinear processes

are the simplest and the lowest-order nonlinear effects, and the magnitude of these

second-order nonlinear coefficients are usually stronger than that of the higher-order

ones, as the symmetry of quantum system is broken [9, 10]. Recently, nonlinear op-

tical properties in semiconductor quantum wells are of considerable interest because

of their relevance for studying practical applications. Much special has been paid

to the second-order nonlinear optical properties, such as electro-optic effect, optical

rectification, second-harmonic generation and so on, because the second-order non-

linear procedures are the simplest and the lowest-order nonlinear procedures, and the

magnitudes of the second-order nonlinear procedures are usually stronger than those

of the higher-order nonlinear procedures when the quantum systems have significant

asymmetry [11]. The nonlinear response of the medium produces higher harmonics

in the polarization.

2.1.1 Electro-Optic Effect

The electro-optic is the change in refractive index of material induced by the pres-

ence of a static (or low-frequency) electric field [7]. In some materials, the change

in refractive index depends linearly on the strength of the applied electric field. This

change is known as the linear electro-optic effect or Pockels effect. On the other hand,

the refractive index changes in proportional to the applied electric field, in which case

the effect is known as the linear electro-optic effect or the Pockels effect. The Pockels

effect has the linear relationship to the applied field. This is principally a second-

order nonlinear optical phenomenon. Second-order nonlinear optical processes are
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electric-dipole forbidden in centrosymmetric media [12]. Second-order nonlineari-

ties are nonzero only in noncentrosymmetric systems. That means, a semiconductor

quantum well having symmetric potential profile will provide very small second-order

nonlinearities. Second-order nonlinear optical properties describe the coupling inter-

action between two electric fields and crystals [13]. In simple terms, the Pockels

effect describes the linear dependence of the refractive index on an applied field. The

linear electro-optic effect can be descried in terms of a nonlinear polarization given

by

Pi(ω) = 2ε0
∑
jk

χ
(2)
ijk(ω = ω + 0)Ej(ω)Ek(0) (2.1.4)

Since the linear electro-optic effect can be described by a second-order nonlinear

susceptibility. It follows that a linear electro-optic effect can occurs only for materials

that are non centrosymmetric. In centrosymmetric materials (such as liquids and

glasses), the lowest-order change in the refractive index depends quadratically on the

strength of the applied static (or low-frequency) field. This effect is known as the Kerr

electro-optic effect. On the other hand, the refractive index changes in proportional

to the square of the applied electric field, in which case the effect is known as the

quadratic electro-optic effect or the Kerr effect. The Kerr effect has a parabolic

relationship to the applied field. Both the linear quadratic electro-optic effect can

be used effectively in various optical devices. In Figure 2.3, the refractive index as a

function of applied field n(E) shows the linear and quadratic electro-optic effect.
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Figure 2.3: Dependence of the refractive index on the electric field: (a) Pockels
medium; (b) Kerr medium.

Kerr electro-optic effect can be described in terms of a nonlinear polarization given

by

Pi(ω) = 3ε0
∑
jkl

χ
(3)
ijkl(ω = ω + 0 + 0)Ej(ω)Ek(0)El(0) (2.1.5)

Both the linear and quadratic electro-optic effects can be used effectively in various

optical devices. Nonlinear and electro-optic properties of materials are linked to the

modification of their optical constants by high-intensity optical fields or by DC electric

fields respectively [14]. Generally, the electro-optic effect is the term used to describe

the changes in the optical properties of the material due to the presence of an electric

field.

2.1.2 Optical Rectification

Among the nonlinear optical properties, it attracted much attention to the second-

order nonlinear optical properties, such as optical rectification and second-harmonic

11



generation [8]. Therefore, optical rectification is a nonlinear optical process that

consists of the generation of the quasi-DC polarization in a nonlinear medium at the

passage of an intense optical beam. The DC polarization results from the rectification

of the incident optical electric field by the second-order nonlinear electric susceptibility

of the material. Optical rectification is the creation of a static electric field in the

materials due to the incident optical field. Generally, optical rectification refers to

the development of a DC or low-frequency polarization when intense laser beams

propagate through a crystal. Or optical rectification is nonlinear optical process that

generates a quasi-DC polarization in nonlinear medium by passing an intense beam of

light. So, optical rectification occurs, when an intense light beam transmits through

a crystal. Optical rectification is observable only in noncentrosymmetric systems.

That means, optical rectification occurs only in crystals that are not centrosymmetric.

However, optical rectification of laser light by centrosymmetric crystals is possible if

the symmetry is broken by a strong electric field. Optical rectification and the linear

electro-optic effect are second-order nonlinear optical effects Pnl
2 and described by

the Pnl
2 = χ2E

2 terms in the expansion. In this case, the second-order nonlinear

polarization Pnl
2 consists of a dc polarization χ2E

2.

