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Abstract

The study starts from reviewing historical background and fundamental properties of pho-

tonic crystals to analytical analysis of electromagnetism in mixed dielectric media. Light

propagation in one-, two- and three-dimensional photonic crystals and how light propaga-

tion is inhibited through photonic band gap, along with photonic band gap formation are

theoretically studied. The proper effect of dielectric function, group velocity, group veloc-

ity dispersion and group index are studied analytically. Maxwell’s equation and Bloch’s

theorem are introduced to show how the light wave (EMW) propagates in photonic crys-

tals analytically. We show theoretically and analytically slow light and delay bandwidth

product with a remarkably low group velocity is a promising solution for buffering and

time-domain processing of optical signals. Photonic-crystal devices are especially attrac-

tive for generating slow light, as they are compatible with on-chip integration and room

temperature operation, and can offer wide-bandwidth and dispersion-free propagation.

Key words: Group index, Periodic dielectric function, Photonic crystals, Silicon element.
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Chapter 1

Introduction

The search for new materials is one of the defining characteristics of modern science and

technology. Novel optical devices are often the result of the fabrication of new materials.

Recent advances in optical science and technology, such as development of laser, detectors

and photonic devices have relied heavily on the advance in the areas research [1].

The physics of light propagation in photonic crystals has recently gained increasing in-

terest because, in order to achieve a better system performance and integration, instead

of electrons, researchers are turning to light as information carrier and working on con-

structing photon circuits [2].

Photonic crystals can be used as Omni-directional mirrors with high reflectivity due

to the photonic band gap (PBG). One of the suggested potential applications is for a wave

guided with strong optical confinement, in which photonic crystals are used as claddings.

Low loss propagation through wave guides with sharp bends, branches, etc has been

theoretically estimated [4] and some experimental demonstrations have been presented

involving the use of large crystal for millimeter wave [5], however, experiments are much

more difficult for light waves. Light propagation in straight wave guides has been recently

investigated. Still the effect of photonic crystals cladding was not made clear, since the

wave guide was as short as several micrometers.

1
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Photonic crystals with forbidden photonic bands, which are known as photonic band

gaps (PBG) materials have received considerable attention for the study of their funda-

mental physical properties as well as for potential applications in photonic devices since

the work of Yablonovitch and John [1-3].

Photonic band gap (PBG) materials may be designed in one, two, and three dimen-

sions. One dimensional periodic structure is the simplest photonic crystal usually used as

reference model to understand the formation of the band diagram [4], showing stop band

regions. Two-dimensional photonic crystals are more difficult to fabricate than one dimen-

sional photonic crystal, but their increased complexity, even if, still quite less than three

dimensional photonic crystals, is largely compensated by the wide field of applications in

integrated photonic circuits. Three dimensional photonic crystals have attracted much

attention as ideal optical materials, in which the complete photonic band gap (PBG) can

control light perfectly without any losses.

1.1 Statement of the problem

Photonic crystals technologies have been playing a major role in the rapid development of

today’s information and communications technologies. Photonics has enabled high speed

and wide-band width data handling beyond the limitation of electronics technologies.

However it is also true that photonics is not versatile, and many of the data processing

processes still require electronics. This limitation is deeply related to the fundamental

properties of light in media. In comparison with electrons in media, it is difficult to confine

or store light in a small volume, to control or change the speed of light, etc. All of these

characteristics limit the way of manipulating light and make photonic data processing

more difficult.
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Photonic crystals are expected to solve these problems by letting us manipulate the

behavior of light in media beyond the conventional limitations. The purpose of the study

is, therefore, to investigate the important features of photonic crystals and light propa-

gation in photonic crystals by addressing the following major issues

how light propagation is influenced by photonic crystals,

what fundamental properties of photonic crystals control the speed of light and change

the direction of light and

how photonic crystals differ from electronic crystals.

For the above questions; to understand the properties of photonic crystals and propa-

gation of light in photonic crystals, to determine how light is propagated in one-, two-,

and three-dimensional photonic crystals and to determine how photonic crystals affect

the behavior of visible light are designed as objectives of the study.

1.2 Significance of the study

This study will have its own contribution for the advancement of utilization of light in

modern world. Thus, the engineering of photonic crystals will be highly developed and it

will provide good opportunity on knowledge and application for the researcher and other

scholars who will be interested to do more investigation in the field.

This study will address the properties of photonic crystals, photonic band gaps and

the characteristics of light as it propagates in one dimensional, two dimensional, and three

dimensional photonic crystals.
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1.3 Limitation of the study

The limitation of the study were:

Time constraint and proximity with advisor during winter season

The problem of getting actual photonic crystals to check the propagation of light in pho-

tonic crystals experimentally to make the study more feasible



Chapter 2

Theoretical Background

Photonic crystals have been studied in one form or another since 1887, but no one used

the term photonic crystal until over 100 years later - after Eli-Yablonovitch and Sajeev

John published two milestone papers on photonic crystals in 1987 [8,9]. Before 1987, one-

dimensional photonic crystals in the form of periodic multi-layer dielectric stacks (such as

the Bragg mirror) were studied extensively. Lord Rayleigh started their study in 1887[10],

by showing that such systems have a one-dimensional photonic band-gap, a spectral range

of large reflectivity, known as a stop-band. Today, such structures are used in a diverse

range of applications; from reflective coatings to enhancing light emitting diode (LED)

efficiency to highly reflective mirrors in certain laser cavities. A detailed theoretical study

of one-dimensional optical structures was done by Vladimir P. Bykov [11], who was the

first to investigate the effect of a photonic band-gap on the spontaneous emission from

atoms and molecules embedded within the photonic structure. Bykov also speculated as

to what could happen if two- or three-dimensional periodic optical structures were used

[12]. The concept of three-dimensional photonic crystals was then discussed by Ohtaka in

1979 [1], who also developed a formalism for the calculation of the photonic band struc-

ture. However, these ideas did not take off until after the publication of two milestone

papers in 1987 by Yablonovitch and John. Both these papers concerned high-dimensional

periodic optical structures, i.e., photonic crystals. Yablonovitch’s main goal was to engi-

neer photonic density of states to control the spontaneous emission of materials embedded

5
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in the photonic crystal. John’s idea was to use photonic crystals to affect localization and

control of light.

