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Abstract

In this thesis, we have analyzed a pair of superposed twin squeezed states with the
same or different frequency. We have found that the mean photon number for a pair
of superposed twin squeezed states is the sum of that of the separate squeezed states.
However, the variance of the photon number for a pair of superposed twin squeezed
states does not happens to be the sum of that of the constituent light beams. And the
quadrature variance of superposed light beams is 2 times that of the separate light beams.
Finally, we have obtained that the maximum quadrature squeezing for both separate
and superposed light beams is 50% below the vacuum state level and photons in the
superposed states are entangled and highly correlated.

Keywords: Twin beams, Density operator, Entanglement, and quadrature squeezing.
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Chapter 1

Introduction

Quantum optics is one of the liveliest fields in physics at present[1]. Quantum optics
deals mainly with the quantum properties of the light generated by various optical sys-
tems such as lasers and with the effect of light on the dynamics of atoms. The quantum
properties of light are largely determined by the state of the light mode and the most
important quantum states of light are the number state, the chaotic state, the coherent,
and squeezed states[2,3].

Squeezing state of light has played a crucial role in the development of quantum optics.
Squeezing is one of the non classical features of light that have been extensively studied
by several authors[4,5]. Squeezed states have several potential applications such as in
low-noise communications, precise measurements and detection of weak signals[6].

A general class of minimum uncertainty states is known as squeezed state. In general,
squeezed state may have less noise in one quadrature than coherent state. To satisfy the
requirements of a minimum uncertainty state the noise in the other quadrature is greater
than that of the coherent state. The coherent state are a particular member of this more
general class of minimum uncertainty states with the equal noise in both quadratures([7].
The squeezed states can be generated in non-linear optical process such as degenerate
or non-degenerate amplifiers[8].

Quantum entanglement is an important role in quantum computation and communica-
tion. It allows us to teleport quantum states and reduces necessary numbers of qubits for
communication. One of the most fundamentally interesting phenomena associated with
a composite quantum system is called entanglement. Quantum entanglement is a phys-
ical phenomenon that occurs when pairs or groups of particles are correlated in ways
such that the quantum states of each particle cannot be described independently instead,
a quantum state must be described for the system as a whole. Quantum entanglement
is one of the central principles of quantum physics, which is the science of sub-atomic
particles, Multiple particles, such as photons, are connected with each other even when
they are very far apart and what happens to one particle can have an effect on the other



one at the same moment, even though these effects can not be used to send information
faster than light[9].

The signal and idler beams from a non-degenerate parametric amplifier have a strong
quantum correlation, which are called twin beams[10]. The statistical and squeezing
properties of the twin light beams with the same or different frequencies (each light
beam consisting of one photon from each pair) have been investigated[11]. It is found
that the twin light beams are in squeezed states, with the maximum quadrature squeez-
ing being 50% below the vacuum state level. We recall that the twin light beams with
the same frequency are represented in the conventional Hamiltonian by a2 and a'2, for
a given pump mode and the generated twin beams have exactly the same photon stat-
ics[11].

The squeezing properties of two mode light is described by two Hermitian quadrature
operators ¢ and ¢_, satisfying the computation relation

[y, ] = 4.

A two mode light is said to be squeezed if

(ACJF)Z < 27
or

(Ac_)? < 2,
such that

Ac,Ac_ > 2.

A non-degenerate parametric amplifier is a typical source of two mode squeezed light.
In this system a pump photon of frequency w, is down converted into highly correlated
signal and idler photons of frequency w, and w, such that w. = w,+w;,. Such process
can be described by the Hamiltonian

~

H =i\ (lﬁT&ldg - Daiaé) :

where a; and a, are annihilation operators for the light modes, D is the annihilation
operator for the pump mode, A is the coupling constant, and 7 is proportional to the
amplitude of the pump mode.

In this thesis, we study the photon statistics and quadrature fluctuation of the light
produced by superposed light beams. We first obtain the, Q function for twin beams
squeezed state. The Q function is obtained with the aide of anti normally ordered char-
acteristics function defined in the Heisenberg picture. Applying the Q function, we cal-
culate photon statistics, quadrature fluctuation and entanglement analysis of twin beams
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squeezed state, by finding the density operator for a pair of superposed light beams.

In addition, we also determine the Q function for the superposition of light beams and
employing the resulting density operator, we calculate photon statistics, quadrature fluc-
tuation and entanglement analysis for pair of superposed light beams. We consider a
quantum system with Gaussian variables with zero mean[12].



Chapter 2

Operator Dynamics

Aim: We establish the photon statistics and quadrature squeezing of the light beams
procedured by the subharmonic generation.

A non degenerate parametric amplifier is a typical source of a two-mode squeezed light.
In this system a pump photon of frequency w, is down converted into highly correlated
signal and idler photons of frequency w, and wy, such that w. = w,+ws[2].

Signal light beam W,

Pump mode

ﬁ NLC

(we) Idler light beam wp

Figure 2.1: The physical scheme for subharmonic generators.

The process of subharmonic generation is described by the Hamiltonian with the pump
mode treated classically [2]

~

H = ic (dydy — dy'dn') (2.0.1)



where a; (dy ) is the annihilation operators for the signal (idler) modes and =nf, in
which 7 is the cavity coupling constant and [ is the amplitude of the pump mode.
Applying Eq. (2.0.1), the equation of evolution for the density operator can be written
as

- = 5(01 2P—P(I1a2+pa1Ta2T—alTazTP)

dt

2a1p Al —dy a1 p— paﬁaﬁ)

IEI\DIR

+5 (2
(2@2,0@2 — (12 ag p — pas agT) (2.0.2)

where « is the cavity damping constant for light modes @; and a». Then by setting s =0,

Eq. (2.0.2) reduced to

dp e At b ta

d_i') =5 (a1a2pa1 — pdiasay + palTaQTal — alTangal) (2.0.3)
In the Schroedinger picture, the time evolution of the expectation value in terms of the

density operator is expressible as

d, . dp
—(A) = ( df A) (2.0.4)
Introducing Eq. (2.0.3)) into (2.0.4) , we see that
d,. N NPt 5t DN Bt Py
pr (ay(t)) =€Tr <a1a2pa1 — paydsay + pajasd; — alancu) : (2.0.5)

Then applying the cyclic property of trace operation, the equation of evolution for the
expectation value of mode a; is expressible as

d
@) =eTr (p [dif, dy] do') . (2.0.6)

Now using the commutation relation

[a},ai] _ [a},a;} _ 1, 2.0.7)
[CilT,GAQT} = [dl GQT] = [AQT,GAJ =0 (208)
and substituting Eq. into (2.0.6) , we get

d . t

%(dl(t» = —¢&(dy'(1)). (2.0.9)
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Following a similar procedure, we can also show that

d, . )
S {a@a(t) = —e(a(1)).

