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Abstract

According to the current understanding stars are formed from dust molecular clouds

(MCs) mostly from hydrogen gas interstellar medium (ISM). It is also believed that

external agents like gravity shock-waves probably responsible to trigger to formation

and evolution. Today, lot of attention has given to study the evolutionary scenario of

stellar systems. This is partly in due as the result of both observational development

and new computational techniques. But, still the analytical work is awaiting much

to do to develop basic principles. To this end here we have analytically worked out

on the evolution of mass transfers and their rates of evolution by assuming the stan-

dard three component interacting system: molecular clouds, atomic gases and stellar

population and evolution. The results well agree with the earlier numerical works of

the standard three-component system.

Key:molecular-clouds, star-formation-rate ,stellar-mass, interstellar-medium,

atomic-gas
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Chapter 1

Introduction

I. Background

Stars are formed in molecular clouds in the interstellar medium, which consist mostly

of molecular hydrogen (primordial elements made a few minutes after the beginning

of the universe and dust). The dust originates from the cool surfaces of super giants,

massive stars in a late stage of stellar evolution. The clouds can range in size from

less than a light year to several hundred light years across and range in mass from 10

to 10 million on solar masses. Stars are born from the gravitational collapse of dense

cores within giant molecular clouds.

A molecular cloud breaks in to smaller and smaller piece in a hierarchial manner until

the fragment reach stellar mass.In each of these fragments the collapsing gas radiates

away the energy gained by the release of gravitational potential energy. As the density

increases the fragment become opaque and are thus less efficient radiating away their

energy. This raise the temperature of the cloud and inhibit further fragmentation.

The fragment now condense in to rotating spheres of gas that serve as stellar embryos

[16]. Complicating this picture of a collapsing cloud are the effect of turbulence,

macroscopic flows, rotation, magnetic fields and the cloud geometry.

1
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Both rotational and magnetic fields can hinder the collapse of a cloud.Turbulence is

instrumental in causing fragmentation of the cloud and, the smallest scale it promotes

collapse[9].

During the collapse, the density of the cloud increases towards the center and thus

the middle region became optically opaque first. This occur when the density is

about10−13 g
cm3 . A core region now we call first hydrostatic core, forms where the

collapse is essentially halted. It continue to increase in temperature as determined

by the virial theorem. The gas falling toward this opaque region collides with it and

creates shock waves that heat the core.

When the core temperature reaches about 2000K, the thermal energy dissociates the

H2 molecule. This is followed by the ionization of the hydrogen and helium atom.

After the density of in falling material has reached about 10−8 g
cm3 , that material is

sufficiently transparent to allow energy radiated by the protostar to escape. The

combination of convection with in the protostar and radiation from its exterior allow

the star to contract further. This continues until the gas is hot enough for the internal

pressure to support the protostar against further gravitational collapse. when this

accretion rate is nearly completed the resulting object is protostar[11].

There are actually two main types of star formation

(i) Large scale or simply the formation of many stars at ones.

(ii) small scale, the formation of only a few stars. What is needed for large scale star

formation? We need to have a lot of the basic material that goes into stars, hydrogen

and helium.

Stars are believed to form from the collapse of giant molecular clouds(GMCs)

the gas loss pressure, flows towards the center of halo potential well while its density
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increase. Once the gas density exceeds the density of the dark matter, the gas con-

tinuous to collapse under its own gravitational potential. In the presence of efficient

cooling, collapse continues until matter becomes dense enough to enable the forma-

tion of stars .

The giant molecular clouds (GMCs) or the large cloud of gas and dust,they have very

distinctive characteristics:

• Masses of these clouds are typically on the order of millions of solar masses, and

on some occasions up to billions of solar masses (that’s the giant part).

• They are cool, around 10K.

• Gasses are generally found in molecular form, with such molecules as H2, CO2,

H2O, SiO, CO etc...

II. Literature Review

In this review we focus on molecular clouds as a fundamental formation sites ,rather

than on the large scale-process that form the clouds and sets their properties .Molec-

ular clouds are shaped in to a complex filamentary structure by supersonic turbulence

,with only a small fraction of the clouds mass channeled in to collapsing protostar

over a free-fall of the system .In recent years the physics of supersonic turbulence has

been widely explored with computer simulations ,leading to statistical models of this

fragmentation process and to the prediction of the star formation rate ,as a function of

fundamental physical parameters molecular clouds ,such as the virial parameters,the

compressive fraction of the turbulent driver ,and the ratio of gas to magnetic pressure

.Infra red space telescopes ,as well as ground based observations have provided un
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precedented probes of the filamentary structure of molecular clouds and the location

of star with in them[15]

The recent recognition of massive near by clouds with little star formation rates

in even near by clouds of similar mass can vary considerably as much as an order

of magnitud[8].Therefore ,systematic and comparative observational studies of the

physical properties of local molecular clouds and this relation of these properties to

the varying levels of star formation activity with in them could lead to new insights

concerning the underlying physics controlling the star formation rates in molecular

gas.

III. Statement of the Problem

Present-day stars and planets formation are the most problem facing astro physics

research .Stars are formed from dust molecular clouds( MCs)mostly from hydrogen

gas interstellar medium (ISM). But the rate at which the stars are formed in giant

molecular clouds (GMC) is the problem ranging from observational limitations to

theoretical developments remains unresolved.

Research Question

• How stars form in interacting molecular clouds?

• At what rate the stars form in interacting molecular clouds of stellar activity?
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IV . Objectives

I. General objective

To study the rate of star formation in interacting molecular clouds with stellar activ-

ities.

II. Specific Objectives

• To study and drive the dynamical parameters involving star formation rate in

interacting molecular clouds.

• to drive the rate of star formation in interacting Molecular clouds with stellar

activity.

V. Methodology

Our approach was theoretical and analytical analysis:

• We have provided preliminary boundary conditions and set the relevant Boltz-

mann transport equation.

• The result of the relevant parameters derived from the the first step were studied

and examined.

• Some numerical data were generated from the formalism using mathematica 7

and comparison is made with the observational results.

• Generate theoretical data from the theoretical formula using computation. For

the numerical computation MATHEMATICA 7 is used.



6

• At the end, we made summery and conclusion.

The general design of this work: In chapter one we give the theories of stars and

molecular cloud formation and the governing stellar evolutionary equations. In chap-

ter two we give the implications of Boltzmann transport equations (BTE) in relation

to conservation laws, and we present our work of transport phenomena in star-forming

molecular clouds as outlined in the methodology.In chapter three we present the star

formation rate of molecular clouds .In chapter four we discuss the results of our work

and finally in chapter five we give our summary and conclusion.