After 1987, a number of research papers concerning photonic crystals began to grow

exponentially. However, due to the difficulty of fabricating these structures at optical

scales, early studies were either theoretical or in the microwave regime, where photonic

crystals can be built on the more accessible centimeter scale. This fact is due to a prop-

erty of the electromagnetic fields known as scale invariance. In essence, electromagnetic

fields, as the solutions to Maxwell’s equations, have no natural length scale; so solutions

for centimeter scale structure at microwave frequencies are the same as for nanometer

scale structures at optical frequencies.

In 1991, Yablonovitch had demonstrated the first three-dimensional photonic band-gap

in the microwave regime. The structure that Yablonvitch was able to produce involved

drilling an array of holes in a transparent material, where the holes of each layer form an

inverse diamond structure; today it is known as Yablonovite [14].

In 1996, Thomas Krauss demonstrated a two-dimensional photonic crystal at optical

wavelengths. This opened the way to fabricate photonic crystals in semiconductor mate-

rials by borrowing methods from the semiconductor industry. Today, such techniques use

photonic crystal slabs, which are two dimensional photonic crystals ”etched” into slabs

of semiconductor. Total internal reflection confines light to the slab, and allows photonic

crystal effects, such as engineering photonic dispersion in the slab. Researchers around

the world are looking for ways to use photonic crystal slabs in integrated computer chips,

to improve optical processing of communications; both on-chip and between chips [15].

Such techniques have yet to mature into commercial applications, but two-dimensional

photonic crystals are commercial used in photonic crystal fibers [16]. Photonic crystal

fibers were first developed by Philip Russell in 1998, and can be designed to possess en-

hanced properties over normal optical fibers.



7

Study has proceeded more slowly in three-dimensional than in two-dimensional pho-

tonic crystals. This is because of more difficulty in fabrication [16]. Three-dimensional

photonic crystal fabrication had no inheritable semiconductor industry techniques to draw

on. Another strand of research has tried to construct three-dimensional photonic struc-

tures from self-assembly; essentially letting a mixture of dielectric nano-spheres settle

from solution into three-dimensionally periodic structures that have photonic band-gaps.

The ever expanding field of biomimetics; the study of natural structures for better un-

derstanding and use them in design; is also helping researchers in photonic crystals [17,18].

2.1 Fundamentals of Photonic Crystals

Photonic crystals (PCs) are periodic dielectric structures that control the propagation

of light. The periodicity of the dielectric constant removes the degeneracies of the free

photon states at Bragg planes and produces a range of forbidden energies of the photons.

This leads to the concept of photonic band gaps (PBGs) which underscores the anal-

ogy between electrons in semiconductors and photons in a photonic crystal. Any material

which exhibits special periodicity in the refractive index is a photonic crystal. The period-

icity defines the dimensionality of a photonic crystal. Usually one dimensional, photonic

crystals pose a photonic band gap for only one particular direction of the incident light,

two dimensional photonic crystals are able to stop the light beam in one particular plane,

while some dielectric structures with a three dimensional periodicity, have no propagation

modes in any direction at all for a range of frequencies, giving rise to a complete photonic

band gap [19]. Photonic crystals can introduce photonic band gaps in a radiation spectra,

i.e. they can serve as light conductors or insulators [4], they can modify the dispersion of

the light, i.e. they can significantly reduce its group velocity [26] and they can also mod-

ify the diffraction of the light in that the diffraction can vanish in propagation through

particularly prepared photonic crystals.
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Photonic crystals can introduce photonic band gaps in a radiation spectra, i.e. they can

serve as light conductors or insulators [4], they can modify the dispersion of light, i.e.

they can significantly reduce its group velocity and they can also modify the diffraction

of light in that the diffraction can vanish in propagation through particularly prepared

photonic crystals [20].

Photonic crystals are composed of periodic dielectric or metallo dielectric nanostruc-

tures that affect the propagation of electromagnetic waves in the same way as the periodic

potential in a semiconductor crystal affects the electron motion by defining allowed and

forbidden electronic energy bands [21]. Essentially, photonic crystals contain regularly re-

peating internal regions of high and low dielectric constant. Photons propagate through

this structure -or not- depending on their wavelength. Wavelengths of light that are al-

lowed to travel are known as modes, and groups of allowed modes form bonds. Forbidden

bands of wavelengths are called photonic band gaps. This gives rise to distinct phenomena

such as inhibition of spontaneous emission, high-reflecting Omni-directional mirrors and

low-loss- wave guiding, amongst others.

Since the basic phenomenon is based on diffraction, the periodicity of the photonic crystal

structure has to be of the same length-scale as half of the wavelength of the electromag-

netic waves i.e. 200nm (blue) to 350nm (red) for photonic crystals operating in the visible

part of the spectrum-the operating regions of high and low dielectric constant have to be

of this dimension. This makes the fabrication of optical photonic crystals cumbersome

and complex.

The photonic crystals are artificially created materials that can do to photons what an

ordinary semiconductor does to electrons: they can exhibit a band gap in which photons

with certain energies cannot propagate inside the crystal, regardless of polarization and

propagation direction.
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Photonic crystals are characterized by three parameters: the lattice topology, the

spatial period and the dielectric constants of the constituent materials. By suitable selec-

tion of these parameters, a gap in the electromagnetic dispersion relation can be created,

within which the linear propagation of electromagnetic waves is forbidden. This forbidden

frequency range is called the photonic band gap. It is said that a photonic band gap is

complete, if a forbidden gap exists for all polarizations and all propagation directions. It

is common to distinguish one-, two- and three-dimensional photonic crystals by the num-

ber of dimensions within which the periodicity has been introduced into the structure.

Examples of one-, two- and three-dimensional photonic crystals are given in Figure (2.1).

Necessary but not sufficient conditions to obtain a complete photonic band gap are a

periodicity in the three spatial directions and a large difference in the dielectric constants

of the constituent materials [22].