Using the Hermitian adjoint of Eqs. (2.0.9) and (2.0.10) , one finds
d, . .
%@J(t» = —&(ax(1)),

d, . )
(! (1) = —eldr(1)).

We introduce a new operators defined by

~

Ay(t) = dn(t) + dx' (1)

and

and
) A1) Ayt
i = Al

Introducing Egs. (2.0.13)) and (2.0.16) into (2.0.9) , one can readily verify that

d, . d, . i i
A1) + 2 (Aa(t)) = —e(Au(1) +e(Ax(1)).

Similarly, one can check that

d - d - A -
S ) — S 1) = —=(Ai (1) — (A (1),

In views of Egs. (2.0.17) and (2.0.18)) , we find that

CUA(0) = —<(Ai ().

The solution of Eq. (2.0.19) can be written as

~ ~

(Ai(t)) = (A1 (0))e™".
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It can be shown in a similar manner that
(As(1)) = (A5(0))e,
Applying Eqs. (2.0.20) and (2.0.21) into (2.0.15)) , one can readily get

<d1<t)> _ <A12<O)>€st + <A22(0)>€5t.

Substituting Eqgs. (2.0.13) and (2.0.14)) into (2.0.22)), we have

(@ (0)) + (d2"(0)) _,,
2 ¢t 2

{a:(t)) =

Then the solution of the above differential equation can be establish that

(@1 (1)) = {d1(0)) coshet — {dy'(0)) sinh et.
Following a similarly procedure,

(dy(t)) = (dy(0)) coshet — {d,'(0)) sinh et,
(@1 '(t)) = (d,7(0)) cosh et — (dy(0)) sinh et,

(dy' (1)) = (d7(0)) cosh et — (@ (0)) sinh et,
where

t —et
et +e
coshet = ——

and
et _ ,—¢t

2

(a1(0)) — (Cf2T(0)>€Et‘

(2.0.21)

(2.0.22)

(2.0.23)

(2.0.24)

(2.0.25)

(2.0.26)

(2.0.27)

(2.0.28)

(2.0.29)



2.1 The Q function

The Q function is an important tool in quantum optics. Knowing this function, all the
non classical effect can be predicted and the different moments of the operators can be
evaluated[13]. We now proceed to determine the Q function for the signal-idler modes.
The Q function for two-mode light beams is expressible as

1 * * * *
Q(ag, ag, t) = F/d%dzn%(z,n,t)exp [2%aq — za] + 0y —nas],  (2.1.1)

in which the anti-normally-ordered characteristics function ¢,(z,7,t) is defined in the
Heisenberg picture by

ba(z,m,t) = Tr(p(0)e = (t)ezaﬁ(t)e’”*@(t)e"dzt(t)). (2.1.2)
Employing Baker-Hausdorff identity
edel = eATBHIAB] (2.1.3)

we see that

1
ba(z,m,t) = efﬂp[—g(Z*z +1"n)]

Tr(p(0)explzd, (t) — 2*dy(t) 4+ ndy' (t) — 1n*da(t)]), (2.1.4)
so that on account of (2.0.24)) , (2.0.23) , (2.0.26) , and , wWe obtain
1
ba(z,m,t) = exp[—g(z*z + )] Tr(p(0)exp[(z cosh et + n* sinh et)d; ' (0)

)exp[(n cosh et + 2* sinh et)dy' (0)
). (2.1.5)

Applying once more (2.1.3) , we easily find

—(z" coshet + nsinhet)ady (0
—(n* coshet + zsinh et)dy(0
ba(z,m,t) = exp[—(z*z +n*n) cosh® et — (21 + 2*n*) cosh et sinh et]
xTr(p(0)exp(z cosh et + n* sinh et)d; ' (0)
xexp(n cosh et 4 z* sinh t)dy'(0)
xexp[—(nsinhet + 2" coshet)dy (0)]
x exp[—(zsinhet + n* cosh et )ds(0)]) (2.1.6)

and assuming the signal-idler modes to be initially in a two modes coherent state, we
have

p(0) = |y, 7v2) (71,72l 2.1.7)

8



so that one can write
ba(z,m,t) = exp[—(2*z +n*n) cosh® et — (21 + 2*n*) cosh et sinh et]
x (1, Y2|exp(z cosh et + n* sinh et)d; ' (0)
x exp(n cosh et + z* sinh et)dy ' (0)
xexp(nsinhet + z* cosh et)dy (0)

xexp[—(zsinh et + n* coshet)d(0)]|71, Y2)- (2.1.8)
It then follows that
ba(z,m,t) = exp|—(2*z +n*n) cosh® et — (21 + z*n*) cosh et sinh et
+(;, coshet — ,, sinhet)z — (7,4, coshet — v, sinhet)z*
+(7;, coshet — v, sinhet)n — (7,4, coshet — 4 sinhet)n™].  (2.1.9)
Furthermore, substituting (2.1.9) into (2.1.1) leads to
Qay, az,t) = —; d? zd®nexp|—(zz* 4+ nn*) cosh? et
—(zn + z*n*) cosh et sinh et
+(;, coshet — v,, sinhet — )z
—(7Va, coshet — v, sinhet — ) 2"
+(7;, coshet — v,, sinhet — a3)n
—(Vay coshet —~y; sinhet — ag)n*]. (2.1.10)
Moreover, using the relation
/d2a€(aa*a+bo¢+ca*+Ao¢2+Ba*2) _
T (a.bc—&-Ac2+Bb2 )
e «?-4aB 7 a>0 (2.1.11)

(a® — 4AB)z
and carrying out the integration over 7, we get

sech?ct . . . .
Q(ag, ag,t) = 3 exp[—v27s — vy} tanh? et 4 tanh et (v, + v v3)

+sechet(y; — 1 tanhet)
+sechet(y, — 73 tanh et) o — apasech®et]

/dQZexp[—z*z cosh? et + (y}sechet — yp tanh et — a})z

—(m1sechet — oy tanh et — ) z”| (2.1.12)

9



and upon performing the integration over z, there follows

sech’ct . . .
Qla, a9, 1) = ——g—exp[=m — 27 + tanhel(nmn +777)

—1a) — apay — tanhet(agan + ofasj)
+sechet(yiar + 107 + Y0 + 7205)]. (2.1.13)

