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Abstract

This thesis presents the response of electric field on second order nonlinear optical me-

dia. The work focus on purely theoretical study by using anharmonic oscillator model

consisting of rectangle shape made of noncentrosymmetric crystal (LiNbO3). The work

provides the model equation by employing the assume crystal and using monochromatic

laser light on the anharmonic oscillator crystal . In this paper, the formulation of the re-

sponse functions have been done by applied analytical and computational method on the

assumed oscillatory crystal. The thesis provides polarization and susceptibility as a func-

tion of frequency which is derived from the model equation. Finally, the paper presents

the interaction and the mixing of waves with matter. Moreover, graphical and symbolical

interpretations, discussions are involving in the response functions and frequency mixing.

Key Words: Nonlinear responses, Intense field,, Second harmonic generation, Lithium

nibonate, Anharmonic oscillator
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Chapter 1

Introduction

Maxwell’s theory of electromagnetic field is one of the main pillars of modern theoretical

physics and it is playing a key role in the formulation and the development of Einstein’s

special theory of relativity. The theory of the electromagnetic field, especially in its more

advanced stages, has a complex history and many interesting applications. Maxwell’s

equations are a set of four partial differential equations that to gather with the Lorentz

force law and electric circuit[1]. Maxwell’s equations represent one of the most elegant

and concise ways to state the fundamentals of electricity and magnetism. From those

one can develop most of the working relationships in the field. Because of their concise

statement, they are embodying a high level of mathematical sophistication.

The basic equations of electricity and magnetism can be used as a starting point for

advanced courses, but they are usually first encountered as unifying equations after the

study of electricity and magnetic phenomena[1,2]. The Maxwell’s equations describe how

electric and magnetic fields are generated and altered by each other and by charges and

currents. They are named after the physicist and mathematician James clerk Maxwell,

who published an early form of those equations between 1861 and 1862. When an electric

field is applied to a dielectric material its molecules respond to form microscopic electric

dipoles. This Maxwell’s equation is also applicable for nonlinear optics[2].

Nonlinear electromagnetic phenomena occur when the response of a medium (including

1
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the electric polarization and its time derivative, the current density, or the magnetiza-

tion) is a nonlinear function of the applied electric and magnetic field amplitudes. The

nonlinearities reside in the constitutive relationships of Maxwell’s equations.

Faraday rotation of the plane of polarization of a light wave in an isotropic medium,

propagating parallel to an applied magnetic field, could be considered as a nonlinear re-

sponse in which the optical polarization is a bilinear function of the optical field amplitude

and the applied magnetic field. In general, the Maxwell’s equations are a key to derive

wave function in the interaction of nonlinear media and the optical field. Furthermore,the

solution of wave function gives the response functions such as polarization, dielectric, fre-

quency and refractive index [3].

Nonlinear optics is the study of phenomena that occur as the result of the modifica-

tions of the optical properties of material system by the presence of light. The beginning

of the field of nonlinear optics is often taken to be discovery of second harmonic generation

by [8].

Nonlinear optical phenomena are ’nonlinear’ in the sense that they occur when the

response of a material system to an applied optical field depends on a linear manner on

the strength of the electric field, for example the second harmonic generation occurs the

result of the part of the atomic response that scales quadratically with the strength of

the applied optical field. Consequently, the intensity of the light generated at the second

harmonic frequency tends to increase as the square of the intensity of applied linear light

[20].

Linear and nonlinear response of the medium strongly affects the propagation of elec-

tromagnetic waves in the optical materials and can even result in the permanent mod-

ification of its physical properties. In turn, the linear and nonlinear optical features of

composite materials with metal nanostructures are dominated surface plasma oscillations.

The elementary process that is basic in the interaction of light with a medium is the ex-

citation of atoms or molecules by the light field and the remission of light by the excited
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particle [4].

The second harmonic generation experiment of Franken et at, marked the birth of the

field of nonlinear optics. Harmonic generation of electromagnetic waves at low frequencies

had been known for a long time. Harmonic generation of optical waves follow the same

principle and should also be observable. The second harmonic generation is the first non-

linear optical effect ever observed in which a coherent input generates a coherent output.

But nonlinear optics covers a broader scope. It deals in general with nonlinear interaction

of light with matter and includes such problems as light-induced changes of properties

of a medium. In general; however, observation of nonlinear optical effects requires the

application of lasers.

Numerous nonlinear optical phenomena have been discovered since 1961. They have

not only greatly enhanced our knowledge about interaction of light, but also created a

revolutionary change in optics technology. Each nonlinear optics process may consist of

two parts; the intensity light first induces a nonlinear response in a medium and then

medium in reacting modifies the optical fields in a nonlinear away [6]. Two beams of light

in the same region of a medium have no effect on each other so that light cannot be used

to control light.

The operation of the first laser in 1960 enabled us to examine the behavior of light in

optical materials at higher intensities than previously possible.

• The principle of superposition is violated in a nonlinear optical medium.

• The frequency of light is altered as it passes through a nonlinear optical medium;the

light can change from red to blue, for example.

• Photons do interact within the confines of a nonlinear optical medium so that

light can indeed be used to control light.

The field of nonlinear optics offers a host of fascinating phenomena, many of which are

also eminently useful. Nonlinear optical behavior is not observed when light travels in

free space. The”nonlinearity” resides in the medium through which the light travels,
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rather than in the light itself. The interaction of light with matter is therefore mediated

by the nonlinear medium: the presence of an optical field modifies the properties of the

medium, which in turn causes another optical field, or even the original field itself, to be

modified[11].

1.1 Statement of the Problem

The nonlinear optical properties of materials have been the subject of numerous studies

in recent years due to their technological potential applications. Because of their po-

tential uses in nonlinear optical device, the interaction of electric field with nonlinear

optical medium shows the wonderful phenomena. The nonlinearities of such media may

be strongly enhanced by the electric polarization. The purpose of this work is, therefore,

to study the response of the electric field and the modification and generation of new

waves using second order nonlinearities, like frequency mixing. Therefore, the this work

addresses:

1. How does the nonlinear optics behave?

2. What will be the response of nonlinear media for electric field?

3. How could frequencies mix in second harmonic generation?

4. What would be the important features of in nonlinear optics in media?

The general objective of this study is to understand the optical properties of nonlinear

media that responds to the electric field by analytical description of nonlinear polariza-

tion, susceptibility, second harmonic generation and frequency mixing. Specifically,the

response functions could be derived and interpreted by using the model equations

1.2 Significance of the study

This work will support the development of nonlinear optics in nonlinear media and the

improvement of the basic concepts of the nonlinear optics contribution to the electric field;



5

this also will improve the modification and generation of new waves using second order

nonlinearities, like frequency mixing. Nonlinear nature is very important for optical data

processing applications and all physics of nonlinear optics can be extracted by studying

the behavior of applied optical field-induced polarization of the medium.

1.3 Outlines

The focus of the work presented in this thesis is the study of the response of electric field

on nonlinear optical media.