In 1987 E.Yablonovitch proposed to use a three-dimensional periodic medium, which

he called a photonic crystal, to inhibit the spontaneous emission and to realize localized

defect modes and consequently to enhance the spontaneous emission. In the same years,

S. John [23] proposed the use of a disordered three-dimensional periodic medium to lo-

calize electromagnetic waves. Many interesting quantum optical phenomena such as the

bound state of photons and non-exponential decay of the spontaneous emission were pre-

dicted. These ideas actively stimulated research area [24-27], which lead both to various

unexpected results in the fundamental understanding of light-matter interaction and to

various new optoelectronics and photonics applications

Figure 2.1: Examples of one, two and three-dimensional photonic crystals
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2.2 The Origin of the Photonic Band gap

Photonic crystals are materials patterned with a periodicity in dielectric constant, which

can create a range of forbidden frequencies called photonic band gap. Photons with en-

ergies lying in the band gap con not propagate through the medium. This provides the

opportunity to shape and mould the flow of light for photonic information technology.

Photonic band gap is a frequency band in which electromagnetic waves are forbidden

irrespective of propagation direction in space. Inside a photonic band gap optical modes,

spontaneous emission, and zero point fluctuation are all absent. Photonic band gap de-

vices were introduced in optical applications, which have a property of preventing light

from propagating in a certain frequency band [5]. Their structures are periodic in nature

where the propagation of waves is not allowed for some frequencies for some frequency

bands or directions, according to the Bragg phenomenon.

Photonic band gap formation can be regarded as the synergetic interplay between two

distinct resonance scattering mechanisms. The first is the ”macroscopic” Bragg resonance

from a periodic array of scatters. This leads to electromagnetic stop gaps when the wave

propagates in the direction of periodic modulation when an integer number, m=1,2,3,,of

half wavelength coincides with the lattice spacing, L, L = mλ
2

, of the dielectric microstruc-

ture. The second is a ”microscopic” scattering resonance from a single unit cell of the

material. In the illustration, this (maximum back scattering) occurs when precisely one

quarter of the wavelength coincides with the diameter, 2r, of a single dielectric well of

refractive index n. Photonic band gap formation is enhanced by choosing the materials

parameters r, L, and n such that both the microscopic and microscopic resonance occur

at the same frequency.

Photonic band gap formation is facilitated if the geometrical parameters of the pho-

tonic crystal are chosen so that both the microscopic and macroscopic resonance occurs at

precisely the same wavelength. Both of these scattering mechanisms must individually be
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quite strong. In practice, this means that the underlying solid material must have a very

high refractive index contrast (typically about 3.0 or higher and it is to precisely achieve

this contrast, holes are drilled in to the medium). These conditions on the geometry,

scattering strength, and the purity of the dielectric material severely restrict the set of

engineered dielectrics that exhibit a photonic band gap.

Here one can take advantage of the simplicity of the one-dimensional systems to ex-

plain the physical origin of the PBG. A one-dimensional photonic crystal is made of layers

with alternating dielectric constant, as shown in Figure 2.2. This system repeats in the

z-direction with period a, which will be of the order wavelengths of the light. A plane

wave traveling in the z-direction, along the line of periodicity, will be scattered at the

interface between two media. This gives rise to forward and backward propagating waves

within the structures. These waves will interfere to form standing waves and just they

are taken to be stopped.

Figure 2.2: One dimensional photonic crystal with period ’a’. It consists of alternating
layers with different dielectric constants
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2.3 Properties of Photonic Crystals

2.3.1 Polarization

In the two-dimensional case, all derivatives of magnetic field and electric field with respect

to z coordinate vanish and the study is restricted to the propagation along the cross-section

plane of the crystal, i.e. the xy plane. This crucial property opens the possibility of

separately studying the problems corresponding to the fundamental cases of polarization.

These polarization modes are referred to as transverse magnetic (TM) and transverse

electric (TE) [28] polarizations Figure( 2.3.). In the case of the TM polarization the

components of magnetic field are parallel to the xy plane and Ez 6= 0. For the TE case

Hz 6= 0, and electric field components lie in the xy plane.

Figure 2.3: TM polarization; the component of magnetic field are parallel to the xy plane
and Ez 6= 0. For the TE case the Hz 6= 0 and electric field components lie in the xy plane.

2.3.2 Density of States

The photonic density of states (DOS) plays an important role in understanding the optical

properties of a photonic crystal because it describes the integral availability of allowed

states in a certain frequency range regardless of band-index n or wave vector k. The

calculation of the DOS provides a cross-check for the existence of a photonic band gap.
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The total DOS is defined as :

ρ(ω) =
∑
n

∫
1BZ

d3k · δ(ω − ωn(k)) (2.3.1)

where the k-space integration covers the whole first Brillion zone (1BZ) and ωn(k) is the

eigen value for band-index n and wave vector k,δ is the Dirac delta function. In the

homogeneous media ρ(ω) is proportional to ω2. A vanishing density of state is the com-

mensurate condition for a complete photonic band gap

.Density of states per unit volume per unit energy ρ(E) with different dimension can be

calculated.

2.3.3 Calculation of density of states for electronic crystals

To calculate density of three dimensional, two dimensional and one dimensional photonic

crystals the property of delta function i.e.∫
δ(x− a)f(x)dx = f(a) and δ(αx) = 1

α
δ(x) should be taken in to consideration.

For any dimensional state we use the following formula:

g(E) = 2( L
2π

)α
∫
δ(E − Ek)dαk For three dimensional states

g(E) =
∑
s

∑
k

δ(E − Ek) (2.3.2)

where Ek = ~2k2
2m
⇒ dEk = ~2kdk

2m

g(E) = 2(
L

2π
)3

∫
δ(E − Ek)k2 sin θdkdθdφ (2.3.3)

but
∫ π

0

∫ 2π

0
sin θdφ = 4π

g(E) = 2(
L

2π
)3

∫
δ(E − ~2k2

2m
)4π = 2

V

8π3

∫
4πδ(

~2

2m

2mE

~2
− k2)k2dk (2.3.4)

g(E) = 2
V

8π3
4π

∫
2m

~2
δ(

2mE

~2
− k2)k2dk (2.3.5)
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using δ(αx) = 1
α
δ(x) delta function property

g(E) =
V

π2

2m

~2

∫
δ(

2mE

~2
− k2)k2dk (2.3.6)