2.1.3 Second-Harmonic Generation

One important application of second-harmonic generation is its use as exacting diag-

nostic of the surface properties of optical materials. The surface of a material clearly

lacks inversion symmetry, and thus, second-harmonic generation can occurs at the

surface of a material of any symmetry group [7]. Second-harmonic generation is

just a special sum frequency generation where an optical wave interacts with itself

to generate the sum frequency. Second-harmonic generation (also called frequency

12



doubling) is a nonlinear optical process, in which photons with the same frequency

interacting with a nonlinear material are effectively ”combined” to generate new pho-

tons with twice the energy, and therefore twice the frequency and half the wavelength

of the initial photons. In second-harmonic generation, a pump wave with a frequency

of ω generates a signal at the frequency 2ω as it propagates through a medium with

a quadratic nonlinearity proportional to the macroscopic second-order susceptibility

χ(2). Therefore, the process of second-harmonic generation involves the interaction

of two waves at frequency ω to produce a wave with the frequency 2ω. Among the

nonlinear phenomena existing in nature, the main role is played by second-harmonic

generation. Second-harmonic generation, as an even-order nonlinear optical effect, is

only allowed in media without inversion symmetry. That means in centrosymmet-

ric materials, second-harmonic generation cannot be demonstrated, because of the

inversion symmetry. It is also important to note that since all even-order nonlin-

ear susceptibilities χ(n) vanish in centrosymmetric media. Because of its properties,

second-harmonic generation finds many different and interesting applications. As the

applied electric field becomes strong, the second harmonic generation susceptibility

in semi-parabolic and parabolic quantum well systems nearly increases linearly [11].

Furthermore, when the effective widths of the semi-parabolic and parabolic quantum

wells are the same, the second-harmonic generation susceptibility in semi-parabolic

quantum well is larger than that in parabolic quantum well, which means that the

semi-parabolic quantum well is a model of very promising candidates for the second-

order nonlinear optical properties. Second-harmonic generation occurs in three types,

denoted 0, I and II. In type 0 second-harmonic generation, two photons having ex-

traordinary polarization with respect to the crystal will combine to form a single

13



photon with double the frequency/ energy and extraordinary polarization. In type I

second-harmonic generation, two photons having ordinary polarization with respect

to the crystal will combine to form one photon with double the frequency and ex-

traordinary polarization. In type II second-harmonic generation, two photons having

orthogonal polarizations will combine to form one photon with double the frequency

and extraordinary polarization. For a given crystal orientation, only one of these

types second-harmonic generation occurs.

2.2 Quantum Wells

A quantum well is a particular kind of heterostructure in which one thin ”well” layer

is surrounded by two ”barriers” layers [1]. Quantum wells are one example of het-

erostructures - structures made by joint different materials, usually in layers, and with

the materials joined directly at the atomic level. If one makes heterostructure with

sufficiently thin layers, quantum interference effects begin to appear prominently in

the motion of the electrons [5]. The simple structure in which these may be observed

is a quantum well, which simply consist of a thin layer of a narrower-gap semiconduc-

tor between thicker layers of a wider-gap material. Quantum well is two-dimensional

structure and quantization of a particle motion occurs in one direction, while the

particle is free to move in the other two directions. In a quantum well, the electrons

and holes are still free to move in the directions parallel to the layers; hence, we do

not really have discrete energy states for electrons and holes in quantum wells.

The most general and surprising features of the optical properties of quantum well

is the strength of the intrinsic optical effects as compared to bulk optical properties:

in many circumstances one measures features of comparable size for single quantum

14



No Systems Df Dc

1 Bulk 3 0
2 Quantum well 2 1
3 Quantum wire 1 2
4 Quantum dot 0 3

Table 2.1: The number of degrees of freedom Df and the confinement Dc of the four
basic dimensionality systems.

well of ≈ 100A0 as for bulk samples of thickness of the order of absorption length,

a few 100A0 [14]. For the bulk susceptibility, the nonlinear effect is not very large

because of the symmetry of the crystal structure. The properties of quantum wells

make them unique materials in the field of nonlinear optics and electro-optics.

Quantum wells, leads to better performance in optical devices such as laser diodes. As

a result, quantum wells are in wide use in diode lasers, including red lasers for DVDs

and laser pointers, infrared lasers in fiber optic transmitters or in blue lasers. They

are also used to make high electron mobility transistor, which are used in low-noise

electronics.

The dimensionality refers to the number of degree of freedom in the electron momen-

tum; in fact, with in a quantum wire, the electron is confined across two directions,

rather than just the one in a quantum well, and so therefore, reducing the degree of

freedom to one. In a quantum dot,the electron is confined in all three dimensions,

thus reducing the degrees of freedom to zero.