The thesis is organized as follows in five chapters:

The first chapter gives the short introduction to basic properties of the nonlinear op-

tics and the nonlinear crystal . Possible areas of applications as well as the main optical

processes are also given. After that, the theoretical concepts of the Maxwell’s equations

in nonlinear optics are explained and the second harmonic generation also introduces very

well in the form of wave mixing or frequency mixing and phase matching.

Chapter 2 gives the brief explanation of the nonlinear optics with formulas. It also

contains the derivation of the wave equation by using Maxwell’s equation in order to

get the solution of nonlinear polarization and the nonlinear susceptibility. The nonlinear

functions used in the theoretical calculations of nonlinear optical processing like frequency

mixing in second harmonic generation, sum and difference frequency generations.

Chapter 3 presents the analytical and computational methods for formulas of the fre-

quency which is used in this work with description of optical plane-wave by using an

harmonic oscillator model.The second harmonic generation is obtained from this model

equation by using monochromatic light beam formula. In this chapter, the softwires are

used in the thesis like matlab, and inkcape.

In chapter 4,contains the results and discussions,the results are interpreted numeri-

cally and graphically. The relation of the electric field, the susceptibility and frequency
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are discussed. In general, the response of electric field in nonlinear optical media has been

explained and discussed.

The summary ,conclusion and the future work are given in the chapter 5, which com-

pletes this work.



Chapter 2

Theoretical Back Ground

Nonlinear optics has been a rapidly growing scientific field in recent decades. It is based

on the phenomenon related to the interaction of intense coherent light radiation with

matter. The invention of the laser provided enough light intensity that nonlinear optics

(NLO) could be observed for the first time. Almost exactly one year after the first ruby

laser - second harmonic generation, observed fifty years ago (1961), with a theoretical

examination of interactions between light waves in a nonlinear dielectric following very

soon thereafter [8,9]. The field has grown so enormously that it is impossible to study all

topics.

Optical nonlinearities occur when the output of a material or device ceases to be a

linear function of the input power, which is almost always the case for high enough inten-

sities. The nonlinearity may cause a light-induced change in refractive index or absorption

of the medium or it may cause new frequencies to be generated.

Nonlinear optics is the study of the interaction of light with matter under conditions in

which the nonlinear response of the matter plays an important role. Developments in the

field of nonlinear optics hold promise for important applications in optical information

processing, telecommunications and integrated optics. Because of the emergence of this

field from sold -state physics in which inorganic semiconductors, insulators and crystals

have constituted major part of the scientific base.

7
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2.1 Nonlinear Optical Media

The nonlinear terms in the interaction of light with matter give rises to a variety of optical

process, in addition to multi -photon absorption. A beam of monochromatic light interac-

tion with matter can be partially converted into light, whose frequencies are harmonic of

the fundamental frequency. Nonlinear materials are usually divided into different classes

that refer to the order of n of the nonlinear susceptibility χn that describes the response of

the material to the electric field associated with the light radiation. Nonlinear materials

are usually divided into main classes according to the strength of the electric field.

where n is the real number

For instance, χ2 materials are used for second harmonic generation with the inter-

action of strong electric field, and χ3 materials used for the third generation with the

interaction of the high intensity electromagnetic field. This work focused on the interac-

tion of nonlinear media with the electric field and the role of polarization (electric dipole

moment per unit volume) in nonlinear media. A linear dielectric medium is characterized

by a linear relation between the polarization density and the electric field is given by:

P = εoχ
(1)E (2.1.1)

where: εo is the permittivity of free space and χ(1) is the linear susceptibility of the

medium. The relation between polarization and electric field in figure 2.1

A nonlinear dielectric medium, on the other hand, is characterized by a linear relation

between Polarization and electric field. The nonlinearity may be microscopic or macro-

scopic origin. The polarization density is a product of the number of density of dipole

moment per volume and the individual dipole moment p induced by the applied electric

field E.

P = Np (2.1.2)
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The relation between P and E is linear when E is small, but becomes nonlinear when E ac-

quires values comparable to intra-atomic electric fields, which are typically 105 to 108v/m

[11]. Since externally applied optical electric fields are typically small in comparison with

characteristic interatomic or crystalline fields, the nonlinearity is weak (Changing slightly

from linearity, as the electric field increases). The function that relates P to E can be

expanded in a power series[12].

P = εoχ
(1)E + εoχ

(2)E2 + εoχ
(3)E3 + ... (2.1.3)

where: χ(1) is the linear susceptibility of the medium which is related to the dielectric

constant and the refractive index. The quantities χ(2) and χ(3) are known as the second

and third-order nonlinear optical susceptibilities, respectively.

2.2 Maxwell’s Equation In Nonlinear Optics

All electromagnetic phenomena are governed by the Maxwell’s equation for the electric

and magnetic fields E(r, t) and B(r, t) respectively. The four Maxwell’s electromagnetic

equations are in SI form:

∇× E = −∂B

∂t
(2.2.1)

∇×H = J +
∂D

∂t
(2.2.2)

∇ ·D = ρ (2.2.3)

∇ ·B = 0 (2.2.4)

We are primarily interested in the solution of these equations in regions of space that

contain no free charge and currents, so that ρ = 0 and J = 0. Moreover, we assume that

the material is nonmagnetic, thus

B = µOH (2.2.5)

If the material to be nonlinear in the sense that the fields D and E are related by

D = εOE + Ptotal (2.2.6)
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where in general the polarization vector Ptotal depends linearly and nonlinearly upon

the local value of the electric field strength E. Therefore, the total polarization is the

combination of the linear and nonlinear polarization is

Ptotal = PL + PNL (2.2.7)

Substitute eq.(2.2.8) into eq.(2.2.7), the displacement will be the combination of linear

and nonlinear properties. So that

D = εoE + εoE + PNL (2.2.8)

D = εoE + εOχE + PNL (2.2.9)

D = εO(1 + χ)E + PNL (2.2.10)

D = εE + PNL (2.2.11)

The dielectric function depends on the linear susceptibility as

ε = εO(1 + χ) (2.2.12)

where ε is dielectric constant and PNL is nonlinear polarization.

We now proceed to derive the optical wave equation in the usual manner. We take

the curl of the curl E Maxwell equation (2.2.1), interchange the order of space and time

derivatives on the right-hand side as follows:

∇×∇× E = − ∂

∂t
(∇×B) (2.2.13)

Insert eq (2.2.5) into eq(2.2.13), we will obtain

∇×∇× E = − ∂

∂t
µ(∇×H) (2.2.14)

Again substitute eq(2.2.2) into eq(2.2.14) and we have

∇×∇× E = − ∂

∂t
µ(J +

∂D

∂t
) (2.2.15)
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Now, let us use Eq. (2.2.11) to eliminate D from this equation, and we thereby obtain

the expression

∇×∇× E = −µO
∂2

∂t2
(εE + PNL) (2.2.16)

∇×∇× E = −µOεoε
∂2

∂t2
E− µo

∂2

∂t2
PNL (2.2.17)

∇×∇× E = −n
2

c2

∂2

∂t2
E− 1

c2εo

∂2

∂t2
PNL (2.2.18)

where µo is permeability of free space, µo = 1
εoc2

and n is the refractive index,n =
√
ε.