By setting 1 = 2 =0, we see that

sech’et
2

Q(ala g, t) =

This is the Q function for signal-idler modes initially in vacuum state.

exp|—aga] — asay — tanhet(aan + aja3)]. (2.1.14)
s

One can easily check the normalization of the Q-function as follows

hiet
/d2a1d2a2Q(a1, g, t) = /dQOéldQCYQ 5ee B c
7r
exp|—aa) — agay — tanh et(ag g + ajasj)]. (2.1.15)
sech®et 9 . 9
= d*onexp(—aqal) | doas
exp(—asay — tanhet(agag + ajas)). (2.1.16)

Thus upon performing the integration employing the relation described by Eq. (2.1.11)),
we get

/d2a2 exp(—apal — tanhet(aan + afa})) = Texp aaf tanh®et.  (2.1.17)
Upon substituting Eq. (2.1.16) into Eq (2.1.17), we find
s / d*a exp(—aya} + o) tanh® et =

T / d?a; exp(—aal(1 — tanh? et) (2.1.18)

= 7T/d2Oél exp(—ayasech’et) (2.1.19)

and applying Eq. (2.1.11)), one can readily show the normalization condition is written
in the form

sech?st w2

— 2.1.20
w2 sech?et ( )

/d2041d2042Q(041, G, t) =

This shows that the Q-function is normalized.
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2.2 Photon statistics

In this section we wish to calculate the mean photon number and the variance of the
photon number for the signal-idler modes employing the Q function.

2.2.1 The mean photon number

Here we wish to calculate the mean photon number for the signal-idler modes. The
mean photon number for the signal-idler modes can be written as

n={(a'a), (2.2.1)
in which
G = dy + dy (2.2.2)
and
at = al +al. (2.2.3)
Substituting Eqgs. (2.2.2) and (2.2.3) into (2.2.1), we have
n=(d'a1) + (d@'dz) + (dodr) + {dx'da) . (2.2.4)

We can calculate the expectation values of the operators employing the c-number vari-
able corresponding to operators is anti-normally ordered, hence we see that

<CALI(A11> = /d2a1d2a2Q(Oz1, CVQ,f)((IT(Il — 1) (225)
Inserting the value of Q function from Eq. (2.1.14) into (2.2.5) , one can easily obtain
L sech’ct . . . %
<a}a1> = —3 /d2a1d2agexp[—oz1a1 — ajan — (tanhet)(agag + ajad)]
(ajayg —1). (2.2.6)

Upon carrying out the integration, we readily obtain the mean photon number of the
signal light beam to be

<a1&1> — sinh? et 2.2.7)

It can be shown in a similar manner the mean photon number of the idler light beam to
be

<a§a2> — sinh?et. (2.2.8)

11



The other expectation values of the given operators takes the form

{(dlaz) =0, (2.2.9)

(drta,) =0, (2.2.10)

(@ra,) =0, (2.2.11)

(dyas) = 0, (2.2.12)

di'd,') =0, (2.2.13)

dy'dr') =0, (2.2.14)

{dpdy") =0, (2.2.15)

(d1d>") = o, (2.2.16)

(dy'dy") = — coshetsinhet, (2.2.17)

{dy'dy") = — coshetsinhet, (2.2.18)

(a1G9) = — coshet sinh et, (2.2.19)

(da1) = — cosh et sinh et, (2.2.20)

<cildn> — cosh? et, 2.2.21)

<dchT2> — cosh?et. (2.2.22)
Combinations of Egs. (2.2.7)) , 2.2.8) , (2.2.9), (2.2.10) and (2.2.4) yields

n = 2sinh® et. (2.2.23)

This represents the mean photon number for the signal-idler modes initially in a vacuum
state, which is the sum of the mean photon number of the signal light beams and idler
light beams.

12



2.2.2 The variance of the photon number

We next proceed to determine the variance of the photon number for the signal-idler
modes. Then we define the photon number variance for the signal-idler modes by

(An)* = (n?) — (n)*.
This can be rewritten as
(An)* = ((a'(t)a(t))?) — (a'(a(t))?
Now using the commutation relation, we find
la,a'] = 2.
Hence employing Eqgs. (2.2.26)) the variance of the photon number becomes
(An)* = (a"(t)a* (1)) + 2(a’(t)a(t)) — (a'(t)a(t))*.
We note that a(t) is a Gaussian variables with zero mean, we see that
(@(t)a*(1)) = 2(a'(t)a(t))® + (@"(1)) (@*(t).
Substituting Eq. (2.2.28) into (2.2.27) , we have
(An)* = (a'(t)a(t))” + 2(a'(t)a(t)) + (a"(1)) (@*(t)).

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

(2.2.29)

Upon introducing Eqs. (2.0.7) , @.I.11) , 2.1.14) , 2.2.2) , and (2.2.3) into (2.2.29) ,

there follows

(An)? = (al(Han(t)? + 2(a]

(2.2.31)



Thus applying Egs. (2.2.7) - (2.2.16)) and (2.2.31)) into (2.2.30) , we get

(An)? = (al(t)r(£)? + (ab(£)as()? + 2(al (£)ar () + 2(ab(t)as(t))

~

+2(al (t)dr (1)) (ab (t)dx(t)) + 4(al ()ad(t)) (1 (t)da(t)). (2.2.32)
Substituting Eqgs. (2.2.7) , (2.2.8) , (2.2.17) , (2.2.19) , and (2.2.20) into (2.2.32) , there
follows

(An)* =4 sinh® et + 4 sinh? et + 4 cosh? et sinh? et. (2.2.33)

This is the variance of the photon number for signal-idler modes initially in vacuum

state. Eq. (2.2.33) leads to
(An)* = 2n + 7% + 27 cosh® et. (2.2.34)

This result shows that the photon statistics is super-Poissonian

2.3 Quadrature fluctuation

In this section, we determine the quadrature variance and quadrature squeezing for the
signal-idler modes.