Chapter 2

Basic theory of star formation and
hydrodynamic equations

2.1 Basic definitions and concepts of stars forma-

tion

A star is an object that (1) radiates energy from an internal source and (2) is bound

by its own gravity. The first criterion excludes objects like planets, comets and

brown dwarfs where both are not hot enough for nuclear fusion. The second criterion

excludes trivial objects that radiate (e.g. glowing coals). A star is born out of an

interstellar (molecular) gas cloud, lives for a certain amount of time on its internal

energy supply, and eventually dies when this supply is exhausted. The definition

imposes that stars can have only a limited range of masses, between ∼ 0.1M� and∼

1000M�. Stars are considered to be isolated in space, so that their structure and

evolution depend only on intrinsic properties (mass and composition). For most

single stars in the Galaxy this condition is satisfied to a high degree (compare for

instance the radius of the Sun with the distance to its nearest neighbor Proxima

Centauri. However, for stars in dense clusters, or in binary systems, the evolution

can be influenced by interaction with neighboring stars. Also, stars are formed with

7



8

a homogeneous composition, a reasonable assumption since the molecular clouds out

of which they form are well-mixed. We will often assume a so-called quasi-solar

composition (X = 0.70, Y = 0.28 and Z = 0.02), even though recent determinations

of solar abundances have revised the solar metallicity down to Z = 0.014. where x,y

and z in units of mH . In practice there is relatively little variation in composition from

star to star, so that the initial mass is the most important parameter that determines

the evolution of a star. Moreover, spherical symmetry, which is promoted by self-

gravity a good approximation for most stars. Deviations from spherical symmetry

can arise if non-central forces become important relative to gravity, in particular

rotation and magnetic fields. Although many stars are observed to have magnetic

fields, the field strength (even in highly magnetized neutron stars) is always negligible

compared to gravity. Finally, understanding the structure and evolution of stars, and

their observational properties, requires laws of physics involving different areas (e.g.

thermodynamics, nuclear physics, electrodynamics, plasma physics)[7] Stars are the

fundamental unit of luminous matter in the universe, and they are responsible directly

or indirectly, for most of what we see when we observe it.

Star formation occur as a result of the action of gravity on a wide range of scales. On

galactic scale the tendency of interstellar matter to condense under gravity in to star

forming clouds is countered by galactic tidal forces, and star formation can occur only

where the gas become dense enough for its self gravity to over come these tidal force,for

example in spiral arms. on the intermediate scales of star forming giant molecular

clouds (GMCs),turbulence and magnetic fields may be the most important effects

counteracting gravity, and star formation may involve the dissipation of turbulence

and magnetic fields[3].
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2.2 Sites of star formation

Star formation occur near the center of some galaxies, including our own milky way

galaxy, but this nuclear star formation is often obscured by interstellar dust and its

existence is inferred only from the infra red radiation emitted by dust heated by

the embedded young star. The gas from which stars form,whether in spiral arms

or in galactic nuclei, is concentrated in massive and dense ”molecular clouds”whose

hydrogen is nearly all in molecular form. Some near by molecular clouds are seen as

dark clouds against the bright back ground of the Milky way because their interstellar

dust absorbs the starlight from the more distant stars.

In some near by dark clouds many faint young stars are seen,most distinctive among

which are the T Tauri star, whose variability, close association with the dark cloud,

and relatively high luminosity for their temperature indicate that they are extremely

young and have gas of typically only about 1Myr.These T Tauri stars are the youngest

known visible stars, and they are ”pre- main -sequence” stars that have not yet become

hot enough at their centers to burn hydrogen and begin the main sequence phase of

evolution .Some of these young stars are embedded in particularly dense small dark

clouds, which are thus the most clearly identified sites of star formation[13].

2.3 Cloud formation

Since molecular clouds are transient features, it follows that they are constantly being

formed and destroyed. It is necessary to understand the process by which they are

continually being reassembled from more dispersed gas. The rate at which interstellar

gas is presently being collected in to star forming molecular clouds in our galaxy is re-

lated to the star formation rate and it can be estimated empirically from the observed
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star formation rate and the efficiency of star formation in molecular clouds.The total

rate of star formation in our galaxy is of the order of 3M� of per year. Since only

about few percent or less of the mass of a typical molecular cloud converted in to

stars; it implies that at least 150M� of gas per year is being turned in to star forming

molecular clouds. The total amount of gas in our galaxy is about 5× 109M�.

Two possible formation mechanism for molecular clouds that have been considered

are (1)cloud growth by random collisions and coalescence and (2) gravitational insta-

bility or swing amplification.

2.4 Cloud Collapse and Fragmentation

A giant molecular cloud must begin forming stars soon after the cloud it self has

formed, since relatively few of the largest molecular clouds are not forming star.

Even if as many as half of all molecular clouds are not forming stars, the time delay

between the formation of a molecular cloud and the on set of star formation in it can

not exceed the subsequent duration of the star formation activity which is of the order

of 10Myr and comparable to the internal dynamical time scale. Since it takes some

what longer than this to build large molecular clouds it is likely that star formation

begin already in molecular clouds while they are still being assembled;more over, star

formation must begins with in a time not much longer than the dynamical or free-fall

time of such a cloud. Collapse and star formation can occur in the densest part of

a cloud even if the cloud as a whole is not collapsing, and this must in fact be what

usually happens because there is no evidence that most star forming clouds are under

going any rapid over all collapse, and there is even evidence that many of them are
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being dispersed.

Star formation involves the collapse of a cloud or part of a cloud under gravity and

the association fragmentation of the cloud in to smaller and smaller bound clumps

this is expected to occur because molecular clouds typically contain many times the

”Jeans mass”, which is the minimum mass for gravitational bound fragments [12].

The near-constant low temperature across molecular clouds is an important fea-

ture of the star formation process because of its influence on the Jeans mass, and it is

what makes possible the collapse of pre stellar cloud cores with masses as small as one

solar mass. The Jeans mass is the critical mass at which a cloud becomes unstable

and starts to collapse, as it possesses insufficient pressure support to balance the force

of gravity.In the absence of pressure or other support, gravitational collapse of such

a cloud will occur in a free fall time:

τff =
√

3π
32Gρo

where ρo is the mean density of the cloud .The star formation process in molecular

clouds appears to be fast. Once the collapse of a cloud region sets in, it rapidly forms

an entire cluster of stars with in 106 years or less. The resulting stellar population

is widely dispersed throughout the cloud and, since collapsing clumps are frequently

destroyed by shock interaction, the overall star formation rate is low[1]

The observation show that the gas (which contain mainly molecular hydrogen, H2)is

highly clumpy, and virtually all molecular gas distribute in GMCs.