Equation (2.2.18) is the most general form of the wave equation in nonlinear optics. By

using an identity, from vector calculus, we can write the first term on the left-hand side

of Eq. (2.2.18) as

∇×∇× E = ∇(∇ · E)−∇2E (2.2.19)

In the linear optics of isotropic source free media, the first term on the right hand

side of this equation vanishes because the Maxwell equation ∇ · D = 0 implies that

∇ · E = 0 However, in nonlinear optics this term is generally no vanishing even for

isotropic materials, as a consequence of the more general relation (2.2.12) between D and

E Fortunately, in nonlinear optics the first term on the right-hand side of Eq. (2.2.19)

can usually be dropped for cases of interest[7].

If E is of the form of a transverse, infinite plane wave, ∇ · E = 0 vanishes identically.

More generally, the first term can often be shown to be small, even when it does not

vanish identically, especially when the slowly varying amplitude approximation is valid.

We shall usually assume that the contribution of ∇(∇ · E) in Eq.(2.2.19) is negligible so

that the wave equation can be taken to have the form

∇2E =
n2

c2

∂2

∂t2
E +

1

c2εo

∂2

∂t2
PNL (2.2.20)

We can interpret this expression as an inhomogeneous wave equation in which the

polarization PNL associated with the nonlinear response drives the electric field E [10].

This wave equation is needed to be solved to get an expression for nonlinear polarization
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and electric field as the function of frequency. The nonlinear wave equation is an inho-

mogeneous differential equation. The general solution comes from the study of ordinary

differential equations and can be solved by the use of a Green’s function. Physically

one gets the normal electromagnetic wave solution to the homogeneous part of the wave

equation is

∇2E =
n2

c2

∂2

∂t2
E (2.2.21)

Let σ represents wave equation in nonlinear medium.Thus the inhomogeneous equation

is given by

σ =
1

c2εo

∂2

∂t2
PNL (2.2.22)

The nonlinear term acts as a driver or sources of electromagnetic waves. One of the

consequences of this is a nonlinear interaction that will result in energy being mixed or

coupled between different frequencies which is called a wave mixing.

2.3 Second Order Nonlinear Polarization

When light propagates in a transparent medium, its electric field causes some amount

of electric polarization in the medium, i.e some density of electric dipole moment. The

polarization propagates together with the electromagnetic field in the form of a polariza-

tion wave. At low light intensities the electric polarization is proportional to the electric

strength, nonlinear contributions become important at high optical intensities laser as

light

The second (lowest) order of nonlinear polarization can arise from χ(2) nonlinearity

which can occur only in crystal materials with a non-centrosymmetric crystal structure.

The nonlinear polarization has a component which depends quadratically on the electric

field of an incident light wave. The nonlinear polarization contains frequency components

which are not present in the exciting beam. Light with such frequencies can then be

generated in the medium. If the input field is monochromatic, the nonlinear polarization

also has a component with twice the input frequency (frequency doubling).
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As the polarization has the form of a nonlinear polarization wave, the frequency-

doubled light is is also radiated in the direction of the input beam. Other examples are

sum and difference frequency generation, optical rectification, parametric amplification

and oscillation[33]. Nonlinear optics effects belong to a broader class of electromagnetic

phenomena described with in the general frame work of macroscopic Maxwell equations.

The Maxwell equations not only serve to identify and classify nonlinear phenomena in

terms of the relevant nonlinear optical susceptibilities or nonlinear terms in the induced

polarization but also the govern the nonlinear optical propagation effects[10].

We assume the absence of extraneous charges and current, the wave equation is derived

in eq(2.2.18). This wave equation is used for representation of nonlinear polarization and

nonlinear susceptibility. We represent the polarization in eq(2.2.7). The linear polariza-

tion governs linear optical phenomena like optical properties of a medium are independent

of the field intensity [4]. In the case of conventional (i.e., linear) optics, the induced po-

larization depends linearly on the electric field strength in a manner that can often be

described by the relationship in eq.(2.1.1)

In nonlinear optics, the optical response can often be described by generalizing Eq.(2.1.3)

by expressing the polarization P(t) as a power series in the field strength E(t). This equa-

tion also can be written as

PL(t) = P(1)(t) + P(2)(t) + P(3)(t) + ... (2.3.1)

The quantities P(2) and P(3) are known as the second- and third-order nonlinear po-

larization, respectively. For simplicity, we have taken the fields and polarization to be

bold vector quantities in writing Eq.(2.1.3) and eq.(2.3.0). The nonlinear susceptibility is

a quantity that is used to determine the nonlinear polarization of a material medium in

terms of the strength of an applied optical-frequency electric field.

We shall express εOχ
(2)E2(t) as the second-order nonlinear polarization and to εOχ

(3)E3(t)

as the third-order nonlinear polarization in eq.(2.1.3).
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2.4 Second Order Nonlinear susceptibility

The second-order nonlinear susceptibility is an essential parameter for determining the

frequency conversion efficiency as well as gain and threshold of such nonlinear-optical

devices as harmonic generators and parametric oscillators. It also plays a key role in in-

vestigating χ(2) cascading phenomena which include solitary waves, nonlinear phase shift,

and optical processes in second-order nonlinear materials. Knowledge of its absolute val-

ues is important for characterizing χ(3) materials through the χ(2) cascading process and

understanding physics involved in the nonlinear-optical processes.

As a matter of course a large amount of data has been accumulated on the magnitudes

of the nonlinear susceptibilities ever since the first observation of second-harmonic gener-

ation (SHG) in 1961 [8]. Unfortunately, however, the absolute scale of the second-order

nonlinear susceptibilities which should be referred to as standards for various materials

and at various wavelengths has not been available; significant discrepancies have been

noted among the absolute values reported to date, even for such an important material

as LiNbO3.

