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Abstract

Low-Lying states in the odd-mass Hg isotopes, (197,199,201)Hg, have been investigated in

the framework of the Particle Plus Tri-Axial Rotor Model (PTRM). To perform these cal-

culations, the computer codes GAMPN, ASYRMO, and PROBAMO were used. Thereby,

all 15 negative-parity single-neutron orbitals in the deformed, N = 82–126, shell

were taken into account and the standard set of Nilsson parameters κ and µ was em-

ployed. Theoretical calculations of the nuclear structure parameters, like Level Ener-

gies, Gamma Transition Energy, Transition Intensity (Branching ratio), Electromagnetic

transitions(EM1 and EM2) and Magnetic transitions BM1 were made. The intrinsic

and collective states are determined by using the deformed mean field of Nilsson and

the monopole-pairing interaction (BCS). The level schemes of odd-mass Hg isotopes,

(197,199,201)Hg, are discussed and compared with the already existing experimental data.

In all aspects of the considered calculations, the result were in a reasonably good agree-

ment with the already existing experimental data with an error less than 8% in average.
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Introduction

1.1 Background of the Study

Nuclear physics is a young science dating back to the discovery of radioactivity in 1896

[1, 33]. Since then a lot of works have been done in the area in different time by differ-

ent scholars. Particularly, after the beginning of modern nuclear physics, 1932, many

problems in atomic structure including the low-lying states of odd-mass isotopes of

different nuclei were solved experimentally by the application of quantum mechanics

and nuclear physics [1].

Moreover, during the last twenty-five years the progress in nuclear physics has been

very rapid. The development of new experimental techniques, especially the develop-

ment of high-energy accelerators and different nuclear structure models has resulted

in very extensive studies of nuclear phenomena involving stable as well as artificially

radioactive nuclei. The intensive study of nuclear structure was also one of the achieve-

ment of this period. Actually because of the typical property of the nucleus it was not

as such easy task [2].

The structure of atomic nuclei depends on the interactions of its constituents; pro-

tons, and neutrons. These interactions play a key role in the development of configu-

ration mixing and in the onset of collectivity and deformation, in changes to the single

2



1.1 Background of the Study 3

particle energies and magic numbers, and in the microscopic origins of phase transi-

tional behavior.

Till date, the study of nuclear structure is very interesting and crucial in the field

of Nuclear Science, which generates from the properties of the nucleus. That is, atomic

nucleus is a strongly-interacting, many-body quantum mechanical system that exhibits

a fascinating variety of shapes and excitation modes, from spherical to super deformed

(axis ratio 2 : 1), and from excitations of single protons and neutrons to collective vi-

brations and rotations of the nucleus as a whole [5], this by itself is very interesting and

attractive property to investigate, what is going on inside the nucleus and to study about

the nuclear structure as well, especially in the mass region of, 150 < A < 220, which is a

crucial testing ground for the nuclear models aspiring at the description of such com-

plex nuclear structure [1].

In addition, the study of nuclear structure attempts to elucidate the unifying mech-

anisms by which these rich patterns of behavior emerge from the common underlying

strong nuclear interaction between the nucleons (protons and neutrons) that form the

nucleus. Central to these studies, the concept of nuclear shell structure, in which pro-

tons and neutrons occupy quantized energy levels within a potential generated by their

interactions with all of the other nucleons is very intersting [5].

Moreover, the study of nuclear structure in the negative parity low-lying states of

different isotopes is one of the recent direction of nuclear scientists, by developing dif-

ferent models. Hence, they had worked to investigate about the nuclear structure ex-

perimentally by measuring, its descriptive parameters; Level Energies, Gamma Tran-

sition Energy, Transition Intensity (Branching Ratio), Electromagnetic transitions(EM1

and EM2) and Magnetic transitions BM1 etc.

Mercury is one of the interesting nucleus in that, its isotopes are situated in a transi-
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tional region, which lies above the region of deformed prolate, rare earth nuclei and just

below the spherical lead nuclei Z = 82 [4]. The low- lying structure of odd-A Mercury

isotopes with two proton holes with respect to Z = 82 shell closure are expected to be

dominated by the available single particle neutron orbitals near N = 126 shell closure.

The heavier Mercury isotopes has a small oblate deformation and show various inter-

esting properties [3].

In this thesis, the negative parity low-lying states of odd-mass Hg isotopes have been

addressed, by reducing its many body quantum mechanical system in to two body sys-

tem, in the framework of the Particle plus Tri-Axial Rotor Model (PTRM), by performing

theoretical calculations of the nuclear structure parameters.

1.2 Statement of the Problem

So far, there were experimental data’s published regarding negative parity low-lying

states of odd-mass Hg isotopes [22, 34]. To the best of my knowledge, there were no

theoretical data published based on the Particle Tri-Axial Rotor Model calculation for

the low-lying negative parity states of Mercury isotopes, (197,199,201)Hg.

But, for the maximum benefit from the nucleus, we need to have explicit informa-

tion about it, both theoretically as well as experimentally.

Based on this gap, in this thesis an attempt was made to calculate the low-lying neg-

ative parity states of odd-mass Mercury isotopes, that guided by the following research

questions.

• What are the calculated values of Gamma transition energies, Electric and Mag-

netic transition probabilities?

• What is the schematic descriptionof the level energies?
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• What is the result of the Gamma intensity branching ratio of each transition?

• How is the agreement between theoretically calculated and experimentally mea-

sured data?

1.3 Objectives

1.3.1 General Objective

The ultimate goal of this effort is to theoretically study the negative parity low-lying

states of odd-A Mercury isotopes based on the Particle Tri-Axial Rotor Model, and com-

pare the results with the already existing experimental value(data).

1.3.2 Specific Objectives

Any investigative task has its own particular objectives to be achived. Hence, this thesis

also set the following as its ultimate specific goals.

• To calculate values of Gamma transition energies and Electric and Magnetic tran-

sition probabilities.

• To obtain Gamma intensity branching ratio of each transition.

• To give explicit explanation about the level scheme and all the calculated values

by comparing with the already existing experimental data.

1.4 Significance of the Study

As this study aimed to investigate about nuclear structure at low states of Mercury iso-

topes in the transition region, it has meaningful importance to the area and to the re-

lated field as well. Some of these are;
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• It will give theoretical data and description on negative parity low-lying states of

odd-A Mercury isotopes.

• It can be used as a reference by other researchers.

• It will initiate young researchers towards the area.

