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In Ethiopia, wetland resources play a vital role in the lives of adjacent communities by helping them to
achieve food security and livelihoods. However, many wetlands throughout the country are facing degrada-
tion as high population growth rate increases the need for more fertile agricultural land. Lack of awareness
and logistic constraints are important reasons for the weak consideration of wetland ecosystems by the coun-
try's development planners. In this paper, we set out to develop methods for predicting species–environment
relationships. Decision tree models and Canonical Correspondence Analysis (CCA) were used to identify fac-
tors influencing macroinvertebrate community structure in natural wetlands of Southwest Ethiopia. The
models were based on a dataset of 109 samples collected from 57 sites located in eight different wetlands.
Sixteen macroinvertebrate taxa were selected based on their frequency of occurrence to determine the status
of the wetlands. It was found that Corixidae, Baetidae and Hydrophilidae had the highest predictive model
performance. This indicates that these taxa have clear requirements regarding their environmental condi-
tions. The low Kappa value combined with the high number of Correctly Classified Instances of Chironomidae
may be related to their high frequency of occurrence, so that their presence is of little predictive power. This
was also further illustrated by the Canonical Correspondence Analysis (CCA) where the family of Chironomidae,
common at nearly every sampling station in the wetlands, was plotted in the centre of the CCA axis. Vegetation
cover, water depth, and conductivity were themost important variables determining the presence or absence of
macroinvertebrate taxa. These variables were selected in more than 80% of the classification tree models and
played a critical role in the ordination analyses. The sensitivity analysis, based on the regression tree models,
also showed that vegetation cover and conductivity were affecting the abundance of some macroinvertebrate
taxa. Information on habitat quality and environmental factors preserving a high diversity are essential to develop
conservation and management programs for wetlands and their related ecosystem services in Ethiopia, where
wetland resources are being lost at a high rate, and continue to be at high risk due to expansion of agricultural
and other development activities.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Wetlands are one of the most biologically productive natural eco-
systems on earth (Dixion and Wood, 2003; Rolon and Maltchik,
2006). While they occupy about 6% of the world's land surface, they
contribute up to 40% of the annual globe's ecosystem services
(Bonell et al., 1993; Costanza et al., 1997). Wetlands perform a wide
variety of ecological functions including nutrient cycling (Bunn et
al., 1999), carbon storage (Adhikari and Bajracharaya, 2009), flood re-
duction (Hey and Philippi, 1995) and provisioning of habitat for wild-
life (Jacobs et al., 2009). Moreover, wetlands play a vital role in
rights reserved.
ensuring water supply, food security and livelihoods for millions of
people living in developing countries (Shewaye, 2008; Teferi et al.,
2010). Understanding the economic value of nature and the services
it provides to humanity has become increasingly important for local,
national, and global policy and decision making. Quantifying and inte-
grating ecosystem services into decision making will be crucial for
sustainable development (Turner et al., 2010). Costanza et al.
(1997) calculated that wetland values can contribute worldwide up
to $15,000 per hectare per year. The majority of the value of services
are currently outside the market system, but should be included in
the future. Several of these services include gas regulation, distur-
bance regulation, waste treatment and nutrient cycling (Costanza et
al., 1997). The value of these regulating services derives from the bene-
fits they protect and are, as described by the Millennium Assessment,
often related to water quality (Simonit and Perrings, 2011). With
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respect to water quality and drinking water production, potential costs
in wastewater treatment can be reduced, because tertiary treatment by
wetlands may save costs for alternative treatment (Costanza et al.,
1997). The threats posed by climate change and the increase in global
population predicted to reach nine billion by 2050, resulting in increasing
pressures on water resources, urge the need to maximise these benefits
(Ramsar, 2010).

