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Abstract

A theory of everything (TOE) that fully explains and links together all physical aspects of

the universe is the interest of all scientific community. But, finding such unifying theory

is the major unsolved problem in physics. However currently, all the laws of physics and

aspects are closely framed in two theoretical groups General relativity (GR) and Quantum

field theory (QFT) where GR focuses on gravity for understanding the large structure of

the universe with high mass while QFT focuses on non-gravitational forces in regions of

small scale and low mass system of the universe. Both theories are successful in their region

of application while all attempts to unify them for a century has remained unsuccessful.

So, here in this thesis we have reviewed the attempts so far made in the unification of the

theories. In our review, we have tried to see how far the unification attempts have gone

deep in connecting and accommodating the standard physics from both. Especially, We have

worked out the GR field equations in that how it has being used to incorporate quantum

fields and then checked the contents of the physics therein as of the quantum principles

seek. On the other hand, we reviewed the attempts from quantum perspective how gravity

is being fit in quantum theory without much mathematical frameworks without loss of the

fundamental frames. The conclusion of the review work is that there is no single theory

that fully unifies gravity and quantum theories. However, the attempts seem successful

where to focuss in the resolution of the connection problem, the so called dark-matter and

dark-energy sectors.

Key words: TOE; GR; QG; QFT.
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Chapter 1

Introduction

1.1 Background and Literature Review

Our present outlook in all respects is the whole sum progress knowledge of human beings

through time. As modern history tells us the overall development of human beings mainly

comes from understanding of nature through their physical principles. To day, the progress

is reaching towards understanding of nature in its most unification phase of all physical laws

under one physical theory. That means, different aspects of reality turn out to be man-

ifestations of the same phenomena. Gravity was unified with astronomy, electricity with

magnetism, electromagnetism with weak nuclear interactions, for detailed recent reviews re-

fer. Nowadays, the most awaited is the unification of quantum theory and Einstein’s gravity.

Each step in the unification process requires the desertion of well-established schemes and

gives rise to conceptual problems. Some of them result from theory’s complexity and can

be solved within it, others require a radical change of the paradigm. Both Einstein’s and

quantum theories suffer from conceptual problems: spacetime singularities, cosmological

constant, wave function collapse. The hoped for unified theory of quantum gravity will nec-

essarily lead to even more dramatic conceptual difficulties, as the very notions of point, time

or causality become obscure. In the project, we will fathom out the conceptual problems

lurking in unification theories with the help of sophisticated tools of mathematical physics

1
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enriched by a philosophical reflection. In particular, we hope to lift the veil on the following

questions: Is dark energy, which according to the current cosmological model constitutes

68% of the Universe, only an artefact of Einstein’s theory’s complexity? What happens to

the notions of time and space at the level of quantum gravity? One of the outstanding tasks

in fundamental physics for theory of everything(TOE) fully explains and links together all

physical aspects of the universe is the interest of all scientific community. The progressive

physics for a theory of everything(TOE) focused two brands. Those are General Relativ-

ity(GR) and Quantum Field Theory(QFT). However currently, all the laws of physics and

aspects are closely framed only in the two theory of everything(TOE) theoretical groups

General relativity and Quantum field Theory. where General Relativity focus on gravity

for under standing for the large scale structure of the universe and high mass, the field

is continuum and also the Quantum Field Theory focus on the non-gravitational forces in

the region of the small scale and low mass system of the universe. Quantum Field Theory

(QFT) is the application of quantum mechanics to dynamical systems of fields, in the same

sense that Quantum field theory is concerned mainly with the quantization of dynamical

systems of particles. In QFT the field is discrete. The geometry is may be flat Minkowskian

four-dimensional space time. But both a theory of everything(TOE) General relativity and

Quantum field theories are successful in their region of application while all attempts to

unify them for a century has remained unsuccessful. So, in this thesis we have revisited

the attempts made earlier in the unification of the theories. The revolution in physics was

so especially extent to in various disciplines that almost has brought the unification of the

disciplines: Electromagnetism and special relativity, Quantum and electromagnetism, and

fields that combine the three of these in more advanced and accurate way. Quantum theory

is applicable to those particles which are so small and light that gravitational force between

them can be neglected and General theory of relativity is applicable only to those objects
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which are so large and heavy that their quantum properties can be neglected [1]. In order to

see where quantum gravity fits into the unification picture, it is helpful to briefly review the

relations between some of the central theories of physics. Einstein after proposing general

relativity thought that quantum effects must modify general relativity in his first paper on

gravitational waves [2], although he switched to a different point of view working on the

unification of electromagnetism and gravitation in the 1930. The derived wave equations

are well in agreement to both theories both in their philosophical framework and their

corresponding classical counterparts. However, we strongly recommend that the partial

obscuration due to the dark components of the unverse still cast shadow on the completion

of the unification. Klein argued that the quantum theory must ultimately modify the role

of spatio-temporal concepts in fundamental physics [3-5] and his ideas were developed by

Deser [6]. At the end of 1997, Isham pointed out several Structural Problems Facing Quan-

tum Gravity Theory, at the beginning of this new century, the problem of quantizing the

gravitational field was still open. In this work, we propose a new approach to Quantum

Gravity. Starting from the generalization of the action function we have derived a theoret-

ical background that leads to the quantization of gravity. However, recently there is much

progress with the hope that tries to relate vacuum energy fluctuation in the quantum area

and dark energy sector in the large scale area that involves cosmology, especially the cosmo-

logical constant is considered as the vacuum fluctuation energy source. Up to the present

time, the introduced theories are so not yet refined and unripe that are awaiting further de-

velopments. Starting from the generalization of the action function we derive a theoretical

background that leads to the quantization of gravity. Also, a complete description of the

Electromagnetic Field, providing a consistent unification of gravity with electromagnetism

[7]. Rosenfeld argued that there is no experimental need for quantizing gravity, it is better to

stick with the so-called semi-classical gravity, which combines a classical description of the
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gravitational field with a quantum treatment of all other force fields and matter. Quantum

gravity will imply that our usual classical notions of space and time are only approximate

valid concepts, which some how emerge from the real quantum nature of space and time.

So, the development of quantum theory is summarized, highlighting the contributions of

Planck, Einstein, Schrodinger and Heisenberg. In this thesis,the main issues are how to

the quantum gravity are unifies from the quantum field theory and General relativity. This

does not yet lead to a unification of interactions; one arrives at a separate quantum theory

for the gravitational field, in analogy to quantum electrodynamics. Dark energy and dark

matter are a great mystery of the 20th century physics, which has not been resolved yet

within the paradigm of the contemporary physics. In retrospect, the resolution of a great

puzzle requires the upheaval of a radical new physics. Quantum gravity, may be necessary

to understand the nature of dark energy and dark matter [8]. However, recently there is

much progress with the hope that tries to relate vacuum energy fluctuation in the quantum

area and dark energy sector in the large scale area that involves cosmology, especially the

cosmological constant is considered as the vacuum fluctuation energy source. Although the

cosmological constant term Λ is a completely natural part of Einstein field equations, it

encounters consistency or interpretation problems when particle physics, in its standard

formulation, is taken into account [9-11]. In the usual Quantum Field Theory (QFT) ap-

proach, the Λ term cannot be distinguished from vacuum energy fluctuations.

The main objective of this thesis is to address current issues in the unification of gravity

and quantum theories. The general introductory Chapter provides relevant review litera-

ture that addresses the issue of the thesis, objectives and Methodology. The out line of

the this thesis is organized as follows: The thesis has five chapter. In the first chapter we

deal with the theoretical back ground of General Theory of Relativity and the foundation

to be implemented In chapter two we deal Quantum field Theory. In chapter three we deal
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with Hilbert-Lagrange Action To Develop The Hamiltonian Of Quantum Gravity.In chapter

Four we deal Result and Discussion. In chapter Five we deal with Result and Discussion,

the Summary and Future Plan.
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1.2 Statement of The Problem

Since the beginning of the 20th century the revolution in physics was so immense in various

disciplines that almost has brought the unification of the disciplines: Electromagnetism

and special relativity, Quantum and electromagnetism, and fields that combine the three

of these in more advanced and accurate way. However, the large scale field that involves

gravity and the small scale field that involves quantum theory has remained difficulties

of unifying theory. However, recently there is much progress with the hope that tries to

relate vacuum energy fluctuation in the quantum area and dark energy sector in the large

scale area that involves cosmology, especially the cosmological constant is considered as the

vacuum fluctuation energy source. Yet, the introduced theories are so not yet refined and

immature that are awaiting further developments, debates, checks etc. So the issue is one of

the most outstanding research problem, even probably, the one that needs more attention

for the future of the generation.