Nonlinear optical interactions can be described in terms of a nonlinear polarization

given by Eq.(2.1.3) only for a material system that is no loss and non dispersion. In the

present section, we consider the more general case of a material with dispersion and/or

loss. In this more general case the nonlinear susceptibility becomes a complex quantity

relating the complex amplitudes of the electric field and polarization. We assume that we

can represent the electric field vector of the optical wave as the discrete sum of a number

of frequency components as

E(r, t) =
∑́

n
En(r, t) (2.4.1)

Where

En(r, t) = Ene
−iωnt + c.c (2.4.2)
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The prime on the summation sign of Eq. (2.4.1) indicates that the summation is to

be taken over positive frequencies only. It is also convenient to define the spatially slowly

varying field amplitude Eo by means of the relation

E(r) = Eoe
ikn · r (2.4.3)

So that

En(r, t) =
∑
n

Ene
i(kn·r−ωnt) + c.c (2.4.4)

On occasion, we shall express these field amplitudes using the alternative notation

En = En(ωn) and Eo = Eo(ωn), E(−ωn) = En(ωn)∗ and Eo(−ωn) = Eo(ωn)∗

Using this new notation, we can write the total field in the more compact form

E(r, t) =
∑
n

E(ωn)e−iωnt =
∑
n

Eo(ωn)ei(kn·r−ωnt (2.4.5)

where the unprimed summation symbol denotes a summation over all frequencies,

both positive and negative. Note that according to our definition of field amplitude, the

field given by

E(r, t) = Eo cos(k · r − ωt) (2.4.6)

is represented by the complex field amplitudes

E(ω) =
1

2
Eoe

ik·r, (2.4.7)

E(−ω) =
1

2
Eoe

−ik·r (2.4.8)

or alternatively, by the slowly varying amplitudes

Eo(ω) =
1

2
E (2.4.9)

Eo(−ω) =
1

2
E (2.4.10)

In either representation, factors of 1
2

appear because the physical field amplitude E

has been divided equally between the positive and negative frequency field components.
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Using a notation similar to that of Eq. (2.4.5), we can express the nonlinear polariza-

tion as

P(r, t) =
∑
n

P(ωn)e−iωt (2.4.11)

where, as before, the summation extends over all positive and negative frequency field

components.

We now define the components of the second-order susceptibility tensor χ
(2)
ijk(ωn +

ωm, ωn, ωm) as the constants of proportionality relating the amplitude of the nonlinear

polarization to the product of field amplitudes according to

P(ωn + ωm) = εO
∑
jk

∑
nm

χ
(2)
ijk(ωn + ωm, ωn, ωm)Ej(ωn)Ek(ωm) (2.4.12)

Here the indices ijk refer to the cartesian components of the fields. The notation (nm)

indicates that, in performing the summation over n and m, the sum ωn + ωm is to be

held fixed, although ωn and ωm are each allowed to vary. Since the amplitude E(ωn) is

associated with the time dependence exp(−iωnt), and the amplitude E(ωm) is associated

with the time dependence exp(−iωmt), their product E(ωn)E(ωm) is associated with the

time dependence exp[−i(ωn + ωm)t].

Hence the product E(ωn)E(ωm) does in fact lead to a contribution to the nonlinear

polarization oscillating at frequency ωn + ωm, as the notation of Eq. (2.4.8) suggests.

Following convention, we have written χ(2) as a function of three frequency arguments.

This is technically unnecessary in that the first argument is always the sum of the other

two.

To emphasize this fact, the susceptibility χ(2)(ω3, ω2, ω1) is sometimes written as

χ(2)(ω3;ω2, ω1) as a reminder that the first argument is different from the other two,

or it may be written symbolically as χ(2)(ω3 = ω2 + ω1).

2.5 Second Order Nonlinear Optics
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For two incident waves, one at frequency ω1 and the other at ω2 the nonlinear term χ(2)

will introduce (ignoring tensor notation)

P(2) = χ(2)E1 cos(ω1t− k1z)E2cos(ω
2t− k2z) (2.5.1)

Where amplitudes are E1 and E2 and wave vectors k1 and k2 are related to frequencies

by their respective velocities of light. This product gives two polarization terms, one that

oscillates at ω1 +ω2 , and the other at ω1−ω2. Both terms are proportional to the product

of the fields.From the quantum mechanical point of view, the nonlinearity has induced

two photons to combine into one photon.

When the two photons have the same frequency, one term yields second harmonic and

the other yields a term with a static field (the frequency dependence cancels out).

When the incident photons are different, sum and difference frequency photons are gen-

erated. An important criterion for materials to exhibit a susceptibility linear in the field,

χ(1)E, is that they contain no center of inversion symmetry. Liquids, gases, amorphous

solids and crystalline materials with high symmetry will not directly generate second har-

monic[28].

Typically the goal of χ(2)E2 terms is to transfer power from one frequency to another,

while maintaining a coherent beam. This requires phase-matching, which will be discussed

later.

2.5.1 Second Order Nonlinear Optical Processes

In this section we examine the optical properties of a nonlinear medium in which nonlin-

earities of order higher than the second are negligible, so that

P2(t) = εoχ
2E2(t) (2.5.2)
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We consider an electric field E comprising one or two harmonic components and deter-

mine the spectral components of P2(t) . In accordance with the first Born approximation,

the radiation source σ contains the same spectral components as P2(t) [11].

Assume that the optical field incident up on the second order nonlinear optical media

which consists of two distinct frequency components in the form

E(t) = E1e
−iω1t + E2e

−iω2t + c.c (2.5.3)

Then, substitute eq.(2.1.3) into eq(2.5.2), the second-order polarization field in this

medium becomes

P(2)(t) = εoχ
(2)[E1e

−iω1t + E2e
−iω2t]2 (2.5.4)

When we expand the squaring part in eq.(2.5.4),we obtain the following frequency com-

ponents.

P(2)(t) = εoχ
(2)[E2

1e
−2iω1t + E2

2e
−2iω2t + 2E1E2e

−i(ω1+ω2)t

+2E1E
∗
2e

−i(ω1−ω2)t + c.c] + εoχ
(2)[E1E

∗
1 + E2E

∗
2] (2.5.5)

The resulting polarization field contains components oscillating at difference frequen-

cies. The first term in eq. (2.5.5) oscillates at 2ω and may radiate light at that frequency.

This term depends on the presence of the field at frequency ω and not on the static field.

This effect is called second harmonic generation (SHG).

Second term oscillates at frequency ω and causes a variation in the refractive index in

the medium. This effect is the linear electro-optic effect. The third term does not oscillate

in time. This is known as optical rectification.

This is convenient to express this result using the notation

P(2)(t) =
∑

P(ωn)e−iωnt (2.5.6)

where the summation extends over positive and negative frequencies ωn . The complex

amplitudes of the various frequency components of the nonlinear polarization are hence
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given by[10].

The two frequency components are second harmonic generation

P(2ω1) = εOχ
(2)E2

1 (SHG) (2.5.7)

P(2ω2) = εOχ
(2)E2

2 (SHG) (2.5.8)

The next frequency component is said to be sum frequency generation

P(ω1 + ω2) = 2εOχ
(2)E1E2 (SFG) (2.5.9)

This component also shows the the difference frequency generation

P(ω1 − ω2) = 2εOχ
(2)E1E

∗
2 (DFG) (2.5.10)

The last frequency component is said to be optical rectification

P(0) = 2εOχ
(2)(E1E

∗
1 + E2E

∗
2) (OP) (2.5.11)

2.5.2 Second Harmonic Generation

Second harmonic generation (SHG) or the frequency doubling generation wave with a

doubled frequency(half the wavelength) that two photons are modified and creating a

single photon at two times the frequency.