Despite the fact that many scientific studies highlight the impor-
tance of wetlands for ecosystem services, most wetlands worldwide
have suffered from extensive exploitation in the past century (Xu et
al., 2011). Studies have shown that about 50% of the world's wetlands
have disappeared in the last century due to agriculture and urban de-
velopment (Mitsch and Gosselink, 1993; Shine and Klemm, 1999).
Drainage for agriculture has been recognized as the primary cause
of global wetland loss (Xu et al., 2011). In Ethiopia, rapid population
growth triggers expansion of agricultural areas, resettlement of land-
less people, and exploitation activities in wetland areas (Shewaye,
2008). Consequently, several wetlands either disappeared or are on
the verge of drying out (Shewaye, 2008), while others rapidly decline
in water quality. In response to the rapid degradation of wetlands in
Ethiopia, a number of studies on wetland hydrology (Dixion, 2002;
Dixion and Wood, 2003) and socio-economic aspects (Solomon,
2004) have been initiated. However, little is known about the overall
ecological condition of wetlands in Ethiopia. The diversity and abun-
dance of macroinvertebrates are known to provide considerable in-
formation on ecosystem impairment (Feio et al., 2007; Liston et al.,
2008). Analysing the health and diversity of these wetlands, based
on the presence of macroinvertebrates, could therefore indicate the
state of the ecosystem and the related services (Feld et al., 2010). In
the present study, we therefore set out to identify the major environ-
mental factors governing the macroinvertebrate communities inhabit-
ing wetlands in a region in Ethiopia that is relatively rich in wetlands,
but is under severe pressure by rapidly increasing land use intensity.

Macroinvertebrates represent a diverse group of long living sedentary
species that react strongly and often predictably to human influences on
aquatic systems (Cairns and Prall, 1993). They are considered very ap-
propriate subjects for the assessment of the ecological condition of wet-
lands, since they are abundant, readily surveyed, and taxonomically rich
(Dodson, 2001). Furthermore, they play an important role in the overall
functioning of wetland ecosystems as they occupy a central position in
the food web of wetlands (Batzer et al., 1999). Macroinvertebrate com-
munity characteristics can reflect primary production and the ability of
awetland to support vertebratewildlife (e.g. fish) and remove pollutants
(Batzer et al., 2006). A better understanding of the factors driving
changes in macroinvertebrate community structure along perturbation
gradients at several taxonomic levels is therefore important to predict
the potential changes in the ecological conditions of wetlands (Trigal-
Domínguez et al., 2009).

In order to predict the habitat requirements of wetland macroin-
vertebrate communities, there is a clear need for models quantifying
species–environment relationships to support decision making
(Broekhoven et al., 2006). Modelling the distribution of taxa as a
function of the abiotic environment, often called habitat suitability
modelling, has been recognized as a significant component of conser-
vation planning (Guisan and Zimmermann, 2000). Habitat suitability
models combine occurrence and/or abundance of species with envi-
ronmental variables, both biotic and abiotic factors, judging on the
habitat quality or predicting the effect on species occurrence of envi-
ronmental changes within the habitat (Anderson et al., 2003; Store
and Kangas, 2001). Thesemodels are typically developedby identifying
statistical relationships between the occurrence and/or the abundance
of the species and the biochemical and physical properties of a given
site (Store and Kangas, 2001). In this regard, many approaches includ-
ing multivariate analysis (Robertson et al., 2001) and modelling tech-
niques such as decision trees (Boets et al., 2010; Dakou et al., 2007;
Goethals et al., 2002; Hoang et al., 2010), artificial neural networks
(Dedecker et al., 2007; Goethals et al., 2007; Park et al., 2003), fuzzy
logic (Broekhoven et al., 2006; Mouton et al., 2009) and Bayesian belief
networks (Adriaenssens et al., 2004) have been applied.

The aim of the present study was to analyse the relationship be-
tween habitat quality and the occurrence and diversity of macroin-
vertebrates in Wetlands in Southwest Ethiopia. Therefore, we
developed habitat suitability models using decision tree models and
used multivariate data analysis in order to analyse the macroinverte-
brate community structure in these natural wetlands. The information
obtained from this study can be used to inform on environmental fac-
tors that are important for community structure of macroinvertebrates
and as a guideline for habitat conservation of wetlands and their related
ecosystem services.