The molecular cloud always rotate due to differential in the disk in which they are

formed. If a collapse conserves angular momentum, this would imply a rotation pe-

riod of well bellow 1sec of the emerging star. This means that angular momentum



12

has to be transferred during the collapse.

Further more potential energy of the clouds Epα− GM2

r
is released during the collapse.

This energy therefore must be radiated or transported away, despite the high opacity

of the surrounding medium.

present-day star formation in our galaxy is observed to take place in cold molecular

clouds which appear to be in a state of highly compressible magnetohydrodynamic

(MHD) turbulent on large scales from hundred to thousands of parsec

An interstellar cloud of gas will remain in hydrostatic equilibrium as long as the

kinetic energy of the gas pressure is in balance potential energy of the internal gravi-

tational force. Mathematically this is expressed using the virial theorem which state

that to maintain equilibrium the gravitational potential energy must equal twice the

internal thermal energy [10].

2K + U = 0 Virial theorem

If 2K <| U | the cloud will collapse under the force of gravity.The gravitational po-

tential energy can be written as

U ' 3
5
(GM2

c

Rc
)

WhereMcandRc are respectively the mass and the radius of the cloud

The average kinetic energy per particle is K = 3
2
kT where k is Boltsman constant.

Thus, the total internal kinetic energy of the cloud is just

K = 3
2
NkT , where N is the total number of particles. We can write N in terms of

the mass and the mean molecular weight.
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N = Mc

µMH

We can therefore write the condition for gravitational collapse (2K <| U |

Where K-is internal kinetic energy and U-is gravitational potential energy.

3McKT
µMH

< 3GM2
c

5Rc

but,Rc = ( 3Mc

4
∏

ρo
)

1
3

Where ρo is the initial density of the cloud prior to collapse with the assumption that

the cloud is a sphere of constant density.

by substituting we obtain the important concept of the Jeans mass.

MJ ' ( 5KT
GµMH

)
3
2 ( 3

4
∏

ρo
)

1
2

If a cloud is massive enough that the gas pressure is insufficient to support it, the

cloud will under go gravitational collapse. The mass above which a cloud will under

go such collapse is the Jeans mass. The Jeans mass depends on the temperature and

density of the cloud, but is typically thousands to tens of thousands of solar mass.

MJ w 3x104

√
T 3

M
M⊙

Where T is cloud temperature, M is cloud mass and M� is solar mass.

In triggered star formation one of several events might occur to compress a molec-

ular cloud and initiate its gravitational collapse.Molecular cloud may collide with each

other or a near by supernova explosion can be a trigger sending shocked matter in to

the cloud at very high speed

.
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2.5 Stages of star formation process:

According to the current understanding there is six stages in star formation process.

1. The initial free-fall collapse of the parent interstellar cloud.

2. Cloud fragmentation, leading to a range of stellar mass .

3. Formation of protostellar core. The star appears on the H-R diagram.

4. Accretion of the surrounding gas, generally through an accretion disk.

5. Dissociation of molecules and ionization of H and He.

6. Pre- main sequence phase.

• star formation is considered to completed once the star appears on the

”Zero Age Main sequence” ( ZAMS).

2.6 Basic stellar evolutionary equations

The basic theory of stellar structure assumes spherical symmetry, so that all variables

depend on only one thing, the distance (r) from the center of the star.On spherical

shells of radius r, all physical variables (temperature, density, pressure chemical com-

position) are assumes to be uniform. The principle variables of stellar structure are

pressure (P), temperature(T), density ρ, luminosity) through a shell at r L(r)and

mass interior to r M(r). For an isolated static, spherically symmetric star four basic

laws/equations needed to describe structure.

All physical quantities depend on the distance from the center of the star alone.
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The fundamental hydrodynamic equations are being derived from the Boltzman trans-

port equations. For ordinary stellar evolutions and formations the classical Maxwell-

Boltzmann distribution is considered.

2.6.1 Homogeneous Boltzmann Transport Equation

In stellar astrophysical, modeling gas flows around stars or in interstellar space, the

ideal gas assumption is very much accurate. Therefore, in our analysis of the stel-

lar evolution including magnetic field dynamism we apply the classical Boltzmann

statistical distributions and derive the dynamic equations from Boltzmann transport

equations.

The Boltzmann transport equation in six dimensional position-velocity phase space

basically expresses the change in the phase density within a differential volume, in

terms of the flow through these faces, and the creation or destruction of particles

within that volume. In the canonical position-momentum coordinate system, the

Boltzmann transport equation (BTE) is given by

3∑
i=1

[ẋi
∂f

∂xi

+ ṗi
∂f

∂pi

] +
∂f

∂t
= s ⇒ BTE (2.6.1)

Where f ≡ f(x, ẋ, t) is the number density distribution functions, s is the rate of

particle creation /destraction ,ẋi = ∂xi

∂t
and ṗi = ∂pi

∂t

This equation can be recast in vector notation as

∂f

∂t
+ ~v.~∇f + ~F . ~∇pf = s (2.6.2)

Where ~F is force and ~∇i is the momentum gradient.
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In conservative field system since ~F = −∇̇Φ whereΦ is a scalar potential (eg gravita-

tional scalar potential), then BTE will be given as :

∂f

∂t
+ ~v.∇f − 1

m
∇Φ.∇vf = s (2.6.3)

The potential gradient ∇Φ has replaced the momentum time derivative while∇vis

a gradient with respect to velocity. The quantity m is the mass of a typical particle. It

is also not unusual to find the BTE written in terms of the total stokes time derivative

D

Dt
=

∂

∂t
+ ~v.∇ (2.6.4)

Where ~v is the flow velocity and ∂
∂t

is the Eulerian time derivative. If we take∇to

be a six-dimensional ’velocity’ and r to be a six-dimensional gradient the BTE becomes

Df

Dt
= s (2.6.5)

If the creation/destruction rate of particles is zero (s = 0), we will obtain the homo-

geneous Boltzmann Transport Equation (BTE) given as

∂f

∂t
+ ~v.∇f − 1

m
∇Φ.∇vf = 0 (2.6.6)

This is Liouville’s theorem The physical interpretation of Liouville Equation is the

6N-dimensional analogue of the equation of continuity of an incompressible fluid. It
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implies that the phase points of the ensemble are neither created nor destroyed. In

Astrophysics it is called the Vlasov equation, or sometimes the Collision less Boltz-

mann Equation. It is used to describe the evolution of a large number of collision less

particles moving in a gravitational potential. In the case of classical statistical me-

chanics, the number of particles N is very large, ( of the order of Avogadro’s number,

for a laboratory-scale system). Setting ∂ρ
∂t

= 0gives an equation for the stationary

states of the system and can be used to find the density of microstates accessible in

a given statistical ensemble. For eg. in an equilibrium of the Maxwell-Boltzmann

statistical distributionρis given as

ραe
H

(kBT )

Where H is the Hamiltonian, T is the temperature and kB is the Boltzmann constant.