1.2.1 Research Questions

• What are the major problems in the unification of all theories in physics?

• How will GR incorporate quantum fields?

• In what way will the unified theory be reduced to their corresponding classical limits?

• How much so far the unification attempts be progressed?

1.3 Objectives

1.3.1 General Objectives

• To address current issues in the unification of gravity and quantum theories.
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1.3.2 Specific Objectives

• To identify the unification problems of gravity and quantum.

• To explain how Einstein field equations incorporate the vacuum energy fluctuation in

quantum gravity as fundamental connection between quantum and gravity theories?

• To address the attempts made from quantum perspective in the unified theory and

discuss their limitations.

1.4 Methodology

Critical literature reviewed is used to address in the current progress and issues the unifica-

tions. Especially, GR field equations be considered where the most general Hilbert-Lagrange

action is used to explain its Hamiltonian content both for gravity and quantum theories.

On the other hand, reviews on the attempts from quantum perspective that how gravity is

being fit in quantum theory without much mathematical framework is given, without loss

of the fundamental frameworks. Finally, we provide our concluding remark on the progress

and future direction.



Chapter 2

Einstein Theory of General
Relativity

2.1 The Framework Of General Theory Of Relativity

The general theory of relativity is Einstein’s theory of gravity. The frame work of the

General theory of relativity are: special theory of relativity,gravitation,general coordinate

system. The geometry may be curved space time. In General Theory of Relativity there

are two principles. Those are Einstein equivalency principle which implies the foundation

of the General theory of relativity. The Einstein equivalency principle has been thoroughly

tested with standard matter, the question of its validity in the Dark sector remains open.

In this talk we will discuss the constraints of the Einstein equivalency principle in the

Dark sector. We will place particular emphasis to the constrain an Einstein equivalency

principle violation in the Dark sector. The framework of a general tensor-scalar theory with

two different conformal couplings to standard matter and to Dark matter and the second

principle is the Weak equivalency principle which implies the property of a body(inertial)

that regulates it response to an external applied force be equal to its weight, the property

that regulates it response to gravity.The strong one states that the outcome of any local

experiment (gravitational or not) in a freely falling laboratory is independent of the velocity

8
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of the laboratory and its location in spacetime. In general relativity, the gravitational

force of Newtons theory that accelerates particles in an Euclidean space is replaced by a

curved space-time in which particles move force-free along geodesic lines. In particular,

as in special relativity along curves satisfying ds2 = 0, while all effects of gravity are now

encoded in the form of the line-element ds. Thus all information about the geometry of

a space-time is contained in the metric gµν . Einstein thought about the consequences of

these principles for many years using many thought experiments. He then realized the

importance of Riemannian geometry to construct a new theory in which the gravitational

force was a result of the curvature of space-time. General covariant principle is the law

of physics are invariant under general coordinate transformation system. In Newtonian

gravity, the source of gravity is the mass. In general theory of relativity, the mass turns

out to be part of a more general quantity called the energy-momentum tensor (Tµν), which

includes both energy and momentum densities as well as stress. It is natural to assume

that the field equation for gravity involves this tensor. The energy-momentum tensor is

divergence free where its covariant derivative in the curved spacetime is zero (∇µTµν = 0)

and the field is continuum. By finding a tensor on other side which is divergence free, this

yields the simplest set of equations which are called Einstein’s field equations:

Rµν −
1
2
gµνR =

8πG
c4

Tµν , (2.1.1)

where G is is the Newton gravitational constant, and c is the speed of light. gµν is defined as

the spacetime metric. The spacetime metric captures all the geometric and causal structure

of spacetime.

2.2 Metric Tensors

Flat Euclidian space Our common sense has taught us to think in terms of a at space

metric (Euclidian), where parallel lines never cross and angles in a triangle always sum up to
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180o, thus strongly reinforcing our Newtonian notion of absolute space. In this formulation,

the invariant line element in Cartesian coordinates of space (x1;x2;x3) is:

ds2 = (dx1)2 + (dx2)2 + (dx3)2 (2.2.1)

and space is assumed to be flat. Another way to write this is

ds2 = δijdx
idxj (2.2.2)

where δij is the Kronecker delta function

δij =

 1, if i = j ;

0, otherwise.

Therefore, the Euclidian flat space metric tensor for Cartesian coordinates is given by:

δij =


1 0 0

0 1 0

0 0 1

 (2.2.3)

The geometry of curved spaces was studied in the 19th century by Gauss, Riemann and

others. Riemann realized that Euclidean geometry was just a particular choice suited to

flat space and Mach realized that one had to abandon the concept of absolute space alto-

gether. Einstein learned about tensors from his friend Marcel Gross-man, and used these

key quantities to go from flat Euclidean three-dimensional space to curved Minkowskian

four-dimensional space in which physical quantities are described by invariants. Tensors

are quantities which provide generally valid relations between different four-vectors. The

quantities that consists contra variant indices with corresponding Lorentz transformations

are tensor. In tensor notation the Minkowski metric includes the coordinate dx0 = cdt and

so that the invariant line element can be written as;

ds2 = −gµνdx
µdxν (2.2.4)
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where the metric:-

gµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2.2.5)

where ds2 is the Minkowsiki line element,and gµν is the metric tensor that represents posi-

tion. The components of gµν in flat Minkowski space-time are given by the diagonal matrix

ηµν , a generalization of the Kronecker delta function to four-space-time in which all non

diagonal components are vanished.The basic objects of a metric are the Christoffel symbols,

the Riemann and Ricci tensors as well as the Ricci scalars which are defined as follows:

2.3 The Christoffel Tensor

One of an invariant rank three Tensor derived from the metric gµν(x) its first derivative is

the so called Christoffel Tensor which plays the role of gravitation. Affine connection is the

field that determines the gravitational force and used as to represent the gravitational field.

It also call as Christoffel second symbol which denoted as Γλ
µν . The metric tensor is use to

determine the proper time interval between two events with a given infinitesimal coordinate

separation and also the gravitational potential. It is given as:

gµν = ηαβ
∂ξα∂ξβ

∂xµ∂xν
(2.3.1)

and also we have the relation:

Γλ
µν =

1
2
gλτ

[
∂νgτν + ∂µgτν − ∂τgµν

]
(2.3.2)

Γλ
µν =

∂xλ

∂ξβ

∂2xβ

∂xµ∂xν
(2.3.3)

where; ∂νgτν = ∂gτν

∂xµ ; ...
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2.4 The Riemann-Christoffel Curvature Tensor

The invariant Tensor derived from the metric gµν is the 4-rank Tensor called the Riemann

curvature tensor from the metric itself, first and second derivative. The Riemann curvature

tensor plays an important role in specifying the geometrical properties of space time. The

space time is considered flat, if the Riemann tensor vanishes everywhere. It is also possible

to write the Riemann curvature tensor in its fully covariant form as

Rλ
µλν = Γλ

µν , λ− Γλ
λν , µ+ Γη

µλΓλ
ην − Γη

µνΓ
λ
ηλ (2.4.1)

where Γλ
µν-is the Christoffel symbol.

2.5 Einstein Field Equations

The Einstein field equations were initially formulated in the context of a four-dimensional

theory, some theorists have explored their consequences in N dimensions. The equations

in contexts outside of general relativity are still referred to as the Einstein field equations.

The vacuum field equations obtained when Tµν is identically zero define Einstein mani-

folds. Dynamical dark energy can explain the size of the dark energy density. Despite the

simple appearance of the equations they are, in fact, quite complicated. Given a specified

distribution of matter and energy in the form of a stressenergy tensor, the Einstein Field

Equation(EFE) are understood to be equations for the metric tensor, as both the Ricci

tensor and scalar curvature depend on the metric in a complicated nonlinear manner.

Ricci Tensor:-is an important tool related to curvature , the second rank Ricci tensor

Rµν , obtained from the Riemann tensor by summing operation over repeated indices, called

contraction:

Rλ
µλκ = Rµκ = gαβg

αλRβ
µλκ (2.5.1)



13

Ricci tensor is symmetric. These implies that;

Rµκ = Rκµ (2.5.2)

That is:-

gλν(Rλµνκ) = Rνκλµ (2.5.3)

gλνRλµνκ = gλνRνκλµ (2.5.4)

⇒ Rµκ = Rκµ (2.5.5)

In four-space the 10 components of the Ricci tensor lead to Einsteins system of ten gravi-

tational equations.