Four basic dimensionality systems are shown in below table.

2.3 Zinc Oxide (ZnO)

Zinc oxide is an inorganic compound with the formula ZnO. ZnO is a white pow-

der that is insoluble in water. Zinc oxide is a II-VI compound semiconductor whose
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ionicity resides at borderline between the covalent and ionic semiconductor [13].

Compendiums dealing with optical properties of ZnO and to some extent its alloys

from far infrared to vacuum ultraviolet including phonons, plasmons, dielectric con-

stant and refractive indices are available in the literature. Zinc oxide is an important

II-VI semiconductor material with a wide direct band gap, which has a large exci-

ton binding energy at room temperature, even larger than the ionization energy at

the same temperature [15]. Internal electric fields were found to appear naturally

in strained group III-nitride-based quantum structures grown. Despite the fact that

theoretical calculations of the polarization properties in ZnO and (Zn, Mg)O pre-

dict larger spontaneous and piezoelectric constants than for GaN-based systems, the

first experimental results reported on ZnO/(Zn, Mg)O quantum wells do not men-

tion the presence of such a field. Zinc oxide is a II-VI semiconductor compound that

has numerous potential application [16]. Zinc oxide crystallizes preferentially in the

hexagonal structure and its wide band gap of 3.27eV is close to that of gallium nitride

(GaN-3.42eV). The band gap energy at room temperature increases from 3.27eV for

ZnO to 3.87eV for 33% magnesium in the alloy, with a fairly small lattice mismatch

between the binary and ternary compounds. Zinc oxide and related compounds have

gained a renewed interest for optoelectronic applications owing in part to the fact

that ZnO/(Zn, Mg)O quantum wells have been successfully grown by laser-assisted

molecular-beam epitaxy. Among II-VI wide band gap semiconductors, zinc oxide

is interesting materials for its potential applications in optoelectronic devices [17].

Moreover, a large built-in internal field due to spontaneous and piezoelectric polar-

izations exists in Wurtzite Mg based on ZnO quantum wells. Hence, it is a promising

semiconductor with the direct band gap around 3.3eV with some applications in short
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wavelength optical devices and long life time operating devices. To understand the

fundamental optical properties in optoelectronic devices, it is required to know the

excitonic properties. ZnO has a larger exciton binding energy, around 60meV. ZnO

is an interesting materials with applications spanning from a simple and well-known

to the highly advanced and sophisticated [18]. Its wide band gap and high absorp-

tivity have made it useful as UV-absorbing additive in everything from sunscreens,

advanced plastics and rubber. It is also used in pigments and lubricants.

Multiple quantum well structures consist of more than one well so that more carriers

can be injected into the system [19]. Recently, much effort has been devoted towards

the investigation and fabrication of symmetric ZnO/ZnMgO multiple quantum wells

for ultraviolet light-emitting applications. Nowadays ZnO is widely used for produc-

tion of blue-ultraviolet light-emitted device and detectors [15]. ZnO quantum well

structures have been fabricated to realize high efficiency luminescence in light-emitted

devices. Compared to square quantum wells, the optical transition between the size-

quantized electron sub bands are easier to implement and the optical nonlinearities

are stronger in the parabolic quantum wells.

2.4 Parabolic Quantum Wells

Parabolic quantum wells are very interesting structure both from fundamental and

technological points of view [3]. Parabolic quantum is a symmetrical quantum sys-

tem, while semi-parabolic quantum well is asymmetric quantum system. In these

structures it is possible to form an almost homogeneous electron gas within a three-

dimensional space that moves in a uniformly distributed background of positive

charge. Moreover, parabolic quantum wells have the particular property of equally
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spaced electronic states, which makes possible an accurate determination of the band

offsets parameters. From the technological points of view, parabolic quantum wells

can be used as polarization insensitive electron-absorptive modulators and far-infrared

resonant tunneling devices. Finally, parabolic quantum wells demonstrated to be a

very good candidate for the electric control of the electron spin, essential for the de-

velopment of spintronic devices.

In particular, the parabolic quantum well, aside to the square one, is one of the

most studied systems both from fundamental and technological points of view [20].