The right-hand side of equation (2.6.1) is a measure of the rate at which particles are

created or destructed in the phase space volume. Note that creation or destruction

in phase space includes a good deal more than the conventional spatial creation or

destruction of particles. To be sure, that type of change is included, but in addition

processes which change a particle’s position in momentum space may move a particle

in or out of such a volume. From BTE the right-hand side is zero or the creation

or destruction rate of particles is zero, this is known as Homogeneous Boltzmann

Transport Equation Liouville’s theorem of statistical mechanics[5]
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2.6.2 Moments of the Boltzmann Transport Equation and
Conservation Laws

By the moment of a function we mean the integral of some property of interest,

weighted by its distribution function, over the space for which the distribution func-

tion is defined. The mean of a distribution function is simply the first moment of the

distribution function, and the variance can be simply related to the second moment.

In general, if the distribution function is analytic, all the information contained in the

function is also contained in the moments of that function. The complete solution

to the BTE is, in general, extremely difficult and usually would contain much more

information about the system than we wish to know. The process of integrating the

function over its defined space to obtain a specific moment removes or averages out

much of the information about the function. This is a standard ”trick” of mathemat-

ical physics and one which is employed over and over throughout this. Almost every

instance of this type carries with it the name of some distinguished scientist or is iden-

tified with some fundamental conservation laws, but the process of its formulation

and its origin are basically the same.

i) The Zero moment of Boltzmann Transport Equation and Conservation
of Matter.

To derive conservation laws and energy balance we start from nth functions of BTE,

we have

Mn[f(x)] =
∫

xnf(x)dx
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The local spatial density is given as

ρ = m

∫ +∞

−∞
f(x,~v)d~v (2.6.7)

The related BTE is

∫ +∞
−∞ (∂f

∂t
+

∑3
i=1 vi

∂f
∂xi

+
∑3

i=1 v̇i
∂f
∂vi

)d~vi =
∫ +∞
−∞ sd~v

The integral of the creation rate S over all velocity space becomes simply the creation

rate for particles in physical space, which we call=. The first term from equation

(2.6.7) is given as 1
m

∂ρ
∂t

∂

∂t
(

∫ +∞

−∞
fd~v) +

∫ +∞−∞
(~v.∇fd~v) +

∫ +∞

−∞
(~̇v.∇vf)d~v = = (2.6.8)

From equation (2.6.7) the second term can be define by the vector identity

~v.∇f = ∇.(f~v)− f∇.~v

where~v.~∇f = ~∇.(f~v)

The third term from equation(2.6.7)is

~̇v. ~∇vf = −
~∇Φ

m
.~∇f (2.6.9)

Now using the equation in equation( 2.6.8)
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1
m

∂ρ
∂t

+
∫ +∞
−∞ [~v.f~vd~v]−

∫ +∞
−∞ [∇Φ

m
. ~∇vf ]d~v = ~=

∂ρ
∂t

+ m~∇.[
∫ +∞
−∞ ~vfd~v]− ~∇Φ.

∫ +∞
−∞

~∇vfd~v = ~=

From the above equation no particle with infinite velocity,then the last integral will

be vanish.

∂ρ

∂t
+ m∇.[

∫ +∞

−∞
~vfd~v] = ~= (2.6.10)

M1[f(v)] =
∫

f(v)dv

The mean flow velocity is~U is a measure of the mean flow rate of the material,for a

normalization scale

~U =

∫ +∞
−∞ ~vf(~v)d~v∫ +∞
−∞ f(~v)d~v

(2.6.11)

From equation(2.6.7) ρ
m

=
∫ +∞
−∞ f(x,~v)d~v using equation (2.6.7)and (2.6.10) in equa-

tion (2.6.11) we get the continuity equation

∂ρ
∂t

+∇.(ρ~U) = ~=m
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ii) The First Moment of Boltzmann Transport Equation - Euler-Lagrange
Equations and Conservation of Momentum.

To produce an expression of the conservation of momentum let as multiply the Boltz-

man transport equation by the local particle velocity ~v

~v[

∫ +∞

−∞

∂f

∂t
d~v +

∫ +∞

−∞
~v.∇fd~v +

∫ +∞

−∞
(~̇v ~∇vf)d~v] =

∫ +∞

−∞
~vsd~v (2.6.12)

From equation(2.13.1) the first term

[

∫ +∞

−∞
~v
∂f

∂t
d~v =

∂

∂t

∫ +∞

−∞
~vfd~v =

∂

∂t
[

∫ +∞

−∞
f(~v)d~v] (2.6.13)

∫ +∞
−∞ ~vf(~v)d~v∫ +∞
−∞ fd~v

= ∂
∂t

[ρ~U
m

] = ∂
∂t

(n~U)

The second term from equation ( 2.6.12)is∫ +∞

−∞
~v.∇fd~v =

∫ +∞

−∞
~v(~v.~∇f)d~v (2.6.14)

Where~̇v = −∇Φ
m

∫ +∞
−∞ ~v(~v. ~∇vf)d~v =

∫ +∞
−∞ ~v(−∇Φ

m
. ~∇vf)dv

∫ +∞
−∞ ~v(~v. ~∇vf)d~v = − ~∇Φ

m

∫ +∞
−∞ ~v∇fd~v

( ~∇vf)~v = ~∇v(f~v)− f( ~∇v~v) = ~∇v(f ~V )− fI

Where I is the identity matrix.
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∫ +∞
−∞ ~v(~v. ~∇vf)d~v = − ~∇Φ

m
.
∫ +∞
−∞

~∇v(fv)d~v

+
~∇Φ
m

.
∫ +∞
−∞ fd~v

∫ +∞
−∞ ~v(~v. ~∇vf)d~v = − ~∇Φ

m
.
∫ +∞
−∞ fd~v

= n∇Φ
m

∂

∂t
(n~u) +

∫ +∞

−∞
~v(~∇.( ~vf))d~v + n

~∇Φ

m
=

∫ +∞

−∞
s~vd~v (2.6.15)