1.5 Limitation of the Study

Inorder to make this work fruitful as this, there were a lots of ups and downs to be faced,

even some of them were hindered the work not to sucessed more than this. These are;

• Shortage of published references on the theoretical work.

• Lack of advanced Nuclear physics laboratory, to carry out an experiment by myself

rather than taking literature data to compare with.

• Insufficient budget to go to advanced nuclear laboratories abroad and to partici-

pate in different experiance sharing workshopes.



2

Review of Related Literature

2.1 Nuclear Structure

2.1.1 Introduction

The atomic nucleus is a strongly-interacting, many-body quantum mechanical system

that exhibits a fascinating variety of shapes and excitation modes. Like the atom, it

has discrete energy levels. The locations of the exited states differ for each nucleus are

characterized by quantum numbers that describes its angular momentum, parity and

isospin [5].

The past thirty years have brought great strides in our understanding of the structure

of nuclei. Such techniques as Coulomb excitation, nucleon-transfer reactions, in-beam

spectroscopy, elastic and inelastic scattering, and radioactive decay have been used to

probe the nature of nuclear structure. Along with these experimental efforts, theoretical

nuclear models have been developed in an effort to explain and predict the experimen-

tal results and understand the properties of nuclei. The goal of this effort is to account

for the complex properties of nuclei in terms of nucleon-nucleon interactions. How-

ever, a fundamental microscopic description of the nucleus is lacking, numerous ap-

proximate nuclear models have been proposed in attempts to explain the three broad

classes of nuclei.

7
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1. Spherical, closed shell nuclei

2. Highly deformed nuclei, many nucleons removed from closed shells, and

3. Transitional nuclei, lying between these two extremes.

The first model which was successfully predicted nuclear properties for a broad range

of nuclides was the shell model developed in the late 1940′s by Mayer, Haxel, Jensen,

and Suess [6]. This model assumed that the motion of each nucleon was completely

independent of that of the other nucleons and could be described by using a harmonic

oscillator potential which included strong spin-orbit coupling. The latter when added

to earlier versions of this model permitted realization of a quantitative reproduction of

nuclear properties, replacing the limited qualitative picture that had previously existed.

The shell model is quite successful in its prediction of various nuclear properties; such

as spins, parities, magnetic moments for odd-mass nuclei, magic numbers, and alpha

and beta decay energy systematics.

Despite these accomplishments, its scope is severely limited. Nuclei far from closed

shells had properties that were not fully explained; specifically, the existence of large

static quadrupole moments and energy levels far below the individual particle excita-

tions, and the enhancement of electric quadrupole transition rates. The first successful

explanation of these aspects came in the early 1950′s with the realization by Bohr and

Mottelson, that these properties are characteristic of collective nucleonic motion in nu-

clei with permanently deformed ground states. Classically, these collective motions

correspond to shape oscillations of the nuclear surface or rotations of the nucleus as

a rigid or a fluid body. Shape oscillations (the so-called ”vibrational” model) have had

much success in describing nuclei near the closed shells, where as a rotational descrip-
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tion (the ”rotational” model) has proved applicable to highly deformed nuclei far from

closed shells. Neither model does very well, however, for the regions between these two

extremes, i.e. the so-called transitional region where nuclei are only slightly deformed,

and asymmetric shapes have been shown, to play an important role [18].

Microscopic extensions and refinements of the classical vibrational model have

been applied to the study of nuclei in transitional regions. The most widely used for-

malisms involve the use of particle vibration coupling. However, numerical calcula-

tions with these models, despite their complexity, have met with only limited suc-

cess in interpreting transitional nuclei. The rotational model has also been extended

in attempts to reproduce the properties found in transitional regions. The rotation-

alignment model and tri axial rotor model have produced surprisingly good results for

interpreting unmixed unique parity high-spin orbitals in regions where the original ro-

tational model was long thought to be invalid. A complete description of nuclear prop-

erties for nuclei in transitional regions has not yet been found in terms of rotational

degrees of freedom. The most physically realistic model for transitional nuclei may in-

volve a combination of rotational and vibrational modes, but such a model has not yet

been devised [24].

2.1.2 Nuclear Shell Model

Shell model was an attempt to reproduce the observed magic numbers and to explain

the unusual stability of nuclei having these number of similar nucleons. The basic as-

sumption of this model is that each nucleon is moving inside the nucleus in an average

potential due to the other nucleons. Central to these studies is the concept of nuclear

shell structure, in which protons and neutrons occupy ordered and quantized energy

levels (stable quantum states) within a potential generated by their interactions with
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all of the other nucleons [16]. The energy levels are filled in accordance with the Paulis

exclusion principle. Each energy level has an upper limit 2(2l + 1) for the number of

nucleons that can be accommodated. This model gives large energy gaps between par-

ticular groups of levels forming closed shells which exhibits extra stability. The proton

number and neutron number corresponding to the shell closures are known as magic

numbers. All the paired nucleons form an inert core and the nuclear properties are at-

tributed to the unpaired valence nucleons [5].

Many nuclei behave as if most of the nucleons from an inert core and low-lying ex-

ited states are determined by a few nucleons outside the core. The picture is similar to

that of an atom in which electrons are arranged in shells and any chemical activity is de-

termined by the most weakly bound, valance electrons [4]. By the independent particle

model, we refer to the description of a nucleus in terms of non-interacting in the orbits

of a spherically symmetric potential V (r), which itself is produced by all the nucleons,

and the quantized energy levels cluster into groups or shells, and the filling of major

energy shells leads to particularly stable configurations associated with the proton and

neutron ”magic numbers”: 2, 8, 20, 28, 50, 82, and 126, which also experimentally deter-

mined by a sharp drop in neutron and proton separation energy. Nuclei near closed

shells tend to have spherical ground states, while those far from shell closures are de-

formed and exhibit low-energy collective rotational excitations.