2. Methods and materials

2.1. Study area

The data used for the present study were collected from wetlands
located in the Gilgel Gibe watershed, Southwest Ethiopia (Fig. 1). Six
permanent (Koffe, Kitto, Boye, Haro, Bulbul and Balawajo) and two
temporary (Haro1 and Haro 2) wetlands located along the Gilgel
Gibe river were included. The studied wetlands are varying in size
ranging from 5 ha to a few hundred hectares. These wetlands serve
as a source of drinking water, as breeding grounds for birds and as
grazing land (Yimer and Mengistou, 2009). All permanent wetlands
except Bulbul are riverine, connected upstream and downstream to
the rivers flowing into the Gilgel Gibe River and finally to the Gilgel
Gibe hydro power dam. The temporary and Bulbul wetlands are created
by ameanderingfloodplain. These temporarywetlands are characterised
by high fish and waterfowl abundance. The major threats from human
activities around and in these wetlands include intensive livestock graz-
ing, brick making, vegetation clearance, land conversion to cropland,
drainage, municipal waste discharge and cultivation. Maize (Zea mays)
cultivation is a common practice in and around these wetlands.

2.2. Data collection

A total of 57 sampling stations were monitored. Fifty two perma-
nent sampling sites were sampled both during the dry (March to
May, 2010), and the wet (August to September, 2010) season, where-
as five temporary wetland sampling stations were sampled only during
the wet season. In this way, 109 samples were available.

2.2.1. Abiotic habitat characteristics
Abiotic habitat characteristics at each sampling station over a 500-

meter reach were assessed using the USEPA wetland habitat assess-
ment protocol (Baldwin et al., 2005). The physical features measured
included vegetation cover, water depth, hydromorphological settings
and adjacent land use patterns (grazing, cultivation/ploughing, clay
mining, drainage and waste dumping; see Table 1).

Dissolved oxygen, electric conductivity, pH and water tempera-
ture were measured in the field using a multi-probe meter (HQ30d
Single-Input Multi-Parameter Digital Meter, Hach). Chlorophyll a
concentration was measured on site using a fluorometer (Turner De-
sign Aquafluor). At each site 2 l of water was collected and stored on
ice until return to the Laboratory of Environmental Health at Jimma
University, where samples were analysed for total nitrogen (TN),
total phosphorus (TP), five day biochemical oxygen demand (BOD5),
chemical oxygen demand (COD), orthophosphate, ammonium and
nitrate concentration according to the standard methods as pre-
scribed by APHA et al. (1995).

2.2.2. Biotic habitat characteristics
Macroinvertebrates were collected at each sampling station using

a rectangular frame net (20×30 cm)with a mesh size of 300 μm. Each
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Fig. 1. Location of the study area and wetland sampling stations (black circles) in the Gilgel Gibe watershed, Southwest Ethiopia.
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collection entailed a 10-minute kick sampling over a distance of 10 m
(DNRE, 1999). Time was allotted proportionally to the cover of differ-
ent meso-habitats of the wetland such as open water and emergent
vegetation. The bottom sediment was disturbed by foot during sam-
pling in order to collect the benthic macroinvertebrates. Macroinver-
tebrates were sorted in the field, stored into vials containing 80%
ethanol and labelled. Afterwards, macroinvertebrates were identified
to family level using a stereomicroscope (10× magnification) and the
identification key of Bouchard (2004).
Table 1
Input variables used for the model development: mean values, standard deviation, and
range. TON=total organic nitrogen, NH4

+=ammonium, NO3
−=nitrate, TP=total

phosphorus, PO4
3−=orthophosphate, BOD5=biological oxygen demand, COD=-

chemical oxygen demand.