This is, partially, because of its unique properties such as: equally spaced, electronic

spectrum, radiate transitions at the same oscillator frequency, interaction with light

at the oscillator frequency irrespective of electron-electron interactions, i.e., indepen-

dence on the number of electrons in the well and on an electric field applied across the

well, and so called generalized Kohn theorem. The generalized Kohn theorem states

that, electrons residing in a spatially parabolic potential well and in parabolic bands

in k space absorb radiation at the bare harmonic oscillator frequency of the empty

parabola irrespective of electron-electron interaction or the number of electrons in

the well [21]. With the exception of the case of a superlattice superimposed on the

parabolic quantum well (where a mass-shifted generalized Kohn theorem response is

observed), the wells with deviations from perfect parabolicity display a violation of

the theorem qualitatively and quantitatively consistent with a uniform radiation field

now coupling not only to the center of mass oscillation of the electron gas, but also

to its internal oscillations. Recently, parabolic quantum wells have been implemented

to study nonlinear optical properties, quantum hall effect, charge and spin oscillators

in three-dimensional gases and magnetic properties for the spin electronics.
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2.5 Density matrix formalism of the second-order

susceptibility

In this section we calculate the second-order (i.e., χ(2)) susceptibility of an atomic

system [7]. The density operator is given by:

ρ̂ = |ψ〉〈ψ|

ρ̇ = dρ̂
dt

= d
dt
|ψ〉〈ψ|+ |ψ〉 d

dt
〈ψ|

If a quantum-mechanical system (such as an atom) is known to be in a particular

quantum-mechanical state, we can describe all of the physical properties of the system

in terms of the wave function ψ appropriate to this state. This wave function obeys

the Schrödinger equation

i~ d
dt
|ψ〉 = Ĥ|ψ〉

but

d
dt
|ψ〉 = −i

~ Ĥ|ψ〉

and

d
dt
〈ψ| = i

~Ĥ〈ψ|

ρ̇ = −i
~ Ĥ|ψ〉〈ψ|+ |ψ〉 i

~Ĥ〈ψ|

=−i
~ Ĥ|ψ〉〈ψ|+

i
~ |ψ〉〈ψ|Ĥ

=−i
~ Ĥρ̂+ i

~ ρ̂Ĥ

=−i
~ [Ĥ, ρ̂]

Therefore, the density matrix equation of motion with the phenomenological inclusion

of damping is given by:
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ρ̇nm = −i
~ [Ĥ, ρ̂]nm − γnm

(
ρnm − ρ

(eq)
nm

)
From the perturbation expansion ρ

(1)
nm(t) =

∫ t

−∞
−i
~

[
V̂ (t′), ρ̂(0)

]
nm
e(iωnm+γnm)(t′−t)dt′,

the general result for the second-order correction to ρ̂ is given by:

ρ(2)
nm =

∫ t

−∞

−i
~

[
V̂ , ρ̂(1)

]
nm
e(iωnm+γnm)(t′−t)dt′

=

∫ t

−∞

−i
~

[
V̂ , ρ̂(1)

]
nm
e(iωnm+γnm)te(iωnm+γnm)t′dt′

= e−(iωnm+γnm)t

∫ t

−∞

−i
~

[
V̂ , ρ̂(1)

]
nm
e(iωnm+γnm)t′dt′ (2.5.1)

The interaction Hamiltonian V̂ (t) is given by

V̂ (t) = −µ̂.E(t) (2.5.2)

we represent the applied fields as:

E(t) =
∑

p

E(ωp)e
−ωpt (2.5.3)

The commutator in Eq. (2.5.1) can be expressed as[
V̂ , ˆρ(1)

]
nm

=
∑

v

[
Vnvρ

(1)
vm − ρ(1)

nv Vvm

]
(2.5.4)

Inserting Eq. (2.5.2) into Eq. (2.5.4), we have,[
V̂ , ˆρ(1)

]
nm

=
∑

v

[
−µnvE(t)ρ(1)

vm + ρ(1)
nvµvm.E(t)

]
= −

∑
v

[
µnvρ

(1)
vm − ρ(1)

nvµvm

]
.E(t) (2.5.5)

In order to evaluate this commutator, the first-order solution is written with changes

in the dummy indices as

ρ(1)
vm = ~−1

(
ρ(0)

mm − ρ(0)
vv

)∑
p

µvm − E(ωp)

(ωvm − ωp)− iγvm

e−iωpt (2.5.6)
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and as

ρ(1)
nv = ~−1

(
ρ(0)

vv − ρ(0)
nn

)∑
p

µnv − E(ωp)

(ωnv − ωp)− iγnv

e−iωpt (2.5.7)

Again the applied optical field E(t) sum over q is given by

E(t) =
∑

q

E(ωq)e
−iωqt (2.5.8)

Inserting Eq. (2.5.7), (2.5.6) and (2.5.8) into Eq. (2.5.5), we have

[
V̂ , ˆρ(1)

]
nm

= −~−1
∑

v

(ρ(0)
mm − ρ(0)

vv )x
∑
pq

[µnv.E(ωq)][µvm.E(ωp)]