In considering an appropriate potential for the nuclear case, a tremendous simpli-

fication results obtained, if the potential is central, i.e. if it depends only on the radial

distance from the origin to the given point. We denote an arbitrary potential by V (r)

and only require that V (r)is attractive and V (r) = 0 as r →∞. Then the
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Hamiltonian of a nucleus is:

H =
∑
i

(Ti + V (ri)) + λ[
∑
i,j,i6=j

V (rij)−
∑
i

V (ri)]. (2.1)

The Central potential(V (ri))>> Residual potential (λ[
∑

i,j,i=j V (rij)−
∑

iV (ri)])⇒ λ→0

The Schrodinger equation for the motion of a particle in a mean spherically symmetric

potential [23] is:

Ĥψ = Eψ. (2.2)

Single particle Hamiltonian operator:

Ĥ =
−~2

2M
∇2 + V (r). (2.3)

Then, introducing Eq. (2.3) in to Eq. (2.2) and rearanging we can get:

−~2

2M
ψ(r) + [E − V (r)]ψ(r) = 0, (2.4)

where,

• E - is the energy Eigen value of any nucleon (neutron or proton)

• m - is its mass = mn or mp

• ψ(r) - is the wave function of a nucleon, and

• V (r) - is the potential energy of a nucleon

The general solution of Eq. (2.4) is:

ψnlm(r, θ, ϕ) = ψnl(r)Ylm(θ, ϕ), (2.5)

with, n, l and m being the quantum numbers to determine eigen states corresponding

to Enl. Since the exact nature of nuclear potential is unknown, various types of poten-

tials are taken as approximations.
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2.1.3 Nuclear Deformation

For nuclear physicists, nuclear shapes and deformations have been interesting top-

ics, since the identification of nucleus. The highly complicated nature of structure

and properties of nuclei may be one of the reasons for this. Moreover, shape is one

of the fundamental properties of nuclei. Till date, no theory is developed to describe

the nuclear structure and properties completely, because, the knowledge about the

forces, which shape the nucleus is very limited [16]. The configuration dependent forces

present inside the nucleus is mainly the nuclear force between nucleons and Coulomb

force between protons. The shell effects and pairing correlation also contribute to

the determination of nucleonic configuration. The atomic nuclei exhibit spherical,

quadruple and higher order multipole deformed shapes, even though the quadruple

deformed shapes are mostly discussed. Due to the interplay between single particle

and collective degrees of freedom, the coexistence of different shapes at the same spin

and similar energies is also not rare [23].

Nuclei having spherical shape in their ground state are few in number. The de-

formed nuclei are classified into prolate, oblate and tri-axial. Prolate and oblate nuclei

are axially symmetric. If the third axis of the nucleus is longer than the others, the nu-

cleus is prolate and if it is shorter, the nucleus is oblate. For tri-axial nuclei, the three

axes are different. In nature, prolate nuclei dominate over oblate ones. It is found that

86% of the even-even nuclei are prolate in the ground state and tri-axial shapes are

very rare for them [30]. The effect of Coulomb repulsion between protons is to deform

the nucleus more into an elongated shape than to a flattened shape. The difference in

the volume element of the collective coordinates between prolate and oblate shapes

is pointed out to be another reason for the prolate dominance over oblate shape. The
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spin-orbit potential (coupling) between nucleons plays a role favoring stable prolate

shape for nuclei [17]. The shell structure of nuclei is also responsible for the variety of

shapes, depending on the position of Fermi level between two closed shells. Prolate

shape occurs just after closed shells and towards the end of closed shells, oblate shape

is observed.

The nuclear deformation is characterized by two collective parameters, the defor-

mation parameter β or ε and the tri-axiality . Positive and negative quadruple de-

formations β2 or ε2 correspond to prolate and oblate shapes respectively. Forγ =

600, 0,−600and − 1200 , the nucleus is axially symmetric and it is tri-axial for all other

values. γ =, 0 and 600 represent prolate and oblate shapes respectively. The variation of

nuclear shapes with respect to deformation and tri-axiality parameters are illustrated

in Fig.(2.1). Depending on the extent of deviation from spherical symmetry, the de-

formed nuclei fall into different groups. Nuclei with major to minor axis ratio around

(1.3 : 1) are normally deformed and those with (1.5 : 1) are highly deformed. If the

ratios are (2 : 1) and (3 : 1), the nuclei are super deformed (SD) and hyper deformed

respectively. Nuclear deformation which is the departure from spherical shape with-

out density change is expressed in terms of the shape parameters αλµ and spherical

harmonics Y µ
λ (θ,Φ) [17, 18, 19] as Eq. (2.6).

R(θ, φ) = R0[1 +
∑
λµ

αλµ(t)Y µ
λ (θ, φ)], (2.6)

Where,R(θ, φ) is the distance of the nuclear surface at angles θ and φ from the center

and R0 is the radius at spherical equilibrium.

For each mode of order λ, µ has (2λ+ 1) values. I.e., from−λ to +λ,

• λ = 1, corresponds to dipole oscillation,

• λ = 2, to quadrupole oscillation, and
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• λ = 3, to octupole oscillation [11].

For quadrupole shapes,

R = R0[1 +
∑
2µ

α2µ(t)Y µ
2 (θ, φ)]. (2.7)

Figure 2.1: Variation of nuclear shapes with deformation and tri-axiality parameters

.

The quadrupole deformation parameter β2 and the triaxiality γ are defined [18, 24] as:

α20 = β2cosγ. (2.8)

α22 = α2−2 =
1√
2
β2sinγ. (2.9)
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So that,

∑
|α22|2 = (β2)2. (2.10)

α20 = β2cosγ. (2.11)

α22 = α2−2 =
1√
2
β2sinγ. (2.12)

Since, α21 = α2−1 = 0. ε2 is defined [31] as:

ε2 =
Rmajor −Rminor

R0

. (2.13)

And the quadrupole deformations β2 and ε2 are related by:

ε2 = 0.95β2. (2.14)

The deformation leads to change in potential energy surface (PES) of the nucleus. Thus

the calculation of PES can give information about the nature of shape evolution taking

place in nuclei at high angular momentum. At the minimum potential energy (PE), the

nucleus will be in equilibrium. Hence the deformation corresponding to the minimum

PE decides the shape of the nucleus in its ground state [18].

In the case of a spherical nucleus, according to the shell model, the energy states are

grouped into different shells and there is a large separation between these shells. Nu-

clei with closed shells are having magic number of protons and neutrons and are stable

in their ground state. Then by solving the Schrdinger equation for a spherical potential

well, all the energy states are known. When there are partially filled shells, the nucleus

is deformed and energy states are different from those for a spherical well. But as the

deformation is increased to super deformation, it is found that new energy levels are
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grouped together showing shell closure property with a different set of magic numbers.