2.3.1 Quadrature variance

We wish here to determine the quadrature variance for signal-idler modes. The plus and
minus quadrature operators for signal-idler modes are defined by

a,=a'+a (2.3.1)
and
a_ =i(a' —a) (2.3.2)

where a; and a_ are Hermitian operators representing the physical quantities called
plus and minus quadratures, respectively. The quadrature variance can be expressed in
terms of the quadratures as

(Ads)? = (a2) — (a) (2.3.3)

The quadrature variance of plus and minus quadrature can be rewritten as

~

(Aay)® = 2+ 2ata) £ (a®?) & (a?)
F(ah) F @7 - 2ah)@). @34

14



Since @7 and d, are Gaussian variables with zero mean, a is also Gaussian variable with
zero mean, Eq. (2.3.4) thus becomes

(Ady)? = 2+ 2(a’a) £ (a¥?) + (a?), (2.3.5)

now one can easily obtain

2(ata) = 2((al + ab)(d, + @) = 2(alay) + 2(ala). (2.3.6)
Similarly,
(™) = ((a} + ab)(al + ab)) = (ala}) + (abal), (23.7)
(a®) = ((dy + dy)(dy + dy)) = (dydy) + (dady). (2.3.8)
Form Eqs. (2.2.16) , 2.2.17) , (2.2.18)) and (2.2.19) , we note that
(ando) = (a20) = (alal) = (alal). (2.3.9)
Substituting Eqs. (2.3.6) , (2.3.7) , 2.3.8)) , and (2.3.9) into (2.3.5)) , one finds
(Ads)? =24 2[(alay) + (abag) + 2(ards)). (2.3.10)

One can easily recall that

(alay) = (aday) = sinh® et (2.3.11)
and
(a1as) = (a2a1) = — cosh et sinh et. (2.3.12)
Inserting Eq. (2.3.11) and (2.3.12) into (2.3.10) , one can easily obtain
(Ady)? =2+ 27 + (—2n cosh® et). (2.3.13)

From the definition of cosine and sine, we see that

sinh? et = ( ) (2.3.14)

and

cosh et = % (2.3.15)

15



Plagging Eqgs. (2.3.14)) , and (2.3.15)) into (2.3.13) , we have
(Ady)? = [e*! + e % £ [e7 ! — 1), (2.3.16)

With the aid of Eq. (2.3.16) , one easily obtains the plus and minus quadrature variance
as

(Aay)? = e (2.3.17)
and
(Aa_)? = e*. (2.3.18)

From this result we observe (Aa,)? = e %! < 2 and (Aa_)? = €' > 2. This shows
that the signal-idler modes are in a squeezed state and squeezing occurs in the plus
quadrature

2.3.2 Quadrature squeezing

The quadrature squeezing of the two mode light beams can be written as

_ 2 —Afay)?

St 5 (2.3.19)
Substituting Eq. (2.3.17) into (2.3.19), we find
2 _ —2¢t
S, = Te (2.3.20)
1 —2¢t
Sy(t)y=1- 3¢ (2.3.21)

with €t being the squeezing parameter taken to be real and positive for convenience. We
note that for t=0, there is a 50% quadrature squeezing below the two-mode vacuum state
level
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Figure 2.2: A plot of S+(t) Eq. (2.3.21) versus t for ¢ = 0.4

2.4 Entanglement analysis

In this section we seek to study the entanglement condition for twin beams of light.
On the basis of this criteria, twin light beams is said to be entangled if the sum of the
variance of the two EPR-like operators s and ¢ satisfies the inequality[12].

(As)? + (At)*<2, (2.4.1)
where

N SR .

S=3 (d1, +dz,), (2.4.2)
with

.1

=3 (d1_ +d» ), (2.4.3)



dy, (t) = di'(t) + da(t) (2.4.4)

and
day_(t) =i (@' (t) — di(t)), (2.4.5)
dy, (t) = dy' (t) + da(t), (2.4.6)
dy_(t) =i (da'(t) — da(t)) . (2.4.7)

The variance of the operators § and ¢ can be expressed as

(As)? = (s2) — (3) (2.4.8)

and
(AL)? = (12) — (§)2. (2.4.9)

In view of the fact that a(¢) and b(t) are Gaussian variables with zero mean and employ-

ing Eqs. (2.4.4) , (2.4.6) , and (2.4.8)) , one can readily obtains

(As)® = [1+ (di'd) + (d2ldn) + (d1*) + (d1")

DN | —

~

+{dn"?) + (dy?) — (dyTdy") — (dydy) — (dy'dy)

—(dydy"y — (dytdyT) — (dady) — (dy'dy) — (dody")]. (2.4.10)
Following the same procedure, we get

1 At At . .

(At)? = 5[1 + (drtdr) + (datdz) — (d1?) — (d1")

— (") = (dr?) — (dr"dr") — (drdia) + (dr ')

+(drdy") — (dy'dr') — (dadr) + (datdy) + (dadr ). (24.11)
On account of Egs. (2.4.10) and (2.4.11) , we see that the sum of the variance of the two
EPR-like operators is expressible as

(As)?+ (At)? = 1+ (di'd1) + (da'ds) — (61 dn")

—(drdz) — (d2'dr ) — (dad). (2.4.12)
Upon introducing Egs. (2.2.7) , (2.2.8)) and (2.3.9) into (2.4.12)) there follows
As) 4 (A1) =1+ 2(dy dy) — 4{ddy) (2.4.13)
Substituting Egs. (2.2.7) and (2.2.19) into Eq. , we get
As)? + (At)? = 1 4 2sinh?® et — 4sinh et cosh t. (2.4.14)
At steady-state the sum of the variance of the two EPR-like operators to be
(As)? + (At)? = 1. (2.4.15)

On the basis of the criteria Eq. (2.4.1) , we clearly see that twin beams of light are
entangled at steady-state.
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Chapter 3

A Pair of Superposed Twin Beams
Squeezed State

Any two or more beam of light can be added together and the resultant beam is said to
be superposed beams of light. A beam splitter, used in many quantum optical measure-
ments, is a mirror that partly reflects and partly transmits a light beam incident on it[2].
And we intended to use the horizontal polarizing beam splitter to get uni-directional
beam of light that might be attain the superposed squeezed light beams which to be
measured by the detector.

P, NLC-1

P b, <. detector

. d,+b,+d,+5

MNLC-2

= e

=)
Y

Figure 3.1: A pair of superposed twin beams of squeezed light.
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3.1 The density operator

Here we seek to determine the density operator for a pair of superposed twin beams
squeezed state. Suppose p (aTl, a'ty, t) is the density operator for a certain two mode

light beams. Then upon expanding this density operator in normal order [12], we see
that

pi (al b t) = 3 Cumnal* ()af (D} ()3 (1) (3.1.1)
klmn

Now employing completeness relation

1
I= ﬁ/d2@1d2@2\041>042><042,0z1!, (3.1.2)

for a two-mode coherent light, one easily finds

1 NN
= Payd’on Y Chimnlar, o) (g, an [l (t)all () (D (),  (3.1.3)
klmn

in which a; (t) (d(t)) is the annihilation operators for the first signal(idler) light modes,
respectively. This expression can be written as