Under proper experimental conditions, the process of second-harmonic generation can

be so efficient that nearly all of the power in the incident beam at frequency ω is converted

to radiation at the second-harmonic frequency 2ω. One common use of second-harmonic

generation is to convert the output of a fixed-frequency laser to a different spectral region.

For example, the Nd:YAG laser operates in the near infrared at a wavelength of

1.06µm. Second-harmonic generation is routinely used to convert the wavelength of the

radiation to 0.53µm, in the middle of the visible spectrum.

Second-harmonic generation can be visualized by considering the interaction in terms

of the exchange of photons between the various frequency components of the field. Ac-

cording to the picture, which is illustrated in part of Fig. 2.1, two photons of frequency ω



20

are destroyed, and a photon of frequency 2ω is simultaneously created in a single quantum-

mechanical process. The solid line in the figure represents the atomic ground state, and

the dashed lines represent what are known as virtual levels. These levels are not energy

eigenlevels of the free atom but rather represent the combined energy of one of the energy

eigenstates of the atom and of one or more photons of the radiation field[10].

The green laser pointer consists of a diode-pumped solid state laser emitting in the

infrared at 1.06µm that is frequency-doubled by a nonlinear crystal to a wavelength of

0.53nm. For one incident wave of frequency ω1, the nonlinear term χ(2) introduces into

the polarization P (2) a term that oscillates at 2ω1, the second harmonic.

Applications for SHG go considerably beyond laser pointers. Lasers that directly emit

visible light are less efficient than infrared lasers, so when visible light is required, it is

preferable to start with the more efficient infrared lasers and to frequency-double them.

SHG has been a standard complement for Nd: YAG lasers for a long time. Diode-pumping

has replaced lamp-pumping for most of these applications, increasing their efficiency.

Visible (or ultra-violet) lasers are commonly used to pump other lasers, most notably

the titanium-sapphire laser (and formerly, the dye laser). The highly inefficient argon

laser is rapidly being replaced by frequency-doubled diode-pumped solid state lasers for

applications such as pumping the ultra-short pulse titanium-sapphire lasers, which can be

mode-locked to pulses only a few femtoseconds long and emit at 800-900 nm wavelengths.

In addition to simply offering light you can see, SHG is important because each visible

or UV photon has enough energy to cause a chemical reaction.[25] In non-homogenous

materials, the generation of second harmonic may select for specific regions. Examples

range from separating out collagen and microtubule in live tissue to observing coupled

magnetic and electric domains in ferroelectromagnets [29].

Surface science is an important application because the surface breaks the symmetry

of the bulk and enables SHG that depends critically on the character of the surface. The

surface can also offer resonance enhancement of the signal [23]; monolayer adsorption can
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be detected, for example of tin on GaAs [22, 24]. In other applications, surface SHG

can monitor laser melting and separate amorphous from crystalline growth. As a spec-

troscopic tool, SHG has been used in a plethora of applications, such as probing surface

states of metals, surface magnetization, and, using ultra short pulses, a wide range ultra-

fast surface reactions and surface dynamics.

In this section we present a mathematical description of the process of second har-

monic generation, shown symbolically in Fig. 2.1. We assume that the medium is no loss

both at the fundamental frequency ω1 and at the second harmonic frequency ω2 = 2ω1 so

that the nonlinear susceptibility obeys the condition of full permutation symmetry. Our

discussion closely follows that of one of the first theoretical treatments of second-harmonic

generation [9].

Figure 2.1: Geometry of interaction for second harmonic generation

2.5.3 Sum Frequency Generation

Sum frequency generation (SFG)is the generation of light wave with a frequency that

is the sum of two other frequencies. Let us now consider the process of sum-frequency

generation, which is illustrated in Fig. 2.2. According to Eq. (2.5.9), the complex

amplitude of the nonlinear polarization describing this process is given by the expression

P(ω1 + ω2) = 2εOχ
(2)E1E2 (2.5.12)

In many ways the process of sum-frequency generation is analogous to that of second-

harmonic generation, except that in sum-frequency generation the two input waves are at

different frequencies. One application of sum-frequency generation is to produce tunable

radiation in the ultraviolet spectral region by choosing one of the input waves to be the
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output of a fixed-frequency visible laser and the other to be the output of a frequency-

tunable visible laser When the incident field E contains two frequencies ω1 and ω2 sum

frequency generation is possible eq.(2.5.2) the cross-term gives a polarization of the form

P(2) = εOχ
(2)E1E2.

SFG can convert infrared light at frequency ω2 into a visible signal at frequency

ω3 = ω1 + ω2. When light at frequency ω1 is very intense, there is even an effective am-

plification of the weak infrared signal. Sum Frequency Generation is one way to provide

coherent UV light from visible light. If one of the visible lasers has a tunable frequency,

the UV light’s frequency can be tuned.See figure 2.2

Figure 2.2: Geometry of interaction for sum frequency generation

2.5.4 Difference Frequency Generation(DFG)

Difference frequency generation (DFG) is the generation of light wave with a frequency

that is the difference between two other frequencies.

The process of difference-frequency generation is described by a nonlinear polarization

of the form

P(ω1 + ω2) = 2εOχ
(2)E1E

∗
2 (2.5.13)

and is illustrated in Fig. 2.3. Here the frequency of the generated wave is the difference

of those of the applied fields. Difference-frequency generation can be used to produce

tunable infrared radiation by mixing the output of a frequency-tunable visible laser with
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that of a fixed-frequency visible laser.

Difference-frequency generation and sum-frequency generation appear to be very simi-

lar processes. However, an important difference between the two processes can be deduced

from the description of difference-frequency generation in terms of a photon energy-level

diagram of Fig. 2.3.

We see that conservation of energy requires that for every photon that is created at

the difference frequency ω3 = ω1 − ω2, a photon at the higher input frequency ω1 must

be destroyed and a photon at the lower input frequency ω2 must be created. Thus, the

lower frequency input field is amplified by the process of difference-frequency generation.

For this reason, the process of difference-frequency generation is also known as optical

parametric amplification.

According to the photon energy-level description of difference-frequency generation,

the atom first absorbs a photon of frequency ω1 and jumps to the highest virtual level.

This level decays by a two-photon emission process that is stimulated by the presence of

the ω2 field, which is already present.

Two-photon emission can occur even if the ω2 field is not applied. The generated fields

in such a case are very much weaker, since they are created by spontaneous two photon

emission from a virtual level. This process is known as parametric fluorescence and has

been observed experimentally [32].

In general, DFG has been used to create infrared light from two higher frequency laser

beams. The term DFG usually refers to the case where the beams at the two incident

frequencies have comparable intensity. In DFG the interaction of the incoming waves

creates a photon of lower energy such that ω3 = ω1 − ω2. See figure 2.3

When one beam is very intense and the other is weak, amplification will occur (as with

SHG). This is often called parametric amplification, which will be described later.

Difference frequency generation has applications in telecommunications, where wave-

length division multiplexing (WDM) puts many wavelengths on the same optical fiber.
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In real WDM systems, a way is needed to convert from one wavelength to another.