Ricci Scalar: By further contracting the Ricci tensor with the contravariant components

of the metric, one can express curvature scalar as:

R = gµνRµν = gµκRµκ (2.5.6)

Where Rµν is Ricci Tensor and the Ricci scalar R together with the metric gµν are used to

construct an invariant, divergence free tensor that completely determine the geometry of

spacetime. So it contains only terms which are either quadratic in the first derivatives of the

metric tensor or linear in the second derivatives. Thus the Einstein’s Field Equations were

dynamic. Latter on Einstein brought an additional term with introduction of Cosmological

constant Λ is considered as the vacuum fluctuation energy source or to keep the Universe

static. However this modified field equation was solved by De-sitter to empty an evolving

Universe. As the consequence De-sitter, established an empty Universe whose dynamism

is related to the cosmological constant [12][13]. And also the Einsteins equation has the

following form in the presence of the cosmological constant given by

Rµν −
1
2
gµνR+ Λgµν =

8πG
c4

Tµν (2.5.7)
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where Λ > 0, Rµν is the Ricci tensor for gµν , R is the Ricci scalar, 8πG
c4
Tµν is the source term

and Tµν is the stress-energy tensor. From the Einstein field equation we obtain DνT
µν = 0

which are the equations of motion of the matter which creates the gravitational field. but do

not admit a at spacetime as a possible matter-vacuum (Tµν ; ν = 0) solution. For Tµν ; ν = 0

and thus at least one component of the curvature tensor is nonzero. By transferring this

term to right hand side one can interpret c4

8πGΛgµν as the energy-momentum of the vacuum,

the so called Dark Energy favored in recent years by cosmological observations that indicate

an accelerated expansion of the universe. So,One can always write the gravitational field

equation in this form

Gµν = 8πTµν (2.5.8)



Chapter 3

Quantum Field Theory

Introduction

As the term quantum field theory(QFT) suggests, QFT is the application of quantum me-

chanics to dynamical systems of fields, in the same sense that it concerned mainly with

the quantization of dynamical systems of particles. Since about a century, the relation

between quantum physics and gravitation is not fully understood. Quantum theory is very

successful in nonrelativistic physics where precise mathematical results can be compared

with experiments, somewhat less successful in elementary particle physics. General rela-

tivity, as the widely accepted theory of gravity, is excellently confirmed by astronomical

data and deviations can be explained by plausible assumptions (dark matter, dark energy).

However, finding a consistent theory which combines both general relativity and quantum

physics is still an open problem. First steps for investigating the relation between these two

fundamental aspects of nature are experiments with slow neutrons in the gravitational field

of the earth. This can be treated as a problem in quantum mechanics with the Newtonian

gravitational potential, and the experiments are in very good agreement with the theory.

A more ambitious problem is the fluctuations of the cosmological microwave background

which are explained by quantum fluctuations of the gravitational field in the inflationary

era. On the theoretical side, the last decades were dominated by attempts to unify general

15
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relativity with quantum theory by rather radical new concepts, the best known being string

theory and loop quantum gravity. In this report, however, we will concentrate on a much

more modest goal to provide a consistent interpretation of existing experimental data in

the situation when gravitational forces are weak. In such circumstances one can neglect

the back reaction of quantum fields on the gravitational field. In this review article, we

want to expose a systematic development of quantum field theory on curved spacetimes.

The leading principle is the emphasis on local properties. It turns out that this requires a

reformulation of the QFT framework which also yields a new perspective for the theories

on Minkowski space.

3.1 Quantum Field Theory

The term quantum Field Theory (QFT) is the application of quantum mechanics to dynam-

ical systems of fields, in the same sense that Quantum field theory is concerned mainly with

the quantization of dynamical systems of particles. In QFT the field is discrete. Quantum

Field Theory focus on non gravitational forces in the region of the small scale and low

mass system of the universe. The geometry is may be flat Minkowskian four-dimensional

space time. It has been suggested that such a locally finite version of Quantum Field The-

ory should be implemented by the Hilbert-Einstein action, schrodinger ,klein-Gordon space

theory. Although the two theories are quite different in the way they approach the technical

and physical problems that emerge when building a quantum picture of gravity and space-

time. In particular, they differ in the way they handle the mathematical infinities that

naturally occur in quantum descriptions of gravitational fields. The quantum field theory

for electrodynamics is called quantum electrodynamics. If the weak interaction is included,

it is called the electro weak theory. Quantum field theory (QFT), provides an account of

all the known fundamental forces of nature. On the other hand, QFT is a theory of fields
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which are defined on a static, background spacetime. Basically, the theory states that all

matter is composed of particles, which are understood as local excitations of quantum fields;

the fundamental forces are themselves represented by quantum fields, whose corresponding

excitations interact locally with the other particles, depending on their type [14]. Quantum

gravity is a domain of research that, in some sense, unifies GR and quantum field theory.

There are many different ways in which this may be interpreted. For instance, a quantum

field theory focus on the non gravitation system, but general relativity focus on the gravi-

tational system. A central role in the quantization of the gravitational field is played by the

graviton a massless particle of spin-2, which is the mediator of the gravitational interaction.

It is analogous to the photon in quantum electrodynamics.

3.2 Quantum Gravity

Quantum theory is a general theoretical framework to describe states and interactions in

Nature. It does so successfully for the strong, weak, and electromagnetic interactions. Grav-

ity is, however, still described by a classical theory - Einstein’s theory of general relativity,

also called geometrodynamics. So far, general relativity seems to accommodate all obser-

vations which include gravity; there exist some phenomena which could in principle need a

more general theory for their explanation (Dark Matter, Dark Energy), but this is an open

issue. So Quantum gravity would ultimately be a physical theory, both mathematically

consistent and experimentally tested, that accommodates the gravitational interaction into

the quantum framework. Such a theory is not yet available. Therefore, one calls quantum

gravity all approaches which are candidates for such a theory or suitable approximations

thereof. The following sections will first focus on the general motivation for constructing

such a theory, and then introduce the approaches which at the moment look most promis-

ing. The meaning of quantum gravity Quantum gravity has been conjectured for almost
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80 years since the introduction of the graviton. It is commonly believed that gravity is a

fundamental interaction and as such, it would obey quantization similar to electrodynamics.

However, it is significant to point out that there is not a single observational evidence so far

showing the need of a quantum theory of gravity. On the theoretical side, despite enormous

efforts in the past decades, there is still no consistent quantum gravity theory with any

predictive power. The only great result from quantum gravity efforts over the last 50 years

is the renormalization of Yang-Mills theory by t’ Hooft and Veltman, using the techniques

developed by Feynman and Dewitt for perturbative calculations in general relativity. It

may be helpful to look at the problem of quantum gravity in a different perspective by

asking what is not quantum gravity. At once, we see it is not about motion in spacetime,

for motion with a precise trajectory is a classical concept. It is not about translation in

spacetime. It is not about Lorentz transformation. It is not about elementary particles,

or necessarily about unification of forces. Thus, quantizing general relativity with special

relativity as a limit is a contradiction. We recognize that the quantum gravity domain

is naturally of Planck size 1033cm. Furthermore, that quantum gravity domain must be

physical and contain real degrees of freedom, and that those degrees of freedom should

also carry energy, momentum, spin and other attributes like any other excellent degrees of

freedom in physics. We should also point out that the term quantum gravity has come to

acquire different meaning to different researcher. The proper case is that quantum gravity

should start only with Einstein’s equation and not some modification of it by adding extra

terms to its Lagrangian as in modified gravity theories. We can illustrate this situation

with electrodynamics. In quantum electrodynamics, the equations are exactly the same

Maxwell’s equations as in classical electrodynamics and not some modification of Maxwell’s

equations. It is well known that a remarkable modification of Maxwell’s equations has be-

come the Yang-Mills theory. Although the modified equations contain the original equations
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in form, the theory is completely different and it is no longer electrodynamics. Quantizing

a modified theory does not lead to a successful quantum theory of electrodynamics and its

spectacular experimental confirmation. Therefore, current modified gravity theories are not

what they intend to accomplish, namely, a quantum theory of gravitation based on general

relativity. They may end up having nothing to do with ordinary gravity in the ~ → 0 limit.

Quantum gravity changes radically space and time at the Planck scale, which is 10−35 of

a meter. We used to think this was impossible to do experiments to probe this scale: ”An

accelerator powerful enough to study Planckian objects would have to be as large as the

entire galaxy.” Background dependent ordinary quantum mechanics the standard model

assume the properties of space and time are fixed and unchanging background independent

General relativity tells us that space and time are dynamical, The physics community is

now familiar with a picture relying upon four fundamentals interactions: electromagnetic,

weak, strong and gravitational. The large-scale structure of the universe, however, is ruled

by gravity only. All unifications beyond Maxwell involve non-Abelian gauge groups (either

Yang-Mills or Diffeomorphism group). At least three extreme views have been developed

along the years, That is,

(i) Gravity arose first, temporally, in the very early Universe, then all other fundamental

interactions.