Stable deformed nuclei are common in the rare earth (lanthanides: 50 < Z <

82, 82 < N < 126) and transuranic elements (actinides:Z > 82, N > 126). Light nuclei

having partially filled shells are also deformed. Super deformed nuclei were first found

in the region of nuclear massA = 150, 190 andA > 220. In the periodic table, nuclei with

mass number A > 220 are super deformed in their ground state. Many super deformed

nuclei are discovered in distinct regions with mass number around 60, 90, 130, 150, 190

and 240. In the mass range 50 < A < 190 and A > 220, the nuclei are found to be

deformed in their ground state [26].

2.1.4 Square well potential

Square well potential [19] is of the form:

V (r) = −U0, r ≤ R. (2.15)

V (r) =∞, r > R. (2.16)

Using this infinite square well potential, the radial part of the solution of Schrodinger

equation are spherical [23] Bessel functions:

Unl(r) = jl(kr) = r
−1
2 Jl+ 1

2
(kr), (2.17)

With,

k =

√
2ME

~2
. (2.18)

The Eigen values are obtained as:

Enl =
~2k2

nl

2M
. (2.19)

The particle occupancy for a level l is 2(2l + 1) and the closed shells occur with pro-

ton and neutron numbers
∑

2(2l + 1). According to the shell model with square well
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potential, the predicted proton and neutron numbers corresponding to shell closure

are 2, 8, 18, 20, 34, 40, 58, 68, 70, 92, 106, 112, 138 and 156. But the experimentally observed

magic numbers are 2, 8, 20, 50, 82 and 126. i.e., this model could reproduce only the three

observed magic numbers 2, 8 and 20 [23].

2.1.5 Harmonic oscillator potential well

This potential in particular is popular in nuclear physics, because,

• It provides a remarkably good approximate solution to many nuclear problems

and

• It is particularly easy to handle mathematically, thus yielding many results analyt-

ically, and is given [16] by:

V (r) =
1

2
mω2r2. (2.20)

where ω is the classical frequency of the oscillator. With the potential in Eq. (2.20), the

Schrodinger equation in Eq. (2.4) leads to the differential equation, for the radial part

[23].

−~2

2µ

d2ψ

dr2
+ [V (r) +

~2l(2l + 1)

2µr2
]ψnl(r) = Eψnl(r), (2.21)

With,

ψnl(r) = rUnl(r). (2.22)

Its solutions have some interesting properties. First, outside the potential, the wave

function decreases exponentially and therefore vanishes as r →∞ . The quantum num-

ber n specifies the number of nodes(zeros) of the wavefunction with the usual, but not
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universal convention that one counts the node at infinity but not that atr = 0 , that is,

n = 1, 2, ....

The solution of Eq. (2.21) becomes:

ψnl(r) = Nnle(
−1
2
vr2)rl+1Unl(r), (2.23)

Where, v = Mω
h

and Unl(r), is the Laguerre polynomial. Then the normalized eigen

functions are:

ψnl(r) =
ψnl(r)

r
Ynl(r). (2.24)

and the corresponding eigen values are:

Enl = ~ω(2n+ l − 1

2
)orEn = ~ω(N +

3

2
), (2.25)

Where, N = Nx + Ny + Nz = 1, 2, 3..., the orbital quantum number l = 0, 1, 2, 3, ... and

N = 2n+ l − 2.

The degeneracy corresponding to each l value is 2(2l+ 1). The eigen states correspond-

ing to the same value of 2l + 1 are also degenerate [16].

Then the accumulating total number of particles for all levels up to N is:

∑
N

NN =
1

3
(N + 1)(N + 2)(N + 3). (2.26)

In the shell model using Harmonic oscillator potential well, the nucleon numbers cor-

responding to the shell closures are calculated as: 2, 8, 20, 40, 70, 112 and 168. Here also

the experimentally observed magic numbers above 20 are not reproduced.

The energy levels of the harmonic oscillator potential given in Fig. (2.3) below

shows, the energy level degeneracys, and a given state generally contains more than

one value of the principal quantum number and of the orbital angular momentum l. It

is this grouping of levels that provides the shell structure required of any central poten-

tial useful for real nuclei. If we recall that each energy level has 2(2l + 1)degenerate m
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states, then, by the Pauli Principle, each level can contain 2(2l+1)particles. Therefore, if

we imagine filling such a potential well with fermions, each group or shell can contain,

at most, the specific number of particles indicated in the Fig. (2.3).

Hence, such a potential automatically gives a shell structure rather than, a uniform

distribution of levels. Unfortunately, except for the lowest few, these shells do not cor-

respond to the empirical magic numbers [9, 19]. The harmonic oscillator potential is a

reasonable first order approximation to the appropriate nuclear potential, but it needs

further improvement.

2.1.6 Spin-orbit potential

In the 1940s, many unsuccessful attempts were made at finding the needed correction;

success was finally achieved by Mayer, Haxel, Suess, and Jensen who showed in 1949

that the introduced an additional spin-orbit term to the centrally symmetric potential,

which gives the proper separation of the sub shells and produce the empirical magic

numbers. The spin-orbit potential is proportional to l.s and its introduction causes the

splitting of the j ± 1
2

levels [8, 16].

This gives significant change in the energy level by splitting it and showing fine

structure, particularly at higher energy level, the higher orbital angular momentum lev-

els are brought down in energy. So far neither of these produce the magic numbers ex-

perimentally. According to Mayer and Jensen the strong spin-orbit potential included

to explain magic numbers is given by;

V (r) = Vcentral(r) + Vso(r)l.s, (2.27)

Where, Vso is negative and Vso = Vls(r)l.s.

The l.s factor causes the reordering of the levels. With a spin-orbit component, the

force felt by a given particle is differs according to whether its spin and orbital angular
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momenta are aligned parallel or antiparallel. If it is parallel the Vsoterm affects higher

l values more. As in atomic physics, in the presence of a spin-orbit interaction, it is

appropriate to label the states with the total angular momentum quantum number [27].

j = l + s. (2.28)

A single nucleon has, s = ±1
2

, hence the possible values of j are, j = l + 1
2

or j = l − 1
2

(except for l = 0 for which j = 1
2

is allowed).