. 1
= d*ayd*a; Z Crimna ¥ a3l o, ) (ag, an|a (t)ab (t). (3.1.4)
klmn

Applying the relation

R . 0 0
|a1,a2><a2,a1|a1<t>a2<t>=( aaﬂi) (a2+a&;)|a1,a2><a2,al|, (3.15)

one easily obtains

7T2

. 1 0 "
p1 = a1 d*ay Z OklmnOél o (Oq + = Dot )

klmn

a n
(ag—i-a -, ) |y, an) (e, g (3.1.6)

Then density operator for the first light beam in terms of the displacement operator can
be rewritten as

. 1 0 "
P = 71-2 d2a1d2a2klz: Cklmnal <061+ a T t)

o \" ., - . )
(a2+8 . ) D(a1)D(arz) poD(—a2) D(—avy), (3.1.7)
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in which
po = |0a1, Oaz){Ocrg, Oy |,

represents the density operator for the light initially in a two-mode vacuum state. Now
we realize that upon expanding the density operator for the superposition of the first
beam and another one is expressible as

pa (busbat) = D7 Gt U OB ()05 (1), (3.18)
El'm'n
from which follows

! ! a m
N _/d%ldzﬁ? > Cwrww B85 (5l+—*at)
B3

/

’ 1ot

EU'm'n

/

(st 1) DEIDEID-FD( ) 3.19)

Moreover, on account of Eqs. (3.1.7) and (3.1.9) , the density operator for the pair of
superposed twin light beams can be put in the form

A a m

klmn

B . o \™
¢ C// i~ *k *l t
<O‘2+aa;’) 2, Curn (51 ﬁf’)

kll/ !/ /

’

(Aot gt) DD D)D)
D(—az)D(—a1)D(—B2) D(—f). (3.1.10)

Now one can easily write Eq. (3.1.10) as follows

a m
N 2 2
Py = /dadagd pd ﬁzzcklmn% % (aﬁ‘a *,t)

klmn
0 gt o \™
(O‘“é’*’t) klfzfo”m'”' k l(ﬁl op; )
(@ + 2 t) D(B)D(B2) D(en) D(g)] 00, 0a) (g, |
2
D(—az)D(—a1)D(=B2) D(—B). (3.1.11)

21



Employing the relations
D(Ql)D(&2)|Oa1, OO(Q) = |O{1, O./Q> (3112)

and

(0cva, 0ty | D(—an) D(—av) = {02, v, (3.1.13)
we can express Eq. (3.1.T1)) as
1
= — / daydasd®1d*By Yy Crmnari (al + )
klmn
a2t E:c,,,WH’g "
’ a 5 [~ K '
K1'm
0 " . . .
(52 + = 985 t> D(B1)D(B2)|ar, az) (v, ar| D(=B2) D(—F1). (3.1.14)
Using the relation[2,14,15]
D(e)|B){(BID(—a) = |a+ B){a + B, (3.1.15)

we easily adopt an expression that holds true for the two mode light beams as

D(B1)D(B2)|cvr, az){az, ar| D(—=B2) D(=B1) = | + o + Bi + Ba)
(Ba+ f1 + s + oy (3.1.16)

Applying Eq. (3.1.16)) in (3.1.14)), the density operator for the superposition can be put
in the form

0
p /d2a1d2@2d261d Bng <CK1,OC1 + Dor *,t>

0 ,
0, (aQ,aﬁa *,)Ql(ﬁl,ﬁl = )

0
Q (B2>52+ 6 )
a4 oz + B+ Bo) (B2 + B1 + a2 + i, (3.1.17)
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where

a m
o <a1,041+ ) Za (a1+ P ) (3.1.18)

)
Q> <a2,a2—l— ) Za2 (ag—l—a -, ) (3.1.19)

!

Qy (61,61 ) Z ﬁ*’“’( ‘Z t) (3.1.20)
1

7

Qs (ﬁg,ﬁﬁ ) Zﬁ*’ <62+ o5 ) . (3.1.21)

We see that Egs. (3.1.18)-(3.1.21)) represent the Q-functions for the first signal beam,
the first idler beam, the second signal beam and the second idler beam, respectively.
Now introducing the Q function that we obtained in chapter two, the Q function for the
first signal-idler modes can be written as

sech’cst
2

Q1 (a1, ag,t) =

exp|—aia] — agay — tanhet(agan + ajas)]. (3.1.22)
s

And the Q function for the second signal-idler modes can be written as

sech’et

Q2(B1, B2, 1) = exp[—F1 0] — B2y — tanh et (515, + B1 ;)] (3.1.23)

3.2 Photon statistics

In this section we wish to calculate the mean and variance of the photon number for the
superposed light beams.

3.2.1 The mean photon number

The mean photon number for a pair of superposed two-mode light beams in terms of
density operator can be written as

n=Tr (p(t)¢'(0)¢(0)), (3.2.1)
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where

é=a+b, (3.2.2)
with
a=a + a (3.2.3)
and
b= by + by. (3.2.4)
Using Eq. (3.2.2) , Eq. (3.2.1) cab be written as
ﬁ:Tr@@xﬁa+w@+ﬁa+ﬁm>. (3.2.5)

On account of Eq. (3.1.17) , we find

0
n = /d2a1d2042d251d P21 (0%041 + 9o *,t)

0 / /
Qu (agant 5ot) @1 (B0 + o) & (B 5 t)
Tr(las + oz + Br + Ba)(Ba + B1 + a + o

(afa+ a'b + bfa 4 b'D)). (3.2.6)
Applying the cyclic property of trace, we obtain

n = /d2&1d2042d251d B2Q1 (041a041 + aa*vt)

0 , ,
Q <042,062+8 %) >Q1 (517ﬁ1 86 )QQ (62762+ 6 >
[(Bo+ B1 + a2 + Oé1|CLT0Al|al + g + B+ Po)

+<62 + B1 -+ (6] + 061|€LT6|041 + (65 + Bl + 62>
+<52 + 61 + a9 + Oél‘bTCAl‘Oél + a9 + 51 + 52)
+(B2 + B1 + az + cu[bTb|ay + g + Br + Ba)]. (3.2.7)

Introducing Egs. (3.2.3)) and (3.2.4) into (3.2.7) , we get
9,

n = /d20é1d2042d251d P21 (al,a1+ XL )
1

0 / / 0
Qo (0427042“‘8 ) )Q1 (51751 86 )QQ (ﬁ2a62+85 )
[<ﬁ2 + 61 + (0%)] + CY1|CL]£CAL1 + CAL];CALQ + a2a1 + a;&2|a1 + (0%)] + 61 + 62

)
+<52 + 61 + a9 + Oél‘dii)l + CAZJ{(A)Q + &;i)l + d;i?gl&l + g + ﬁl + 52)
)
]