(ii)Gravity might result from Quantum Field Theory (this was the Sakharov idea

(iii) The vacuum of particle physics is regarded as a cold quantum liquid in equilibrium.

Protons, gravitons and gluons are viewed as collective excitations of this liquid

3.2.1 Unification of All Fundamental Interactions

• The fully established unifications of modern physics are as follows:

Maxwell: electricity and magnetism are unified into electromagnetism. All related
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phenomena can be described by an antisymmetric rank-two tensor field, and derived

from a one-form, called the potential.

Einstein: space and time are unified into the spacetime manifold. Moreover, inertial

and gravitational mass, conceptually different,are actually unified as well.

Standard model of particle physics: electromagnetic, weak and strong forces are

unified by a non-Abelian gauge theory, normally considered in Minkowski spacetime.

• All unifications beyond Maxwell involve non-Abelian gauge groups (either Yang-Mills

or Diffeomorphism group).

• At least three extreme views have been developed along the years, That is,

Gravity arose first, temporally, in the very early Universe, then all other fundamental

interactions.

Gravity might result from Quantum Field Theory (this was theSakharov). The vac-

uum of particle physics is regarded as a cold quantum liquid in equilibrium.

3.3 Space-Time Singularities

Now we revert to the geometric side. In Riemannian or pseudo-Riemannian geometry,

geodesics are curves whose tangent vector x moves by parallel transport, so that eventually

dx2

dτ2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0 (3.3.1)

where dτ is proper time and Γλ
µν are the affine connection. In general relativity, timelike

geodesics correspond to the trajectories of freely moving observers, while null geodesics de-

scribe the trajectories of zero-restmass particles [15]. At a spacetime singularity in general

relativity, all laws of classical physics would break down, because one would witness very

pathological events such as the sudden disappearance of freely moving observers, and one
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would be completely unable to predict what came out of the singularity. Hawking and Pen-

rose proved that spacetime singularities are generic properties of general relativity, provided

that physically realistic energy conditions hold. Very little analytic use of the Einstein equa-

tions is made, whereas the key role emerges of topological and global methods in general

relativity. Interestingly, near the singularity the spatial points essentially decouple, that is

the evolution of the spatial metric at each spatial point is asymptotically governed by a set of

second-order, non-linear ordinary differential equations in the time variable [16]. Moreover,

the use of qualitative Hamiltonian methods leads naturally to a billiard description of the

asymptotic evolution, where the logarithms of spatial scale factors define a geodesic motion

in a region of the plane, interrupted by geometric reflections against the walls bounding the

region.

3.4 Boundary Conditions

The ambiguity in the solutions of Einstein Field equation can be removed by choosing a

particular gauge. We generally eliminate the ambiguity in the metric tensor by adopting

some particular coordinate system. The choice of a coordinate system can be expressed

as a coordinate conditions. One particularly convenient choice of a coordinate system is

harmonic coordinate conditions. .

3.5 Weak Field Limit

Since astrophysical observations are made in the radiation zone it is sufficient to consider

far field approximation with Quasi-minkowiskian coordinate system. Einsteins theory of

general relativity leads to Newtonian gravity in the limit when the gravitational field is

weak, static and the particles in the gravitational field move slowly. We now consider

a less restrictive situation where the gravitational field is weak but not static, and there
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are no restrictions on the motion of particles in the gravitational field. In the absence of

gravity, space-time is characterized by the Minkowiski metric in the limit of weak and slowly

varying fields for which all time derivatives of gµν vanish and the velocity components dx0

dt

are negligible compared with dx0

dt = c dt
dτ . Where dτ is the proper time, so the Geodesic

equation becomes to

d2xµ

dτ2
+ Γµ

00(
dt

dτ
)2 = 0 (3.5.1)

Also the Affine connection Γµ
νρ is given by:

Γµ
νρ =

1
2
gµλ[∂ρgνλ + ∂νgλρ − ∂λgνρ] (3.5.2)

Γµ
00 =

1
2
gµλ[∂0g0λ + ∂0gλ0 − ∂λg00] (3.5.3)

= −1
2
gµλ[∂λg00] (3.5.4)

Where g00 is the ν = ρ = 0 or time time component of gµν and the sum over λ is implied.

In a weak static field the metric is almost that of at space-time, so we can approximate the

metric component of gµν as:

gµν = ηµν + hµν (3.5.5)

gµν = (gµν)−1 (3.5.6)

= (ηµν + hµν)−1 (3.5.7)

= (ηµν)−1(1 + η−1
µν hµν) (3.5.8)

= (ηµν)−1(1− ηµνhµν) (3.5.9)

= (ηµν)(1− ηµνhµν) (3.5.10)

= (ηµν)(1− hσ
σ) (3.5.11)

⇒ gµν = ηµν − hµν (3.5.12)
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Where hµν is small increment to ηµν , to lowest order in hµν we can then write affine

connection as follows

Γµ
00 = −1

2
ηµλ∂h00

∂xλ
(3.5.13)

Now inserting (3.5.13) equation into equation (3.5.1), then the equation of motion we obtain

is become to

d2xµ

dt
= −1

2
(
dt

dτ
)2∇2h00 (3.5.14)

Now we have dt = dτ

⇒ dt

dτ
=

dt

dt
= 1 (3.5.15)

and also we obtain

d2xµ

dt
= −1

2
∇2h00 (3.5.16)

⇒ h00 = −2Φ where Φ is the Newtonian potential.so it follows that

g00 ≈ 1 + 2Φ = 1− 2
GM

r
(3.5.17)

So for c=1, poisson equation: ∇2Φ = 4πGρ;In fact T 00 = ρ, This implies that

∇2Φ = −8πGT00 (3.5.18)

Equation (3.5.18) generalized

Gµν = −8πGTµν (3.5.19)

Where Gµν is the general field tensor formed from linear combination of the metric it self,

and its first and second derivative. In fact the weak field case,it reduces to that of the

classical Newtonian poisson equation.
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3.6 The Lorentz Gauge Transformation

Some theories are distinguished by being gauge invariant, which means that gauge trans-

formations of certain terms do not change any observable quantities. Requiring gauge in-

variance provides an elegant and systematic way of introducing terms for interacting fields.

Moreover, gauge invariance plays an important role in selecting theories. The prime example

of an intrinsically gauge invariant theory is electrodynamics. In the potential formulation

of Maxwells equations one introduces the vector potential A and the scalar potential, which

are linked to the magnetic field and the electric field. We must choose a coordinate gauge.

As it stands is completely general, and therefore does not impose any coordinate system.

To find the form of hµν , we must first choose a coordinate gauge. This coordinate gauge

will impose four conditions on hµν . We observe that it is possible to choose coordinates

where the form of the background spacetime, ηµν , is conserved, but the (still undetermined)

perturbative field is changed. Perturbation theory is a set of approximation schemes di-

rectly related to mathematical perturbation for describing a complicated quantum system

in terms of a simple way. If one considers a coordinate transformation

xµ → x′µ = xµ + εµ(x) (3.6.1)

Where the parameter of translation εµ(x) is assumed to be infinitesimal and constant

(global). Then that leaves the background spacetime untouched, but transforms the per-

turbative field as

h′µν = hµν − εν,µ − εµ,ν (3.6.2)

Choosing four coordinate conditions, Vµ(x) = V ′
µ(x) = 0, can now be done using the

arbitrary, but small, functions, εµ(x). Since the background spacetime is unperturbed, we

know that the change in hµν → h′µν is the same change as the one in gµν → gµν . We may
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choose the Lorentz gauge

∂λhµλ =
1
2
∂µh (3.6.3)

This can be further transformed to a trace reversed version is given the following ways:

hµν = hµν −
1
2
ηµνh (3.6.4)

3.7 The Scalar Field

It is straightforward to derive the equations of motion for a real scalar field φ from the

lagrangian densities,

L =
1
2
∂µφ∂

µφ− 1
2
m2φ2 (3.7.1)

= −1
2
φ(∂µ∂

µ −m2)φ

which differ only by surface terms, leading to

(� +m2)φ(x) = 0 (3.7.2)

For the complex scalar field one conventionally uses

L = ∂µφ
∗∂µφ− 1

2
m2φ∗φ

which can be considered as the sum of the lagrangian densities for two real scalar fields φ1

and φ2 with φ = (φ1 + iφ2)2. One easily obtains

(� +m2)φ(x) = 0 (3.7.3)

(� +m2)φ∗(x) = 0 (3.7.4)



Chapter 4

Hilbert-Lagrange Action To
Develop The Hamiltonian For
Gravity and Quantum Theories