DFG is attractive in several respects, it is an instantaneous process that can simul-

taneously convert up and down multiple channels with equal efficiencies, has negligible

spontaneous emission noise and no intrinsic frequency chirp [26,27].

Figure 2.3: Symbolically representation for difference frequency generation

2.5.5 Optical Parametric Oscillation(OPO)

Optical parametric oscillation is the generation of a signal wave and an idler wave by

pumping an applied light wave to the resonator.

We have just seen that in the process of difference-frequency generation the presence

of radiation at frequency ω2 and / or ω3 can stimulate the emission of additional photons

at these frequencies. If the nonlinear crystal used in this process is placed inside an optical

resonator, as shown in Fig. 2.4, the ω2 and/or ω3 fields can build up to large values. Such

a device is known as an optical parametric oscillator.

Optical parametric oscillators are frequently used at infrared wavelengths, where other

sources of tunable radiation are not readily available. Such a device is tunable because

any frequency ω2 that is smaller than ω1 can satisfy the condition ω2 + ω3 = ω1 for

some frequency ω3.In practice, one controls the output frequency of an optical parametric

oscillator by adjusting the phase-matching condition. The applied field frequency ω1

is often called the pump frequency, the desired output frequency is called the signal

frequency, and the other, unwanted, output frequency is called the idler frequency [10].
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Figure 2.4: Diagram of optical parametric oscillation

2.5.6 Phase matching

In obtaining efficient SHG, phase-matching is a critical parameter which occurs when

the phase velocities of the generated wave and the driving nonlinear polarization wave

is matched.[28] Such a phase-matching condition can be obtained when the below vector

condition is satisfied:

∆k = k1 − k2 = n1 − n2 = 0 (2.5.14)

However this is difficult to achieve in practice because of the optical dispersion in materi-

als. When there is a significant amount of phase mismatch ∆k the SHG intensity exhibits

an oscillatory behavior with period L = 2π
∆k

along the crystal. This happens in such a way

that after a certain distance which corresponds to half the period, the SHG wave and the

driving polarization become 1800 out of phase and the intensity begins to flow back to

the fundamental wave. This distance which equals half the period is called the coherence

length:

Lc = π
∆k

In general, for second-order processes we have to satisfy ω1+ω2 = ω3 (energy conserva-

tion). For efficient conversion phase-matching is also required, k1 + k2 = k3 (momentum

conservation). Since k = ω n
c
, phase-matching is satisfied if n1 = n2 = n3. The problem is

that materials are usually dispersive and the refractive index varies with frequency.

Normal dispersion has the refractive indices increasing with frequency,n3 > n1, n2.

This obviously makes it difficult to achieve phase-matching.The most common technique
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to obtain phase-matching is to use birefringence to compensate for dispersion. The idea

is that at each frequency there is a pair of refractive indices (orthogonal polarizations)

and the difference between these is adjusted to compensate for dispersion. The extraordi-

nary refractive index in a uniaxial crystal as a function of angle between the propagation

direction and the optic axis is given by[13].

ne(θ) = (
sin2θ

n2
e

+
cos2 θ

n2
o

)−
1
2 (2.5.15)

From this, theoretical back ground of the study, we will calculate the response functions

to fulfill the gap of the theory by using anharmonic potential energy.



Chapter 3

Methodology

3.1 Formulation of models

Consider an electron which is affected by the deriving force and the damping force. The

dynamic motion of electrons shows harmonic and anharmonic oscillation which appears

in the restoring force.

The Lorentz model of the atom, which treats the atom as a harmonic oscillator, is known

to provide a very good description of the linear optical properties of atomic vapors and

of nonmetallic solids. For the case of noncentrosymetric media, like litnium nibanate

(LiNbO3) which has good mechamical and chemical stability, the motion of the electron

treats as harmonic for linear optics and anharmonic for nonlinearity. In this work, we

assume that the applied optical field is given by

E(t) = E1e
−iω1t + E2e

−iω2t (3.1.1)

The electric dipole moment in the linear relation will be

p = −ex (3.1.2)

In linear case of N atoms, the polarization vector expresses in the form

P(t) = Np = −Nex (3.1.3)

This also can be expressed as in eq.(2.1.1) P(t) = εoχ
(1)E(t)

In this work, we extend Lorentz model by allowing the possibility of a nonlinearity in

27
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the restoring force exerted on the electron. [10] Here, let us set anharmonic perturbation

potential energy in the damping system as shown in figure-3.1.

Figure 3.1: Potential energy function for a noncentrosymetric medium
k=100N/m,D=3,x= 0 to ±100

U(x) =
1

2
Kx2 +

1

3
Dx3 (3.1.4)

The restoring force that corresponding the potential energy function is

Frestoring(x) = − ∂

∂x
U(x) = −Kx−Dx2 (3.1.5)

The first term on the right hand side of eq.(3.1.6) represents the linear part and the second

hand side of the restoring force denotes the nonlinearity.

where D is a parameter that characterizes the strength of the nonlinearity.

Therefore, we derived the restoring force which shows the nonlinear function of the the

restoring force acting on the electron and retaining the linear and the quadratic terms in

the Taylor series expansion of the restoring force in the displacement(x).

The forces that acting on the dynamics motion of the electron are the restoring force
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Frestoring, the applied (deriving)force Fe and the damping force Fd

The damping force is proportional to the velocity of the electron. Thus

Fd = −bẋ (3.1.6)

where b = 2γm and γ is the damping parameter

The driving force is given by

F = −eE(t) (3.1.7)

where E(t) = E1e
−iω1t + E2e

−iω2t

The equation of anharmonic oscillation of the electron is of the form

ẍ+ 2γẋ+ ω2
ox+Dx2 = − e

m
E(t) (3.1.8)

No general solution to eq.(3.1.9) for an applied field of the form eq.(3.1.1), if the applied

field is sufficiently weak, then the nonlinear term Dx2 will be much smaller than the linear

term ω2
ox for any displacement x that can be induced by the field.

Under this condition eq.(3.1.9) can be solved by means of a perturbation expansion. Let

us substitute E(t) into eq.(3.1.9) by λE(t)

where λ is a perturbation that ranges continuously between zero and one, and charac-

terizes the strength of the perturbation that will be set equal to one at the end of the

calculation. Thus it becomes

ẍ+ 2γẋ+ ω2
ox+Dx2 = −λ e

m
E(t) (3.1.9)

We should find the solution to eq.(3.1.10) in the form of a power series expansion in the

strength λ of the perturbation, that is, the solution of the form

x = λ1x(1) + λ2x(2) + λ3x(3) + ... (3.1.10)

Insert eq(3.1.11) in to eq.(3.1.10) for value of the coupling strength λ, the term in this

equation is proportional to λ1, λ2, λ3, etc, each of them satisfy the equation separately.
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Now, express eq.(3.1.9) as follows

∂2x

∂t2
+ 2γ

∂x

∂t
+ ω2

ox+Dx2 = −eE(t)

m
(3.1.11)

and substitute eq.(3.1.11)into eq.(3.1.12)

∂2[λ1x(1)+λ2x(2)+λ3x(3)+...]
∂t2

+ 2γ ∂[λ1x(1)+λ2x(2)+λ3x(3)+...]
∂t

+

ω2
o [λ

1x(1) + λ2x(2) + λ3x(3) + ...] +D[λ1x(1) + λ2x(2) + λ3x(3) + ...]2 = −eE(t)

m
(3.1.12)

From eq.(3.1.13), we have separate terms, these terms leads to the following equations

respectively.

