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Abstract

Refractive index and propagation of electromagnetic pulses are studied analytically and

numerically in a medium with nanoellipsoidal metal/dielectric composites. The cases

when all nanoellipsoidal inclusions are aligned to the direction of the incident field and

when they are randomly distributed are considered for pure metal type and confocal

metallic shell and dielectric core type inclusions embedded in a passive host medium.

Based on long wave approximation and the effective dielectric response of the medium

the effects of geometrical factor, filling factor and orientation of the inclusions on the

refractive index and group velocity are described analytically and computationally.

Key words; Polarization, Dielectric function, Refractive index, Anomalous dispersion
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Chapter 1

Introduction

1.1 Background of the study

The optical property of small metallic particles has been studied long ago [1,2]. However,

nonstructural metallic materials become the focus of intense research in recent years. This

revival of interest is due to the recent advances that allow metals to be structured and

characterized on the nanometer scale with well defined sizes and shapes [2–4] as well as

many possible applications have been realized to use these materials in different fields

such as optoelectronics, biological and medical sciences. Now in these days nanometallic

materials are novel parts in many devices like, for optical communications [5], to energy

harvesting [6] and optical bio sensors with enhanced sensitivity [7, 8].

Metallic naoparticles have exceptional optical properties that are not observed in the

bulk material phase [9–12]. This optical effect is caused by strong interaction between

light and the conduction electrons that are confined in the small volume of the particle.

Under the influence of oscillating electromagnetic field the negatively charged conduc-

tion electrons perform a collective oscillation with respect to the positive ion background

creating an effective charge at the surface that results in a restoring force, the collective

excitation of the electrons at the interface is called a localized surface plasmon [8, 13].

The localized surface plasmons are due to the small scale size of the metal unlike the

ordinary surface plasmon of the extended metal surfaces. In a nanostructured metal the

1
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localized surface plasmon cause strongly enhanced optical absorption and scattering cross

sections, because they readily couple to optical far fields and also light can be confined to

and manipulated on a scale smaller than the wavelength of the light, only a few hundred

nanometers [14, 15]. An example to this phenomenon is the high transmission efficiency

of light through sub wavelength holes in a metal screen [16,17].

The resonance wavelength of the localized surface plasmon to a nanoparticle is uniquely

determined by its shape, size and the nature of host material embedding it. Therefore,

the nanoparticle plasmon frequency can be tuned to a frequency range depending on the

required applications [2,4,17–19]. For example in optical coherent tomography or thera-

peutic agents for biomedical applications it is advantageous to tune the particle resonant

frequency to the near infrared region between 650nm and 900nm and this tunability is

provided by properly designing the shape, size, orientation, concentration and composi-

tion of nanometallic inclusions in the host medium [18].

The refractive index of a material is the key parameter that affects all optical prop-

erties. Any modification of the refractive index, by any means, leads to new optical

properties of absorption, dispersion and transmission of the medium [20]. Therefore a

study about refractive index of material media is vary essential to know about the optical

properties the material. In this paper, we have shown that how refractive index and prop-

agation of light pulses are affected by the geometrical factor, orientation, composition,

and the concentration of nanoellipsoidal pure metal and metal covered dielectric core par-

ticles embedded in aligned manner and randomly in a passive host materials.

We have already mentioned some motivational background concepts at the beginning

of the introduction, in this part we also included the statements of the problem, the ob-

jectives and significance of the work. The rest of this thesis is organized as follows;

In chapter 2 we present a short review of basic theoretical concepts about electromag-

netism and optical response of materials.

In chapter 3 we explain the analytical and numerical methods employed in this work.



3

In chapter 4 we show derivation of some model equations. Using these equations we

give theoretical analysis about resonance conditions, polarizabilities, effective dielectric

functions and refractive index. Then we show numerical descriptions of the results with

figures which illustrate the variation of refractive index and group velocity with the fre-

quency of incident field for the different cases.

Finally in chapter 5 we discuss the results and draw some conclusions.

1.2 Statement of the Problem

In this study we tried to address the following major issues for a nanoellipsoidal metal/dielectric

composite medium when the identical inclusions are pure metals and when they are iden-

tical metal shell-dielectric core composite:

• How the geometrical factor, concentration and orientation of the inclusions and

fraction of the metal part in the inclusions affect the refractive index and propagation

of light pulses in the medium.

• How the variations of refractive index and group velocity with geometrical factor,

concentration and orientation of pure metal inclusions differ from their correspond-

ing variations for the case of metal shell dielectric core inclusions.

1.3 Objectives

1.3.1 General Objective

• To study analytically and numerically about the refractive index and propagation

of light pulses in nanoellipsoidal metal and dielectric composite material.

1.3.2 Specific Objectives

The the specific objectives are:
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• To calculate the refractive index and group velocity for the different values of ge-

ometrical factors and concentrations of identical ellipsoidal metallic nanoparticles

embedded in passive dielectric material for the cases when the ellipsoids are aligned

and randomly oriented.

• To calculate the refractive index and group velocity for the different values of ge-

ometrical factors, concentrations and metal fractions of identical ellipsoidal metal

shell-dielectric core nanoparticles embedded in passive dielectric material for the

cases when the ellipsoids are aligned and randomly oriented.

• To describe propagation of light in each of the above cases using the computed group

velocities.

• To compare and contrast results computed to composites with aligned ellipsoids to

that with randomly oriented ellipsoids.

1.4 Significance of the Study

Currently the optical response of metallic nanoparticles is a topic of great interest which

is investigated both theoretically and experimentally for the purposes of further under-

standing of the optical effects and to exploit these novel effects in broad activities of

applications. So this study will contribute important informations to researchers and

experts in the areas of nanoparticles and their applications.



Chapter 2

Theoretical Background

2.1 Maxwell equations

Jams C. Maxwell modified and restated the basic laws in electromagnetism in four equa-

tions which are known as Maxwell equations for the propagation of electromagnetic waves

in matter, in differential form they can expressed as [21,22]:

∇ ·D = ρ, (2.1.1)

∇× E = −∂B

∂t
, (2.1.2)

∇ ·B = 0, (2.1.3)

∇×H = J +
∂D

∂t
, (2.1.4)

where E is electric field, D is electric displacement, H is magnetic field intensity, B is

magnetic induction, ρ is the electric charge density, and J is the electric current density,

which is related to the electric field by:

J = σE, (2.1.5)

where σ is conductivity of the medium.

From equations (2.1.1) and (2.1.4) we can derive the equation of continuity

∇ · J + ρ
∂P

∂t
= 0. (2.1.6)

5
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From the Maxwell equations we can obtain equation for the force F on a charge exposed

to an electromagnetic field as [22]:

F = ρE +
J×B

c
(2.1.7)

where c is the speed of light in free space.