∂

∂t
(n~u) =

~
u
∂n

∂t
+ n

∂~u

∂t
(2.6.16)

∂n
∂t

= −∇.(n~u) +
∫ +∞
−∞ sd~v = −(~u. ~∇n + ~∇n.~u)

∫ +∞
−∞ sd~v

From the continuity equation

∂n

∂t
+∇.(n~u) =

∫ +∞

−∞
sd~v (2.6.17)

Then equation (2.6.15)and (2.6.16) we get

∂

∂t
(n~u) = U

∂n

∂t
+ n

∂~u

∂t
− (~u.∇n + n∇.~u)~u +

∫ +∞

−∞
~usd~v (2.6.18)
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Using equation (2.6.15)and(2.6.18)

∂

∂t
(n~u) = n

∂~u

∂t
− (~u. ~∇n + ~∇n.~u)~u +

∫ +∞

−∞
~usd~v (2.6.19)

n
∂~u

∂t
− (~u. ~∇n + ~∇n.~u)~u +

∫ +∞

−∞
~v(~∇.(~vf)d~v + n

~∇Φ

m
(2.6.20)

∫ +∞
−∞ s(~v − ~u)d~v

The velocity tensor~u is given as

~U =

∫ +∞
−∞ ~vf(~v)d~v∫ +∞
−∞ f(~v)d~v

(2.6.21)

ρ
∂u

∂t
+ ρ(~u.~∇)~u + ~∇.(ρ(~u− ~u~u)) + n ~∇Φ =

∫ +∞

−∞
ms(~v − ~u)d~v (2.6.22)

The quantityρ(~u − ~u~u)is the pressure tensor.The pressure tensor the second mo-

ment of f(v)is ~ρ equal to
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∫ +∞
−∞ f(v)(~v − ~u)(~v − ~u)d~v∫ +∞

−∞ f(v)
d~v (2.6.23)

It describes the difference between the local flow ~v and the mean flow ~u. The first

velocity moment of the BTE becomes

∂~u

∂t
+ (~U.∇)~u = −∇Φ− 1

ρ
∇P +

1

ρ

∫ ∞

−∞
ms(~v − ~u)d~v (2.6.24)

This set of vector equations is the Euler-Lagrange equations of hydrody-

namic flow. This assumption of local velocity leads to the simpler and more familiar

expression for hydrodynamic flow

∂~u

∂t
+ (~u.∇)~u = −∇Φ− ∇p

ρ
(2.6.25)

Under the assumption of a nearly isotropic velocity field, P will be P (ρ) and an

expression known as an equation of state. From equation (2.6.24)the left-hand side

is zero. The Euler-Lagrange equations of hydrodynamic flow is

∇P = −ρ∇Φ (2.6.26)
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Which is known as the equation of hydrostatic equilibrium: This equation is usu-

ally an expression of the conservation of linear momentum. The zeroth moment of

the BTE results in the conservation of matter, where as the first velocity moment

equations which represent the conservation of linear momentum. The second velocity

moment represent an expression for the conservation of energy.

iii) The Second Moment of Boltzmann Transport Equation - Ergodic
equations and Energy Conservation

The Euler-Lagrange equations of hydrodynamic flow, which represent the first veloc-

ity moment of the transport equation. These are vector equations we obtain a scalar

result by taking the scalar product of a position vector with the flow equations and

integrating over all space with the system. The origin of the position vector is impor-

tant only in the interpretation of some of the terms which will arise in the expression.

The left-hand side of equation (2.6.24) is the total time derivative of the flow velocity

Ū then, the first spatial moment equation becomes

∫
v

ρ~r
d~u

dt
dv +

∫
v

ρ~~r.∇Φdv +

∫
r

~r.∇pdv = 0 (2.6.27)

∫
v

ρ
dQ

dt
dv =

d

dt

∫
ρQdv (2.6.28)

Since~u is the time rate of change of position, since
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~u =
d~r

dt
(2.6.29)

r.d~u
dt

= d
dt

(~r.~u)− d~r
dt

.~u

= d
dt

(~r.~U)− ~UŪ

= d
dt

(~r.~U)− U2

= d
dt

r d~r
dt
− U2

= 1
2

d
dt

( d
dt

(~r.~r)

r
d~u

dt
=

1

2

d2r

dt2
− u2 (2.6.30)

The first integral of equation(2.6.24) by using equation (2.6.28)

∫
v
ρ~r d~u

dt
= 1

2

∫
v
ρd2~r

dt2
dv −

∫
v
ρu2dv

= 1
2

d2

dt2

∫
r2ρdv − U2

∫
v
ρdv

Where I is the moment of inertia is given by:
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I =
∫

v
r2ρdv

And also the kinetic energy in bulk motion

T = 1
2

∫
v
ρu2dv

This implies that the mass is given as

m =
∫

v
ρdv

1
2

d2

dt2
I −mu2

Butmu2 = 2T

∫
v

ρ~r.
d~u

dt
=

1

2

d2I

dt2
− 2T (2.6.31)

The third integral of equation(2.6.27)

∫
v
~r. ~∇pdv =

∫
v
~r. ~∇(rp)dv −

∫
v
p(~∇.~r)dv =

∮
s
ps~rn̂dA− 3

∫
s
pdv =

∮
s
ps~rn̂dA− 3U

Where~∇.~r = (i ∂
∂x

+ j ∂
∇y

+ ∂
∂z

).(ix + jy + kz) = 1 + 1 + 1 = 3 The internal kinetic

energy density of an ideal gas is

ε = 3
2

ρkT
µmH

We can replace the pressure P
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p = 2
3
ε

The integral then yields twice the total internal kinetic energy of the system ,and the

moment of equation becomes

1

2

d2I

dT 2
= 2(T + U)−

∫
v

ρ~v.∇Φdv (2.6.32)

The last term on the right-hand side of the equation (2.6.27) is called the total

potential energy .Also the expression is called Lagrange’s identity and is also called

the non-averaged form of the virial theorem.

1

2

d2I

dt2
− 2T − 2U +

∫
v

ρ~r.~∇Φdv (2.6.33)

A system in equilibrium, so that the time average of equation(2.6.32)remove the

accelerative changes of the moment of inertia(< d2I
dt2

>= 0

2 < T > +2 < U > + < Ω >= 0 (2.6.34)

T is kinetic energy in bulk motion and U is the internal energy and Ω is the total

potential energy of the system.

The theorem which permits is the Ergodic theorem .