+(Be + B1 + a2 + CY1|ZA7]£6AL1 + 8%2 + 132&1 + B£d2|(11 +ay+ b1+ B
+<62 —+ 61 + (6] —+ Oél|bJ{b1 -+ bJ{bQ + b;bl + b;b2|041 -+ (6] —+ 51 -+ B2> (328)
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This can be re-written as

n = /d20é1d2042d251d P21 (%:041 + 88*, )

0 / 0 / 0
Q2<0427042+8 5 )Q1 (51751 86 )QQ(B%BQ"‘ 8; )
[<52 -+ 51 + [6%) + CY1|CALJ{CAL1‘061 -+ (6%) -+ B1 + /82>
+<52 + 51 + (o + Ckl‘CALJ{(AZQICYl + 9 + 51 + Bz>
+(Ba+ 1+ as + Oé1|d£&1|041 + as + B+ Pa)
+<52 + 61 + a9 + Oél‘dgfLﬂOél “+ g + 51 + B2>
(By + B1 + ag + ap|albi|oy + ag + Bi + Ba)
(B2 + b1+ s + 061|(Al§b2|041 +ay + Bi + o)
<52 —+ 61 -+ (67) —+ al\dgbﬂal —+ (6] —+ ﬁl + ﬁ2>
<52 + 61 + (6D) + CV1|CAL£b2|CY1 + (6] + 61 + 62>
<52 + 61 -+ (6] —+ 061|bJ{CAL1|Oél —+ (6] + 61 + 52>
<52 + 61 + a9 + al\bidﬂal + a9 + 61 + ﬁ2>
( )
( )
( )
( )
( )
( )

++ + 4+ + + o+

ﬁ2+ﬁl+a2+a1|5£&1|a1+a2+ﬁl+ﬁg
524*51+(12+Oé1|i)$d2|a1+062+51+ﬁ2
52+51+Oé2+041\6151\041+Oé2+51+ﬁ2
52+51+042+CY1|ZA7]£[;2|OZ1+042+51-I—BQ
+ 52+51+042+041‘6$i71|041+042+51+52
+ 52+51+Oé2+a1\i7;32\041+Oé2+51+52 ]. (3.2.9)

+ + +

Applying the annihilation and creation operator appeared in Eq. (3.2.9) on the state
vectors |ay + ag + 1 + B2) and |fs + B1 + e + «, respectively, we obtain

n /d2041d20é2d251d B2Q1 (Chaal + aa*7t)

) , ) , )
@a (agiaat e t) Q4 (8101 + e t) Q6 (8584 )
[Of{Ozl + OéTOéQ + a2a1 + OZ;OCQ + Oélﬁl + 04162 + Oé;ﬁl + Ckzﬁg
+B1a1 + Blag + Byan + Bran + Bi S+ B2 + B3 51+ B3] (3.2.10)
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Then recall the normalization condition of the Q function, Eq. (3.2.10) reduces
0
n = /dQOélQl <Oél,061 + — 8 ) ) OéTOq
+/d2ad2on ozoz—l—a ;@ oz*oz—l—it Q
1 21 1) &1 6 * 7 12 2y (X2 8(1; ) 2
+/d2ad2aQ ozoz—i—a a1Q) a*a+it o
1 2 1 1> 1 a * 7 1 2 29 2 aa;7 2

0
+/d2042Q1 <CY§7042 + ﬁ,t) Qpry

/dgald B1Q1 (01701 + 7= 8 g ) 041@1 (ﬁuﬁl 62*’t> Io
1
d2a1d B2Q1 (alval + 7 t) ;@ (52,52 + 32 ﬂf) B2
d2042d251Q2 (0427062 + t) a3Q, (5 8 f> Io
d2062d252Q2 (Oé o) + ) a3Qy (52; B2 + 8;*,73) B2
2
d2a1d261Q1 (Oé o%] + 75) Q) (5 pr+ az ,t) B1
d2(12d251Q2 ( , Qg + t) as @ <5 I3t + 0 t) By
dzald B2Q1 ( ay, aq + ) 041@2 </82752 + o 8 t) 55
ngézd B2Q (%7@2 + = t) 042@2 (52752 + a5 8 t) 55
/ 0 (51,6 + 5 ) 5i6h
b [ @ (516 + gt) 5105 (S50 )
LAY a; IECACT T
/d2ﬂ2Q2 (52752 + = 355 ) 3 B2 (3.2.11)
We know that
i o 9 .
(A A>—/d a® (a a+a *,t)aa, (3.2.12)
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in which a*« is ¢c- number variable associated with the operators AT A in normal order

In view of Eq. (3.2.12)), Eq. (3.2.11) can be put in the form

). (3.2.13)

R o={d@ (B)d (1) + (B (Oh (1) + (@ (Dd() + B (O5(E).  (3.2.14)
One can easily establish the relation

(alan) = (blby) = (abaz) = (blb). (3.2.15)

Then on account of Eqgs. (2.2.7) and (2.2.8) along with (3.2.15) , Eq. (3.2.14) we can

write as
Nes = 4sinh? et. (3.2.16)

This result indicates that the mean photon number of a pair of two-mode superposed
light beams is the sum of the mean photon number of the separate light beams.

3.2.2 The variance of the photon number

We next proceed to determine the variance of the photon number for a pair of two-
mode superposed light beams. Then we define the photon number variance for a pair of
superposed light beams as

(An)? = (@ ()e(t)?) — (& (e()”. (3.2.17)
Now using the commutation relation
e, =4, (3.2.18)
which holds true for a pair of superposed light beams, we find

(An)? = (1) (1)) + 4T (1)e(t)) — (T (H)e(r))?. (3.2.19)
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We note that ¢(¢) is a Gaussian operator with zero mean. Hence we see that

(@()e(t) = 20e (t)e(t))® + (P (O)(E(1)).- (3.2.20)
Thus one can put Eq. in the form
(An)? = (& (#)e()? + 4t (#)et)) + (62(1))2 (3.2.21)

Then the commutation relation for the annihilation operator representing two-mode light
beams can be written as

A A

[a,a'] = [b,bT] = 2. (3.2.22)

Now we can calculate the expectation value of ¢* .Then using the density operator, the
expectation value of the operator ¢2 can be written as

(e*) = Tr(p(t)e?). (3.2.23)
In view of Eq. (3.1.17)), we see that

(&%) = /d2a1d20é2d251d252Q1 (Oflkaal + %’t)
51

) ,
QQ (OéQ;OZQ‘I“a ¥ )Q1 (51761 B )Q (62,ﬂ2+ 5 )
Tr(loo + B+ B2)(Bo + Br + az + aq|E?). (3.2.24)