Let y = k2, dy = 2kdk ⇒ dk = dy
2k

= dy
2
√
y

g(E) =
V

π2

2m

~2

∫
δ(

2mE

~2
− y)y

dy

2
√
y

(2.3.7)

g(E) =
V

π2

2m

~2

1

2

∫
δ(

2mE

~2
− y)
√
ydy (2.3.8)

By using delta function property, finally we get the desired equation

g(E) =
V

2π2
(
2m

~2
)

√
2mE

~2
=

V

2π2
(
2m

~2
)
3
2E

1
2 (2.3.9)

By using the same technique we can drive equation for density of states for two dimensional

bodies.

g(E) =
∑
s

∑
k

δ(E − EK) = 2(
L

2π
)α

∫
δ(E − Ek)dαk (2.3.10)

g(E) = 2(
L

2π
)2

∫
δ(E − Ek)kdkdφ (2.3.11)

but
∫ 2π

0
dφ = 2π and by using this relation we get the following

g(E) = 2
A

4π2
2π

∫
δε(E − ~2k2

2m
)kdk (2.3.12)

let y = k2, dy = 2kdk ⇒ dk = dy
2k

= dy
2
√
y

we get the following

g(E) =
A

π

∫
δ(

~2

2m
(
2mE

~2
− k2))

√
y
dy

2
√
y

(2.3.13)

g(E) =
A

2π

2m

~2

∫
δ(

2mE

~2
− y)dy =

A

2π
· 2m

~2
(2.3.14)

Finally density of states for one dimension can be calculated by using the techniques

g(E) =
1

2π

∫
δ(E − Ek)dk (2.3.15)

Like the previous techniques by using properties of delta function we derive the following

g(E) =
1

2π

∫
δ(

~2

2m
(
2mE

~2
− k2))dk (2.3.16)
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Let y = k2, dy = 2kdk ⇒ dk = dy
2k

= dy
2
√
y

and using delta property

g(E) =
1

2π

2m

~2

1

2

∫
δ(

2mE

~2
− y2)

dy
√
y

=
1

2π

m

~2

∫
δ(

2mE

~2
− y2)(

√
y)−1dy (2.3.17)

Using the dirac delta function i.e.
∫
δ(y0 − x)f(x)dx = f(x) , in our case f(x) =

f(
√
x)−1 ⇒

∫
δ(2mE

~2 − y
2)(
√
y)−1dy = 1√

2mE
~2

g(E) =
1

2π

m

~2
(
~2

2m
)
1
2E

−1
2 (2.3.18)

2.3.4 Calculation of density of states for photonic crystals

For photonic crystals, density of states per unit volume per unit angular frequency (ω)

can be calculated for one-, two-, and three-dimensional photonic crystals.

In this part we use the same techniques as the electronic crystals.

For one dimensional crystals

g(ω) =
∑

δ(ω − ωk) (2.3.19)

g(ω) =
L

2π

∫
δ(ω − ωk) (2.3.20)

where ωk = ck is dispersion relation of photons and dωk = cdk ⇒ dk = dωk

c

g(ω) =
L

2π

∫
δ(ω − ωk)

dωk
c

=
L

2πC

∫
δ(ω − ωk)dωk (2.3.21)

using dirac delta property
∫
δ(ω − ωk)dω = 1

g(ω) =
L

2πc
(2.3.22)

For two-dimensional photonic crystals

g(ω) =
∑

δ(ω − ωk) (2.3.23)

g(ω) = (
L

2π
)2

∫
δ(ω − ωk)kdkdφ (2.3.24)

but
∫ 2π

0
dφ = 2πanddk = ωk

c

g(ω) = (
L

2π
)2

∫
δ(ω − ωk)2π

ωk
c

dωk
c

(2.3.25)
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g(ω) = (
A

4π2
)
2π

c2

∫
δ(ω − ωk)ωkdωk (2.3.26)

From the property of dirac delta function, we have∫
(ω − ωk)ωkdωk = f(ωk)⇒ f(ωk) = ωk = ω

g(ω) =
Aω

2πc2
(2.3.27)

Finally for three-dimensional photonic crystals:

g(ω) =
∑

δ(ω − ωk) (2.3.28)

g(ω) = (
L

2π
)3

∫
δ(ω − ωk)k2 sin θdkdθdφ (2.3.29)

but
∫ π

0

∫ 2π

0
sin θdθdφ = 4πanddk = ωk

c

g(ω) =
V

8(π)3

∫
δ(ω − ωk)4πk2dk (2.3.30)

g(ω) =
V

8(π)3
4π

∫
δ(ω − ωk)

(ωk)
2

c2

dωk
c

(2.3.31)

g(ω) = (
V

2(π2
) · 1

c3

∫
δ(ω − ωk)ω2

kdωk (2.3.32)

using the property of delta function i.e.∫
δ(ω − ωk)ω2

kdωk = f(ωk)
2 = ω2

g(ω) =
V

2π2
· ω

2

c3
(2.3.33)

2.3.5 Group Velocity

The group velocity is the speed at which the wave envelope, the overall shape of an

amplitude varying wave, propagates. This is frequently considered to be the velocity of

the information transported by light signals, which is correct for most cases. Nevertheless,

as it will be discussed below, there are some exceptions to this statement.
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The group velocity of a wave in a certain medium corresponds to the velocity of light

in vacuum, c, divided by the group index of the medium, ng, and it is given by the equation

υg =
c

ng
=
dω

dk
(2.3.34)

where ω is the angular frequency and k is the angular wave number. The variation ω

with k is called the dispersion relation, and hence, the group velocity is given by the slope

of the dispersion relation. The phase velocity is the speed at which the phase of every

particular frequency component of the wave travels and it is given by

υp =
ω

k
(2.3.35)

It can be seen that for media in which ω varies linearly with k, the phase and the group

velocity coincide. However, in general, for dispersive media, phase and group velocities

differ and both vary with frequency. Coming back to the point of slow light, it has been

defined as the phenomenon of light propagation at reduced group velocity. Bearing in

mind equation (2.3.34), it is straightforward to see that slow light relies on increasing the

group index of the medium, which is given by

ng = n+ ω
dn

dω
(2.3.36)

The refractive index of the material n varies with frequency ω and can be slightly altered

by making use of a plurality of phenomena, such as electro-optic or thermo-optic effects.