The expectation value 〈l.s〉is obtained from:

j2 = (l + s)2 = l2 + 2l.s+ s2 → l.s =
1

2
(j2 − l2 − s2), (2.29)

〈l.s〉 =
~2

2
[j(j + 1)− l(l + 1)− s(s+ 1)], (2.30)

Vso = Vls(r)
~2

2
l, forj = l +

1

2
. (2.31)

Vso = −Vls(r)
~2

2
(l + 1), forj = l − 1

2
. (2.32)

And the energy separation is the difference of 〈l.s〉 for each state:

〈l.s〉j=l+ 1
2
− 〈l.s〉j=l− 1

2
=

~2

2
(2l + 1). (2.33)

The energy splitting increases when l increases. For Vls(r) < 0 the member of the pair

with the larger j, (j = l + 1
2
) is pushed downward. This level is now in the gap between

the second and third shells, where its capacity of 8 nucleons gives the magic number

28. The p and d splitting do not result in any major regrouping of levels. The next major

effect of the spin-orbit term is on the 1g level. The 1g 9
2

state is pushed down to the next

lower major shell; its capacity of 10 nucleons adds to the previous total of 40 for that

shell to give the magic number of 50. A similar effect occurs at the top of each major

shell. In each case the lower energy member of the spin-orbit pair from the next shell is

pushed down into the lower shell, and the remaining magic numbers follow exactly as
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expected [8, 10].

Results in energy splitting of individual levels for a given J (angular momentum) is:

Figure 2.2: Energy splitting for an individual J .

Vcentral with (L.S),4E = 1
2
(2l + 1)Vso, larger j lies lower.
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Figure 2.3: Energy level splitting for the determined potentials.

The spherical shell model with spin-orbit coupling and an l2 term succeeded in justify-

ing the observed shell closures and the energy Eigen values. But in nature most of the

nuclei show deviation from spherical symmetry and appreciable quadrupole moments

are noticed in different regions of the periodic table. The reason is the polarization of

the closed core by the valence nucleons. In order to describe such nuclei, the present

shell model is to be modified. Nilsson succeeded in tackling the problem of deformed

nuclei by some modifications to the spherical shell model, the details of which is dis-

cussed under the section Collective models.
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Due to the enormous dimension of the configuration space involved, it is not prac-

tically possible to use spherical shell model for heavy nuclei. A variational approach to

the shell model represented by Monster and Vampir calculations may be adopted to get

rid of from this situation. This variational shell model calculations can be performed in

the case of medium mass and heavy nuclei [9].

2.1.7 Nilsson potential

To incorporate the effects of deformation in nuclear properties, Nilsson modified the

shell model by introducing a self-consistent deformed potential instead of a spherically

symmetric harmonic oscillator potential. The modified single particle oscillator poten-

tial Nilsson used is, the axially symmetric oscillator potential with spin-orbit coupling

and a term proportional to l2. Thus the triaxial single particle Nilsson Hamiltonian is

given as [16]:

H = H0 + Cl.s+Dl2, (2.34)

Where,

H0 = − ~2

2m
5′2 +

1

2
m(ω2

xx
′2 + ω2

yy
′2 + ω2

zz
′2), (2.35)

With, x′, y′ and z′ being the coordinates in a frame fixed with the nucleus. Taking cylin-

drical symmetry, the deformation parameter ε2 is introduced in such a way that [11, 32]:

ωx = ωy = ω0(1 +
1

3
ε2), (2.36)

And

ωz = ω0(1− 2

3
ε2), (2.37)

With, ωxωyωz= Constant, Which is the condition for constant volume of the nucleus.

Then ω0 and ε2 related [23] as:
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ω0
0(ε2) = ω0

0(1− 4

3
ε22 −

16

27
ε32)−

1
6 , (2.38)

With, ω0
0 bing the value of ω0 for spherical nucleus. The deformation parameters ε2

andβ2 are related as:

ε2 =
3

2

√
5

4π
β2. (2.39)

2.1.8 Particle Tri-Axial Rotor Model

This model used a tri-axial rotor to explain the low-lying states in some transitional nu-

clei. The model can also be extended to odd mass nuclei by the coupling of an external

particle to a tri-axial rotor at the same time, it describes various general features of ro-

tating systems. In the particle tri-axial rotor model, the Hamiltonian of the system is

given[34] by:

H = Hcor +Hsp +Hpair. (2.40)

The single-particle Hamiltonian Hsp describes the odd particle in a deformed Woods-

Saxon potential characterized by the deformation parameters β2 , and β4 . For the

Woods-Saxon potential we used the parameterization. As a first step, the single-particle

energies and wave functions are calculated. From the generated Nilsson states in the

cylindrical basis ΩNnzΛ, a set is selected which is used to construct the particle plus

rotor strong-coupling basis states. The single-particle matrix elements necessary for

the particle plus rotor Hamiltonian and the calculation of transition strengths are com-

puted within this set. In Eq. (2.40),Hpair represents the pairing force acting between like

nucleons and is treated within the Bardeen- Cooper- Schrieffer (BCS) approximation.

Thereby, a Fermi level λ, a pairing gap 4 and the quasi-particle energies are derived.
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The core (even-even core) Hamiltonian of Eq. (2.40) has the form:

Hcor =
∑~2Ri

2

2Jk
=

∑ ~2(Ik − jk)2

2Jk
, (2.41)

Where, R, I and j are the angular momentum of the core, the nucleus and the single

particle, respectively [14].

The three rotational moments of inertia Jk of Eq. (2.41) are assumed to be connected

by a hydro dynamical type relation as:

Jk =
4

3
J0sin

2(γ +
2π

3
k), (2.42)

Where, k = 1, 2, 3, the fixed moment of inertia J0 can be divided from the core excitation

energyE+
2 , Hsp describes the Hamiltonian of the unpaired single particle. In the tri-axial

deformed field of the even-even core, Hsp in Eq. (2.40), is given by:

Hsp = − ~2

2m
52 +

1

2
mω2

01− 2β[Y20cosγ +
1√
2

(Y20 + Y2−2)sinγ]− k~ω02l.s+ µ(l2 − 〈lN〉2),

(2.43)

Where, k and µ are Nilsson parameters, Y2qis the rank 2 spherical harmonic function[34].

Hpair is the Hamiltonian to represent the pairing correlation which can be treated in the

Bardeen- Cooper- Schrieffer (BCS) formalism. The single particle wave function can be

expressed as [13]:

|v〉 =
∑

Cv
NljΩ|NljΩ〉, (2.44)

Where

• v-is the sequence number of the single particle orbitals.

• |NljΩ〉 - is the cross-ponding Nilsson state.

• Cv
NljΩ - is the coefficient to identify the configuration mixing.
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Diagonalizing the single particle Hamiltonian in the basis |NljΩ〉 we can obtain the

Cv
NljΩ and the single particle eigen value εv.