Electromagnetic waves applied on a material induce polarization and magnetization. Po-

larization P is the density of electric dipole moments and magnetization M is the density

of magnetic moments in the material and their relation to their corresponding fields are

given by:

D = εoE + P, (2.1.8)

H =
B

µo

−M, (2.1.9)

where εo and µo are respectively electric permittivity and magnetic permeability for free

space. For high frequency electromagnetic waves which are referred as optical waves the

magnetization of many materials especially metals and dielectrics is very weak compared

to their polarization for this reason the optical response of materials mostly described by

the polarization. Using the Maxwell equations (2.1.2) and (2.1.4) with equation (2.1.6)

we can derive equation for electromagnetic wave in material medium and written as [23]:

∇×∇× E +
1

c2
∂2E/∂t2 +

σ

εoc2
∂E/∂t +

1

εoc2
∂2P/∂t2 = 0. (2.1.10)

2.2 Nonlinear optics

In most optical phenomena the response of the material to electromagnetic radiation is

studied in terms of the relation between the induced polarization and the applied electric

field. Linear optics considers the linear dependence of the polarization on the electric field

that is expressed as [23]:

P(t) = εoχ
(1)E(t), (2.2.1)
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where P(t) and E(t) are respectively the time varying polarization and electric field

and χ(1) is the linear susceptibility of the medium. Nonlinear optics deals about optical

phenomena considering the nonlinear relations between the polarization and the electric

field and equation (2.1.11) is generalized by the expression of P(t) as a power series

expansion of E(t) [23]:

P(t) = εo[χ
(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...], (2.2.2)

where χ(2) and χ(3) are respectively are the second-order and third order susceptibilities.

As seen in equation (2.2.2) the polarization is combination of both linear and nonlinear

parts and can be written as:

P(t) = P(1)(t) + PNL(t). (2.2.3)

From equations (2.1.8) and (2.2.3) we obtain relation between the nonlinear polariza-

tion PNL and the electric field E and electric displacement D

D(t) = εo(1 + χ(1))E(t) + PNL(t). (2.2.4)

Combining equations (2.2.1) and (2.2.3) with (2.1.10) we obtain the equation of elec-

tromagnetic waves with a nonlinear term [23]:

∇×∇× E +
σ

εoc2
∂E/∂t +

1 + χ(1)

c2
∂2E/∂t2 +

1

εoc2
∂2PNL/∂t2 = 0. (2.2.5)

This equation shows that the nonlinear response of the medium acts as a source term

and it become significant only for high intensity radiations, which are lasers, for low

intensity radiations the nonlinear term vanishes and become equation to the case of linear

response [23]:

∇×∇× E +
σ

εoc2

∂E

∂t
+

(1 + χ(1))

c2

∂2E

∂t2
= 0 (2.2.6)
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2.3 Lorentz local field and oscillator models

2.3.1 Lorentz local field

The linear susceptibility is defined in terms of the macroscopic electric field E and polar-

ization P of the medium as in equation (2.2.1) but the polarizability α of nanoparticles

has to be defined in microscopic form in terms of local or effective electric field Eloc at

the site of the particle and its dipole moment p

P = Np, (2.3.1)

p = αEloc. (2.3.2)

Based on the assumption of a spherical cavity with the molecule located at the center

Lorentz obtained a relation between microscopic local field with the macroscopic field as

[10]:

Eloc = E +
P

3εo

(2.3.3)

The expression of linear susceptibility in terms of polarizability is obtained from equations

(2.2.1), (2.3.2) and (2.3.3) and it is expressed as:

χ(1) =
Nα

1− Nα
3

, (2.3.4)

where N is the number of particles per unit volume. Equation (2.3.4) is known as Lorentz-

Lorentz relation. Then the equation for dielectric function in terms of polarizability is

written as:

ε(1) − εh

ε(1) + 2εh

=
Nα

3
. (2.3.5)

Equation (2.3.5) is known as Clausius Mossotti relation, where ε(1) is dielectric function

of small spherical particle and εh is the dielectric function of the embedding host material

[23].
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2.3.2 Lorentz model

Lorentz model is a theory in which electrons and ions in materials were treated as harmonic

oscillators which are under the influence of deriving local electric field and certain damping

force. Based on this consideration the expression for dielectric function of the particle can

be obtained as [10]:

ε(1) = 1 + χ(1) = ε∞ +
ω2

p

ω2
o − ω2 − ıγω

, (2.3.6)

where ω is the frequency of the applied field, ωo is resonance frequency of the oscillator

and ωp is the plasma frequency that is given by the relation

ωp =

√
Ne2

mεo

, (2.3.7)

where m is electron effective mass, γ is the damping parameter and ε∞ is dielectric function

when oscillation is at much higher frequencies.

2.3.3 Drude model

This is a theory which modifies the Lorenz model to free electrons by letting zero the

value of the force constant to the Lorentz oscillator so ωo = 0 in equation (2.3.6) gives

the Drude dielectric function for free electron [23].

ε(1) = ε∞ −
ω2

p

ω2 + ıγω
. (2.3.8)

2.4 The Maxwell-Garnett effective medium theory

Effective medium theories are models which describe composite heterogeneous materials

through effective material properties determined based on certain approximations and

applying statistical averaging method to the microscopic Maxwell equations. Maxwell-

Garnett effective medium approximation is the easiest and widely used model for calcu-

lating effective dielectric quantities of composite materials consisting many components

[24–29] and in this model the embedding or background material is considered as host
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medium or matrix and the embedded components are considered as inclusions.

The Maxwell-Garnett approximation is applicable to linear medium with inclusions whose

size is very small compared to the wavelength of light waves in the effective medium so

that the electric field in the inclusions is assumed to be uniform and the inclusions are sep-

arated by large distances in other words their concentration is very dilute so the particles

are assumed to be noninteracting. For a medium composed of a single type or identical

ellipsoidal inclusions embedded randomly in a host material Maxwell-Garnett formula for

the effective dielectric function is given by [10]:

εeff =
(1− f)εh + fβε

1− f + fβ
, (2.4.1)

β =
1

3

∑
λk, (2.4.2)

λk =
εh

εh + Lk(ε− εh)
, (2.4.3)

where k = 1, 2, 3 represent the three principal axis of the ellipsoidal inclusions, Lk is

geometrical factor of the ellipsoids to the kth principal axes of the ellipsoids, ε and εh are

respectively the dielectric functions of the inclusions and the host material.