When aiming at a significant change in the group index, it is the second term in equation

(2.3.36), dn
dω

, the one that dominates, i.e. the dispersive behavior of the media. This is

the reason why sharp spectral resonances are always behind slow light techniques.
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The group velocity of the radiation modes has very important role in the light propa-

gation and optical response in the photonic crystal. The group velocity of the eigen modes

is defined as the gradient of the dispersion curves that is the derivative of the angular

frequency ω with respect to the wave vector k. The dispersion for light in an isotropic

dielectric material is given by the equation:

ω(k) =
ck√
ε

(2.3.37)

where c is the speed of light, k is a wave vector and ε is a dielectric constant, given by the

properties of the dielectric medium. This equation shows that the energy of light varies

linearly with momentum, with zero momentum corresponding to zero energy.

2.4 Electromagnetism in Mixed Dielectric Media

In order to study the propagation of light in photonic crystals, we should turn to the

Maxwell equations. After specializing to the case of a mixed dielectric medium, we cast

the Maxwell equations as a linear Hermitian eigen value problem. From this formulation,

in close analogy with the Schrödinger equation of quantum mechanics comes a variety

of useful properties, including the orthogonality of modes and the electromagnetic varia-

tional theorem. Finally, we show electromagnetic problems with different overall length

and dielectric scales can be related.

All of macroscopic electromagnetism, including the propagation of light in photonic crys-

tal, is governed by four macroscopic Maxwell equations. They are:

∇ ·B = 0 (2.4.1)

∇ ·D = 4πρ (2.4.2)

∇× E +
1

c

∂B

∂t
= 0 (2.4.3)

∇×H− 1

c

∂D

∂t
=

4π

c
J (2.4.4)
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where (respectively)E and H are the macroscopic electric and magnetic fields,Dand

B are the displacement and magnetic induction fields, and ρ and J are charge density and

current density.

We will restrict ourselves to propagation within a mixed dielectric medium, a composite

of regions of homogeneous dielectric material with no free charges or currents. This

composite need not be periodic It is good approximation to employ the following standard

assumptions; First, We assume the field strengths are small enough so that we are in the

linear regime. Second, we assume the material is macroscopic and isotropic, so that

E(r, ω) and D(r, ω) are related by a scalar dielectric constant ε(r, ω). Third, we ignore

any explicit frequency dependence of the dielectric constant. Instead we simply choose the

value of the dielectric constant appropriate to the frequency range of the physical system

we are considering. Fourth, we focus only on low-loss dielectrics; which means we can treat

ε(r) as purely real. When all is taken in to consideration, we have D(r) = ε(r)E(r). For

most dielectric materials of interest, the magnetic permeability is very close to unity and

we may set B=H With all of these assumptions in place, the Maxwell equation become

∇ ·H(r, t) = 0 (2.4.5)

∇ · ε(r)E(r, t) = 0 (2.4.6)

∇× E(r, t) +
1

c

∂H(r, t)

∂t
= 0 (2.4.7)

∇×H(r, t)− ε(r)
∂E(r, t)

∂t
= 0 (2.4.8)

We have restricted ourselves to linear lossless materials. In general both E and H are

complicated functions of time and space. But since Maxwell equations are linear, we

can separate out the time dependence by expanding the fields in to a set of harmonic

models. In this and the following sections we will concern ourselves with the restriction

that the Maxwell equation impose on a field pattern that happens to very harmonically

with time. This is no great limitation, since we know by Fourier analysis that we can build

any solution with an appropriate combination of these harmonic modes. Often we will
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refer to them simply as modes. We employ the familiar trick of using a complex-valued

field for mathematical convenience; remember to take the real part to obtain the physical

fields. This allows us to write a harmonic mode as a certain field pattern times a complex

exponential

H(r, t) = H(r)eiωt (2.4.9)

E(r, t) = E(r)eiωt (2.4.10)

To find the equations for the model profile of a given frequency, we insert the above

equations in to equation (2.4.5) and( 2.4.6.) The two divergence equations give the simple

conditions

∇ ·H(r) = 0 (2.4.11)

∇ ·D(r) = 0 (2.4.12)

∇ · ε(r)E(r) = 0 (2.4.13)

These equations have a simplest physical interpretation. There are no point sources

or sinks of displacement and magnetic fields in the medium. Alternatively, the field

configurations are built up of electromagnetic waves that are transverse. That is if we

have a plane wave H(r) = aik·r, equation (2.4.12) requires that a · k = 0. We can focus

our attention on the other two of the Maxwell equations as long as we are always careful

to enforce this transversality requirement. The two curl equations relate E(r) to H(r):

∇ · E(r) +
iω

c
H(r) = 0 (2.4.14)

∇ ·H(r)− iω

c
ε(r)E(r) = 0 (2.4.15)

We can decouple these equations in the following way. Divide equation of (2.4.15) by ε(r),

and then take the curl. Then use the first equation to eliminate E(r). The result is an

equation entirely in H(r):

∇× (
1

ε(r)
∇×H(r)) = (

ω

c
)2H(r) (2.4.16)
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This is the master equation. In addition to the divergence equation (2.4.11), it completely

determines H(r). Our strategy will be the following: for a given photonic crystal ε(r), solve

the master equation to find the modes H(r) for a given frequency subject to transversality

requirement.