The total Hamiltonian in Eq. (2.40) can be diagonalized in the symmetrically strong

coupling basis.

|IKMv〉 =

√
2I + 1

16π2
[DI

MKα
+
v |0〉+ (−1)(I−K )DI

(M−K )
α+
v |0〉], (2.45)

Where, α+
v creation of the single nucleon in the orbital |v〉, DI

Mk, is the rotational matrix

[19].

2.1.9 Nuclear Magnetic Dipole Moment

The magnetic moment of a nucleus is induced by the orbiting charged particles (the

protons) giving rise to an orbital magnetic field (characterized by gl and by the intrinsic

spin S = 1
2

) of the nucleons, inducing their own intrinsic magnetic field (characterized

by gs). The dipole operator, expressed in terms of these two contributions is given by:

µ =
A∑
i=1

gil l
i +

A∑
i=1

giss
i, (2.46)

where, the spin g factors are known to be for the electron, proton, neutron and muon

[35].

The free-nucleon gyro magnetic factors for protons and neutrons areg(p)
1 = 1, g

(n)
1 =

0, g
(p)
1 = +5.587, g

(n)
1 = −3.826. The magnetic dipole moment µI is the expectation value

of the z-component of the dipole operator µ [32]: (I) = 〈I,m = I|µz|I,m = I〉 It is re-

lated to the nuclear spin I via the gyromagnetic ratio gl: µ = glIµN , with µNbeing the

nuclear magneton and given by:

µN =
e~

2mp

. (2.47)
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Which is defined in terms of the single charge of the proton, e, and its mass, mp. Its

current measured value is µN = 5.05078324(13)× 1027 J
T

.

Within the shell model the properties of odd-A nuclei near closed shells are described

by the characteristics of the unpaired valence nucleon. The magnetic moment of such

a nuclear state with its valence nucleon in an orbit with total angular momentum j and

orbital momentum l,can be calculated as a function of the free-nucleon g-factors, and

they are called the Schmidt moments:

µ(l +
1

2
) = b(j − 1

2
)gl +

1

2
gscµN . (2.48)

µ(l − 1

2
) =

j

j + 1
[(j − 3

2
)gl −

1

2
gs]µN . (2.49)

In a real nucleus the magnetic moment of a nucleon is influenced by the presence of the

other nucleons. This can be taken into account by using effective proton and neutron g-

factors to calculate the effective single-particle magnetic moment µ(lj)eff for a nucleon

in a particular orbit [10].

2.1.10 Nuclear Electric Quadrupole Moment

The nuclear electric quadrupole moment Qs of a nuclear state with spin I is a mea-

sure of the deviation of the nuclear charge distribution from sphericity. A non-zero

quadrupole moment indicates that the charge distribution is not spherically symmet-

ric. The classical denition of the charge quadrupole moment in a Cartesian axis system

is given [36] by:

Qz =
A∑
i=1

Qz(i) =
A∑
i=1

ei(3Z
2
i − r2

i ), (2.50)

with, eibeing the charge of the respective nucleon and (xi, yi, zi) its coordinates. By con-

vention, from Eq. (2.50), if Q > 0 the shape is prolate and if Q < 0 Oblate.

The spectroscopic quadrupole moment can be related to an intrinsic quadrupole
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moment Q0 reflecting the nuclear deformationβ , in an assumption that, the nuclear

deformation is axially symmetric with the nuclear spin having a well-defined direction

with respect to the symmetry axis of the deformation (strong coupling). In this case, the

intrinsic and the spectroscopic quadrupole moment are related as follows:

Qs =
3K2 − I(I + 1)

(I + 1)(2I + 3)
Q0, (2.51)

with, K being the projection of the nuclear spin on the deformation axis(z-axis). This

intrinsic quadrupole moment Q0, induced by the non-spherical charge distribution of

the protons, can then be related to the nuclear charge deformation as follows [12, 28]:

Q0 =
3√
5Π

ZR2β(1 + 0.36β). (2.52)

2.1.11 Rotational Bands in Deformed Nuclei

The most collective bands known in nuclei are the rotational bands that occur wher-

ever the nuclear shape becomes appreciably non spherical. Such shapes are due to the

shell effects in nuclei. When a shell is filled there is extra stability. So that, for the usual

(spherical) shell model, a spherical shape is stabilized near closed shells. However, be-

tween shells the spherical shape is disfavored and the nucleus deforms in order to find

a more favorable energy. Such deformations give rise to an orientation degree of free-

dom for the nucleus and thereby to the possibility of rotation. A rotational band reflects

a very simple type of collective motion, which changes the orientation of the system

without essentially affecting its shape or internal structure. The energy associated with

the motion is mainly kinetic and written as:

E =
1

2
lω2 =

~2

2l
I(I + 1), (2.53)

Where, the value of l, the moment of inertia, depends on the shape and internal struc-

ture, ωis the angular velocity, and I is the angular momentum. This energy relationship
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expresses one of the most characteristic features of nuclear rotational motion and ap-

plies to the rotation of any near-rigid symmetric top. It works even better for diatomic

molecules. It is interesting that all the low-lying excitation modes of a nucleus have

analogs in a diatomic molecule. Both systems have rotational, vibrational, and particle

excitations, with energy scales for the particle excitation (electronic vs. nucleonic) that

differ by about 106 (eV to MeV). In the molecular case the three modes differ from each

other in energy by factors of approximately 50, so they are almost independent (the

adiabatic hypothesis works well). However, the (low-lying) nuclear vibrational energies

are of the same order as single particle excitations, indicating that this vibrational mode

does not become strongly collective in nuclei [20].

2.1.12 Gamma Transition selection rule

As a nucleus performs electromagnetic transition from higher energy state to lower en-

ergy state it emits photon that carries out an angular momentum of J and parity π, and

must be conserved. If the angular momenta of the initial and final states of final nu-

cleus can be labeled as Ji~ and Jf~ and change in intrinsic angular momentum, M J(~)

is of course l =M J = (Ji − Jf )~. If M J = 0, is forbidden for single photon emission, at

least it has to have a minimum intrinsic spin l~ units to connect the two nuclear states.

For a multipole transition to be possible we will use the so called γ-ray selection rules

which results from the laws of conservation of angular momentum and parity, and is

given as:

|Ji − Jf | 6 L 6 |Ji + Jf |. (2.54)

Parity, π is

For, πf = πi(−1)L, EL is Electric multipole transition

For, πf = πi(−1)(L+1), ML is Magnetic multipole transition
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Based on the angular momentum and parity change between the initial and the final

state the γ-ray decays are classified according to their multipolarity L and the character

π [10].