2.5 Refractive index and group velocity

2.5.1 Refractive index

Refractive index and dielectric function are often used to describe optical properties of

materials. They are generally complex quantities which can be affected by frequency and

intensity or amplitude of the incident light waves. For a nonmagnetic, isotropic and linear

medium they are related by:

n =
√

ε (2.5.1)

where the complex refractive index n = nr + ιni and the complex dielectric function of

the material ε = εr + ιεi . Then the real and imaginary parts are related by [10,21,22]:
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nr =

√
1

2
(εr +

√
ε2
r + ε2

i ) (2.5.2)

ni =

√
1

2
(−εr +

√
ε2
r + ε2

i ) (2.5.3)

2.5.2 Phase and group velocity

Light from a poly monochromatic source is composition of different electromagnetic waves

with different frequencies. The frequency ω and wave number k depend on each other as

given by:

ω =
ck

nr

. (2.5.4)

Phase velocity is the rate at which the phase of the wave propagate in space, that is,

the velocity at which the phase of any one frequency component of the wave will propagate

and it is expressed as [10,22]:

υp =
ω

k
. (2.5.5)

Group velocity is the rate at which the change in amplitude of the wave envelop or

packet will propagate. If the intensity of a signal varies with time, i.e., the spectrum of

the signal has finite width, the group velocity stands for the propagation speed of the

intensity modulation [30] and it is expressed by the relation

υg =
dω

dk
, (2.5.6)

υg =
c

ng

, (2.5.7)

ng = nr + ω
dnr

dω
, (2.5.8)

where c is speed of light in free space and ng is known as group index.

The frequency interval in which dnr

dω
> 0 is referred as normal dispersion region and υg < c.

The frequency interval in which dnr

dω
< 0 is called region of anomalous dispersion and some

times in the anomalous region apparently υg > c. Such virtual light whose speed exceed

the speed of light in free space is known as superlumenal light.
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The frequency distribution with respect to the wave vector k is expressed according to

the series expansion at k = ko at which the the frequency is central maximum, ωo,

ω(k) = ωo +
dω

dk
(k − ko) + .... (2.5.9)

In the equation (2.5.9) group velocity appear in the second term. Therefore this equation

has meaning in the case of weak dispersion of ω(k) for strong dispersions the higher terms

in this equation must be taken in to account and in this case group velocity loses its

physical meaning [30].



Chapter 3

Methods and Materials

3.1 Methods

To investigate and to solve the stated problems we employed analytical method that is

derivation of equations based on the theoretical concepts. and we applied the equations

for the numerical computations of the refractive index and group velocity. The variation

of refractive index and group velocity with the different values of the parameters of the

nanoellipsoidal inclusions analyzed numerically with the help of computational tools;using

soft wares.

3.2 Soft wares

The soft wares used in this project are:

Matlab to develop and process soft ware codes for the numerical simulation of the

equations. And plotting figures which show the results.

Mathematica is used as alternative soft ware for managing long analytical and numer-

ical expressions. Because it is preferable in simplifying and handling bulged equations.

Latex to process the edition and compilation of the thesis paper with the standard

quality.

13



Chapter 4

Results and Discussion

4.1 Analytical description of refractive index and group
velocity in composite with pure metal ellipsoidal
nanoparticles

The refractive index of a medium is calculated from the dielectric function that is deter-

mined from the polarizability of the inclusions. So we need expression for the polarizability

of the nanoellipsoidal metallic particle and this can be derived from the electric potential

distribution in and out side the ellipsoidal particle.

The dilute concentration of particles lead us to neglect dipole-dipole interactions between

the particles and long wave approximation help us to assume uniform electric field in

the particles. Consider an ellipsoidal metallic particle with semi axis, a, b and c, where

a > b > c. Assume the particle is embedded in passive host material and an incident field

Eo is applied parallel to a principal axis, for the instance consider that the semi major axis

c is parallel to the field, as shown in the following figure. The potential distribution can

be described using ellipsoidal coordinates (ξ, η, ζ) and the potential function φ satisfies

the Laplace equation. The relations between the cartesian (x, y, z) and the ellipsoidal co-

ordinates can be used to express the Laplace equation in terms of ellipsoidal coordinates.

The solutions to this equation are the ellipsoidal harmonic potentials at the different con-

focal ellipsoidal surfaces described by ξ. These harmonic potentials are multiples of the

potential φo due to the applied field Eo and they can be written as [10]:

φo = −EoZ

14
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Figure 4.1: Ellipsoidal pure metallic nanoparticle embedded in passive dielectric host
material

φm = Aφo (4.1.1)

φp = BIφo (4.1.2)

φh = (1−BI)φo (4.1.3)

I =

∫ ∞

ξ

dq

(q + c2)f(q)
and f(q) = [(q + a2)(q + b2)(q + c2)]1/2 (4.1.4)

where φp, φm, and φh are respectively the potentials due to the polarized particle, in

side the metallic particle and out side the particle in the host material. A and B are

constants, I is an integral factor, for the points on the ellipsoidal metal surface ξ = 0

in this case I = 2L
abc

, L is the geometrical factor with respect to c, and q is ellipsoidal

coordinate.

Applying the boundary conditions for the potentials and normal component of the electric

displacement at the metal surface the constants can be determined, and using the equation
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(2.3.2) the equation to the polarizability α of the particle is obtained as [10,31,32]:

α = v
εm − εh

εh + L(εm − εh)
(4.1.5)

where εm and εh are respectively the dielectric functions of the metallic ellipsoidal nanopar-

ticle and the dielectric host material and v is volume of the particle.

4.1.1 When all pure metal inclusions are aligned in passive di-
electric material

For identical nanoellipsoidal pure metallic inclusions which are aligned so that their re-

spective principal axis are parallel to each other and when the applied field is parallel to

one of their principal axis the polarizability of the particles with respect to this principal

axis is given by the relation (4.1.5).

For the passive host material its dielectric function εh is considered to be a positive real

value. For the metallic nanoparticles their dielectric function εm is taken in Drude form.

Then the real and imaginary parts respectively denoted by εmr and εmi can be expressed

by:

εmr = ε∞ −
1

z2 + γ2
, (4.1.6)

εmi =
γ

z(z2 + γ2)
(4.1.7)

z =
ω

ωp

(4.1.8)

γ =
τ

ωp

(4.1.9)

where z is frequency of the applied field ω to the unit of the plasma frequency ωp and

γ is damping constant that is the frequency of electrons collision τ to the unit of the

plasma frequency. With the help of equations (4.1.5) - (4.1.7) and passive host material

consideration the real and imaginary parts of the polarizability can be expressed as:

αr =
1

L
(1− srεh

|s|2
) (4.1.10)

αi =
siεh

L|s|2
(4.1.11)
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s = Lεm + (1− L)εh (4.1.12)

sr = εh + L(εmr − εh) (4.1.13)

si = Lεmi. (4.1.14)

It is seen from the equations (4.1.10) and (4.1.11) that both real and imaginary parts

decrease with increase in geometrical factor. The resonance conditions are determined

from the minimum of the denominators of these equations. Since the imaginary part of

s is much smaller than its real part the resonance condition is obtained from sr = 0 and

this leads to single resonant point where the real part of the dielectric function for the

metallic particles be:

εmr = (1− 1

L
)εh (4.1.15)

The resonance frequency is obtained from equations (4.1.6) and (4.1.10) as:

zR =
1√

ε∞ + ( 1
L
− 1)εh

(4.1.16)

From equation (4.1.14) we can reveal that resonance frequency increases when geometrical

factor is increased. The values of the real and imaginary polarizabilities at the resonant

frequency for weak damping case approximated to be:

αr(zR) ≈ 1

L
(4.1.17)

αi(zR) ≈ εhZ
3
R

L2γ
(4.1.18)

both polarizablity parts decrease when the geometrical factor of inclusions increased and

vise versa.
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4.1.2 Effective dielectric function of the composite

For the identical and aligned ellipsoidal pure metal nanoinclusions embedded in the passive

material with dilute concentration the effective dielectric function of the composite in

terms of polarizability of the inclusions is derived from the Maxwell-Garnett effective

dielectric formula with equations (2.4.1)-(2.4.3) and (4.1.5) and it can be expressed as:

ε− εh

εh + L(ε− εh)
= fα (4.1.19)

Where f = NV is volume fraction, filling factor or concentration of inclusions in the

composite. V is volume of each ellipsoidal particle N is number of particles to the volume

of the composite and ε is effective dielectric function of the composite medium. For a

very dilute concentration of inclusions terms with f 2 are negligible thus neglected from

equation (4.1.17) then the real and imaginary parts of the effective dielectric function can

be expressed as:

εr = (1 +
fαr

1− 2fLαr

)εh (4.1.20)

εi =
fαiεh

1− 2fLαr

(4.1.21)

From equations (4.1.18) and (4.1.19) we observe that both parts of the effective di-

electric functions will increase with the concentration of the inclusions and decrease as

their geometrical factor is increased. Assuming weakly damping case their approximate

values at the resonance frequency are:

εr(zR) ≈ (1 +
f

L
)εh (4.1.22)

εi(zR) ≈ fε2
h

L2εmi

(4.1.23)
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4.1.3 When pure metal ellipsoidal nanoparticles are randomly
oriented in passive dielectric material

The identical metallic nanoinclusions have the same dielectric function expressed in Drude

form. The polarizability of a nanoellipsoidal metallic particle to the direction parallel to

a principal axes denoted by k = 1, 2, 3 is written as [10,18]:

αk = v
εm − εh

sk

(4.1.24)

sk = εh + Lk(εm − εh) (4.1.25)

where αk is the polarizability of the particle, Lk is the geometrical factor of the particle

with respect to the kth principal axes and v is volume of a particle. The real and imaginary

parts of polarizability per particle volume are given by:

αkr =
1

Lk

(1− skrεh

|sk|2
) (4.1.26)

αki =
skiεh

Lk|sk|2
(4.1.27)

skr = εh + Lk(εmr − εh) (4.1.28)

ski = Lkεmi (4.1.29)

where αkr and αki are respectively the real and imaginary parts of polarizabilities per

particle volume.

Equations (4.1.26) and (4.1.27) show that for a general type of ellipsoid (a 6= b 6= c)

there is one resonance point with respect to each principal axes and totally there are three

possible resonance frequencies [10,18].

In the composite medium every ellipsoidal particle is polarized to the direction of

the applied electric field that may not be parallel to a principal axes but its average

polarization is the sum of the average values of its components along the three principal

axes. All the three directions of the principal axes are equally probable thus the average

polarizability of a randomly oriented ellipsoidal particle is expressed by [10]:
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αav =
1

3
(α1 + α2 + α3) (4.1.30)

αav =
1

3

∑
αk (4.1.31)

The nanoellipsoidal metallic particles are considered to be identical in composition, vol-

ume and shape then their corresponding semi major and minor axes, geometrical factors

and polarizabilities are the same. Assuming diluted concentration of the particles we can

use the Maxwell-Garnett formula for the effective dielectric function of the composite

medium:

ε = εh(1 +
fαav

1− fAav

) (4.1.32)

Aav =
1

3
(L1α1 + L2α2 + L3α3) (4.1.33)

The composite medium for very small filling factor of the particles, f << 1, terms

with higher powers of f are negligible then the real and imaginary parts of the effective

dielectric function of the medium are expressed by the following equations.

εr = (1 +
fαavr

1− 2fAavr

)εh (4.1.34)

εi =
fαaviεh

1− 2fAavr

(4.1.35)

αavr =
1

3
(α1r + α2r + α3r) (4.1.36)

αavi =
1

3
(α1ri + α2i + α3i) (4.1.37)

Aavr =
1

3
(L1α1r + L2α2r + L3α3r) (4.1.38)

Aavi =
1

3
(L1α1i + L2α2i + L3α3i) (4.1.39)

A general type of ellipsoid has unequal geometrical factors, L1 6= L2 6= L3 for such

type of ellipsoids it is more complicated to describe the effects of the different factors
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on the polarizabilities and effective dielectric functions. For simplicity, in this study the

particles are considered to be spheroids, spheroidal type ellipsoid has identical semi minor

or major axes, for a prolate type spheroid a > b = c and the geometrical factors with

respect to the major and minor axes are, L1 6= L2 = L3 and related by [10]:

L1 + 2L2 = 1 (4.1.40)

To a spheroid the changes in the geometrical factors are interrelated, the increase of the

one encounters decrease of the other one as expressed by relation:

4L1 = −24L2 (4.1.41)

To randomly oriented spheroidal ellipsoids there are two resonance frequencies which are

expressed by equation:

zRk =
1√

ε∞ + ( 1
Lk
− 1)εh

(4.1.42)

where k = 1, 2 and the first and second resonance frequencies respectively are zr1 and zr2,

zr1 ≤ zr2 for L1 ≤ L2. Equation (4.1.42) shows resonance frequency increases when its

corresponding geometrical factor is increased.

Considering weakly damping case we can deduce the the variation of the real and imag-

inary parts of the polarizability and effective dielectric function with geometrical factor

from the equations (4.1.26), (4.1.27) and (4.1.34)-(4.1.37). Both αavr and εr show increase

as L1 increases in the range L1 > L2 and decrease as L1 increases in the range L1 < L2.

The effect of the geometrical factor on the imaginary parts is restricted in frequency in-

tervals. In the interval z > 1√
ε∞−εh

, higher frequency region, αavi and εi show the same

variation as the real parts. And this effect is reversed in the interval z < 1√
ε∞−εh

, the fre-

quency region considered in this study, in this interval αavi and εi increase as L1 increases

in the range L1 < L2 and they are decreased as L1 increases for L1 > L2.

We observe that both parts of the effective dielectric functions increase when concentra-

tion of the inclusions increases.
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4.1.4 Refractive index in composite with pure metal ellipsoidal
nanoparticles

The real and imaginary parts of the refractive index of a composite medium with pure

metal ellipsoidal nanoinclusions are calculated from the effective dielectric functions using

the equations (4.1.20) and (4.1.21) when the ellipsoids are aligned and equations (4.1.34)

and (4.1.35) are used when the ellipsoids are randomly oriented in the passive host material

the expressions for the real and imaginary parts of the refractive indexes are:

nr =

√
1

2
(εr +

√
ε2
r + ε2

i ) (4.1.43)

ni =

√
1

2
(−εr +

√
ε2
r + ε2

i ) (4.1.44)

With the help of the analysis in the previous sections we can show that both the

maximum values to nr and ni will increase as the volume filling factor or concentration

of the inclusions is increased for both cases. Equations (4.1.20) show that for the case of

aligned ellipsoids the maximum value of nr decrease when L1 increases and from (4.1.34)

and (4.1.35) it is observed that when nanometallic ellipsoids are randomly oriented the

maximum value of nr at a resonance frequency will increase when the geometrical factor

which corresponds to the resonance frequency increases.