(ωvm − ωp)− iγvm

e−i(ωp+ωq)t

+~−1
∑

v

(ρ(0)
vv − ρ(0)

nn)x
∑
pq

[µnv.E(ωp)][µvm.E(ωq)]

(ωnv − ωp)− iγnv

e−i(ωp+ωq)t (2.5.9)

This expression is now inserted into Eq. (2.5.1) and the integration is performed to

obtain

ρ(2)
nm =

∑
v

∑
pq

e−i(ωp+ωq)t

x{ρ
(0)
mm − ρ

(0)
vv

~2

[µnv.E(ωq)][µvm.E(ωp)]

[(ωnm − ωp − ωq)− iγnm][(ωvm − ωp)− iγvm]

−ρ
(0)
vv − ρ

(0)
nn

~2

[µnv.E(ωq)][µvm.E(ωq)]

[(ωnm − ωp − ωq)− iγnv][(ωvm − ωp)− iγnv]
}

≡
∑

v

∑
pq

Knmve
−i(ωp+ωq)t

(2.5.10)

We have given the complicated expression in curly braces the label Knmv because

appears in many subsequent equations.

We next calculate the expectation value of the atomic dipole moment, which is given

by:

〈~µ〉 =
∑
nm

ρnm~µmn (2.5.11)
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We are interested in the various frequency components of 〈~µ〉, whose complex ampli-

tudes ~µ(ωr) are defined through

〈~µ〉 =
∑

r

〈~µ(ωr)〉e−iωrt (2.5.12)

Then, in particular, the complex amplitude of the component of the atomic dipole

moment oscillating at frequency ωp + ωq is given by

〈~µ(ωp + ωq)〉 =
∑
nmv

∑
pq

Knmv~µmn (2.5.13)

and consequently the complex amplitude of the component of the nonlinear polariza-

tion oscillating at frequency ωp + ωq is given by

P(2)(ωp + ωq) = N〈~µ(ωp + ωq)〉

= N
∑
nmv

∑
pq

Knmv~µmn (2.5.14)

Where N denotes the atomic number density. We define the nonlinear susceptibility

through the equation

P
(2)
i (ωp + ωq) = ε0

∑
ik

∑
pq

χ(2)(ωp + ωq, ωq, ωp)Ej(ωq)Ek(ωp) (2.5.15)

By comparison of Eq. (10), (14) and (15), we obtain expression for the second-order

susceptibility tensor given by:

χ
(2)
ijk(ωp + ωq, ωq, ωp) =

N

ε0~2

x
∑
nmv

{(ρ(0)
mm − ρ(0)

vv )
µi

mnµ
j
nvµ

k
vm

[(ωnm − ωp − ωq)− iγnm][(ωvm − ωp)− iγvm]

−(ρ(0)
vv − ρ(0)

nn)
µi

mnµ
j
vmµ

k
nv

[(ωnm − ωp − ωq)− iγnm][(ωnv − ωp)− iγnv]
} (2.5.16)

This is the expression of the second-order susceptibility.
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Chapter 3

3. Materials and Method

3.1 Materials

An intensive survey of literature from published articles, books, thesis and dissertation

has been carried out on the project.

3.2 Method

3.2.1 Analytical

We have determined the energy eigenvalue of parabolic quantum well by exactly

solving the Schrodinger equation using variational technique analytically. Addition-

ally, we have find optical rectification and second-harmonic generation coefficient in

a symmetric parabolic quantum well using density matrix formalism.

3.2.2 Computational

The energy eigenvalues of parabolic quantum well were calculated numerically, using

MATHEMATICA. We described optical rectification graphically, using MATLAB.
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Chapter 4

4. Optical rectification and second
order nonlinear optical property

4.1 Introduction

There has been research interest both experimentally and theoretically, in the investi-

gation of low dimensional semiconductor hetrostructure as the result of their intrinsic

physical properties and technological applications. The studies on quantum het-

rostructures have opened a new field in fundamental physics, and also provide a wide

range of potential applications for optoelectronic devices [22]. By changing the profile

of a semiconductor quantum well (QW), both the subband energies and their wave

functions change, various physical and optical properties depending on them. In this

study more attention is given to the second-order nonlinear optical properties such as

optical rectification and second-harmonic generation, since the second-order nonlin-

ear optical properties are the lowest-order nonlinear procedures, and the magnitude

of the second-order nonlinears are usually stronger than higher-order nonlinearities.