Then we use equation (2.4.12) to recover E(r):

E(r) = (
−ic
ωε(r)

)∇×H(r) (2.4.17)

2.5 Bloch modes, dispersion and the plane wave

method

The plane wave method is a direct adaptation of electronic band structure methods, and

allows optimal account of the crystal lattice symmetry in determining the electromag-

netic properties of photonic crystal. By using Maxwell’s equations for an inhomogeneous

dielectric medium without charges or currents together with the constitutive relations for

a non magnetic dielectric composite i.e (D = ε0ε(r)E) and (B = µ0H) we can drive the

next equation

∇× (∇× E(r)) + [1− ε(r)]
ω2

c2
E(r) =

ω2

c2
E(r) (2.5.1)

Assuming , harmonic time dependence with frequency ω, and the speed of light c in vac-

uum. For photonic crystals the dielectric constant ε(r) is by definition a periodic function,

which is often piece wise constant for fabricated composites. The borrowing of the elec-

tronic band structure methods to solve (2.5.1) is inspired by the similarity of this wave

equation with the time independent Schrödinger equation for an electron in a periodic

potential[31].Indeed the physics appear simpler for photons as they do not interact with

each other. However several differences are readily apparent.Since we assume the dielec-

tric constituents to be non magnetic it is more advantageous to solve the magnetic field

wave equation

∇× [
1

ε(r)
∇×H(r)] =

ω2

c2
H(r) (2.5.2)
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The benefit of using the magnetic field wave equation solely rests on the fact that the

operator ∇× 1
ε(r)
∇× is hermmitian. As a result it is clear that its eigen values are real.

Furthermore it follows that nondegenerate magnetic field eigenmodes are orthogonal and

can be classified according to symmetry properties. In addition the hermitian nature

of the magnetic field operator facilitates variational and perturbational calculations. In

contrast the electric field eigenvalue equation (2.5.1) is not hermitian eigenvalue problem,

causing inferior convergence of electric field plane-wave methods. This symmetry between

magnetic field and electric field methods disappears for more general problems where the

magnetic permeability is also spatially dependent. A special dependence of the magnetic

permeability is taken in to account by generalizing D = ε(r)E(r) and B = µ0H to

B = µ0µH(r) (2.5.3)

Due to the periodicity of the dielectric constant ε(r), Bloch’s theorem is applicable to

the eigenmodes of the eigen value problem Eq.(2.5.2) and asserts that eigenmodes can be

decomposed as

Hn,k(r) = eik·run,k(r) (2.5.4)

Where un,k(r) has the periodicity of crystal lattice (photonic crystals). Such Bloch mode is

periodic up a phase factor eik·(r).At the edge of the Brillion zone the dispersion relationωn(k)

folds back, and thus organize in to bands, labeled by n. All the modes can be uniquely

labeled with a Bloch wave vector k with in the first Brillion zone, and the integer index

n.

2.6 Slow light in photonic crystals

2.6.1 Slow light theory and the delay-bandwidth product

The group velocity of light is given by the inverse of the first-order dispersion ( dk
dω

)−1,

where k and ω are the wave number and angular frequency, respectively[30]. The group

index ng ≡ c
υg

= c dk
dω

is regarded as a slow-down factor from the velocity, c.
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Note that, in any material, the material index itself is neither very large nor easy

to modify; it can be changed by no more than several percent by any form of external

stimulation. Still, ng is greatly enhanced in materials or structures with large first-order

dispersion.

Slow light has been observed in various media, but to be useful it needs to be achieved

over a wide bandwidth. Detailed analysis of the delay band width product (DBP) has

been reported in numerous papers; a simple treatment is shown here. Let us denote the

material index or the modal equivalent index as n. Using the relation k = ω( c
n
),

ng = c
dk

dω
=
d(nω)

dω
= n+ ω

dn

dω
(2.6.1)

When ng is much greater than n,the DBP and its normalized form are given by

∆t∆f ∼=
L∆n

λ
(2.6.2)

ng
∆f

f
∼= ∆n (2.6.3)

respectively, where ∆t is the delay of light at a wavelength λ over a propagation length

of L,∆f is the frequency bandwidth centered at a frequency of f = ω
2π

, and ∆n is the

change of n in the bandwidth. The time duration of one optical bit is approximately given

by (∆f)−1, although an accurate value depends on the modulation format. Therefore,

the DBP ∆t∆f is a good indication of the highest buffering capacity that the slow-light

device potentially provides. On the other hand, the normalized form can be more useful

when devices that have different lengths and different operating frequencies are compared.

The shortest spatial length of one bit ∆L is approximated by

∆L ≈ λ

∆n
(2.6.4)

Equations (2.6.2, 2.6.3) and (2.6.4) indicate that ∆n is the dominant factor for achieving

a large buffering capacity. In materials and structures that have low dispersion, ∆n

changes linearly with ∆f when ∆f is much greater than f. On the other hand, ∆n can be
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maximized in highly dispersive media independently of ∆f by optimizing photo excitation

and structural design, for example, and, according to equations (2.6.2) and( 2.6.3), a large

ng and long ∆t are obtained by narrowing ∆f .

2.6.2 Slow light in highly dispersive structures

The device with which slow light was first observed in 2001 was a silicon photonic-wire

waveguide (PWW) [30], which is widely used in silicon photonic devices [31,32]. It is a

simple rectangular channel waveguide with a high index contrast between the silicon core

and air or SiO2 cladding. The propagation loss of this waveguide is sometimes measured

from the finesse of the internal Fabry-Perot resonance. In the first observation, the group

index ng was evaluated from the relation ng = λ2
2L∆λr

,(∆λr is the peak spacing of the

resonances) as around four to five. This was not caused by the resonance but by the large

dispersion arising from the high index contrast, which largely changes the propagation

constant (k in the propagation direction) with respect to ω, particularly near the cut-off

of the waveguide mode [33]. This result suggests that the dispersion term in equation

(2.6.1) can be comparable to or larger than n itself even in a simple waveguide.

A photonic crystal waveguide (PCW) is usually fabricated on a silicon-on-insulator

(SOI) or III-V compound semiconductor substrate by using standard semiconductor pro-

cesses, including high-resolution lithography, selective dry etching and wet etching. A

typical structure consists of air holes with a diameter of 240 nm and a lattice constant

(lattice spacing) of 450 nm for a target wavelength of λ = 1.55µm.
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Present technology means that such structures, etched to a depth of around 200 nm,

can be achieved with a disorder within several nanometers. The major component of the

higher-order dispersion is the group-velocity dispersion (GVD), given by d(νg)−1

dω
= d2k

dω2 . It

usually becomes extremely large near the band edge; a typical GVD constant is of the

order of 100 ps nm−1mm−1 , which is 106 times larger than that of single-mode silica

fibers. Because of this, dispersion-compensated and zero-dispersion slow light are very

important. Even though a high buffering capacity is potentially expected from a large

DBP in a PCW device specifically designed for wide band slow light, the net capacity is

finally determined by how the GVD is suppressed.
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Methods and Materials

3.1 Formulation of models

Theoretical calculations of photonic crystals are, in principle, exact, because Maxwell’s

equations are derived from first principles. Therefore, the power of computations is com-

parable to that of experiments in characterization of photonic crystals. The aim of this

chapter is to present an overview of most common computational methods and modeling

tools applicable to photonic crystals analysis as a function of the phase velocity, group

velocity, group index, group velocity dispersion and dispersion relation.