4.1.5 Group velocity of light pulses in the composite with with
pure metal ellipsoidal nanoparticles

When all ellipsoidal particles are aligned and when they are randomly oriented in the

passive dielectric material the group velocity is computed by using equation (4.1.43) into

the equations (4.1.46) and (4.1.47).

υg =
∂z

∂k
, (4.1.45)

υg =
c

ng

, (4.1.46)

ng = nr + z
∂nr

∂z
, (4.1.47)
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4.2 Analytical description of refractive index and group
velocity in composite with metal shell-dielectric
core ellipsoidal nanoparticles

The polarizability of the metal covered dielectric particles depend on the dielectric prop-

erties of the core material, the metallic shell, and the host material and also on their

geometrical factors and orientation. The equation for the polarizability that describes

these dependenceis is derived in the same way as in the pure metal case based on electric

potential distribution. Here we consider thickness of the metal shell to be small thus the

confocal core and shell ellipsoids have nearly the same geometrical factors.

The electric potentials at different regions are expressed by the following equations [10]:

Figure 4.2: Metal shell-dielectric core nanoellipsoid embedded in passive dielectric host
material

φo = −EoZ

φd = Aφo (4.2.1)

φm = (B − CIi)φo (4.2.2)

φh = (1−DIo)φo (4.2.3)
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φp = DIoφo (4.2.4)

Ii =

∫ ∞

ξ

dq

(q + c2
i )f(q)

and Io =

∫ ∞

ξ

dq

(q + c2
o)f(q)

(4.2.5)

where ci and co are semi major axes respectively to the inner and outer ellipsoids, for a

thin metal shell I and L are approximately the same to the inner and the outer ellipsoids.

Applying the boundary conditions and equation for dipole moment in terms of polariz-

ability α and applied field Eo equation for the polarizability can be derived as [10]:

α = DI (4.2.6)

α =
1

L
(1− uεh

w + (1− L)uεh

) (4.2.7)

u = (
1

Lp
− 1)εm + εd (4.2.8)

w = (1− L)(ε2
m + (

1

p(1− L)
− 1)εdεm) (4.2.9)

where εd, εm and εh are respectively dielectric functions of the dielectric core, and the

metal shell and the host matrix and p is the volume fraction of the metal shell in the

ellipsoids.

4.2.1 When all metal shell-dielectric core ellipsoidal nanoparti-
cles are aligned in passive dielectric material

The nanoellipsoidal particles are considered to be identical in composition, volume and

shape, which are formed by confocal thin metal shell and dielectric core. In this case all

particles are aligned like the particles in section 4.1 and their concentration is very small.

The dielectric function of the dielectric core εd is taken to be real positive and for the

metal shell εm is in Drude form. The electric field is applied parallel to a principal axis of

the aligned inclusions. The effective polarizability of the inclusions that corresponds to

this principal axes can be expressed by relation [10,11];

α =
1

L
− h

b
(4.2.10)
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h =
1

L(1− L)
(
εm

Lp
+ εd)εh (4.2.11)

b = ε2
m + qεm + εdεh (4.2.12)

q =
εd

p(1− L)
+

εh

pL
(4.2.13)

where p is assumed to be small i,e p << 1 and L is geometrical factor with respect to the

axes of the ellipsoid which is considered to be parallel to the polarizing field. We observe

in equation (4.2.13) q is a real value. The real and imaginary parts of h, b and α are

respectively expressed by;

hr =
1

L(1− L)
(
εmr

pL
+ εd)εh (4.2.14)

hi =
εhεmi

pL2(1− L)
(4.2.15)

br = ε2
mr + qεmr + εdεh − ε2

mi (4.2.16)

bi = (2εmr + q)εmi (4.2.17)

q =
εd

p(1− L)
+

εh

pL
(4.2.18)

αr =
1

L
+

hibi − hrbr

b2
r + b2

i

(4.2.19)

αi =
hibr − hrbi

b2
r + b2

i

(4.2.20)

The polarizability and dielectric function can be analyzed by assuming very weak damping

of plasma in the metal part, i,e γ << 1 then about frequencies close to plasma frequencies

εmi << 1. The resonance condition is obtained from the minimum of equations (4.2.19)

and (4.1.20) this happens when br = 0 and this leads to the equation;

ε2
mr + qεmr + εdεh = 0 (4.2.21)

Equation (4.2.21) has two roots for the real part of dielectric function of the metallic shell.

Considering that q >> εdεh the first and the second roots are respectively approximated

by the following relations

εmr1 = −q (4.2.22)
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εmr2 = −εdεh

q
(4.2.23)

Then using equation (4.1.6) the corresponding two resonance frequencies are given by the

equations

zR1 =
1√

ε∞ + q
(4.2.24)

zR2 =
1

√
ε∞

(4.2.25)

From the above equations it is observed that the geometrical factor L and the metal

volume fraction p of inclusions affect significantly the first resonance frequency zR1 but

their effect is very small on the second one so zR2 seems to be fixed point. zR1 increases

when p increases and also increase when L is increased up to the limiting value about

0.5223 when L is increased above this value zR1 will decrease. The real and the imaginary

parts of the polarizability at the resonance frequencies are determined from equations

(4.2.10)-(4.2.20) and thin metal shell approximation, p << 1.

αr(zR1) ≈
εd − εh

εh + L[εd − εh]
(4.2.26)

αi(zR1) ≈ −
εh

pL2(1− L)εmi

(4.2.27)

αr(zR2) ≈
εd

εh + Lεd

(4.2.28)

αi(zR2) ≈ −
pLε2

dεh

(εh + L(εd − εh))2εmi

(4.2.29)

Effective DF of the composite in this case is expressed by the same equation as the case

with aligned pure metal inclusions, equations (4.1.20) and (4.1.21), the real and imaginary

effective dielectric functions for the dilute concentration of the ellipsoidal metal covered

dielectric nanoparticles can be:

εr = (1 +
fαr

1− 2fLαr

)εh (4.2.30)

εi =
fαiεh

1− 2fLαr

(4.2.31)
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4.2.2 When the metal shell-dielectric core ellipsoidal nanopar-
ticles are randomly oriented in passive dielectric material

In this case we use the same equations and considerations as in the case of randomly

distributed pure metallic inclusions, but here the dielectric function of the metallic shell