Employing Eq. (3:2.2)), we find
(&%) = /d2oz1d20é2d251d252Q1 (a’{,al + %’t)
aq

) , ,
QQ (OéQ,Oéz—l—a P )Ql (/81761 85 )QQ (62’ﬂ2+85 )
Tr(los + B+ B2) (B + Bi + s + cn|a® + ab + ba + b?). (3.2.25)

Applying cyclic properties of trace, we obtain

(&%) = /d2a1d2a2d2ﬁ1d2ﬁ2Q1 <04T7041 + %’t)
51

QQ(Q27Q2+88*7>QI1 (617/61 85 )Q (32:52‘1’ 28;’ )
[<52+61+042+051|CL2|O£1+Oéz+ﬁ1+ﬁ2>

+<52 + 61 + (6) —+ Oél‘di)l@l + [6%) -+ 51 + 52)
+(B2 + 1 + as + aq|ba|ay + as + 1 + Ba)
+(Bo + B1 + s + a1 |b*|ar + s + Bi + Ba)]. (3.2.26)
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With the aid of Egs. (3.2.3)) and (3.2.4) , we get

<62> B /d2a1d2a2d251d BaQ1 <a1,a1 + aa*at)

Qu (agant 5t) @ (5150 + 0 t) & (8550 1)

[(Ba 4 B1 + g + a3 + @y + Gy + a3|oq + ag + B1 + Ba)

+(Ba + Br + iy + ay|dgby 4 a1y + by + asbo|ay + o + By + )

+(B2 + 1 + s + Oz1|i71fl1 + 81512 + Bzah + 62d2|041 + as + B1 + Pa)

+(By + B1 + ag + ar|B? 4 biby + boby + by + ag + By + B2)]. (3.2.27)

Then it follows

<62> = /d2a1d2a2d251d252621 (al,al + 88*,t)

Q <a27042—|—aa >Q/1 (51761 ag )Q (62752"’8; )
(o1 + a2)® + (B + Ba)?
+(ar + az)(Bi + Ba2) + (81 + B2) (a1 + ag)]. (3.2.28)

Then on account of Eq. (3.2.12) , Eq. (3.2.28) can be put in the form

(%) = (a1(t)) + (@ (t)a

o (t)) + (b3(t)) a1 (t)). (3.2.29)

For the case in which a4, b1, a; and b, are Gaussian operators with zero mean, we see
that

<é2> = (a1(t)az(t)) + (az(t)ai(t))

+(bi(D)ba(1)) + (ba(t)b1 (1)) (3.2.30)
Substituting Eqs. (2.2.19) , (2.2.20) and (3.2.13) into (3.2.30) , we have
(&%) = 0. (3.2.31)

Now squaring the expectation value of ¢2, we find

(&%) = 0. (3.2.32)
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Finally, with the aid of Eqgs.(3.2.21)) and (3.2.32) the variance of the photon number for
a pair of superposed twin two mode light beams

(An)? = 16sinh” et + 16sinh” et. (3.2.33)
Eq. (3.2.33) can be rewritten as
(An)? = 4n + 0>, (3.2.34)

We see from the above result, unlike mean photon number, the variance of the photon
number for a pair of superposed twin light beams is not the sum of the constituent light
beams and the photon statistics is super-poissonian

3.3 Quadrature fluctuation

In this section, we seek to determine the quadrature variance and quadrature squeezing
for the superposed light beams.

3.3.1 Quadrature variance

Here we determine the quadrature variance for a pair of two-mode superposed light
beams. We define the quadrature variance for a pair of superposed light beams by

(Act)? = (ce(t), (1)), (3.3.1)
where
& =é+eé (3.3.2)
and
< =i(eh—¢), (3.3.3)

are the plus and minus quadrature operators for the superposed light beams. With the
aid of the commutation relation described by Eq. (3.2.18) , Eq. (3.3.1) can be put in the
form

(Act)? =4+ (: Eu(t), Eu(t) :). (3.3.4)

We note that 4 is the quadrature variance of a pair of superposed two-mode vacuum
states. Then employing Eq. (3.3.2) and Eq. (3.3.3)) , we can express Eq. (3.3.1) as

(Ace)? = 4+ [2(e"(1)e(t)) + (1)) £ (1))
F(et())* F (e(t)” — 2(c" ) (e(0)))- (3.3.5)
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In view of the fact that ¢(¢) is Gaussian operator with zero mean, Eq. (3.3.5) reduces to
(Acy)? =4+ 2[(eT(t)e(t)) £ (6%(1))]. (3.3.6)
Introducing Eq. (3.2.2) into (3.3.6) , we have

(Acx)® = 4+ 2[@"(Ha() + B1(0)b(1)) = (@*(1))
+(0%(1)) = (a(0)b(1)) £ (b(t)a(1)))- (3.3.7)

We next calculate the expectation value of operator ab, employing the density operator
for a pair of two-mode superposed signal-idler beams. We thus see that

<az§> — Tr (paé) . (3.3.8)
Introducing Eq. (3.1.17) into (3.3.8) , we get
~7 2 2 2 2 * a
(ab) = /d ard?and?B1d%B,Q (al,al + —*,t)
oo

9 / ,
Qo (042,042‘1‘8 T >Q1 (51,51 8ﬁ )QQ (52,52%- 9B )
Tr <|041 s+ B+ Bo)(Bo+ B+ s+ a1|&6> . (3.3.9)

Applying the cyclic properties of trace, one can get
AT 2 2 2 0
(ab) = [ dardardd*5:Q: (afion + 5

’{
0 , ) )
Q2 <a270[2_|_a _ )Ql <ﬂ1761 B )Q (52’52_’_ 5 )
(Bo + B1 + as + oq|abloy + as + B1 + Ba), (3.3.10)

which can be re-written as
~T 2 2 2 0
<ab> = /d Oéld Oégd ﬁld ﬁg@l (()61,061 + o *,t)

0 / /
Qu (agant 5t) @4 (B0 + ) & (B304 )

<52 -+ Bl + o + Ckl‘CleAl + Cilgg + agbl + a262
o + g + B1 + Ba). (3.3.11)
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Then it follows

<€LI;> = /d20é1d2042d Bid? By (0417041 + aawt)
0

0427042+ 6 %) )Qll <617ﬁ1 86 )QIZ (ﬁ2752+ 5 )05161

0
+ | dPard®asd®Brd’ B2Qn (041,041 + 0 *>t)

e oo t) Q (81514 5nt) Q) (554 )

0

et ooent) Q) (B0 + ) Q6 (858t )

0
+ dQOéldQCkgd ﬁld /BQQl (061,061 + — a t)
0‘1

+/d2041d20é2d ﬁld 62@1 (al,al + (926{ t)

0427042‘1‘ )Q/1 <51751 35 )
Q <627/B2+ 6 )05252

Then on account of Eq. (3.2.12)) , we can put Eq. (3.3.12) in the form
(ab) = (@ib1) + (drb) + {dabr) + (d@ab).
Finally, we get
(ab) = 0.
Following similar procedure, one finds
(ba) = 0.
In view of Egs. (3.3.14) and (3.3.15) , Eq. (3.3.7) tends to
(Aci(t)? = 2+ 2(afa) + 2(a%) + 2 4 2(bTb) + 2(0%).