4.1 The Hilbert-Einstein Action

To derive the equation that yields the Einstein field equations as its equations of motion,

we initially consider the form that the action must take, namely the integral of a scalar

Lagrange density. Since derivatives lower the order on the field upon which it acts by one,

this Lagrange density should contain at least two derivatives of the metric to ensure that the

equation of motion for the metric field which is what we are ultimately interested in when

trying to find the dynamics of spacetime curvature is at least linear. Since any nontrivial

tensor made from the metric and its derivatives can be expressed in terms of the metric

and the Riemann tensor, the only independent scalar that can be constructed from the

metric that is no higher than second order in its derivatives is the Ricci scalar (as this is

the unique scalar that we can construct from the Riemann tensor that is itself made from

second derivatives of the metric). The Einstein field equation can be derived by varying the

26
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Hilbert-Einstein action as

SHE = −
∫
d4x

√
−g c4

16πGN
(R+ 2

Λ
c2

) (4.1.1)

S = SHE + Smatter (4.1.2)

Smatter =
∫
d4x

√
−gLmatter (4.1.3)

Where g = det[gµν ] is the determinant of the metric tensor, R is the Ricci curvature scalar,

Λ is the cosmological term, and
√
−gLmatter is the matter field Lagrangian. Note that the

Hilbert-Einstein action equation (4.1.1) is the most general action which transforms as a

scalar under general coordinate transformations, and which contains terms up to second

order in derivatives of the metric tensor. There are two unspecified constants in the ac-

tion (4.1.1), which are not determined by the symmetry (general covariance). The second

constant is proportional to the cosmological term Λ, and it can be determined by consider-

ing the dynamics of gravitating bodies on very large (cosmological) scales. This illustrates

how powerful the principle of general covariance can be when constructing the gravitational

action.In order to calculate the variation δS of the action (4.1.1), we first observe that

δg = ggµνδgµν = −ggµνδg
µν (4.1.4)

which immediately implies

δ
√
−g =

1
2
√
−ggµνδg

µν (4.1.5)
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Recalling that R = gµνRµν yields the following intermediate result for the variation of the

Hilbert- Einstein action

δSHE = δ(−
∫
d4x

√
−g c4

16πGN
(R+ 2

Λ
c2

))

= −
∫
d4xδ

√
−g( c4

16πGN
)(R+ 2

Λ
c2

) + (−
∫
d4x

√
−g c4

16πGN
δR)

=
∫
d4x(

−c4

16πGN
)[δ
√
−g(R+ 2

Λ
c2

+ δR)]

=
∫
d4x(− c4

16πGN
)[−1

2
√
−ggµνδg

µν(R+ 2
Λ
c2

+ δR)]

=
∫
d4x(− c4

16πGN
)[
−1
2
√
−ggµνδg

µν(gµνRµν + 2
Λ
c2

+ δ(gµνRµν))]

=
∫
d4x

√
−g(− c4

16πGN
)[δgµν − 1

2
(Rµν + 2

Λ
c2

+ δ(gµν)Rµν + gµνδRµν)]

=
∫
d4x

√
−g(− c4

16πGN
δgµν(Rµν −

1
2
gµνR+

Λ
c2
gµν) +

c4

16πGN
gµνδRµν)(4.1.6)

The variation of the Ricci tensor δRµν can be easily found by transforming to a local

Minkowski frame, in which gµν → ηµν +O(∂αgµν) such that we have

δRµν = δRα
µαν ' δ∂αΓα

µν − δ∂νΓα
µα (4.1.7)

This then implies

gµνδRµν = ' ∂α(gµνδΓα
µν)− ∂ν(gµνδΓα

µα) (4.1.8)

where we inserted gµν inside the derivatives, which is legitimate in the local Minkowski

frame. Since the left-hand side of Equation(4.1.8) is a scalar, the right-hand side must also

be a scalar, which implies that the covariant form of Equation (4.1.8) must read,

gµνδRµν = ∇α(gµνδΓα
µν − gµαδΓβ

µβ) (4.1.9)

This has the form of a covariant divergence, such that upon integration over an invariant

measure in Equation (4.1.6), the variation of the Ricci curvature tensor does not contribute
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to the Einstein field equation,∫
d4x

√
−ggµνδRµν =

∫
d4x

√
−g∇α(gµνδΓα

µν − gµαδΓβ
µβ) = 0 (4.1.10)

The last equality follows from the simple observation that the covariant divergence of the

contravariant vector appearing in (4.1.10) can be also written as

∇A ≡ ∇αA
α = ∂αA

α + Γα
βαA

β (4.1.11)

=
1√
−g

∂α(
√
−gAα); (4.1.12)

Γα
βα =

1√
−g

∂α
√
−g (4.1.13)

By taking account of the intermediate results equation(4.1.6) and equation (4.1.10),we arrive

at the following form for the variation of the action of equation (4.1.1) up to (4.1.3),

δS =
∫
d4x

√
−gδgµν [− c4

16πGN
(Gµν − gµν

Λ
c2

) +
1
2
Tµν ] (4.1.14)

Now requiring that δS vanishes for an arbitrary variation of the metric tensor δgµν yields

the Einstein field equation.

δS =
∫

(Rµν −
1
2
gµνR)δgµν√−gd4x+

∫
gµνδRµν

√
−g (4.1.15)

Reim tensor is: Contracting to the Ricci tensor it becomes, Then varying it gives,

δRµν = ∂αδΓα
µβ − ∂βδΓα

µα + δδΓα
γαΓγ

µβ + Γα
γαδΓ

γ
µβ − δΓα

γβΓγ
µα − Γα

γβδΓ
γ
µα (4.1.16)

The first two terms of this expression suggest the difference between two covariant deriva-

tives, which is the case given

∇α(δΓα
µβ) = ∂α(δΓα

µβ) + δΓγ
µβΓα

γα − δΓα
γβΓγ

µα − δΓα
µγΓγ

βα (4.1.17)

∇β(δΓα
µα) = ∂α(δΓα

µα) + δΓγ
µαΓα

γβ − δΓα
γαΓγ

µβ − δΓα
µγΓγ

αβ (4.1.18)
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Then

∇α(δΓα
µβ)−∇β(δΓα

µα) = ∂α(δΓα
µβ)− ∂α(δΓα

µα) + δΓα
γαΓγ

µβ + δΓα
αΓγ

µβ − δΓα
γβΓγ

µα − Γα
γβδΓ

γ
µα

= δRµβ

so that we have

δRµν = ∇α(δΓα
µβ)−∇β(δΓα

µβ) (4.1.19)

Reballing and index gives the term needed for the action integral given earlier

δRµν = ∇α(δΓα
µν)−∇ν(δΓα

µα) (4.1.20)

How did we get this result? let’s begin with the following expressions;

∇ = eλ∂λ (4.1.21)

∂βeα = Γσ
αβδeσ (4.1.22)

∂βe
α = −Γα

σβe
σ (4.1.23)

Now let’s express the argument of the derivative in tensor basis form and carryout appro-

priate operations.

∇(δΓρ
νµ) = eλ∂λ ⊗ (δΓρ

νµ)eρ ⊗ eν ⊗ eµ[tosavespacewewilldrop⊗]

= eλ∂λ(δΓρ
νµ)eρeνeµ + eλδΓρ

νµ∂λ(eρ)eνeµ + eλδΓρ
νµeρ∂λ(eν)eµ + eλδΓρ

νµeρe
ν∂λ(eµ)

= eλ∂λ(δΓρ
νµ)eρeνeµ + eλδΓρ

νµΓα
ρλeαe

ν
eµ − eλδΓρ

νµΓν
αλe

αeρe
µ − eλδΓρ

νµΓµ
αλe

αeρe
µ

= ∂λ(δΓρ
νµ)eλeρeνeµ + δΓα

νµΓρ
αλe

λeρe
νeµ − δΓρ

αµΓα
νλe

λeνeρe
µ − δΓρ

ναΓα
µλe

λeµeρe
ν

= [∂λ(δΓρ
νµ) + δΓα

νµΓρ
αλ − δΓρ

αµΓα
νλ − δΓρ

ναΓα
µλ]eλeρeµeν

Now the component form is,

∇(δΓρ
νµ) = ∂λ(δΓρ

νµ) + δΓα
νµΓρ

αλ − δΓρ
αµΓα

νλ − δΓρ
ναΓα

µλ (4.1.24)
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From which we can get by substitution of indices

∇α(δΓα
µβ) = ∂α(δΓα

µβ) + δΓγ
µβΓα

γα − δΓα
γβΓγ

µα − δΓα
µγΓγ

βα (4.1.25)