εm and the dielectric function of the dielectric core εd are considered for the composite

ellipsoidal particles. The relations for polarizabilities to the aligned metal shell-dielectric

core particles are generalized for the randomly distributed ones by inserting subscript k

to denote one of the three alternate principal axes directions and real and imaginary parts

of polarizability with respect to the kth, k = 1, 2, 3, principal axes are given by:

αkr =
1

Lk

+
hkibki − hkrbkr

b2
kr + b2

ki

, (4.2.32)

αki =
hkibkr − hkrbki

b2
kr + b2

ki

, (4.2.33)

hkr =
εh

Lk(1− Lk)
(
εmr

pLk

+ εd), (4.2.34)

hki =
εhεmi

pL2
k(1− Lk)

, (4.2.35)

bkr = ε2
mr + qkεmr + εdεh − ε2

mi, (4.2.36)

bki = (2εmr + qk)εmi, (4.2.37)

qk =
εd

p(1− Lk)
+

εh

pLk

. (4.2.38)

Following the same procedure as in the previous section for resonance condition bkr=0 is

required then for small damping case this is obtained from the equations (4.2.32)-(4.2.33)

as:

ε2
mr + qkεmr + εdεh = 0 (4.2.39)

It is shown that for general type ellipsoids, which have unequal semi minor and major

axes, there are two roots of equation (4.2.39) to each of the three principal axes and

totally there are six roots hence there can be up to six resonance frequencies which are

given by two set of relations each representing three resonance frequencies:

zkRa =
1√

ε∞ + qk

, (4.2.40)
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zkRb =
1√

ε∞ + εdεh

qk

, (4.2.41)

since εdεh

qk
� ε∞ the second equation can be approximated to

zkRb ≈
1

√
ε∞

(4.2.42)

Equation (4.2.42) shows that the different k directions have approximately the same res-

onance frequency zkRb. In this case the inclusions are considered to be identical spheroids

then k = 1, 2 and L1 + 2L2 = 1. Actually there are two resonance frequencies zkRa.But

from equations (4.2.40) and (4.2.38) we deduced that the two resonance frequencies differ

by a very small amount, ∝ 10−3 and less, for this reason they are not distinguishable.Hence

to this composite only two resonance frequencies are significantly observable.

4.2.3 Effective dielectric function of the composite medium

The relations for the effective dielectric function as well as its real and imaginary parts

are expressed by the following equations

ε = (1 +
fαav

1− fAav

)εh, (4.2.43)

εr = (1 +
fαavr

1− 2fAavr

)εh, (4.2.44)

εi =
fαaviεh

1− 2fAavr

, (4.2.45)

αavr =
1

3
(α1r + α2r + α3r), (4.2.46)

αavi =
1

3
(α1i + α2i + α3i), (4.2.47)

Aavr =
1

3
(L1α1r + L2α2r + L3α3r), (4.2.48)

where Aavr is the real part of Aav.
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4.2.4 Refractive index of the composite medium

The real and imaginary parts of the refractive index of the composite medium with metal-

shell dielectric core nanoellipsoids are given by the same equations as in the composite

with pure metal inclusions. Equations (4.2.30)-(4.2.31) can be used to composites with

aligned nanoellipsoids and (4.2.44) and (4.2.45) are applied to composites with randomly

oriented nanoellipsoids to compute real and imaginary parts of the refractive index in the

medium

nr =

√
1

2
(εr +

√
ε2
r + ε2

i ), (4.2.49)

ni =

√
1

2
(−εr +

√
ε2
r + ε2

i ). (4.2.50)

4.2.5 Group velocity in the composite with ellipsoidal metal
shell-dielectric core nanoparticles

The group velocity is calculated using the equations for the real refractive index (4.2.49)

with the equation

υg =
c

nr + z ∂nr

∂z

(4.2.51)

From equation (4.2.51) we conclude that group velocity get its maximum value at fre-

quency where real part of the refractive index is minimum value, and become minimum

value at resonance frequency where the real part of the refractive index is maximum.

Group velocity can be positive and decreases in the frequency interval of normal disper-

sion, ∂nr

∂z
> 0, and it can be positive and decreasing or negative and decreasing in the

frequency interval of anomalous dispersion, ∂nr

∂z
< 0. In the anomalous dispersion region

at frequencies where the group velocity index |ng| < 1, group velocity has positive or

negative value which exceed the speed of light in free space this virtual case is referred as

superluminal light.
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4.3 Numerical description of refractive index in com-
posite with ellipsoidal pure metal nanoparticles

The numerical computation of the variation of real part of the refractive index with

geometrical factor and concentration of nanometallic inclusions is carried out using the

equation (4.1.43) with equations (4.1.20) and (4.1.21) for the case when all inclusions are

aligned and equations (4.1.34) and (4.1.35) for the case when the inclusions are randomly

oriented in the passive dielectric material and the results are plotted in figures 4.3-4.4

using the following parameters for all cases; ε∞ = 4.5, εh = 2.25, εd = 6, γ = 0.0115,

ωp = 1.46× 1016 rad
s

for silver.

4.3.1 The effect of geometrical factor of the ellipsoidal pure
metal nanoparticles on the refractive index

Figures 4.3 illustrate the variation of real part of refractive index with frequency of the

incident light for different values of the geometrical factor. We observe that for the case

when the pure metal nanoellipsoids are aligned there is a single resonance frequency.

There are two resonance frequencies for the case when they are randomly oriented. In

both cases resonance frequency increases, shifted to the right, when the corresponding

geometrical factor increased and it decreases when the geometrical factor decreased. But

when geometrical factor increased the maximum value of the real part of refractive index

shows a decrease and its minimum value shows an increase.
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Figure 4.3: The real part of the refractive index nr versus frequency z of applied field
for three geometrical factors when the pure metal nanoellipsoids are aligned part (a) and
randomly oriented part (b) in passive dielectric material with concentration f = 0.001

4.3.2 Effect of the concentration of the ellipsoidal metallic nanopar-
ticles in the composite on the refractive index

Figures 4.4 illustrate how the concentration of the nanometallic ellipsoids affect the real

part of the refractive index in the composites. In the figure 4.4(a) the real part of the

refractive index increases with the increasing concentration of the aligned metallic na-

noellipsoids to frequencies z < 0.273 and it decreases to the frequencies z > 0.273. In

the figure 4.4(b) to the composite with randomly oriented metallic nanoellipsoids the

refractive index increases with the increasing concentration of inclusions in the intervals

z < 0.273 and 0.305 < z < 0.355 but it decreases with the increasing concentration in
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the regions 0.273 < z < 0.305 and z > 0.355. For both cases the resonance frequencies

where the refractive index is maximum and the frequencies where refractive index is min-

imum remain the same for the different concentrations of the inclusions, but the peak

value of refractive index increases while its minimum value decreases with the increasing

concentration.