2.7 The summarized Boltzmann Transport and Hy-

drodynamic equation

From zero moment of Boltzmann transport equation conservation of matter we can

have continuity equation.

∂ρ
∂t

+∇.(ρ~U) = ~=m
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From first moment of Boltzmann transport equation conservation of linear momentum

we have hydrodynamic equation

∂~u
∂t

+ (~u.∇)~u = −∇Φ− ∇p
ρ

second moment of Boltzmann transport equation conservation of energy

1

2

d2I

dt2
− 2T − 2U +

∫
v

ρ~r.~∇Φdv = 0 (2.7.1)

A system in equilibrium, so that the time average of equation(2.6.33)remove the

accelerative changes of the moment of inertia(< d2I
dt2

>= 0

2 < T > +2 < U > + < Ω >= 0

In astronomy this theorem is called Ergodic theorem [6]. By now we have the basic

mathematical tools to apply in stellar evolution. All evolutionary equations can be

derived by applying appropriate boundary conditions to the BTEs.

2.8 Equation of state of an ideal gas

In thermodynamics, an equation of state provides the mathematical relation among

variables such as temperature, pressure, density, and internal energy. Equations of

state (EOS) are useful in describing the properties of fluids, mixtures of fluids, solids,

and even the interiors of stars. For stars, the state usually describe the relation among

pressure(P), temperature(T),density ( n: number of density of particles or (ρ):mass

density). Formulation of the Boltzmann Transport Equation (BTE) also provides an

ideal setting for the formulation of the equation of state for a gas under wide-ranging
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conditions. The relationship between the pressure as given by the pressure tensor

and the state variables (p, T, ρ) of the distribution function. The pressure tensor is

p( ~u− ~u~u). If f(~v) is symmetric in ~v, then~umust be zero ( or there exist an inertial

coordinate system in which ~u is zero, and the divergence of the pressure can be

replaced by the gradient of a scalar which we call the gas pressure and will be given

by

~p = ρ

∫ +∞
−∞ v2f(v)d~v∫ +∞
−∞ f(v)d~v

(2.8.1)

From the Maxwell-Boltzmann statics the distribution function of particles in terms

of their velocity is given by

f(v) = constant.exp(−mv2

2Kt
) (2.8.2)

The mean pressure is

~p = cρ
∫ +∞
−∞ v2exp

−mv2

2kT

c
∫ +∞
−∞ exp

−mv2

2kT

~p = ρ
∫ +∞
−∞ v2exp−αv2dv∫ +∞
−∞ exp−αv2dv

Whereα = m
2kT

.The integral of the function is

∫ +∞
−∞ v2exp(−αV 2)dv = 1

4

√
πα

−3
2

∫ +∞
−∞ exp(−αV 2)dv =

√
π
α

then,
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p̄ =
ρ 1

4

√
Πα

−3
2√

Π
α

p̄ = ρ

√
Πα
−3
2

4

2
√

Πα
−1
2

= ρα−1

2
= ρ

2α

but,α = m
2kT

then the mean pressure is

p̄ = ρ
2m

2KT

= ρKT
m

p̄ = nkT

2.9 Fundamental Equations of Stellar Structure

(1) Conservation of mass:

For a spherical shell of thickness dr is

dMr

dr
= 4πr2ρ(r) (2.9.1)

written in terms of integral,this is

M(r) =

∫ r

0

4πr2ρrdr (2.9.2)

However, over its lifetime a star’s radius will change by many orders of magnitude

while its mass will remain relatively constant. Moreover, the amount of nuclear

reactions occurring inside a star depends on the density and temperature not where
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it is in the star. A better and more natural way to treat stellar structure is therefore

to use mass as the independent parameter, rather than r. Thus

dr

dM
=

1

4πr2ρ
(2.9.3)

This is the Lagrangian form of the equation (rather than the Eulerian form). All

the equations of stellar structure will be expressed in the Lagrangian form, and most

of the parameters will be expressed in per unit mass, rather than per unit size or

volume.

(2)Conservation of Energy (at each radius, the change in the energy flux equals the

local rate of energy of release). Consider the net energy per second passing outward

through a shell at radius r. If no energy is created in the shell, then the amount of

energy in equals the amount of energy out, and dL
dr

= 0 However, if additional energy

is released or absorbed with in the shell, then dL
dr

will be non-zero. Let’s define ε as

the energy released per second by a unit mass of matter. Then:

dL

dr
= 4πr2ρε (2.9.4)

or,in the Lagrangian

dL

dr
= εn + εν + εg (2.9.5)

Note thatε has three components .

1.εn, the total energy created by nuclear reactions.

2.εν , the energy in to neutrinos, and

3.εg, the energy produced or lost by gravitational expansion or contraction .Thus
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dL

dr
= εn + εν + εg (2.9.6)

In general, the contribution from reactions will always be positive, while the energy

in neutrinos will always be lost from the system.

(3) Equation of Energy Transport (relation between the energy flux and the

local gradient of temperature). Assume that the star is in thermal equilibrium at

each radius the gas is neither heating up nor cooling down with time. The transport

equation also describes how energy is transported through the layers of the star, i.e.

how the gas affects the radiation as it travels through. Depends on local density,

opacity and temperature gradient. Let the rate of energy generation per unit mass

be ε. Then:

dL = 4πr2ρdr × q
dL

dr
= 4πr2ρε (2.9.7)

(4) Equation of Hydrostatic Equilibrium.

The force of gravity pulls the stellar material towards the center. It is resisted by the

pressure force due to the thermal motions of the gas molecules. The first equilibrium

condition is that these forces in equilibrium. Radial forces acting on the element:

Gravityinward : Fg = −Gm∆m

r2
(2.9.8)

Pressure ( net force due to difference in pressure between upper and lower face ):

Fp = p(r)ds− p(r + dr)ds− [p(r) + dp
dr

]ds = −dp
dr

drds

Mass of element :∆m = ρdrds
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applying Newton’s second law (F = ma)

∆mr̈ = Fg + Fp = −Gm∆m

r2
− dp

dr
drds (2.9.9)

Acceleration =0 every where if star static.

setting acceleration to zero,and substituting for ∆m:

0 = −Gmρdrds

r2
− dp

dr
drds (2.9.10)

dp

dr
= −Gm

r2
ρ (2.9.11)

Basic equations are supplemented by Equations of State (pressure of a gas as a func-

tion of density and temperature) opacity (how transparent it is to radiation) Nuclear

Energy Generation Rate as f(ρ; T ). Equation of State in Stars: Interior of a

star contains a mixture of ions, electrons and radiation (photons). For most stars

(exception very low mass stars and stellar remnants) the ions and electrons can be

treated as an ideal gas and quantum effects can be neglected.