Variables Unit Mean Standard
deviation

Range

Ambient temperature °C 25 3 17–34
Water temperature °C 22 2 18–33
pH – 7 0.6 6–10
Dissolved oxygen mg/l 4 2.5 0.2–14
Oxygen saturation % 55 41 2–263
Conductivity μS/cm 103 55 41–293
Chlorophyll a μg/l 13 2 11–22
TON mg/l 5 6 0.05–34
NH4

+ mg/l 0.10 0.2 0.01–1.6
NO3

− mg/l 1.4 1.9 0.04–12
TP mg/l 0.2 0.2 0.03–1.2
PO4

3− mg/l 0.15 0.5 0.01–5.4
BOD5 mg/l 14 17 1–144
COD mg/l 25 36 3–306
Water depth Cm 49 27 5–180
Vegetation cover % 69 18 35–95
Fish Absent (0), present (1) N/A N/A N/A
Grazing Absent (0), present (1) N/A N/A N/A
Cultivation/ploughing Absent (0), present (1) N/A N/A N/A
Clay mining Absent (0), present (1) N/A N/A N/A
Drainage Absent (0), present (1) N/A N/A N/A
Waste dumping Absent (0), present (1) N/A N/A N/A
Each site was sampled for fish during both the dry (March to May,
2010) and wet season (August to September, 2010). Fyke nets were
used as well as fish pots. These were positioned in shallow areas
(less than 1 m depth) at each site. Nets were set during the day and
retrieved after about 24 h. Fish were counted and their length and
weight were measured before they were released.
2.3. Data analysis

Multivariate statistical analysis and several classification and re-
gression tree models were used to analyse the habitat preference of
macroinvertebrate taxa in the sampled wetlands.
2.3.1. Classification and regression tree models (CART)
Twenty two environmental variables were used to determine the

most important variables for the prediction of the 16 most frequently
occurring macroinvertebrate taxa in the wetlands (Tables 1 and 2).
Classification and regression tree models (CART) were applied to de-
velop the models. The classification tree models were built using the
J48 algorithm (Quinlan, 1993), a java re-implementation of the C4.5
algorithm, which is a part of machine learning package WEKA
(Witten and Frank, 2005). Regression tree models were built using
the M5 algorithm in WEKA (Witten and Frank, 2005) in order to relate
the abundance of macroinvertebrate taxa to environmental variables.
Default parameter settings were used to induce the trees.

Model training and validation were based on a three-fold cross
validation procedure (Witten and Frank, 2005). All data (dry and
wet season sampling data) were used to construct the models. The
dataset was stratified into three subsets, of which two subsets were
used as training data and the remaining one subset was used for test-
ing the model. The cross validation process was then repeated three
times each with one of the three subsets used once as the validation
data set. In this way, three models were built. The results from the
three models were averaged to produce a single prediction of the de-
pendent variable as well as the variation based on the difference be-
tween the outcome of the three models.



Table 2
Overview of the identified taxa as well as their frequency of occurrence in all
samples.

Family Frequency of occurrence (%)

Caenidae 23
Simuliidae 23
Tipulidae 28
Culicidae 28
Helodidae 30
Sphaeriidae 36
Planorbidae 42
Baetidae 50
Notonectidae 50
Belostomatidae 58
Corixidae 61
Libellulidae 64
Coenagrionidae 71
Hydrophilidae 72
Dytiscidae 83
Chironomidae 87
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The percentage of correctly classified instances (CCI) (Witten and
Frank, 2005) and Cohen's Kappa statistic (K) (Cohen, 1960) were
used to evaluate the predictive performance of the classification
tree models. The CCI is the percentage of the true positive (TP) and
true negative (TN) predictions, which is calculated based on a confu-
sion matrix.

CCI is mathematically expressed as follows:

CCI ¼ TP þ TNð Þ
TP þ FP þ TN þ FNð Þ

Cohen's Kappa statistic simply measures the proportion of all pos-
sible cases of presence or absence that are predicted correctly by a
model after accounting for chance predictions. It is mathematically
expressed as follows:

K ¼ TP þ TNð Þ− TP þ FNð Þ TP þ FPð Þ þ FP þ TNð Þ FN þ TNð Þð Þ=nð Þ½ �
n− TP þ FNð Þ TP þ FPð Þ þ FP þ TNð Þ FN þ TNð Þð Þ=nð �½

where n is the total number of instances, TP is the percentage of true
positives, TN the percentage of true negatives, FP the percentage of
false positives and FN the percentage of false negatives.