Figure 4.4: The real part of refractive index nr versus frequency of applied field z for
three values volume filling factor of the pure metal nanoellipsoidal inclusions embedded in
passive dielectric material with geometrical factor L = 0.2, part (a) is when the ellipsoids
are aligned and part (b) is when they are randomly oriented
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4.4 Numerical description of refractive index in com-
posite with ellipsoidal metal shell-dielectric core
nanoparticles

The numerical description of the effect on the real part of refractive index by the geo-

metrical factor and concentration of metal covered dielectric core inclusions in passive

dielectric material is computed using equations (4.2.50) and (4.2.19) and (4.2.20) with

equations (4.2.30) and (4.2.31) for the case when inclusions are aligned and equations

(4.2.44) and (4.2.45) for the case when they are randomly oriented.

The dielectric function of the dielectric core is chosen to be real, εd = 6, the volume

fraction of the metal in the ellipsoidal inclusion p = 0.1 and the same values are used for

the parameters used in the previous section.

4.4.1 The effect of geometrical factor of the ellipsoidal metal
shell-dielectric core nanoparticles on the refractive index

As shown in the figures 4.5 both cases have the same resonance frequencies and the effect

on the second resonance frequency by the geometrical factor is vary small, not observ-

able, but there is slight shift of the first resonance frequency with the geometrical factor.

With the increase of the geometrical factor the maximum of the real part of refractive

index shows decrease in aligned nanoellipsoids and it show increase in randomly oriented

nanoellipsoids. After the first resonance frequency there is an interval for anomalous

dispersion where the refractive index decreases to minimum value. This minimum value

increase with the geometrical factor in composite with aligned nanoellipsoids, and it de-

creases with the increase of the geometrical factor in the composite of randomly oriented

nanoellipsoids.
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Figure 4.5: The real part of refractive index nr versus applied field frequency z for three
values of geometrical factor in composite with metal shell-dielectric core nanoellipsoids
embedded in passive materia with concentration f = 0.001 and volume fraction of the
metal part in the ellipsoids p = 0.1, part (a) is when the ellipsoids are aligned and part
(b) is when they are randomly oriented

4.4.2 The effect of the concentration of the ellipsoidal metal
shell-dielectric core nanoparticles on the refractive index

In the figures 4.6 we observe that resonance frequencies are the same for the two cases

and in both cases the real part of the refractive index increases as the concentration

of nanoellipsods increase. The differences in the two cases are the peak values of the

refractive index are greater for the aligned nanoellipsods case than the corresponding

values in the case of randomly oriented ellipsoids. The minimum value of the refractive
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index in the case of aligned ellipsoids is less than the corresponding minimum value in

randomly oriented nanoellipsoids.

Figure 4.6: The real part of refractive index nr versus applied field frequency z for three
values of concentration of metal shell-dielectric core nanoellipsoids embedded in passive
dielectric material with geometrical factor L = 0.25 and p = 0.1, part (a) is for aligned
ellipsoids case and part (b) is for the randomly oriented ellipsoids case
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4.4.3 The effect of the metal volume fraction in the metal shell-
dielectric core nanoparticles on the refractive index

In the figures 4.7 we observe that resonance frequencies are the same in the two cases.

In both cases, the real part of the refractive index increases as the concentration of

nanoellipsods increase. The differences in the two cases are peak values of the refractive

index are greater for the aligned nanoellipsods case than the corresponding values in the

case of randomly oriented ellipsoids, and minimum value of the refractive index in the case

of aligned ellipsoids is less than the corresponding minimum value in randomly oriented

nanoellipsoids.
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Figure 4.7: The real part of refractive index nr versus applied field frequency z for three
values of the metal volume fraction in the metal shell-dielectric core nanoellipsoids with
geometrical factor L = 0.25 and their concentration f = 0.001 in passive material,parts
a and b are respectively when the nanoellipsoidal inclusions are aligned and randomly
oriented

4.5 Numerical description of group velocity in com-
posite with ellipsoidal pure nanoparticles

The effects of geometrical factor and concentration of ellipsoidal pure metal nanoparticles

on group velocity is analyzed numerically with the help of equations (4.1.43) with (4.1.47)

and (4.2.49) with (4.2.50) and the results are plotted as shown in the figures 4.8-12. the

parameters used as constant values in previous section considered again in this section.
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4.5.1 The effect of the geometrical factor of the ellipsoidal pure
metal nanoparticles on group velocity

The figures 4.8 describe effect of the geometrical factor on the group velocity in com-

posite with ellipsoidal pure metal nanoparticles. Concentration of the ellipsoidal metallic

nanoparticles is considered to be vary dilute, f = 0.001, in the figures it is shown that

0 < υg/c < 1 to all frequencies thus both cases describe light propagating to the forward

at group velocity below the speed of light in free space. An increase in the geometrical

factor associated to a resonance frequency causes increase of the peak value of group ve-

locity about that resonance frequency for both cases.

The main differenc due to single resonance condition in aligned metallic nanoellipsoids

the resulting frequency at which group velocity is peaked is one but in randomly oriented

metallic nanoellipsoids there are two resonance points. The group velocity is observed to

peak at two frequencies in the randomly oriented ellipsoids. The peak value of group ve-

locity in aligned nanoellipsoids is greater than the corresponding peak value in randomly

oriented nanoellipsoids. Thus the composites with aligned metallic nanoellipsoids allow

transmission of forward light pulses at resonance frequency at greater speed than that in

the randomly oriented metallic nanoellipsoids.
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Figure 4.8: Group velocity normalized to speed of light in free space υ
c

versus applied
field frequency z in composite with pure metal nanoellipsoids for three geometrical factor
values. concentration of the ellipsoids f = 0.001 respectively parts (a) and (b) are when
the ellipsoids are aligned and randomly oriented in the passive material

4.5.2 The effect of concentration of ellipsoidal pure metal nanopar-
ticles on the group velocity

As shown in the figures 4.9 increase in concentration of theellipsoidal metallic nanoparti-

cless increases the group velocity and its peak value in the anomalous dispersion region,

and decrease group velocity and its minimum in the region of normal dispersion. In the

anomalous region it is seen υg > 1 for higher concentrations in both cases. Group velocity

increase in anomalous region with concentration of nanometal ellipsoids more in aligned

nanoellipsoids case than in the randomly nanoellipsoids case. The peak value of group



40

velocity is greater in the case of aligned ellipsoids than the value in the case of randomly

oriented ellipsoids.

Figure 4.9: Group velocity to speed of light in free space υ
c

versus applied field frequency
z in composite with pure metal nanoellipsods for three values of their concentration and
their geometrical factor L = 0.2, respectively parts (a) and (b) are when the ellipsoids
are aligned and randomly oriented in the passive material
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4.6 Numerical description of group velocity in com-
posite with metal shell-dielectric core ellipsoidal
nanoparticles

The group velocity of light pulses in composite with metal shell-dielectric core nanoellip-

soids embedded in passive material can be analyzed numerically using equations for the

effective dielectric functions for the medium and and equations (4.2.49) and (4.2.50).