∇β(δΓα
µα) = ∂α(δΓα

µα) + δΓγ
µαΓα

γβ − δΓα
γαΓγ

µβ − δΓα
µγΓγ

αβ (4.1.26)

∫
gµνδRµν

√
−gd4x =

∫
gµν(∇α(δΓα

µν)−∇ν(δΓα
µα))

√
−gd4x (4.1.27)

=
∫

(∇α(gµνδΓα
µν)−∇ν(gµνδΓα

µα))
√
−gd4x (4.1.28)

=
∫

(∇α(gµνδΓα
µν)−∇α(gµαδΓν

µν))
√
−gd4x (4.1.29)

=
∫
∇α[(gµνδΓα

µν)− (gµαδΓν
µν)]

√
−gd4x (4.1.30)

=
∫
∇αA

α√−gd4x (4.1.31)

This look like the the divergence theorem is needed here to evaluate this integral. The

vector form the theorem is expressed as∫ ∫ ∫
v
∇Adv =

∮
s
An̂ds (4.1.32)

In generalized coordinates it is∫
v
∇αA

α√−gd4x =
∫

s
Aαnα

√
−hd3x (4.1.33)

From the above equation
√
−hd3x -is induced arbitrary metric. So the last surface integral

is taken over the boundary of space-time where we have set the variation to be zero. So we

have ∫
v
∇αA

α√−gd4x =
∫

s
Aαnα

√
−hd3x = 0 (4.1.34)

⇒
∫
gµνδRµν

√
−gd4x = 0 (4.1.35)

This gives us the following variation in the action,

δS =
∫

(Rµν −
1
2
gµνR)δgµν√−gd4x (4.1.36)
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We derive the resulting field equations for the metric tensor gµν directly from the action

principle

δSEH = δ

∫
Ω
d4x

√
−g(R− 2Λ) = δ

∫
d4x

√
−g(gµνRµν − 2Λ) = 0 (4.1.37)

It is worthwhile pointing out that in general relativity geometry is the central idea and the

theory is covariant in its description of nature. We allow for variations of the metric gab

restricted by the condition that the variation of gµν and its first derivatives vanish on the

boundary ∂Ω .

δSEH = δ

∫
Ω
d4x

√
−g(gµνδRµν +

√
−gRµνδg

µν + (R− 2Λ)δ
√
−g (4.1.38)

Our task is to rewrite the first and third term as variations of δgµν or to show that they

are equivalent to boundary terms. Finally we obtain

δSEH =
∫

Ω
d4x

√
−g(Rµν −

1
2
gµνR+ Λgµν)δgµν = 0 (4.1.39)

Hence the metric tensor fulfils in vacuum the equation

1
2
√
−g δSEH

δgµν
= Rµν −

1
2
gµνR+ Λgµν = 0 (4.1.40)

Rµν −
1
2
gµνR+ Λgµν ≡ Gµν + Λgµν = 0 (4.1.41)

Where we introduced the Einstein tensor Gµν . The constant Λ is called cosmological con-

stant.

4.2 Derivation Of The Klein-Gordon Equation

In the mid-1920s, physicists were intrigued by the idea of being able to mathematically

describe a particle using relativistic quantum mechanics. After Erwin Schrodinger derived

his famous wave equation, the Klein-Gordon equation surfaced within the community. The
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equation was named after the physicists Oskar Klein and Walter Gordon, who in 1926 pro-

posed that it describes relativistic electrons. Although it turned out that modeling the

electron’s spin required the Klein-Gordon equation correctly describes the spinless relativis-

tic composite particles. The Klein-Gordon equation was first considered as a quantum wave

equation by Schrodinger in his search for an equation describing de Broglie waves. Appar-

ently, he fell under the wrong spectrum and abandoned his work and reverted to a classical

argument in terms of the energy For a particle moving at a relativistic speed, the nonrel-

ativistic equation for fractional kinetic energy, E = p2

2m , is no longer valid, and one must

use instead an alternative equation for energy. We begin with the relativistic connection

between energy and momentum, often called the Einstein’s energy-momentum relation

E2 = p2c2 +m2c4 (4.2.1)

Now by using de Broglie and Einstein relations p = ~k; E = ~ω implies the quantum

operator interpretation as

P → −i~∇ ; E → i~
∂

∂t
(4.2.2)

Then we substituting equation (4.2.2) into equation (4.2.1) then we obtained

− ~2 ∂
2

∂t2
ψ = ~2c2∇2ψ +m2c4ψ (4.2.3)

and also In covariant notation

[∂µ∂
µ + (

mc

~
)2] = 0 (4.2.4)

where ∂µ∂
µ = 1

c2
∂2

∂t2
−∇2; ψ = ψ(x, t) Rearranging the terms and simplifying gives

∇2ψ − 1
c2
∂2ψ

∂t2
= (

mc

~
)2 (4.2.5)

Notice that for massless particles, this is reduced down to the regular wave equation. It

would simply be the time component subtracted from the spatial component, where c2 is the
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wave number corresponding to electromagnetic waves. We can write down the characteris-

tics of relativity such that x2 − c2t2 = 0 which describes traveling waves that are invariant

under Lorentz transformation. That is to say, the Klein-Gordon equation is covariant. We

now let k = m2c2

~ and introduce the D’Alembertian Operator as

� ≡ ∇2 − 1
c2
∂2ψ

∂t2

Collectin all the terms gives

�ψ − k2ψ = 0, (4.2.6)

This is the famous Klein-Gordon equation for spinless free particles. Such particle is said

to be on its mass shell. So Klein-Gordon equation is second order in time derivative and

the norm of a state is not in general time independent. So it is perhaps convenient to

physically interpret the Klein-Gordon equation is a relativistic wave equation, meaning

that it is a quantized version of the energy-momentum relation. We expect solutions to

include a quantum oscillation, precisely for particles of spin-zero.Now we seek for solution

for ψ as a product in which the dependence on x, y, z, and t are separated, that is:

ψ(x, t) = X(x)Y (y)Z(z)T (t) (4.2.7)

Finally get a plane wave solution to the Klein-Gordon equation that corresponds to

ψ(x, t) = Λexp[i(±k.x∓ ωt)]; (4.2.8)

which corresponds to waves traveling right and left.

• Scalar Field

A scalar field is a smoothly varying mathematical function that assigns a value to every

point in space. An example of a scalar field in classical physics is the gravitational field that



35

describes the gravitational potential of a massive object. Examples include: Potential fields,

such as the Newtonian gravitational potential, or the electric potential in electrostatics, are

scalar fields which describe the more familiar forces. Scalar field changes its value even in

the present cosmological epoch Scalar field changes its value even in the present cosmological

epoch Dynamical dark energy, generated by scalar field. Now let we consider the scalar as;

We calculate first the dynamical energy-momentum tensor for a scalar field with potential

V (φ)

δSKG =
1
2

∫
d4x

√
| g |∂µφ∂νφδg

µν + [gµν∂µφ∂νφ− 2V (φ)]δ
√
| g | (4.2.9)

=
∫
d4x

√
| g |δgµν 1

2
∂µφ∂νφ−

1
2
gµνL (4.2.10)

Remember that ∇µ = ∂µ for a scalar field. Varying the action gives and thus

Tµν =
2√
| g |

δsm

δgµν
(4.2.11)

=
1
2
∂µφ∂νφ−

1
2
gµνL (4.2.12)

Let’s now consider time that is not empty but contains field.All we need to do is add a

second action term Sφ representing the matter to the Einstin-Hilbert action(SEH). So our

new action is

S =
c4

2(8πG)
SEH + Sm (4.2.13)

The expression of the energy-momentum tensor Tµν and is defined as

Tµν = 2
1√
−g

δSm

δgµν
(4.2.14)

If the source of the gravitational field is some matter field, or some other field (for instance

an electromagnetic field), the corresponding equations can be found by varying the total

action with respect to the metric tensor, so

gδSEH + δSfield = 0 : ∀δgµν (4.2.15)



36

Now We consider we combined action of gravity and field, as the sum of the Einstein- Hilbert

Lagrange density LEH/2k and the Lagrange density Lm including all relevant fields,

L =
1
2k
LEH + Lφ (4.2.16)

=
1
2k
√
−g(R− 2Λ) + Lφ (4.2.17)

In Lφ, the effects of gravity are accounted for by the replacements ∂µ, ηµν → ∇µ, gµν ,

while we have to adjust later the constant k such that we reproduce Newtonian dynamics

in the weak-field limit. We expect that the source of the gravitational field is the energy-

momentum tensor. More precisely, the Einstein tensor should be determined by the matter,

Gµν = kT . Since we know already the result of the variation of SEH , we conclude that the

variation of Sφ should given as

Tµν =
2√
−g

δSEH

δgµν
(4.2.18)

Here we have defined ρΛvac, the energy density The tensor Tµν defined by this equation is

called dynamical energy-momentum tensor. In order to show that this rather bold definition

makes sense, and we have to convince ourselves that this definition reproduces the standard

results we know already. So, the Einstein field equation is given as

Rµν −
1
2
gµνR+ Λgµν + kTµν = 0 (4.2.19)

The matter and geometry of spacetime and cosmological constant (Λ) are related by the

Einstein field equations Gµν = Rµν − 1
2gµνR + Λgµν = KTµν , where Gµν is Einsteins field

tensor that tales geometry of spacetime and Tµν is energy-momentum tensor of matter.