Models with a CCI higher than or equal to 70% and K higher than
or equal to 0.4 were considered reliable (Dakou et al., 2007;
Gabriels et al., 2007). CCI is affected by the frequency of occurrence
of the taxon being modelled (Manel et al., 2001). Unlike CCI, K takes
a correction into account for the expected number of correct predic-
tions due to randomness, which is strongly related to taxon preva-
lence (Fielding and Bell, 1997; Manel et al., 2001). We used the
ranges of K recommended by Landis and Koch (1977) for model per-
formance evaluation: K≤0 (poor), 0–0.2 (slight), 0.2–0.4 (fair), 0.4–
0.6 (moderate), 0.6–0.8 (substantial) and 0.8–1 (almost perfect).

We used the determination coefficient (R2) value to evaluate the
performance of the regression tree models (De'ath and Fabricius,
2000). The determination coefficient is a measure of the goodness
of fit of the model predictions to the training data (Kallimanis et al.,
2007). Its value is always between 0 and 1. The closer the value is
to 1, the better the model predicts the training data.

Sensitivity analysis was performed in order to gain insight in the
relationship between predictor variables and the abundance of
macroinvertebrate taxa. For each of the three models constructed
per taxon, the gradient and importance of the predictor variable
(e.g. conductivity) on the macroinvertebrate abundance were ana-
lysed. This was done by plotting the selected variable between its
minimum and maximum values encountered at the sampling sites,
while the other parameters that were present in the model were
kept constant at their average values. In this way, for each of the
three different models (folds) a line was plotted showing the rela-
tionship between the environmental factors and the abundance of
macroinvertebrates as well as the gradient of the different models.

2.3.2. Multivariate data analysis
Detrended Correspondence Analysis (DCA) was applied using

CANOCO 4.5 (ter Braak and Smilauer, 2002) to examine whether Re-
dundancy Analysis (RDA) or Canonical Correspondence Analysis
(CCA) would be appropriate (ter Braak and Jaap, 1994) to analyse
the data. The DCA yielded gradient lengths that were higher than
three standard deviations, therefore CCA was used. Sixteen macroin-
vertebrate taxa were selected based on their frequency of occurrence.
Macroinvertebrate abundance data were log transformed log(x+1)
prior to analysis to obtain homogeneity of variance. Based on a step-
wise forward selection twelve environmental factors were selected as
independent variables. All environmental data except pH and presence
of fishwere log(x+1) transformed and standardized since the variables
weremeasured in a variety of units. The statistical significance of eigen-
values and species–environment correlations generated by the CCA
were tested usingMonte Carlo permutations. All data (dry andwet sea-
son sampling data) were used together to construct the plots.

3. Results

3.1. Variable importance

Twenty two environmental variables (Table 1) were used as pre-
dictors to determine the presence/absence of 16 benthic macroinver-
tebrate taxa (Table 2). Fig. 2 shows the average frequency of selection
of these environmental variables by the classification tree models as
well as the variation on the different models. Since the training and
validation were based on three-fold cross validation, three models
were developed for each taxon. In total, 48 models (three models
per taxon) were constructed.

The most frequently selected variables were vegetation cover
(88%), conductivity (81%), water depth (81%), presence/absence of
fish (56%), and total phosphorus concentration (56%). Moreover, vege-
tation cover and conductivity were often selected as root of a tree indi-
cating that thesewere themost informative attributes to determine the
presence/absence of macroinvertebrates taxa. In contrast to the above
mentioned variables, ambient and water temperature and chlorophyll
a were selected in 6% of the cases and thus were less critical for explain-
ing the presence/absence of taxa.

As an example, the classification tree model for Caenidae is
depicted in Fig. 3. This tree has seven leaves and thirteen branches.
The classification tree indicates that vegetation cover, given as a
root of the tree, is considered as themost informative attribute to pre-
dict the occurrence of Caenidae. Caenidae were generally absent
when the vegetation cover was less than 55% and pH was higher
than 7.23. On the other hand, Caenidae were present in sites where
there was no clay mining activity and fish were absent. This classifica-
tion tree had a good overall predictive performance, with a CCI of 81%
and Kappa of 0.47.