Let we consider Taylor expansion of the wave vector evaluated at ω = ω0

k(ω) = k(ω0) + (
∂k

∂ω
)|ω=ω0(ω − ω0) +

1

2
(
∂2k

∂ω2
)|ω=ω0(ω − ω0)2 + ... (3.1.1)

where k(ω0) = k0 is mean angular vector: The phase velocity (the speed at which the

phase of every particular frequency component of the wave travels)can be derived as

1

υph
= n

ω0

c
(3.1.2)

k0

ω0

=
1

υph
⇒ υph =

ω0

k0

(3.1.3)

The group velocity (the speed at which the wave envelope, the overall shape of an ampli-

tude varying, propagates), can be calculated by the following derived formula

∂k

∂ω|ω=ω0

=
1

υg
(3.1.4)

26
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The group velocity dispersion (GVD); major component component of higher-order dis-

persion as a function of frequency

(
∂2k

∂ω2
)|ω=ω0 = Dω (3.1.5)

The group index of photonic crystals can be calculated by the derived formula

1

υg
=
∂k

∂ω
|ω=ω0 =

1

c
[n(ω0) + ω0

∂n

∂ω|ω=ω0

] (3.1.6)

υg =
c

[n(ω0) + ω0
∂n
∂ω
|ω0 ]

=
c

ng(ω0)
⇒ ng(ω0) = n(ω0) + ω0

∂n

∂ω
|ω0 (3.1.7)

Again from group velocity dispersion we have the following

D = Dω =
∂2k

∂ω2
|ω0 (3.1.8)

Dλ =
∂

∂λ
(

1

νg
)|λ=λ0 (3.1.9)

We have the following relations ∂
∂λ

= ∂ω
∂λ
· ∂
∂ω

, and ω = 2πc
λ

, ∂ω
∂λ

= −2πc
λ2

;

‘ from these relations we will have

Dλ =
−2πc

λ2
Dω (3.1.10)

The two type dispersion can be determined from equation (3.1.10) as when

the value of the dispersion as a function of wavelength is greater than zero (D > 0), it

is said to be normal dispersion, where as if it is less than zero (D < 0 ), it is said to be

anomalous dispersion.

Now let we turn to Helmholtz equation

∆u(r, ω) +
ω2

c2
ε(ω)u(r, ω) = 0 (3.1.11)

Lastly the dispersion relation as a function of dielectric function is calculated

k2(ω) =
ω2

c2
ε(ω) (3.1.12)



28

3.2 Methods and softwares used

The study deals on determining the properties of photonic crystals, how light is propa-

gated in one-, two-, and three-dimensional photonic crystals. Moreover how photonic band

gaps formed and work. The study is supported by different materials such as published

articles, thesis, and dissertations which are the main sources of theory. We employed

analytical method to study the properties of light propagation in photonic crystals con-

sidering dielectric function, group index, group velocity and group velocity dispersion as

the main parameters.

In the study we use Taylor expansion to derive equation that describes waves (EMW)

as a function of periodic dielectric function, slow light in photonic crystals as a function of

group index, and the group velocity of light in photonic crystals as a function of index of

refraction and frequency. Inkscape is used for drawing one-, two-, and three-dimensional

photonic crystals in addition TE and TM polarization graph.



Chapter 4

Results and Discussion

4.1 Properties of Model Dielectric Crystal

Let us consider (SiO2) model photonic crystal as a crystal material. The reason why we

choose this dielectric photonic crystal is due to:

The wide availability, good thermal and mechanical property, and relative high dielectric

constant (ε = 13). The remarkable properties of Si and SiO2 make possible the integra-

tion of an increasing number of devices on ever larger Si wafers. This material is well

understood, that it has a good mechanical and chemical stability and sufficiently large

nonlinear optical coefficient.

4.2 Analytical Description of Main Parameters

Based on our model equation, we derived the following equations

The derived formula for phase velocity as function of frequency

υph =
c

nω0

(4.2.1)

The result equation for group velocity as function of frequency

∂k

∂ω
|ω=ω0 =

1

υg
(4.2.2)

The group velocity dispersion calculated as

Dω =
∂2k

∂ω2
|ω=ω0 (4.2.3)

29
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The group index as a function of frequency and index of refraction

ng(ω0) = n(ω0) + ω0
∂n

∂ω
|ω0 (4.2.4)

The final equation for dispersion relation as a function of dielectric function and frequency

is

DR = (k2(ω)) =
ω2

c2
ε(ω) (4.2.5)

Light whose group υg velocity is markedly slowed down in comparison with c, (the velocity

of light in vacuum) is called slow light. It is believed that slow light may find application in

compact optical delay lines and optical buffers. It is also expected to enhance non linear

effects because the optical signals are specially compressed and their internal intensity

is enhanced the low υg. Thus far, large material dispersion and structural dispersion

have been studied to generate slow light. Photonic crystal waveguides consisting of line

defect in a two dimensional photonic crystal slab shows a low υg converging to zero and

a correspondingly large group index ng = c
υg

diverging to infinity owing to the large first-

order structural dispersion dk
dω

at the photonic band edge. However, the band-width of slow

light becomes narrower as υg approaches to zero. Moreover, the wave form of high-speed

optical signals is severely distorted by the large second-order dispersion (group velocity

dispersion d(dω
dk

) of slow light.



Chapter 5

Summary and Conclusion

Photonic band gap materials are a powerful tool for tailoring light propagation proper-

ties. This Chapter has put the emphasis on light propagation in photonic crystals as a

function of group velocity, group index, group velocity dispersion, and dielectric function.