The first order,

ẍ(1) + 2γẋ(1) + ω2
ox

(1) = −eE(t)

m
(3.1.13)

The second order,

ẍ(2) + 2γẋ(2) + ω2
ox

(2) +D[x(1)]2 = 0 (3.1.14)

The thrid order,

ẍ(3) + 2γẋ(3) + ω2
ox

(3) + 2Dx(1)x(2) = 0, etc (3.1.15)

Now, neglecting the higher orders x(3) and the lowest order contribution x(1) is governed

by the same equation as the result of the linear Lorenz model. Thus, the solution of the

linear equation is given by

x1(t) = x(1)(ω1)e−iω1t + x(1)(ω2)e−iω2t + c.c (3.1.16)

From this eq.(3.1.17) we calculate ∂x
∂t

and ∂2x
∂t2

to obtain the amplitude x(1)(ωj) in the form

x(1)(ωj) = − e

m
(

Ej
ω2
o − ω2

j − 2iωjγ
) (3.1.17)

Let us introduce the the complex denominator function

G(ωj) = ω2
o − ω2

j − 2iγωj (3.1.18)

Now, put the complex denominator into eq(3.1.18) and we have

x(1)(ωj) = − e

m

Ej
G(ωj)

(3.1.19)
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To find the linear susceptibility, we should relate the dipole moment and the polarization

as the function of frequency. The dipole moment as the function of frequency will be

p(ωj) = −ex(1)(ωj) (3.1.20)

For N-density of atoms, the linear contribution to the polarization is given by

P(ωj) = εoχ
(1)E(ωj) (3.1.21)

P(ωj) = Npj = −eNx(1)(ωj) (3.1.22)

We solve the linear susceptibility by combining eq.(3.1.22) and (3.1.23)

χ(1)(ωj) =
Ne2

εomG(ωj)
(3.1.23)

Let us find the response function in nonlinearity from eq.(3.1.15). Substitute eq.(3.1.20)

into eq.(3.1.15) and we have the following

ẍ(2) + 2γẋ(2) + ω2
ox

(2) = D[− e

m

Ej
G(ωj)

]2 (3.1.24)

We should solve the following equation to find the response at frequency

ẍ(2) + 2γẋ(2) + ω2
ox

(2) = D[− e

m

E1

G(ωj)
]2e2iω1t (3.1.25)

Therefore, the solution of this equation will be

x(2)(t) = x(2)(2ω1)e2iω1t (3.1.26)

From eq.(3.1.27), find the following expression ∂2Ẍ(2)

t(2)
and ∂Ẋ(2)

∂t
and substitute into eq.(3.1.26)

we have this results

x(2)(2ω1) = −
D( e

m
)2E2

1

G(2ω1)G2(ω1)
(3.1.27)

In the same manner, the amplitude of the response at the other frequencies are found to

be

x(2)(2ω2) =
−D( e

m
)2E2

2

G(2ω2)G2(ω2)
(3.1.28)
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At frequency (ω1 + ω2), we will have

x(2)(ω1 + ω2) =
−2D( e

m
)2E1E2

G(ω1 + ω2)G(ω1)G(ω2)
(3.1.29)

At frequency (ω1 − ω2), the expression will be

x(2)(ω1 − ω2) =
−2D( e

m
)2E1E2

G(ω1 − ω2)G(ω1)G(−ω2)
(3.1.30)

At frequency (ω1 − ω1) = (ω2 − ω2) = 0, it becomes

x(2)(0) =
−2D( e

m
)2E1E

∗
2

G(0)G(ω1)G(−ω1)
+
−2D( e

m
)2E1E

∗
2

G(0)G(ω2)G(−ω2)
(3.1.31)

After this result, nonlinear susceptibility can be calculated as an analogous to the linear

expression. So that the nonlinear susceptibility in second harmonic generation will be

P(2)(2ω1) = ε0χ
(2)(2ω1, ω1, ω1)E2(ω1) (3.1.32)

where P (2)(ω1) is the amplitude of the component of the nonlinear polarization oscillating

at frequency 2ω1 and is defined by the relation

P(2)(2ω1) = −Nex(2)(2ω1) (3.1.33)

By equating eq(3.1.33) and (3.1.34), we have the following expression

χ(2)(2ω1, ω1, ω1) =
N( e

3

m2 )D

εOG(2ω1)G2(ω1)
(3.1.34)

Using eq(3.1.24), the result can be written in terms of product of linear susceptibilities

like.

χ(2)(2ω1, ω1, ω1) =
ε2
omD

N2e3
χ(1)(2ω1)[χ(1)(ω1)]2 (3.1.35)

The nonlinear susceptibility for second-harmonic generation of the ω2 field is obtained

trivially from Eq.(3.1.35) and (3.1.36) through the substitution ω1 → ω2. The nonlinear

susceptibility describing sum-frequency generation is obtained from the relations

P(ω1 + ω2) = 2εOχ
(2)(ω1 + ω2, ω1, ω2)E(ω1)E(ω2) (3.1.36)
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and

P(2)(ω1 + ω2) = −Neχ(2)(ω1 + ω2) (3.1.37)

Note that in this case the relation defining the nonlinear susceptibility contains a factor

of two because the two input fields are distinct, as discussed in relation to Eq. (3.1.34).

By comparison of these equations with (3.1.30), the nonlinear susceptibility is seen to be

given by

χ(2)(ω1 + ω2, ω1, ω2) =
N( e

3

m2 )D

εOG(ω1 + ω2)G(ω1)G(ω2)
(3.1.38)

. This result can be expressed in terms of the product of linear susceptibilities as

χ(2)(ω1 + ω2, ω1, ω2) =
ε2
omD

N2e3
χ(1)(ω1 + ω2)χ(1)(ω1)χ(1)(ω2) (3.1.39)

The nonlinear susceptibilities describing the other second-order processes are obtained in

an analogous manner.

For difference-frequency generation, we have

χ(2)(ω1 − ω2, ω1,−ω2) =
N( e3

m2 )D

εOG(ω1−ω2)G(ω1)G(−ω2)

=
ε2
omD

N2e3
χ(1)(ω1 − ω2)χ(1)(ω1)χ(1)(−ω2) (3.1.40)

For optical rectification, the nonlinear susceptibility will be

χ(2)(0, ω1,−ω2) =
N( e3

m2 )D

εOG(ω1−ω2)G(ω1)G(−ω2)

=
ε2
omD

N2e3
χ(1)(0)χ(1)(ω1)χ(1)(−ω2) (3.1.41)

The analysis just presented shows that the lowest-order nonlinear contribution to the

polarization of a noncentrosymmetric material is second order in the applied field strength.