3.2. Model performance evaluation

The model performances based on the CCI and Cohen's Kappa sta-
tistic of the three-fold cross validation for 16 macroinvertebrate taxa
are shown in Fig. 4A and B. Error bars give the variation between the
subset models constructed per taxon. The CCI varied between 59±3%
and 88±2%. Based on CCI, 13 taxa were predicted with a good reli-
ability by the classification tree models (CCI≥70%). Based on CCI,
very good predictions were obtained for Chironomidae and Dytisci-
dae with CCI of 88±2% and 86±11%, respectively. On the other
hand, eight taxa were predicted accurately based on Cohen's Kappa
statistic (K≥0.4). Based on Kappa, the highest model predictive
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performance was obtained for Corixidae and Baetidae with a K value
of 0.58±0.2, indicating a good model performance. In contrast, Tipuli-
dae and Belostomatidae had the lowest K value (0.17±0.02), indicating
poor model performance.

Although Chironomidae and Dytiscidae had the highest relative
CCI, their K values were 0.30±0.27 and 0.38±0.3, respectively. The
high CCI values were related to their high frequency of occurrence:
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Vegetation

≤85% >85%
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Caenidae
absent 
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Fig. 3. Classification tree model predicting the presence or absence o
the family Chironomidae was present in 87% and Dytiscidae in 83%
of the samples (Table 2).

3.3. Sensitivity analysis

We carried out a sensitivity analysis for the six macroinvertebrate
taxa with an acceptable model performance, namely Caenidae,
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f Caenidae (Correctly Classified Instances=81%, Kappa=0.47).
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Baetidae, Simuliidae, Dytiscidae, Hydrophilidae and Notonectidae.
The correlation coefficient obtained from the regression tree models
for these six taxa varied from 0.29±0.02 to 0.55±0.12. Vegetation
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cover and conductivity were used as predictor variables since these
were the most important variables selected by the models.

The sensitivity analysis pointed out that the abundance of Simulii-
dae (Fig. 5A) and Baetidae (Fig. 5B) increased with increasing vegeta-
tion cover. Caenidae abundance increased up to 80% vegetation cover
and becamemore or less stable afterwards (Fig. 5C). In contrast to the
other taxa, the abundance of Notonectidae decreased with increasing
vegetation cover (Fig. 5D).

A sensitivity analysis of the regression tree model analysing the ef-
fect of changing conductivity on the abundance of Simuliidae, Dytisci-
dae and Hydrophilidae is shown in Fig. 6. The abundance of
Simuliidae (Fig. 6A) decreased with increasing conductivity. In con-
trast, the abundance of Coleoptera larvae, both Dytiscidae and Hydro-
philidae (Fig. 6B,C), increased with increasing conductivity and
remained more or less stable at conductivity levels above 150 μS/cm.

3.4. Multivariate analysis

The first and the second canonical axes explained 13.7% (eigenvalue
of 0.17) and 7.8% (eigenvalue of 0.10) of the variation in the species
data, respectively. The species–environment correlation of the first
axis was statistically significant in a Monte Carlo permutation test
(Pb0.05). The first axis was positively correlated with the presence/
absence of fish (r=0.62), total phosphorus (r=0.61), water depth
(r=0.54), dissolved oxygen (r=0.53), and chemical oxygen demand
(r=0.43). Vegetation cover and conductivity were negatively correlat-
ed with CCA axis 1, with r=−0.27 and r=−0.38, respectively. CCA
axis 2 was positively correlated with vegetation, conductivity, COD
and TP, and negatively with dissolved oxygen (Fig. 7). In addition, CCA
analysis also revealed that Simuliidae and Caenidae were significantly
correlated with vegetation cover (r=0.5 and r=0.42, respectively;
Pb0.05). Hydrophilidae (r=0.45) and Dytiscidae (r=0.47) were sig-
nificantly correlated with water conductivity (P=0.04).

A bi-plot of the sampling sites and environmental variables
showed that there was a clear distinction between samples taken
during the dry or the wet season (Fig. 8). Conductivity was strongly
positively correlated with dry season, whereas vegetation cover and
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Fig. 6. Sensitivity analysis illustrating the abundance (number of individuals per sam-
ple) of (A) Simuliidae (B) Dytiscidae and (C) Hydrophilidae in function of conductivity
(Fold 1=dotted line, Fold 2=solid line, Fold 3=dashed line; for more explanation on
folds, see text).