In order to obtain a strong second-order optical nonlinearity, the inversion symmetry

of the quantum system is broken through applying an electric field to a symmetric

parabolic quantum well.
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4.2 Mathematical formulation of the problem

We consider a particle with an effective mass of m∗ and charge e that moves in the one

dimensional potential V (z) = 1
2
m∗ω2

0z
2− eFz. The first term describes the confining

potential of the symmetric parabolic potential well with frequency ω0 and the second

one is the potential energy of the particle in the electric field F. The Schrödinger

equation of this problem is[
−~2

2m∗

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+

1

2
m∗ω2

0z
2 − eFz

]
ψ = Eψ (4.2.1)

Where z represents the growth direction of the parabolic quantum well. The eigen-

functions ψn,k(x, y, z) and the eigenenergies εn,k are the solutions of Schrödinger equa-

tion Ĥψn,k(x, y, z) = εn,kψn,k(x, y, z) are given by:

ψn,k(x, y, z) = φn(z)uc(x, y, z)e
i(kxx+kyy) and

εn,k = En +
~2

2m∗

(
k2

x + k2
y

)
= En +

~2

2m∗ |k|
2 (4.2.2)

uc(x, y, z) is the periodic part of the Bloch function in the conduction band at k=0. φn

and En are the envelope wave function and the transverse energy of the nth subband.

Solutions of the one dimensional Schrödinger equation, Ĥ0φn(z) = Enφn(z), where

Ĥ0 is the z part of the Hamiltonian Ĥ in Equ. (4.2.1), and given by:

Ĥ0 =
−~2

2m∗
∂2

∂z2
+

1

2
m∗ω2

0z
2 − eFz (4.2.3)

The Schrödinger equation of an electron confined in ~z direction is[
−~2

2m∗
∂2

∂z2
+

1

2
m∗ω2

0z
2 − eFz

]
φn(z) = Enφn(z) (4.2.4)

Introducing the dimensionless variable, ρ =
√

m∗ω0

~

[
z − eF

m∗ω2
0

]
, the spatial co-ordinates,

z and dz are described by z =
√

~
m∗ω0

ρ+ eF
m∗ω2

0
, dz =

√
~

m∗ω0
dρ
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Equ. (4.2.4) can be rewritten as[
−~ω0

2

d2

dρ2
+

~ω0

2
ρ2 − e2F 2

2m∗ω2
0

]
φn(ρ) = Enφn(ρ) (4.2.5)

[
d2

dρ2
+

2

~ω0

(
En +

e2F 2

2m∗ω2
0

)
− ρ2

]
φn(ρ) = 0 (4.2.6)

d2φn

dρ2
+
(
β2 − ρ2

)
φn = 0 (4.2.7)

Where

β = 2
~ω0

(
En + e2F 2

2m∗ω2
0

)
For simplicity let us introduce new variables

δ =
√

m∗ω0

~ and α = eF
m∗ω2

0
transforms ρ = δ(z + α)

At large ρ, the term β becomes negligible compared to ρ2 and φq
n ∼ ρ2φn. This term

can be killed by substituting

φn(ρ) = exp
(−1

2
ρ2
)
u(ρ) = u(ρ)e

−1
2

ρ2

φp
n = up(ρ)e

−1
2

ρ2
+ u(ρ)(−ρ)e−1

2
ρ2

φq
n = uq(ρ)e

−1
2

ρ2
+ up(ρ)(−ρ)e−1

2
ρ2

+ up(ρ)(−ρ)e−1
2

ρ2
+ u(ρ)(−1)e

−1
2

ρ2
+ u(ρ)(ρ2)e

−1
2

ρ2

=
[
uq(ρ)− 2ρup(ρ)− u(ρ) + ρ2u(ρ)

]
e
−1
2

ρ2

(4.2.8)

Substitute Equ. (4.2.8) into Equ (4.2.7), we have

uq(ρ)− 2ρup(ρ) + ρ2u(ρ) + (β − ρ2)u(ρ)− u(ρ) = 0
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Finally the differential equation becomes

uq(ρ)− 2ρup(ρ) + (β − 1)u(ρ) = 0 (4.2.9)

This ordinary differential equation can be solved by using power series

u(ρ) =
∞∑

n=0

anρ
n (4.2.10)

up(ρ) =
d

dρ

(
∞∑

n=0

anρ
n

)
=

∞∑
n=1

annρ
n−1 (4.2.11)

uq(ρ) =
d2

dρ2

(
∞∑

n=1

annρ
n−1

)
=

∞∑
n=2

ann(n− 1)ρn−2 (4.2.12)

Inserting Equ. (4.2.10),(4.2.11) and (4.2.12) into Equ. (4.2.9), we have

∞∑
n=2

ann(n− 1)ρn−2 − 2ρ
∞∑

n=1

annρ
n−1 + (β − 1)

∞∑
n=0

anρ
n = 0

By shifting the dummy index of n in the first summation

∞∑
n=0

an+2(n+ 2)(n+ 1)ρn − 2
∞∑

n=1

annρ
n + (β − 1)

∞∑
n=0

anρ
n = 0

This must hold for all ρ, so the coefficient of each power ρ must be zero. The general

result is

(n+ 2)(n+ 1)an+2 − 2nan + (β − 1)an = 0

an+2 =
2nan − (β − 1)an

(n+ 2)(n+ 1)
=

(2n− β + 1)an

(n+ 2)(n+ 1)
(4.2.13)

Equ. (4.2.13) vanishes, when the numerator is equal to zero and the denominator is

different from zero.