4.6.1 The effect of the geometrical factor of the metal shell-
dielectric core ellipsoidal nanoparticles on the group ve-
locity in composite

The figures 4.10 illustrate how the variation of group velocity with frequency is changed

with the changing geometrical factor. In both cases; the aligned and randomly oriented

inclusions, group velocity is minimum at resonance frequencies and maximum at the end

of the anomalous region. Between the peak values group velocity has nearly uniform value

in the intermediate region, 0.12 ≤ z ≤ 0.43. The frequencies at which group velocity be

minimum and maximum are affected by the change in geometrical factor in the same way

as mentioned in section 4.5.1.

With the increasing geometrical factor the observed differences between the two cases are,

in composite with aligned inclusions the minimum value of the group velocity increases

while its maximum decreases at the two resonance points, in composite with randomly

oriented inclusions at first resonance frequency the minimum value of the group velocity

decreases and its peak value increases. At the second resonance frequency the minimum

value of group velocity increases while its peak value decreases with the increasing geo-

metrical factor from zero up to 0.5223. For the increase in the geometrical factor beyond

0.5223 the minimum value decreases while the peak value increase.
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Figure 4.10: Group velocity to speed of light in free space υ
c

versus applied field frequency
z in composite with metal shell-dielectric core nanoellipsoids for three geometrical factor
values. concentration of the nanoellipsoids f = 0.001 and volume fraction of metal part
p = 0.1, respectively parts (a) and (b) are when the ellipsoids are aligned and randomly
oriented in the passive material

4.6.2 The effect of concentration of metal shell-dielectric core
ellipsoidal nanoparticles on the group velocity

The changes in group velocity with the change of the concentration of the aligned and

randomly oriented ellipsoidal metal shell-dielectric core nanoparticles are illustrated re-

spectively in the figures 4.10 (a) and (b). It is observed that in both cases the effect of

concentration of inclusions on the group velocity is the same. At low frequencies up to

the first resonance frequency, and about the second resonance frequency group velocity

decreases when the concentration of the inclusions increases. Peak values of the group
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velocity at both resonance points increases when the concentration increase.

Figure 4.11: Group velocity to speed of light in free space υ
c

versus applied field frequency
z in composite with metal-shell dielectric core nanoellipsoids for three values of their con-
centration, with geometrical factor L = 0.25 and the metal fraction p = 0.1, respectively
parts (a) and (b) are when the ellipsoids are aligned and randomly oriented in the passive
material
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4.6.3 The effect of metal volume fraction in the metal shell-
dielectric core ellipsoidal nanoparticles on group velocity

In composites with metal shell-dielectric core ellipsoidal nanoparticles the effects on the

group velocity by the volume fraction of the metal part are illustrated in the figures

4.12(a) and (b). with increase in volume fraction of the metal part there is significant

increase of the first resonance frequency and vary small (insignificant) decrease of the

second resonance frequency. An increase in the volume fraction of the metal part causes

a significant increase of the peak value of group velocity, and a decrease of its minimum

value at first resonance frequency. And increases the peak and minimum values of the

group velocity at the second resonance frequency.

The differences between the two cases are peak values of group velocities in the case of

aligned inclusions is greater than the corresponding peak values in randomly oriented

inclusions. And in aligned inclusions the minimum value of group velocity is smaller than

the corresponding minimum values in randomly oriented inclusions.
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Figure 4.12: Group velocity to speed of light in free space υ
c

versus applied field frequency
z in composite with metal-shell dielectric core nanoellipsoids for three values of the metal
volume fraction in the ellipsoids with geometrical factor L = 0.25 and concentration
f = 0.001, respectively parts (a) and (b) are when the ellipsoids are aligned and randomly
oriented in the passive material



Chapter 5

Conclusion and future outlook

In this study we focused on composite medium consisting identical inclusions which are

nanoellipsoids embedded in passive dielectric material. To the inclusions of pure metal

and metal covered dielectric core types the cases when all aligned and when they are

randomly oriented are considered. The concentration of the inclusions in the composite

is chosen to be dilute, f ∼ 10−3.

The effects on the real part of the refractive index and the group velocity of the wave

packets in the composite due to the changes in the geometrical factor, fraction of metal

part and concentration of inclusions computed and analyzed for the different cases are

shown in the figures 4.3 - 4.12 and we have compared the results between aligned and

randomly oriented inclusions of the same type and between different types of inclusions

with the same arrangement.

As we have seen in all the cases considered in this study the concentration of the na-

noellipsoidal inclusions in the composites has considerable effect on the maximum and

minimum values of the refractive index and the group velocity but it doesn’t change the

resonance frequencies.

The geometrical factor of the nanoellipsodal inclusions determine the resonance frequen-

cies and maximum and minimum values of the refractive index and the group velocity. In

the case of pure metal ellipsoids and aligned metal covered dielectric core ellipsoids the

observed effects of the geometrical factor are comparable at both resonance frequencies

46
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but in the case of randomly oriented metal covered dielectric core nanoellipsoids consider-

able effect of geometrical factor is observed at the first resonance frequency at the second

one its effect is vary small. Similarly the metal volume fraction in metal covered dielectric

core ellipsoids has observable effect on the resonance frequency, maximum and minimum

values of refractive index and group velocity at the first resonance frequency. But its

effect is vary weak at the second resonance frequency.

We have seen also the effects caused by the orientation, to be aligned or randomness, of

the ellipsoids; in the case of pure metal inclusions their orientation determines the number

of resonance frequencies as well as the maximum and minimum values of the refractive

index and the group velocity but in the case of metal covered dielectric core inclusions

which has two distinctly observable resonance frequencies for both types of orientations

the orientation of inclusions determine the effect resulting by the geometrical factor.

Nanometal/dielectric composites are needed for different applications which require a

frequency range for operation and efficient transmission of light, these important proper-

ties are obtained by properly designing the nanoparticles composition, size, concentration,

orientation and the nature of embedding material as tuning options.

The composites with pure metal nanoellipsoids provide the options; the geometrical fac-

tor, concentration and orientation of the ellipsoids to tune the composite for the required

purpose but the composites with metal covered dielectric core nanoellipsoids have ad-

ditional options, the volume fraction of the metal part in the ellipsoids and dielectric

function of the dielectric core.

Unlike the pure metal nanoellipsoids the metal covered dielectric core nanoellipsoids pro-

vide a nearly fixed second resonance frequency while the first one is adjustable for the

required range.

The increase in concentration of pure metal ellipsoids may lead to superluminal light and

results high absorption and lose. This effect is observed in the composite of metal covered
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dielectric core ellipsoids at higher concentration limit than that in the pure metal case.

Future plane is to investigate about the imaginary part of refractive index and absorp-

tion in medium with ellipsoidal metal/dielectric composite nanoparticles. And studying

about refractive index, propagation and absorption of light in a medium with ellipsoidal

metal/dielectric composite nanoparticles embedded in active medium including the influ-

ence of dielectric nature of the dielectric core.
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