Fig. 7. Canonical correspondence analysis (CCA) of macroinvertebrate taxa and envi-
ronmental variables in natural wetlands of Southwest Ethiopia (variables are explained
in Table 1).

Fig. 8. Bi-plot of environmental variables and wet (squares) and dry season (circles)
sampling sites. The temporary wetlands (wet season samples only) are clustered and
indicated by a circle (variables are explained in Table 1).
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dissolved oxygen were more correlated with the wet season samples.
Temporary wetlands as well as wetlands with a lot of open water
clustered together and showed associations with water depth, COD,
TP and the presence/absence of fish.

4. Discussion

Predicting species’ distributions has been recognized as a signifi-
cant component of conservation planning since it helps identifying
those regions which yield maximum effect when including restora-
tion efforts (Guisan and Zimmermann, 2000; Loiselle et al., 2003).
In the present paper, predictive models allowed identifying impor-
tant variables structuring the macroinvertebrate community in wet-
lands in Southwest Ethiopia. Using Kappa values as indicator, our
models performed least well for the Tipulidae and Belostomatidae,
suggesting that other factors than the ones we quantified determined
the distribution of these taxa. The low kappa value and the high CCI of
the models for Chironomidae may be related to their high frequency
of occurrence, indicating that the predictions could easily be generated
by chance (Fielding and Bell, 1997; Manel et al., 2001). The model in-
deed tends to learn that the most common taxa are always present
and the rarest taxa are always absent (Dedecker et al., 2007). In the
CCA, Chironomidae were plotted in the centre of the axes. The weak as-
sociation between Chironomidae and environmental factors and the
fact that this species occurred in 87% of the sites reflect that this taxon
is tolerant to disturbance and a resident of impacted environments, as
has been reported by many earlier studies (Karr and Rossano, 2001).
Corixidae, Baetidae and Hydrophilidae showed high Kappa and CCI
values, and their occurrence could be well predicted by our model.
This indicates that these taxa have clear requirements regarding their
environmental conditions within the habitat gradient we studied.

Vegetation cover, water depth and conductivity were the most im-
portant environmental variables determining the presence or ab-
sence of macroinvertebrate taxa. These variables were selected in
more than 80% of the classification tree models and were also corre-
lated with the axes that explain the largest amount of variation in
the ordination analysis. Vegetation is known to be an important pa-
rameter in wetlands influencing the diversity of macroinvertebrates
(Balcombe et al., 2005; Jurado et al., 2009). Both the sensitivity analysis
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and ordination diagram showed that the abundance of Simuliidae and
Caenidae is strongly associated with vegetation cover. Vegetation can
provide shelter against water current and predation, can provide
more food resources, and is important as oviposition site (Ambelu et
al., 2010; Couceiro et al., 2007). Vegetation has been shown to decrease
the efficiency of fish predation and provides a refuge for benthic macro-
invertebrates against visual predators (Diehl, 1995; Hanson and Butler,
1994). In addition, macrophytes produce dissolved oxygen trough pho-
tosynthesis and in this way, create better habitat conditions (Ságová
Marecková andKvet, 2002). In contrast to the other taxa, the abundance
of Hemiptera was negatively correlated with vegetation cover. The cru-
cial factor for the distribution of aquatic Hemiptera species seems to be
a high percentage of openwater, as also shown in other studies (Bloechl
et al., 2010).