Total pressure p = pi + pe + pr = pgas + pr

where

pi is the pressure of the ions

pe is the pressure of the electron

pr is the radiation pressure gas pressure. The equation of state for the state for the
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ideal gas is :

pgas = nkT

Where n is the number of particles per unit volume;n = ni + ne, whereni andne

are the number of densities of ions and electrons. In terms of the mass density ρ:

pgas = ρ
µmH

KT

Where mH is the mass of hydrogen and µ is the average mass of particle in units of

mH .

The ideal gas constant is :

R = k
mH

⇒ pgas = R
µ
ρT

Radiation pressure:For black body radiation

pgas = 1
3
aT 4

where a is radiation constant:

a = 8Π5k4

15c3h3 = 4σ
c

Gas pressure is most important in low-mass stars.

Radiation pressure is most important in high mass stars.

2.10 Time scale of stellar evolution

There are three important time scales in the life of star.
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2.10.1 The Nuclear(evolutionary)Time Scale

The time in which a star radiates away all the energy that can be released by nuclear

reactions. An estimate of this time can be obtained if one calculates the time in

which all available hydrogen is turned into helium. On the basis of theoretical con-

siderations and evolutionary computations it is known that only just over 10 percent

of the total mass of hydrogen in the star can be consumed before other, more rapid

evolutionary mechanisms set in. Since 0.7 percent of the rest mass is turned into

energy in hydrogen burning, the nuclear time scale will be.

τn ∼ KnMC2

L

WhereKn is just the fraction of the rest mass available to a particular nuclear process,

M is rest mass, L is stellar luminosity and c is speed of light.

⇒ τn = Enuclear

L

τn ≈ 0.007×0.01MC2

L

For the Sun one obtains the nuclear time scale 1010years, and thus

τn ≈
M

Msun
L

Lsun

× 1010a

2.10.2 Dynamical time scale

Measure of the time scale on which a star would expand or contract if the balance

between pressure gradient and gravity was suddenly disrupted (some as free -fall time
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scale)

τdyn = charactersticradius
charactersticvelocity

= R
νesc

Escape velocity from the surface of the star:

νesc =
√

2GM
R

τdyn =

√
R3

2GM
(2.10.1)

In terms of mean density:

τdyn =
1√
Gρ̄

(2.10.2)

Where ρ̄ is the mean density of the star (molecular cloud).

2.10.3 Kelvin-Helmholtz Time scale

Kelvin-Helmholtz Time scale is the time in which a star would radiate away all its

thermal energy if the nuclear energy production where suddenly turned off.

τkH = U
L

Virial theorem: the thermal energy U is roughly equal to the gravitational poten-

tial energy.
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τKH = GM2

RL

Important timescale: determines how quickly a star contracts before nuclear fusion

starts-i.e. sets roughly the pre-main-sequence lifetime. Most stars, most of the time

in hydrostatic and thermal equilibrium, with slow changes in structure and composi-

tion occurring on the (long) time scale τnucas fusion occurs.

Dynamical time scale: timescale of collapsing star, supernova

Thermal/kelvin-Helmholtz Timescale of star before nuclear fusion starts, pre main-

sequence lifetime.



Chapter 3

The rate of star formation in
interacting molecular clouds with
stellar activities

3.1 Star formation in molecular clouds and accre-

tion rate

Once a molecular cloud is being fragmented and starts to form a progenitor star (the

”baby-star”),2, it growth up by accreting matter from its environment. The rate at

which it accretes is given by [2]

dM

M3/2
= γdt (3.1.1)

where γ is a proportionality constant related to radial oscillation of the spherically

collapsing cloud.

3.2 A three-component model for star formation

Following the work of [4] here we assume a three-component star forming interacting

systems.

39
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The model contains three active components: (1) cool atomic clouds, (2) cool molec-

ular clouds, and (3)active young stars. Each of these components may interact with

the other components or with the external activating systems like galaxies, etc. To

this end, the model is an open system connected with two mass reservoirs outside the

system.

i) Cool atomic cloud: Its main component is neutral hydrogen, the most abundant

chemical element in the Galaxy .The density varies over a large range, but direct

star formation in these clouds seems not to occur. The cooling capacity of these

clouds is not large enough to allow a sufficient condensation. This component

is connected to an unlimited reservoir of new atomic gas outside the system.

ii) Cool molecular cloud: mainly consist of molecular hydrogen HII. The densities

mast enormously and are generally much higher than in neutral clouds The

temperature in such cloud decreases as its density increases as a consequence

of large cooling capacity of the CO molecules. They have smaller dimensions

than neutral clouds.

iii) Young, active stars: mostly accompanied by hot ionized HII gas.These stars

strongly affect the surrounding gas clouds and are responsible for shock waves

in these clouds. In this way, new condensation regions may be formed in the

molecular clouds of the system.The presence of young stars therefore has a

positive effect on the stellar birth rate.The capacity of influencing the other

components ends when these young stars evolve to neutron stars. Although

these remnants are still physically present in the system, their masses have
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stopped playing an active role in the star formation process. We therefore say

that this mass has left the active star formation system. The second reservoir

is hence a waste reservoir containing the stellar remnants.

3.3 Interaction of the system

The three mass components S for the total mass of active stars, M for the total mass

of molecular clouds, and A for the total mass of atomic clouds. It is assumed that

the total mass of the system remains constant; thus, we assume that the amount of

mass lost by stellar evolution is exactly replaced by fresh atomic clouds entering the

star formation region from the external sources. Now calling the total mass of the

system T, we write

T = A + M + S (3.3.1)

There are three kinds of interaction for the atomic cloud component:

a) First, there is a constant replenishment by new atomic clouds in an amount equal

to the amount of mass leaving the active system by stellar evolution.The amount

of new gas may therefore be considered as proportional to the amount of stellar

mass S.We will call the proportional constant of this process K1.

b) Secondly, the atomic component is increased as young, active stars lose mass

by stellar wind. This process is also proportional to the number of stars and

therefore to the amount of stellar mass. The proportional constant for this

process is K2.

c) The third interaction is the transformation of atomic into molecular clouds. This

process is clearly proportional to the amount of atomic gas A, but since the
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transformation becomes more and more effective with the cooling capacity of

the cloud, and since this capacity increases with the square of the density of

molecular content, we assume that the transformation of atomic into molecular

gas is proportional to the square of the molecular mass. This third processes

loss of atomic gas and therefore is written with a minus sign in the differential

equation and a proportional constant K3

dA

dt
= K1S + K2S −K3AM2 (3.3.2)

Or

dA

dt
= K12S −K3AM2 (3.3.3)

where K12 is the coupled constants K1 & K2. In fact a further analysis shows that

this is a typical oscillation frequency of the couple.