3

Materials and Methodology

3.1 Materials

In order to achive the ultimate goal of this thesis, the following materials were used

in one or the other way intensively. I.e. survey of related Literatures, Books, Experi-

mental Data’s, Computers, Fortran based Computational Codes (GAMPN, ASYRMO and

PROBAMO), the particle tri-axial rotor model.

3.2 Methodology

3.2.1 Analytical Method

Simple calculation of the modified harmonic oscillator potential, branching ratios, level

energy differences, etc. which is used in the determination of nuclear structure was

done in bold.

3.2.2 Computational Method

Using the Particle Tri-Axial Rotor Model Code’s, which is Fortran based computational

code, theoretical calculation of the nuclear structure parameters was performed with

the aid of the following three consecutive computer programs. These are;

31
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i. Program GAMPN

• Used to calculate the single particle energies, wave functions and matrix elements.

• The input includes deformation parameters and Nilsson parameters (K,µ).

ii. Program ASYRMO

• The input data will be taken from GAMPN, and

• It diagonalizes the particle plus tri axial rotor Hamiltonian in strong coupling ba-

sis, with the single particle matrix elements.

iii. Program PROBAMO

• The input data for single particle quantities will be from GAMPN and for particle

rotor quantities will be from ASYRMO.

• It will calculate both diagonal and off diagonal matrix elements (static moments,

transition rates, mixing ratios etc.) [22].

3.2.3 Method of Data Presentation

• The data obtained from the Particle Tri-Axial Rotor Model (PTRM) calculation has

been plotted as a nuclear level structure for the negative parity low-lying odd-

mass isotopes of Mercury, (197,199,201)Hg one by one, and data tabulation also made

in parallel.

• Simultaneously, the experimental data was also plotted.

• Then, comparison between the theoretical and experimental plot have been

made.

• Based on the obtained data, theoretical explanation have been made in advance.
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Result and Discussion

In the present work, the particle plus tri-axial rotor model (PTRM) was used to study

the negative parity low-lying state of odd-A mercury isotopes, by coupling a proton to

the remaining even-even core of the nucleus.

First, the single-particle energies and wave functions corresponding to the modified

harmonic oscillator (MHO) potential are calculated for a fixed quadrupole deformation(ε, γ).

From the generated Nilsson states, a set is selected which is used to construct the parti-

cle plus rotor strong-coupling basis states. With in this set of orbitals all single-particle

matrix elements necessary for the particle plus rotor Hamiltonian and the calculation

of transition strengths are computed.

As a next step, the particle plus tri-axial rotor Hamiltonian matrix is constructed and

diagonalized. Then, electromagnetic matrix elements, both diagonal and off-diagonal,

are calculated with the wave functions obtained.

In addition, for the successful accomplishment of the particle plus tri-axial rotor

model (PTRM) calculations, the computer codes GAMPN, ASYRMO, and PROBAMO

were used [22]. Thereby, all 15 negative-parity single-neutron orbitals in the deformed,

N = 82− 126, shell were taken into account and the standard set of Nilsson parameters

κ and µ was employed. The calculation of the negative parity low-lying state nuclear

structure parameters was achieved with the selected optimal values of the mercury iso-

33
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topes of their respective deformation parameters as shown below. In doing so, the Cori-

olis effect were neglected and some parameters kept at their standard values.

i. For 197
80 Hg

A deformation parameter (ε2) for the even-even core 196
80 Hg is; ε2 = 0.290 and γ = 320. A

value of ∆ = 0.78MeV was obtained by the BCS calculation for the pairing gap. For the

Fermi level, that calculation yielded, λF = 52.3644MeV .

ii. For 199
80 Hg

A deformation parameter (ε2) for the even-even core 198
80 Hg is; ε2 = 0.240 and γ = 320. A

value of ∆ = 0.749MeV was obtained by the BCS calculation for the pairing gap. For the

Fermi level, that calculation yielded, λF = 52.6422MeV .

iii. For 201
80 Hg

A deformation parameter(ε2) for the even-even core 201
80 Hg is; ε2 = 0.110 and γ = 320. A

value of ∆ = 0.661MeV was obtained by the BCS calculation for the pairing gap. For the

Fermi level, that calculation yielded, λF = 52.9268MeV .
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The results optained from the calculations have been tabulated as below.

a. Datas For 197
80 Hg

Experimental data for197
80 Hg [29];

Ei(level) J−i Eγ I−i Ef J−f Multi

557.77 7−/2 250.2 <7 307.77 5−/2

” ” 405.8 <7 152.14 3−/2 M1

307.77 5−/2 307.77 100 0.0 1−/2 E2

” ” 155.60 <2.73 152.14 3−/2

152.14 3−/2 152.14 0 0.0 1−/2 M1

Table 4.1: Addopted Gamma levels for 197
80 Hg.

The addopted gamma level data shown in Tab. (4.1) is the experimental data taken

from litrature, and the Particle Tri-Axial Rotor Model calculation was made by treating

the 197
80 Hg isotopes as a system of an even-even core plus an extra nucleon in a fixed de-

formation parameter.

Then, the obtained data was tabulated and labeled as shown in Fig. (4.1) and Fig.

(4.2). The experimental data were tabulated and labeled side by side with the theoreti-

cal data, to compare the agreement between them.
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Figure 4.1: Calculated data of 197
80 Hg.

• The energy difference between the experimental and calculated values of each

state is;

4E 9−
2

= |E
( 9−

2
)exp
− E

( 9−
2

)theo
| = |632.3− 715.36| = 83.06.

4E 7−
2

= |E
( 7−

2
)exp
− E

( 7−
2

)theo
| = |557.77− 586.7| = 28.93.

4E 5−
2

= |E
( 5−

2
)exp
− E

( 5−
2

)theo
| = |314.15− 307.77| = 6.38.

4E 3−
2

= |E
( 3−

2
)exp
− E

( 3−
2

)theo
| = |147.6− 152.14| = 4.54.

4E 1−
2

= |E
( 1−

2
)exp
− E

( 1−
2

)theo
| = |0.0− 0.0| = 0.0.

The energy difference calculation, between the experimental and the theoretical values,

particularly in the low energy states were small compared to the higher energy states,

and is in a good agreement with an error below 5% in average.
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Figure 4.2: Decay level scheme for both Calculated and Experimental data of 197
80 Hg.

• The gamma transition energy between different states are in a good agreement.