Recall that the field equations in the presence of cosmological constant given as:

Rµν −
1
2
gµνR+ Λgµν = 8πGTµν (4.2.20)

Or rearranged as:

Rµν −
1
2
gµνR+ Λgµν = 8πG(Tµν − T vacuum

µν ) (4.2.21)
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The cosmological constant Λ. On the right side the former term is due to matter and

the latter to the vacuum fields, both stress-energy tensors, Tµν and T vacuum
µν , depending on

spacetime coordinates. The variation of the vacuum tensor takes into account that vacuum

fields fluctuate, the energy of the vacuum fluctuations would be of order the vacuum energy

itself. It seems more plausible that the cut-off momentum is far smaller, of order the typical

particle scales.

4.3 Quantum Theory Of Gravitation

At present there does not exist any complete and self-consistent quantum theory of grav-

itation, and it would be out of place in this book to describe in detail the attempts that

have been made to construct such theory. However, it will be possible and it may be useful

to give the reader some taste of what a quantum theory of gravitation would be like. To

start at the simplest level, we would interpret a gravitational plane wave, with wave kµ and

helicity ±2, as consisting of gravitons: quanta with energy-momentum vector pµ = ~kµ and

spin component in the direction of motion ±2~. (Here ~ = 1.054 × 10−27ergsec). Since

kµk
µ = 0, the graviton is a particle of zero mass, like the photon and neutrino [17].

Recall the Energy-momentum tensor is given by

Tαβ(x, t) =
∑

n

pα
np

β
n

E
δ3(x− xn(t)) (4.3.1)

Then energy-momentum tensor of an assembly of gravitons, all of which have four-momentum

pµ = ~kµ, is

⇒ Tµν =
∑

n

(~kµ)(~kν)
E

δ3(x− xn(t)) (4.3.2)

=
∑

n

(~kµ)(~kν)
~ω

δ3(x− xn(t)) (4.3.3)

⇒ Tµν =
~kµkνN

ω
(4.3.4)
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Where N is the number of gravitations per unit volume. Comparing this with our result for

a gravitational plane wave,

〈tµν〉 =
kµkν

16πG
(|e+|2 + |e−|2) (4.3.5)

We conclude that the number density of gravitations with helicity ±2 in a plane wave is

N± =
ω

16π~G
(|e±|2 (4.3.6)

The total number density is

N = N− +N+ (4.3.7)

=
ω

16π~G
(eλν ∗ eλν −

1
2
|eλλ|2) (4.3.8)

4.4 Energy and Momentum of Plane Wave

Let’s the Energy-momentum tensor is given by

Tαβ(x, t) =
∑

n

pα
np

β
n

E
δ3(x− xn(t)) (4.4.1)

Then energy-momentum tensor of an assembly of gravitons, all of which have four-momentum

pµ = ~kµ, is However,the energy-momentum tensor T λν(k, ω) must now be interpreted as

a matrix element of an energy-momentum tensor operator between final and initial state,

and also from the physical significance of the the plane-wave solution

hµν(x) = eµνexp(ikλx
λ) + e∗µexp(−ikλx

λ) (4.4.2)

is brought forward by calculating the energy and momentum it carries. According to

tµν =
1

8πG
(
Rµν −

1
2
gµνR

λ
λ −R(1)

µκ +
1
2
ηµκR

(1)λ
λ (4.4.3)

Then energy-momentum tensor of gravitation is given to order of h2 by

tµν ' 1
8πG

(
− 1

2
hµνη

λρR
(1)
λρ +

1
2
ηµνh

λρR
(1)
λρ +R(2)

µν −
1
2
ηµνη

λρR
(2)
λρ

)
(4.4.4)
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where R(N)
µν is the term in the Ricci tensor of order N in hµν . The metric gµν = ηµν + hµν

satisfies the first-order Einstein equation R
(1)
µν = 0, so we can drop these terms in tµν and

use

tµν ' 1
8πG

[
R(2)

µν −
1
2
ηµνη

λρR
(2)
λρ ] (4.4.5)

For the actual metric it is Rµν rather than R
(1)
µν that vanishes,and tµν arises only from

the first-order terms. Here it is R(1)
µν that vanishes, because gµν = ηµν + hµν satisfies the

first-order Einstein equations rather than the exact equations. The difference is only of the

order h(3). To calculate R(2)
µν we must use the following equation

hµν(x) = eµνexp(ikλx
λ) + e∗µexp(−ikλx

λ) (4.4.6)

in to equation of the second-order part of the Ricci tensor

R(2)
µκ = −1

2
hλν

[ ∂2hλν

∂xκ∂xµ
− ∂2hµν

∂xκ∂xλ
− ∂2hλκ

∂xν∂xµ
+

∂2hµκ

∂xν∂xλ

]
(4.4.7)

+
1
4
[
2
∂hν

σ

∂xν
− ∂hν

ν

∂xσ

][∂hσ
µ

∂xκ
+
∂hσ

κ

∂xµ
− ∂hµκ

∂xσ

]
− 1

4
[∂hσκ

∂xλ

+
∂hσλ

∂xκ
− ∂hλκ

∂xσ

][∂hσ
µ

∂xλ
+
∂hσλ

∂xµ
−
∂hλ

µ

∂xσ

]
The result is extremely complicated,but simplified if we average tµν over a region of space

and time much larger than |k|−1. This is the way the energy and momentum of any wave

are usually evaluated. The averaging kills all terms proportional to exp(±2ikλx
λ), and we

are left with only the xµ independent cross-term:

〈R(2)
µν 〉 = Reeλν∗[kµkνeλρ − kµkλeνρ − kνkρeµλ + kλkρeµν ] + [eλρkλ (4.4.8)

− 1
2
eλλkρ

]∗[kµe
ρ
ν + kνe

ρ
µ − kρeµν ]

− 1
2
[kλeρν + kνeρλ − kρeλν

]∗[kλeρµ + kµe
ρλ − kρeλµ]

We have not yet made use of the conditions kµk
µ = 0 and (kµe

µ
ν = 1

2kνe
µ
µ appropriate

to harmonic coordinates, so suppose for a moment that we leave the harmonic coordinate
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system by adding to hµν(x) a term

i(qµεν + qνεµ)exp(iqλxλ)− i(qµε∗ν + qνε
∗
µ)exp(−iqλxλ) (4.4.9)

Where qµqµ 6= 0. After averaging over space-time distances large compared with | q− k |−1

and we find for 〈R(2)
µν 〉 term, plus another term obtained by replacing k with this second

terms vanishes, so 〈R(2)
µν 〉 and hence 〈tµκ〉 may be calculated in harmonic coordinates with

no loss off generality.)