Dielectric function, group index and group velocity were the major parameters. By taking

these main parameters in to account, photonic band gaps are designed. In addition the

geometrical parameters of photonic crystals should be chosen so that both the macro-

scopic and microscopic resonance occur at precisely the same wavelength.

Slow light with a group velocity several tens to several hundreds of times lower than

c is attainable with present PCW-based technology. All slow light techniques reviewed

rely on slowing down the information or the energy transported by light signals, more

than on slowing the photons themselves. Among the plurality of foreseen slow-light ap-

plications we have mainly high lighted two, due to its high technological and societal

expected impact. The development of optical buffer memories is of utmost importance

for the deployment of all-optical networks.

31



32

,

Reference

[1] E.Yablonovitch, Phys. Rev. Lett.582059 (1987); S. John, Phys. Rev. Lett.582486

(1987).

[2] J.D Joannopoulos, Pierre R.Villeneuve and Shanhui Fan, Photonic Crystals: Putting

a new twist on Light: (1997).

[3] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade, Photonic crystals:molding

the flow of light, Princeton Univ Pr,( 2008).

[4] C.M.Soukoulis, Photonic Band Gaps and Localization, NATO Advanced Studies In-

stitute, Series B: Physics, Vol.308 (Plenum, New York, (1993).

[5] TEMELKURAN, and OZBAY, E: Experimental demonstration of photonic crystals

based on wave guides, Appl.Phys. Lett, 74, (4), pp. 486-488 (1999).

[6] C. M Soukoulis : Photonic band gaps and localization (New York: NATO ARW,

Plenum) (1993).

[7] S.T. Peng, T. Tamir, H.L. Bertoni, ”Theory of periodic dielectric waveguides”, IEEE

Transactions on Microwave Theory and Techniques MTT-23, 123 (1975).

[8] E. Yablonovitch, ”Inhibited Spontaneous Emission in Solid-State Physics and Elec-

tronics”, Physical Review Letters 58: 2059-2062, 3/PhysRevLett.58.2059,(1987).

[9] S. John, ”Strong localization of photons in certain disordered dielectric superlattices”,

Physical Review Letters 58: 2486-2489,(1987).

[10] J. W. S. Rayleigh, ”On the remarkable phenomenon of crystalline reflexion described

by Prof. Stokes”, Phil. Mag 26: 256-265, (1888).

[11] V. P. Bykov, ”Spontaneous Emission in a Periodic Structure”, Soviet Journal of Ex-

perimental and Theoretical Physics 35: 269-273, (1972).

[12] V. P. Bykov, ”Spontaneous emission from a medium with a band spectrum”, Quan-

tum Electronics 4 (7): 861-871,(1975).



33

[13] K. Ohtaka, ”Energy band of photons and low-energy photon diffraction”, Physical

Review B 19 (10): 5057-5067,(1979).

[14] E. Yablonovitch, T.J. Gmitter, K.M. Leung, E; Gmitter, TJ; Leung, KM ,”Photonic

band structure: the face-centered-cubic case employing nonspherical atoms”, Physical

Review Letters 67 (17): 2295-2298, /PhysRevLett.67.2295, PMID 10044390, (1991).

[15] T. F. Krauss, R. M. DeLaRue, S. Brand; Rue; Brand, ”Two-dimensional photonic-

bandgap structures operating at near-infrared wavelengths”, Nature 383 (6602): 699-

702,(1996).

[16] Jennifer Ouellette, ”Seeing the Future in Photonic Crystals”, The Industrial Physicist

7 (6): 14-17[dead link] (2002).

[17] Kolle, Mathias, Photonic Structures Inspired by Nature (1sted.), ISBN 978-3-642-

15168-2 (2011).

[18] Ross C. McPhedran and Andrew R. Parker, Biomimetics: Lessons on optics from

nature’s school (2015).

[19] John D. Joannopoulos, Robert D. Meade, Joshua N.Winn: Photonic crystals ; Mold-

ing the flow of light ,Princeton University(1995).

[20] M. Scalora et al., Phys. Rev. E 54, R1078 (1996), Arnout Imhof et al., Phys. Rev.

Lett.83, 2942 (1999).

[21]J.E.G.J. Wijnhoven, L.Bechger, and W.L. Vol, Fabrication and Characterization of

Large Macro porous Photonic Crystals in Titania, Chem. Mater. 13, 4486(2001).

[22] E. Yablonovich, ”Inhibited Spontaneous Emission in Solid-State Physics and Elec-

tronics”, Phys. Rev. Lett.58, 2059 (1987).

[23] S. John, ”Strong localization of photons in certain disordered dielectric superlattices”,

Phys. Rev. Lett.58, 2486 (1987).

[24] K. Busch, S. Lolkes, R.B. Wehrspohn and H. Foll, Photonic crystals. Advances in

design, fabrication and characterization (2004).

[25] K. Sakoda, Optical properties of photonic crystals, Springer Verlag, Berlin,(2004).



34

[26] J.-M. Lourtioz, H. Benisty, V. Berger and J.M. Gerard, Photonic crystals. Towards

nanoscale photonic devices, Springer, Berlin, (2005).

[27] A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic crystal fibres, Kluwer Academic

Publishers, Boston, MA,( 2003).

[28] J. D. Jackson, Classical Electrodynamics John Wiley, New York,( 1975).

[29] Saleh, B. E. A., Teich, M. C. Fundamentals of Photonics 2nd edition (Wiley, New

Jersey), (2007).

[30] Sakai, A. Hara, G. and Baba, T. Propagation characteristics of ultra-high optical

waveguide on silicon-on-insulator substrate. Jpn J. Appl. Phys. 40, 383-385 (2001)

[31](eds Pavesi, L. and Guillot, G.), Optical Interconnects, The Silicon Approach (Springer,

Berlin,( 2006).

[32] Dulkeith, E., Xia, F., Schares, L., Green, W. M. J. and Vlasov, Y. A. Group index

and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14,

3853-3863 (2006).

[33] Tucker, R. S., Ku, P.-C. and Chang-Hasnain, C. J. Slow-light optical buffers - capa-

bilities and fundamental limitations. J. Lightwave Technol. 23, 4046-4066 (2005).