This can be re-written as

(Acs(t)® = (Aax(t))” + (Abs(t))*.
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(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)



We easily observe that the quadrature variance of a pair of two-mode superposed light
beams is 2 times that of the separate light beams. Substituting Eqs. (2.3.13)) into Eq.

(3.3.17) , we get

(Acy(t))? = 4+ 4n 4 (—4n cosh® et). (3.3.18)
From Eq. (3.3.18)), we get
(Acs(t))? = [ + e £ [e7*" — ] (3.3.19)

In view of Eq. (3.3.19) , the plus and minus quadrature variances become

(Acy)? = 2e2 (3.3.20)
and

(Ac_)? = 2e*. (3.3.21)

We clearly see that squeezing occurs in the plus quadrature

3.3.2 Quadrature squeezing

We finally proceed to calculate the quadrature squeezing for a pair of superposed light
beams. The quadrature squeezing of a pair of two-mode superposed light beams is
defined as [12]

4 — (Acy)?
Sy = %. (3.3.22)
Substituting Eq. (3.3.20) into (3.3.22)) , we obtain
4 —9 —2¢et
S, = (3.3.23)
4
1 —2¢et
S, (t)y=1- 56 ) (3.3.24)

The quadrature squeezing of the superposed light beam is the same as that of the separate
light beams. We note that for t=0, there is a 50% quadrature squeezing below the two-
mode vacuum state level
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Figure 3.2: A plot of S+(t) Eq. (3.3.24) versus t for ¢ = 0.4

3.4 Entanglement analysis

In this section we seek to study the entanglement condition for a pair of superposed
beams of light. Hence in order to show the entanglement of a pair of superposed beams
of light . On the basis of this criteria, a pair of superposed beams of light is said to be
entangled if the sum of the variance of the two EPR-like operators § and { satisfies the
inequality[12].

(As)? + (At)*<4, (3.4.1)

where

(@ . b}) , (3.4.2)



i = % (d_ + bl) , (3.4.3)

with
a(t) =a'(t) +alt), (3.4.4)
d_(t) =i (a'(t) — a(t)) (3.4.5)

and
bo(t) = bi(t) + b(2), (3.4.6)
bo(t) =i (iﬂ(t) - 6@)) . (3.4.7)

The variance of the operators § and ¢ can be expressed as

(As)? = (s2) — (5)? (3.4.8)

and
(AL)? = (£2) — (D)2, (3.4.9)

In view of the fact that a(¢) and b(t) are Gaussian variables with zero mean and employ-

ing Eqs. (3.4.4) , (3.4.6) , and (3.4.8)) , one can readily obtains

(As)? = %[2 +2(ata) + 2(b'b) + (&%) + (a'?)

—(ab"y — (bfaly — (ba) — (b'a) — (bat)). (3.4.10)
Following the same procedure, we get
1 R
(At)* = S[2+ 2(a'a) +2(b'b) — (@) — (@)

—(b"%) — (b*) — (a'd") — (ab) + (alb)
+(abty — (bfaty — (ba) + (ba) + (bat)). (3.4.11)

On account of Egs. (3.4.10) and (3.4.11)) , we see that the sum of the variance of the two
EPR-like operators to be

(As)? + (A1) = 2+ 2(ata) + 2(b'b) — (a'dh) — (ab) — (bfal) — (ba). (3.4.12)
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One can easily obtain

(ata) = (d\"dar) + (a1 dy) + (dydy) + (da'dy) (3.4.13)
and
BHBY = (B 50) + (B B) + (B B1) + (B o). (3.4.14)
Substituting Eqs. (3.4.13) and (3.4.14) into (3.4.12)), we get
(As)2+ (A1) =2+ (@ dy) + (@) + (B 'Br) + (s o) (3.4.15)
Applying Eq. (3.2.14) Eq. (3.4.15), we get
(As)? + (At)? = 2+ 4(dy"dy) (3.4.16)
Substituting Eq. (2.2.7) into (3.4.76))
(As)? + (At)? = 2 + 4sinh? et (3.4.17)

The sum of the variance of the two EPR-like operators for a pair of superposed light
beams is found

(As)* + (At)* = 2. (3.4.18)

On the basis of the criteria Eq. (3.4.1) , we clearly see that a pair of superposed light
beams are entangled at steady-state.
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Chapter 4

Conclusion

In this thesis, we have analyzed the twin beams squeezed state with the same or differ-
ent frequency must be represented in the Hamiltonian by the annihilation and creation
operators. We first calculated the equation of evolution for the density operator for the
twin light beams. Using this result we have found the operator dynamics for the twin
signal(idler) light beams. Moreover, with the help of the operator dynamics, we have
determined the Q function for the twin light beams. Finally, applying the Q function for
twin light beams, we have calculated the photon statistics, quadrature fluctuation and
entanglement for twin light beams.

Moreover, we have evaluated the density operator, Q function, photon statistics, quadra-
ture variance, quadrature squeezing and entanglement for a pair of superposed twin
squeezed states. With the aid of the resulting density operator we have calculated
the mean photon number, the variance of the photon number, the quadrature variance,
quadrature squeezing and photon entanglement.

Furthermore, we observe that the mean photon number for a pair of superposed twin
light beams is the sum of that of the separate light beams. However, the variance of
the photon number for a pair of superposed twin light beams does not happens to be the
sum of that of the constituent light beams. And the photon statistics is super-Poissonian.
On the other hand, the quadrature variance of superposed light beams is 2 times that of
the separate light beams and we have found that the maximum quadrature squeezing for
both separate and superposed light beams is 50% below the vacuum state level along
with the squeezing occurs in the plus quadrature

Finally, the entanglement analysis reveals that photons in the superposed states are en-
tangled and highly correlated.
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