(2n− β + 1)an = 0
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(2n− β + 1) = 0

β = 2n+ 1 (4.2.14)

But

β = 2
~ω0

(
En + e2F 2

2m∗ω2
0

)
Thus

2
~ω0

(
En + e2F 2

2m∗ω2
0

)
=2n+1

En = 1
2
(2n+ 1)~ω0 − e2F 2

2m∗ω2
0

En =

(
n+

1

2

)
~ω0 −

e2F 2

2m∗ω2
0

(4.2.15)

The function un(ρ) are Hermite polynomials Hn(ρ), and the Hermite function φn(ρ).

φn(z) =

[
δ

2nn!
√
π

] 1
2

exp

[
−1

2
(δ(z + α))2

]
Hn [δ(z + α)] (4.2.16)

φn(ρ) =

[
1

2nn!
√
π

] 1
2

exp

(
−1

2
ρ2

)
Hn(ρ) (4.2.17)

According to Equ. (4.2.15), the energy eigenvalues and their interval in eV are cal-

culated and shown in table 4.1.
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Fx108V/m E0 E1 4E
0.0 0.26250 0.78750 0.5250
0.3 0.261906 0.786906 0.5250
0.6 0.260124 0.785124 0.5250
0.9 0.257155 0.782155 0.5250
1.1 0.254515 0.779515 0.5250
1.3 0.251348 0.776348 0.5250
1.6 0.245606 0.770606 0.5250
1.9 0.238677 0.763677 0.5250
2.1 0.233398 0.758398 0.5250
2.4 0.224489 0.749489 0.5250
2.7 0.214393 0.739393 0.5250

Table 4.1: Calculated energy eigenvalue and its interval at confinement frequency of
8× 1014/s.

From table 4.1, it can be observed that, with the increase of the applied field F,

the energy eigenvalues in parabolic quantum well decreases. But, the adjoint energy

levels are kept constant.

4.3 Second-order nonlinearity in parabolic quan-

tum well

Recently, nonlinear optical properties in semiconductor quantum wells are of con-

siderable interest because of their relevance in studying practical applications. The

lowest-order nonlinearity such as second-order nonlinear optical properties, such as

optical rectification, second-harmonic generation and electro-optic effect achieved only

for noncentrosymmetric materials. However, centrosymmetric materials, the nonlin-

ear polarization due to three wave mixing process is always zero. The magnitudes

of the second-order nonlinears are usually stronger than those of the higher-order

nonlinears, if the quantum well has a significant symmetry. In symmetric quantum
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well semiconductor structure, the second- order nonlinear susceptibility is zero. Thus,

so as to obtain a strong second-order optical nonlinearity, the inversion symmetry of

the quantum systems should be broken. These asymmetries can be achieved in two

ways; either using advanced material growth technology or by applying an electric

field to a symmetric quantum well. In this study, the parabolic quantum well is made

asymmetric by applying electric field in the z-direction, and its potential profile is

shown in Figure 4.1.

The parameters used are the effective mass of ZnO, 0.21m0, confining frequency

ω0 = 8x1014/s and the applied field F = 3x1010V/m.

Figure 4.1: The potential of parabolic quantum well with applied field.
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4.4 Optical rectification

Tera Hertz electromagnetic radiation can be generated via optical rectification of

femto second optical pulses incident on an electro-optic material. If an electromag-

netic field with a single frequency component E(t) = Ee−iωt + c.c., is incidence up on

a system with a non zero second-order susceptibility χ(2), then the nonlinear polar-

ization is

P2(t) = ε0χ
(2)E2(t) = 2ε0χ

(2)EE∗ + ε0χ
(2)E2e−i2ωt + c.c. (4.4.1)

The first term does not oscillate in time. This is known as optical rectification. In

this case it produces a static polarization and so does not lead to the generation of

radiation(because its second time derivative vanishes). The second term oscillates

at frequency 2ω and radiate light at that frequency. This term depends only on

the presence of the field at frequency ω and not on the static field. This effect

refers to the second-harmonic generation. These and other phenomena arise from

a mixing of applied frequencies in a nonlinear medium. Because, the nature of the

polarization field is depend on the electric fields. For advanced study of the optical

rectification we are interested to use the compact density matrix formalism with

applied monochromatic radiation. The evolution of the density matrix after some

mathematical manipulation can be given by

ρ̇nm =
−i
~

[
Ĥ0 − µ̂E(t), ρ̂

]
nm

− γnm

(
ρ̂− ρ̂(0)

)
nm

(4.4.2)

Where Ĥ0 is the unperturbed Hamiltonian of the system without considering the

applied field, µ̂ is the transition dipole moment, γnm is the phenomenological damping

constant and ρ(0) is the unperturbed density matrix. Equ. (4.4.2) can be solved with
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respect to the usual iterative technique [7].