If we now use the harmonic coordinate conditions (kµk
µ = 0) and (kµe

µ
ν = 1

2kνe
µ
µ), in to

equation (4.4.8), then we obtain

〈R(2)
µν 〉 =

kµkν

2
(eλρ∗eλρ −

1
2
| eλλ |2) (4.4.10)

The quantity ηλρ〈R(2)
λρ 〉 vanishes because kµkρ = 0, So now gives the average energy-

momentum tensor of a plane wave as

〈tµν〉 =
kµkν

16πG
(eλρ∗eλρ −

1
2
| eλλ |2) (4.4.11)

Note that a ”gauge transformation” will change the terms in 〈tµκ〉 into

e′λρ∗e′λρ = eλρ∗eλρ + 2Reε∗ρk
ρeλλ + 2 | ερkρ |2 (4.4.12)

e′λλ = eλλ + 2kλελ (4.4.13)

but 〈tµκ〉 is gauge-invariant. Thus,as far as energy and momentum are conserved, the

polarizations eµν and eµν+kµεν+kνεµ represent the same physical wave, and I see again that

there are not six but only to physically significant polarization parameters. In particular,

a wave travelling in the z-direction, with wave vector and polarization tensor given by

(k1 = k2 = 0; k3 = k0 = k > 0) and physical situation of the plane wave arbitrary value

(eµν), has the energy-momentum tensor

〈tµν〉 =
kµkν

8πG
(| e11 |2 + | e12 |2) (4.4.14)
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or in terms of the helicity amplitudes (e± = e11 ∓ ie12 = −e12 ∓ ie12),

〈tµν〉 =
kµkν

16πG
(| e+ |2 + | e− |2) (4.4.15)

As a result the solution of retarded potential for a source ΛTµν confined to a finite volume

will be satisfies the harmonic coordinate condition. In a vacuum, the only energy-momentum

tensor is the vacuum energy-momentum tensor T vacuum
µν . Now the linearize Einstein field

wave equation in a vacuum become to:

�h(ω)
µν = 16πGT vacuum

µν (4.4.16)

Finally, the field wave equation can be written as,

�h(ω)
µν = 2Ληµν (4.4.17)



Chapter 5

Result and Discussion

A theory of everything (TOE), a single, all encompassing, coherent theoretical framework

of physics that fully explains and links together all physical aspects of the universe is the in-

terest of all scientific community. But, finding such unifying theory was the major unsolved

problems in physics until recent. However, thanks to the effort of many scholars, currently

all the laws of physics and aspects are closely framed only in two theoretical groups, most

closely resemble to the TOE; General relativity (GR)and Quantum field theory (QFT). GR

only focuses on gravity for understanding the universe in regions of both large scale and

high mass while QFT only focuses on non-gravitational forces system in understanding the

universe in regions of both small scale and low mass. Both theories are successful in their

region of application. However, for a century ago, since from their birth all attempts to

unify these theories were unsuccessful.

So, here in this thesis we have revisited the attempts made earlier in the unification

of the theories.Knowing the unsuccessful/attempts to wards the unification, I need to re-

visit unsuccessful theory to just give an additional comment based on the review, and also

identifying some critical discrepancy among the the existing theory and so supplementary

comment and feature perspective is being supplied. In doing so, the most general Hilbert-

Lagrange action is used to develop the Hamiltonian of quantum gravity from matter-energy

42
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tensor and scalar field tensors including quantum electrodynamics is used. Then the Hamil-

tonian is implemented in the Schrödinger equation and as well as in Klein-Gordon equation

where the form of the dark energy sector is partially obscured in the development.

On the other hand, when simplifying boundary conditions being imposed on the derived

wave equations their reductions produce their corresponding classical limits. So, with this

regard the unification seems viable.

However, the main problems of the unification are:

• The theory of dark sectors of the formalism are still incomplete.

• The two theories, from which the unification is beng carried out are within their own

theoretical limitations: both in their frameworks and perception of geometry.

• Implementation of boundary conditions are still not well behaved; Open and ambiguous.

General theory of relativity is the theory of gravitation and geometry of spacetime.The

matter and geometry of spacetime and cosmological constant (Λ) are related by the Einstein

field equations Gµν = Rµν− 1
2gµνR+Λgµν = KTµν , where Gµν is Einsteins field tensor that

tales geometry of spacetime and Tµν is energy-momentum tensor of matter.In a vacuum,

the only energy-momentum tensor is the vacuum energy-momentum tensor T (vacuum)
µν . Now

the linearize Einstein field wave equation in a vacuum become to:

�h(ω)
µν = 16πT (vacuum)

µν (5.0.1)

Finally, the field wave equation can be written as,

�h(ω)
µν = 2Ληµν (5.0.2)



Chapter 6

Summary and conclusion

A theory of everything (TOE) that fully explains and links together all physical aspects

of the universe is the interest of all scientific community. It is one of the current and

difficult problems in physics. Currently it seems that all the laws of physics and aspects

are closely framed only in two theoretical groups General relativity(GR) and Quantum field

theory(QFT) where GR only focuses on gravity for understanding the large structure of the

universe with high mass while QFT only focuses on non-gravitational forces in regions of

small scale and low mass system of the universe. Both theories are successful in their region

of application but the unification remained unsuccessful. The current attempts of unifying

them are interesting and yet not converged. Hence, the problem is still open.

44



Bibliography

[1] Henrik Zinkernagel,(2006),The Philosophy behind Quantum Gravity, Published in Theo-

ria, Vol. 21/3, , pp.295-312.(San Sebastin,Spain)

[2] Einstein,(1916)”Noherungsweise Integration derFeldgleichungen der Gravitation,”

Preussische Akademie derWissenschaften (Berlin).

[3] O.Klein,(1927), Zur Fuenfdimentionalen Darstellung der relativitaetstheorie, A. fuer

Physik 46,688.

[4] O.Klein,(1954),Aktuella Problem Kring Fysikens Sma och Stora Tal, Kosmos (Sweden).

[5] O. Klein,(1955), Generalization of Einsteins theory of gravitation considered from the

point of view of quantum field theory, in Fuenfzig Jahre Relativitatstheorie. Bern, 11-16

Juli (Helvetica Physica Acta, Suppl. 4 eds)

[6] S. Deser,(1957), ” General Relativity and the Divergence Problem in Quantum Field

Theory,” Rev. Mod. Phys. 29, 417.

[7] Fran De Aquino,(2008),Mathematical Foundations of the Relativistic Theory of Quan-

tum Gravity,S.Luis/MA, Brazil

45



46

[8] C. M. Ho, D. Minic and Y.J. Ng, Dark matter, infinite statistics, and quan-

tum gravity, Phys.Rev. D 85 (2012) 104033 [arXiv:1201.2365]; Y. J. Ng, Quantum

foam,gravitational thermodynamics, and the dark sector, J. Phys. Conf. Ser. 845 (2017)

012001 [arXiv:1701.00017].

[9] S. Weinberg, ” The Cosmological Constant Problem,” Rev.Mod.Phys. 61 (1989) 123.

Morris Loeb Lectures in Physics, Harvard University, May 2, 3, 5,and 10, 1988.

[10] S.M Carroll,” The Cosmological constant,” Living Rev.Rel. 4 (2001) 1, arXiv:astro-

ph/0004075 [astro-ph].

[11] T. Padmanabhan, ” Cosmological constant: The weight of the vacuum,” Phys. Rept.

380 (2003) 235320, arXiv:hep-th/0212290.

[12] R.Adam G;et.al.(1998) ”observational evidence from supernovae for an accelerating

universe and a cosmological constant.AJ.

[13] I.Morison,(2008),Introduction to Astronomy and Cosmology.UK.

[14] Ambjørn, J., Jurkiewicz, J., and Loll, R. (2004). Emergence of a 4d world from causal

quantum gravity. Physical Review Letters,93(13).

[15] Hawking, S.W. and Ellis, G.F.R. (1973). The Large-Scale Structure of Space-Time,

Cambridge University Press, Cambridge.

[16] Belinsky, V.A., Khalatnikov, I.M. and Lifshitz, E.M. (1970) Oscillatory Approach to a

Singular Point in the Relativistic Cosmology, Advances in Physics Vol. 19, pp. 525573.



47

[17] Steven Weinberg,(1972),Gravitational and cosmology:principles and applications of the

General theory of relativity,Published in canada.



DECLARATION

I hereby declare that this M.Sc thesis is my original work and has not been presented
for a degree in any other University and that all source of materials used for the
dissertation have been duly acknowledged.

Name: Terefe Demessa Badada

Signature: −−−−−−−−−−−−−−−−−
email:terefedemessa85@gmail.com

This M.Sc dissertation has been submitted for examination with my approval as
University advisor.

Name: Tolu Biressa(PhD Fellow)

Place and date of submission:

Department of Physics

Jimma University

June, 2019


	Table of Contents
	Abstract
	Acknowledgements
	Introduction
	Background and Literature Review
	Statement of The Problem
	Research Questions

	Objectives
	General Objectives
	Specific Objectives

	Methodology

	Einstein Theory of General Relativity
	The Framework Of General Theory Of Relativity
	Metric Tensors 
	The Christoffel Tensor
	The Riemann-Christoffel Curvature Tensor
	Einstein Field Equations

	Quantum Field Theory
	Quantum Field Theory
	Quantum Gravity
	Unification of All Fundamental Interactions

	Space-Time Singularities
	Boundary Conditions
	Weak Field Limit
	The Lorentz Gauge Transformation
	The Scalar Field

	Hilbert-Lagrange Action To Develop The Hamiltonian For Gravity and Quantum Theories
	The Hilbert-Einstein Action
	Derivation Of The Klein-Gordon Equation
	Quantum Theory Of Gravitation
	Energy and Momentum of Plane Wave

	Result and Discussion
	Summary and conclusion
	Bibliography