The rate of the star formation may be considered as being proportional to the nth

power of the density of molecular cloud.Values of n can be selected between 0.5 and

3.5 or between 1 and 2. It is assumed that the presence of other young stars is a

necessary condition for star formation since they will perturb the molecular cloud

and provoke condensations. In this way we may also state that the star formation

rate is proportional to the number of active stars already present. Let us call the

proportional constant K4. This process increases the mass of stellar component.

Two other process decrease it: stellar evolution, for which we may use K1, and mass

loss by stellar wind, for which we again use K2 Both processes are proportional to the

amount of stellar mass. Thus, the equation describing the variation of stellar mass in
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the system is

dS

dt
= K4SMn −K1S −K2S (3.3.4)

Or

dS

dt
= K4SMn −K12S (3.3.5)

Transformation of atomic into molecular gas, which increases for the variable M, and

stellar formation, which decreases the amount of molecular mass. The equation for

M will be

dM

dt
= K3AM2 −K4SMn (3.3.6)

Note that, basically eqn. 3.1.1 & eqn. 3.3.6 should represent the same physics. Con-

sequently, it helps us to impose an additional condition in integrating the coupled

system of differential equations.

The constant parameters K1, K2, K3 and K4 can be further transformed by intro-

ducing the dimensionless parameter constants k1 & K2 given by

k1 =
K3T

2

K12

(3.3.7)

k2 =
K4T

n

K12

(3.3.8)

The solution of M(t), S(t), and A(t)

M(t) =
M0

(1 + 1
2

√
M0γt)2

(3.3.9)

S(t) =
S0Exp

(
2k2K12

(2n−1)γ
T−nM

(2n−1)/2
0

)
Exp

(
2k2K12

(2n−1)γ

T−nM
(2n−1)/2
0

(1+ 1
2

√
M0γt)2n−1 + K12t

) (3.3.10)

A(t) =
k1

k2

Mn−2 +
γM− 1

2

k2K12

(3.3.11)
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On the other hand A(t) can also be determined from eqn. 3.3.1. Then, between this

and eqn. 3.3.11 we can express the constant parameter γ in terms of the characteristic

oscillation frequency K12 worked out at t = 0.

γ =
K12√
M0

[k1a0 − k2s0m
n−1
0 ] (3.3.12)

. Following [14], we introduce the dimensionless mass ratio parameters m(t), s(t), and a(t)

corresponding respectively to M(t), S(t), and A(t) as

a =
A

T
, m =

M

T
, s =

S

T
(3.3.13)

where then,

a(t) + m(t) + s(t) = 1 (3.3.14)

Now γ in terms of the dimensionless mass ratios being evaluated at the initial con-

dition, the total mass, the characteristic frequency and the two dimensionless k-

constants is given as

γ =
σK12√
m0T

(3.3.15)

where

σ = k1a0 − k2s0m
n−1
0 (3.3.16)

Now, the complete solutions of the ratio masses of the system evolving in time are

given by

m(t) =
m0

(1 + 1
2
σK12t)2

(3.3.17)

s(t) = s0

Exp
[

2k2mn
0

(2n−1)σ

]
Exp

[
2k2mn

0

(2n−1)σ

(
1 + 1

2
σK12t

)1−2n
+ K12t

] (3.3.18)

a(t) = 1− [m + s](t) (3.3.19)



Chapter 4

Result and discussion

Following the 3-component interacting system in star forming active region, such as

dense spiral arms we have derive a complete analytical solutions of the mass transfers

of the system and as well as the rate at which the masses being transferred chap3. 3.

Then we have generated numerical data computationally using MATHEMATICA for

the evolution of the masses and the rate at which the masses being flow out or into

each component in time. The plots of the results are as shown in Fig.4.1 and Fig.

4.2.

Figure 4.1: The evolution of the three-component mass system: m(t)-molecular mass,
red;s(t)-stellar mass - blue; a(t) - atomic mass - black
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In plotting the graphs we have used the k-parameters as: k1 = 20 & k2 = 25; the

ratio masses as m0 = 0.7 & s0 = 0.2 & a0 = 0.3; n = 1.7 and the characteristic couple

oscillation frequency is between 0 & 1 cycles per the order of the time of evolution

during the formation. where t is in unit of second.

As we observe from the plots at the beginning both the stellar mass and the atomic

mass decrease. While the stellar mass increases. But after a sufficient time the stellar

mass stops for a moment and begins to decrease while the molecular gas continues

decrease. On the other hand, the atomic gas turns to increase at the expense of the

decrease in the other two. This, is true as one expects from m the standard theory

of formation.

Figure 4.2: The evolution of mass transfer rates of the three-component system:
dm(t)

dt
-molecular mass rate, red; ds(t)

dt
-stellar mass rate - blue; da(t)

dt
- atomic mass rate

- black

The rate of mass transfers of the three components of the systems are all in different

characteristics. The molecular gas ever continues to increase asymptotically until it

exacts. The stellar rate of transfer at the beginning radically decreases, stops for a



47

while and gradually increases till it comes to stops. On the other hand, the atomic

gas behaves in three ways. First for a short period of time it decreases radically,

then increases for a longer period of time relatively and then gradually continues to

decrease until it comes to halt.



Chapter 5

summary and conclusion

Star formation occur as a result of the action of gravity on a wide range of scales. On

galactic scale the tendency of interstellar matter to condense under gravity in to star

forming clouds is countered by galactic tidal forces, and star formation can occur only

where the gas become dense enough for its self gravity to over come these tidal force,for

example in spiral arms. On the intermediate scales of star forming giant molecular

clouds (GMCs),turbulence and magnetic fields may be the most important effects

counteracting gravity, and star formation may involve the dissipation of turbulence

and magnetic fields. Oem tn top of these, there is external agents that will trigger

the system to begin the formation such as shock waves external to the system.

Due to the complex system and complicated theories needed to work out in stellar

formation and evolution, we here we have worked out the three-component interaction

system of formation. As we have worked out in chap3 3 and discussed the results in

chap4 ?? we have successfully derived analytical solutions to the dynamical evolution

of the masses of the interacting system including their rate of evolution. However, we

believe that this work needs further development and inputs to give more meanings

to the parameters therein introduced.
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