ρ̂(t) =
∑

n

ρ(n)(t) (4.4.3)

with

dρ
(n+1)
nm

dt
=
−i
~

{
[Ĥ0, ρ̂

(n+1)]nm − i~γnmρ
(n+1)
nm

}
+
i

~
[µ̂, ρ̂(n)]nmE(t) (4.4.4)

Considering the polarizablity of Equ. (4.4.1), the electron polarization of the nth

order is given by

Pn(t) =
1

A
Tr
(
ρ̂(n)µ̂

)
(4.4.5)

where A is the area of the interaction and the symbol ”Tr” denotes the sum of

the diagonal elements of the matrix. With the help of the compact density matrix

formalism and iterative procedure, the expression for the optical rectification term

can be written as

χ
(2)
0 =

2e3αsµ
2
10δ10

ε0~2

[
E2

10

[(E10 − ~ω)2 + (~γ)2] [(E10 + ~ω)2 + (~γ)2]

]
(4.4.6)

Moreover, the second-harmonic generation term can be given by

χ
(2)
2ω =

e3αsµ01µ12µ20

ε0

[
1

(E20 − 2~ω + i~γ) (E10 − ~ω + i~γ)

]
(4.4.7)

where αs is the carrier density, Enm = En − Em = ~ωnm is the energy interval,

µnm = 〈φn|z|φm〉 is the off-diagonal matrix element and δ12 = µ11 − µ00, n,m=1,2,3,

E10 = E1−E0 = ~ω10 the energy interval in the parabolic quantum well, and δ10 is the

mean charge displacement, with µ10δ10 is the geometric factor of optical rectification.

Figure 4.2 describes the optical rectification of the parabolic quantum well versus

photon energy with different confining frequency.
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Figure 4.2: Optical rectification versus photon energy for different confining frequency.

As it is observed in the Figure, the maxima of optical rectification shifts towards

the higher energy, as a confinement frequency of parabolic quantum well increases.

The spacing between the energy levels are equal.

In Figure 4.3, we have studied the magnitude of optical rectification for different

strengths of electric field. The curves are drawn for three different electric field

strengths F = 0V/m,F = 5x107V/m and F = 10x107V/m. The three resonant

peaks for parabolic quantum well appears at the same photon energy of 0.525eV.

This clearly shows that, for the parabolic quantum well, the adjoint energy levels are

kept constant.
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Figure 4.3: The optical rectification χ
(2)
0 as a function of photon energy ~ω for different

strengths of electric field.

In Figure 4.4, the optical rectification χ
(2)
0 as a function of photon energy ~ω,

for different damping constants γ = 5x1011/s, γ = 10x1011/s and γ = 15x1011/s,

confining frequency ω0 = 9x1014/s and F = 4x107V/m, which are shown by blue,

green and red lines respectively.
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Figure 4.4: The optical rectification χ
(2)
0 as a function of photon energy ~ω for different

phenomenological damping constant.

From the Figure, it is observed that, the phenomenological damping constant

has a great influence on the second-order optical rectification; namely with increase

of damping constant, the second-order optical rectification decreases. This is due

to electron-electron collision, the electron impurity and electron-phonon scattering

interactions. To obtain an amplified second-order susceptibility, it is necessary to

reduce these factors.
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Chapter 5

Conclusion

In this thesis, we have studied the energy eigenvalue of parabolic quantum well with

an applied electric field. The value of ground and first excited state energies are

calculated for different value of applied electric field using variational method. Nu-

merical results show that, optical rectification (OR) coefficient is strongly affected

by an applied electric field. The energy eigenvalues are decreasing with the incre-

ment of an applied electric field. As the magnitude of electric field F increase for

parabolic quantum well, the spacing between the energy levels are equal. By using

the compact density matrix formalism, the optical rectification (OR) for parabolic

quantum well with an applied field has been studied. The optical rectification χ
(2)
0

was decreasing with the increment of the magnitude of applied electric field F. Be-

sides, the phenomenological damping constant has a great influence on second-order

nonlinear optical rectification (OR). With increase of damping constant, the optical

rectification decreases.
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