• When the variation of the branching ratio between the calculated and experimen-

tal values were compared; Even though, there were no complete experimental val-

ues of the branching ratio, the theoretical result shows a pronounced difference

with it. As known, the exactness of the calculated value at large depends on the

selection of the deformation parameter, there are also other sourses of errors to be

mensioned. These are, may be either due to the selection of the even-even core,

an error related to calculations (equations used) in the code may not acceptable

for this nucleus or instrumental and personal errors.
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b. Datas For 199
80 Hg

Experimental data for199
80 Hg [29];

Ei(level) J−i Eγ I−i Ef J−f Multi

667.6 7−/2

413.7 5−/2 413.85 100 0.0 1−/2 E2

” ” 205.6 5 208.2 3−/2 [M1, E2]

195.4 3−/2 208.20481 100.0 0.0 1−/2 M1 + E2

Table 4.2: Addopted Gamma levels for 199
80 Hg.

Figure 4.3: Calculated data of 199
80 Hg.
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Figure 4.4: Decay level scheme for both Calculated and Experimental data of 199
80 Hg.

The addopted gamma level data shown in Tab. (4.2) is the experimental data taken

from litrature, and the PTRM calculations was made by treating the 199
80 Hg isotopes as a

system of an even-even core plus an extra nucleon in a fixed deformation parameter.

Then, the obtained data was tabulated and labeled as shown in, Fig. (4.3) and Fig.

(4.4) above. The experimental data were tabulated and labeled side by side with the

theoretical data, to compare the agreement between them.

• The energy difference between the experimental and calculated values of each

state was shown as;

4E 7−
2

= |E
( 7−

2
)exp
− E

( 7−
2

)theo
| = |666.6− 667.3| = 1.3.

4E 5−
2

= |E
( 5−

2
)exp
− E

( 5−
2

)theo
| = |423.7− 413.7| = 10.
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4E 3−
2

= |E
( 3−

2
)exp
− E

( 3−
2

)theo
| = |208.2− 195.4| = 13.2.

4E 1−
2

= |E
( 1−

2
)exp
− E

( 1−
2

)theo
| = |0.0− 0.0| = 0.0.

As shown in the calculation the energy difference between the experimental and the

theoretical values were made intensivelly, and they are in a good agreement with an

error below 2% in average.

• The gamma transition energy between different states are in a good agreement.

• Even though, complete experimental datas were not found, the variation of the

branching ratio between the calculated and experimental values were analysed

and compared. Hence, it shows a pronounced difference. This difference was

may be; due to the selection of the even-even core, an error related to calculations

(equations used) in the code may not acceptable for this nucleus or instrumental

and personal errors. The selection of the deformation parameters are also not

forgotable.

c. Datas For 201
80 Hg

Experimental data for201
80 Hg [29]; The addopted gamma level data shown in Tab. (4.3)

Ei(level) J−i Eγ I−i Ef J−f Multi

414.539 7−/2 382.45 82.8 32.145 3−/2 E2

384.6 5−/2 352.42 100.0 32.145 3−/2 M1(E2)

32.145 3−/2 30.60 98.1 1.5648 1−/2 M1 + E2

Table 4.3: Addopted Gamma levels for 201
80 Hg.

is the experimental data taken from litrature, and the PTRM calculations was made by

treating the 201
80 Hg isotopes as a system of an even-even core plus an extra nucleon in a

fixed deformation parameter.
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Figure 4.5: Calculated data of 201
80 Hg.

Then, the obtained data was tabulated and labeled as shown in Tab. (4.3), Fig. (4.5)

and Fig. (4.6) above. The experimental data were tabulated and labeled side by side

with the theoretical data, to compare the agreement between them.

• The energy difference between the experimental and calculated values of each

state was shown as;

4E 9−
2

= |E
( 9−

2
)exp
− E

( 9−
2

)theo
| = |547.32− 545| = 2.32.

4E 7−
2

= |E
( 7−

2
)exp
− E

( 7−
2

)theo
| = |414.539− 410.8| = 3.739.

4E 5−
2

= |E
( 5−

2
)exp
− E

( 5−
2

)theo
| = |384.6− 383.6| = 1.

4E 3−
2

= |E
( 3−

2
)exp
− E

( 3−
2

)theo
| = |32.145− 44.8| = 12.655.

4E 1−
2

= |E
( 1−

2
)exp
− E

( 1−
2

)theo
| = |1.5648− 1.3| = 0.2648.

In this case, the theoretical calculation has very small difference with the experimental
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Figure 4.6: Decay level scheme for both Calculated and Experimental data of 201
80 Hg.

values. Hence, the experimental and the calculated theoretical level energies were in a

good agreement with an error below 10% in average.

• The gamma transition energy between different states are in a good agreement.

• When the variation of the branching ratio between the calculated and experimen-

tal values were compared; Even though, there were no complete experimental val-

ues, it shows a pronounced difference. This difference was may be; due to the

selection of the even-even core, in effective determinantion of the deformation

parameters, an error related to calculations (equations used) in the code may not

acceptable for this nucleus or instrumental and personal errors.
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Conclusion

In this thesis, the Low lying state for negative parity odd-A isotopes of Hg were studied,

by using the Particle Plus Tri-Axial Rotor Model with the associated computer codes

(GAMPEN, ASYRMO, PROBAMO). In this method, the quantum many body system

of a nucleus were changed in to two body system (by considering a single nucleon

and an even-even core), it also used to neglect some of the parameters by approxi-

mation and was effective in low energy states. The Level Energies, Gamma Transition

Energy, Transition Intensity (Branching ratio), Electromagnetic Transitions(EM1 and

EM2) and Magnetic Transitions (BM1) was calculated for each particular deformation

parameters(ε2) and γ of the respective isotopes. The results of the calculations are also

summarized and compared with experimental results as shown in Fig. (4.1) to Fig. (4.6),

respectively.

Over all in this work, in all aspects of the theoretical calculations a reasonable re-

sult with an error less than 8% in average was obtained. These discrepancies between

theory and experiment might be due to the choice of the deformation parameters, se-

lection of the even-even core, an error related to calculations (equations used) in the

code (may not acceptable for this nucleus) or instrumental and personal errors.

In addition the result aserts that, the model is a good theoretical approach to pro-

duce the main feature of the experimental level scheme and so does to calculate the low

43
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lying negative parity odd-A isotopes of Mercury structure parameters, intern to study

it’s nuclear structure, suggesting that a more intensive study of this method is required

for a more accurate of its understanding and description.
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