Besides vegetation, conductivity is an important parameter affect-
ing the composition of macroinvertebrate communities (Boets et al.,
2010; Gabriels et al., 2007). Although the measured conductivity
values in our study were generally low, ranging between 41 and
293 μS/cm, several wetlands were strongly influenced by inflow of
untreated wastewater from Jimma town, which led to an important
input of water with a relatively high conductivity. Several studies
have shown that urbanization can contribute to increased levels of
conductivity in fresh water ecosystems (Roy et al., 2003). Both the or-
dination and sensitivity analysis showed that taxa belonging to the
order of the Coleoptera were positively correlated with conductivity.
The preference of Coleoptera for relatively high levels of conductivity
can be species dependent, as found by Cuppen (1986). Conductivity
was lower in water samples taken during the wet season, likely
reflecting dilution effects by runoff and precipitation. Culicidae larvae
were positively correlated with conductivity and negatively correlated
with dissolved oxygen concentration. Culicidae have a breathing tube
siphon that allows them to obtain oxygen from the air and thus persist
in environments with poor water quality (Chipps et al., 2006). As most
other organism groups cannot cope with low oxygen levels, the Culi-
cidae are released from competitive pressure in low oxygen habitats,
which increases their likelihood of occurrence. Dissolved oxygen
concentrations were higher in the wet season samples, suggesting
that runoff, precipitation and turbulence increased the dissolved
oxygen concentration (Ambelu, 2009). Since some variables are
strongly negatively correlated, extra analyses on variable selection
are necessary to give inconclusive results on which parameter is
the most important.

Temporary wetlands and wetlands with a lot of open water dif-
fered from permanent wetlands in their macroinvertebrate composi-
tion as well as in their physical and chemical characteristics. Several
studies have shown that the hydroperiod plays a critical role in the
ecology of wetlands (Steinman et al., 2003). Macroinvertebrate as-
semblages of temporary wetlands are often characterised by rapidly
developing and very active species, or by species that have very
high dispersal capacities (Wellborn et al., 1996). The ordination analysis
revealed that Hemiptera, Notonectidae, Corixidae and Belostomatidae
dominated in temporary wetlands. These taxa are able to re-colonize
temporary wetlands within a couple of weeks after flooding (Chase
and Knight, 2003). Moreover, in seasonal habitats such as wetlands,
community structure can be related to abiotic variables that change in
response to seasonal conditions, including water depth, dissolved oxy-
gen andmacrophyte coverage (Escalera-Vazquez and Zambrano, 2010).

Fish were mainly found in open water of the temporary wetlands.
Several studies demonstrated that the density of fish strongly affects
the abundance and distribution of Dytiscidae and other macroinver-
tebrate taxa (Arnott and Jackson, 2006). In our case, we only took
into account the presence or absence of fish, not their abundance.
Nevertheless, it is expected that the fish community has an impact
on the abundance of macroinvertebrates. This might explain why
the abundance and diversity of macroinvertebrates were generally
lower in the temporary compared to the permanent wetlands.
The high chemical oxygen demand and high concentration of total
phosphorus observed in the temporary wetlands are probably due to
agricultural waste products and litter decomposition. Most temporary
wetlands were situated in areas with intensive agricultural activity. In
the study area, the temporary wetlands are often used as agricultural
field or grazing land during the dry season. Cattle can deposit signifi-
cant amounts of excrements in these fields. When these areas become
inundated during the rainy season, the dead organic material from
crops and cattle excrements can be decomposed and results in an in-
crease of the concentration of total phosphorus and an increase in
chemical oxygen demand (Del Rosario et al., 2002; Strand and
Merritt, 1999).

In conclusion, both the decision tree models and the canonical cor-
respondence analysis indicated that environmental factors such as
vegetation cover, water depth and water conductivity influence the
structure of wetland macroinvertebrate communities. These variables
gave a clear and stable result that was easy to interpret. One of the
prioritizing services wetlands provide are water and food supply,
which have become more scarce due to a growing human population
(Ramsar, 2010). A minimal preservation of vegetation in these wet-
lands is essential to maintain a high biodiversity and to protect eco-
system services. Besides the well known ecosystem services
wetlands already provide, biodiversity conservation may provide di-
rect benefits through ecotourism. A good management program for
wetlands in Ethiopia is important as their social–economic values
are numerous and of high importance to people worldwide (Barbier
et al., 2009; Costanza et al., 1997). Further study is recommended to
elucidate the ecological implications of the environmental factors
identified here on waterfowl and fish, since this could contribute to
an improved management of the study wetlands.
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