This analysis can readily be extended to include higher-order effects. The solution to Eq.

(3.1.16), for example, leads to a third order or χ(3) susceptibility, and more generally terms

proportional to λn the expansion described by Eq. (3.1.11) lead to a χ(n) susceptibility.
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3.2 Method and Study design

We used analytical and computational methods to study the nonlinear second order sus-

ceptibility, electric polarization and frequency mixing in nonlinear second order optics.

3.2.1 Analytical Method

In this work, the most important method deriving equations analytically is very essential

input for numerical computation.

3.2.2 Computational metthod

In this study we started from the power series representation of the polarization in terms

of applied field. The electric field is also as the function of time and frequency in the sec-

ond harmonic-Generation and we calculated the value of nonlinear optical susceptibility

and mixing frequency in different mechanisms that leads to optical nonlinearities

3.3 Methods and softwares used

The study is purely theoretical understanding of the optical properties of the nonlinear

media and the interaction of optical field and the media.

Softwares are the programs that run on a computer and perform certain functions. These

materials are essential to have good understanding and manipulating, interpreting nu-

merically and graphically the results of the work.

We employed computational methods using Matlab program by developing suitable com-

puter codes for studying the response functions and the properties of nonlinear optical

media by applying monochromatic optical field. We also developed inkscape program to

draw or plot figures
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In the study we started from model equation that describes the responses as a func-

tion of electric field. we employed Taylor expansion that related the polarization, the

susceptibility and the electric field.

After we have derived the model equation that the responses as a function of fre-

quency, we carried out Matlab program for our model equation to generate data and plot

the graphs in different legends.



Chapter 4

Results and Discussions

4.1 Lithium nibonate as nonlinear crystal

We now interpret the results of the formulation of the response functions in assumed

model. We took Lithium niobate (LiNbO3) for our model crystal as second nonlinear

material. This material is well understood, that has a good mechanical and chemical sta-

bility and sufficiently large nonlinear optical coefficient, that is why this crystal is taken

as model.

4.2 Nonlinear response functions

To this end, by considering a monochromatic input field in the assuming model

E(t) = E1e
−iω1t + E2e

−iω2t+ c.c

and this model can be expressed using anharmonic potential.

ẍ+ 2γẋ+ ω2
ox+Dx2 = − e

m
E(t)

Based on our model equation, we calculated the following response functions, such as lin-

ear and nonlinear polarization, linear and nonlinear susceptibility and frequency mixing

36
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4.3 Polarization in nonlinear media

From formulation of the model, the linear and nonlinear polarization are derived as

P(ω) = εOχ
(1)E(ω) and P(ω) = εOχ

(2)E2(ω) respectively.

The following graphs shows the relation between the polarization and the electric field

Figure 4.1: Linear polarization versus electric field in linear medium,taking as εo = 8.85×
10−12F/m, E = 0− 30v/m

According to [10 ] approximation, χ(2) = 6.9 ×−12 m/v and εo =8.85 × 10−12F/m, E =

(0− 1010)v/m , d = εoχ
(2) = 4.213485× 10−34

In fig.4.1, the polarization PL is linearly proportional to the electric field in linear mate-

rials or at low optical field where as fig.4.2, indicated that the relation between nonlinear

polarization PNL and applied electric field is quadratic in nonlinear optical media at

strong field, that is:

pNL(ω) = εoχ
(2)E2(ω)
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Figure 4.2: Nonlinear polarization versus electric field in nonlinear medium

4.4 Susceptibility in nonlinear media

According to model equation, the linear and nonlinear susceptibilities also has been ob-

tained

χ(1)(ωj) = Ne2

εomG(ωj)
and χ(2)(2ω1, ω1, ω1) =

N( e3

m2 )D

εoG(2ω1)G2(ω1)

The susceptibility is proportional to the polarization linearly at low applied field where

as the susceptibility χ(2) is proportional to the nonlinear polarization quadratically. This

means, as the electric field increases, the electric susceptibility also increases in nonlinear

media.

4.5 Frequency mixing in nonlinear medium

For a second order nonlinear process involving the interaction of three optical frequencies

ω1, ω2, ω3, the waves can be expressed as energy diagram in the next subsection.
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Figure 4.3: Diagram of energy level for SHG

In this energy diagram, two the same-frequency photons are absorbed and double photon

with same frequency was created.

The photon energy diagram for sum frequency generation described in fig.4.4. as

Figure 4.4: Diagram of photon energy level for SFG

In this energy level, the diagram indicates. two low-frequency photons are absorbed and

one photon with high frequency was created. This is, ω3 = ω1 + ω2
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Energy level of photons for difference frequency generation in fig.4.5. are

Figure 4.5: Diagram of energy level for DFG

The two incoming waves are interacting, one which has high frequency is absorbed and

another is created, finally, the signal wave is ω3 = ω1 − ω2

Photon Energy level diagram for optical parametric oscillation in fig.4.6. are shown.

Figure 4.6: Diagram of energy level for OPO

In figure 4.6, annihilation of one high frequency photon and creation of two low-frequency

photons expressed as , ω1 = ω2 + ω3



Chapter 5

Conclusion and Future outlook

Considering Litinium Nibanate (LiNbo3) as assumed anharmonic oscillatory model non-

linear crystal and employing the model equation by using analytical and computational

method, we obtained expressions of the response functions like nonlinear polarization

and susceptibility as the function of frequency. From anharmonic oscillatory model we

understood that when an electromagnetic wave propagates through nonlinear medium,

an electric field acts on each particle displacing them from their equilibrium positions,

In such a case, positively charged cores and surrounding negatively charged electrons are

displaced in opposite directions. This leads to the separation of opposite charges, creating

dipoles in the medium.

From this, we concluded that the response functions are ultimately due to inability of

dipoles in the nonlinear optical medium. In this thesis, we observed that the relation

between the second order nonlinear polarization and the electric field is quadratic. There-

fore, we concluded that, as the electric field intensity increases, the nonlinear polarization

and nonlinear susceptibility also increase in the nonlinear media. That is, at such high

intensity fields, the optical response of the medium to the radiation becomes nonlinear.

In addition to this,the optical properties of the nonlinear medium depend on the applied

field. Moreover, the interaction of the field and matter in the model crystal will absorb

or create photons.

41
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In our calculation, we observed that the optical processes such as second harmonic gen-

eration (SHG), sum frequency generation (SFG), difference frequency generation (DFG)

are the maim results. In general, we concluded that frequency mixing in second order

nonlinear medium and the response functions are due to the nonlinearity .

For future work we can study the properties of nonlinear optics in optical medium spe-

cially on our assuming model (LiNbO3) in order to understand the the responses and the

properties of the LiNbO3 nonlinear crystals in experimentally.
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