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Abstract

The optical bistability in a composite, composed of nonlinear cylindrical metallic par-

ticles with interfacial layers randomly embedded in a linear dielectric host, is reviewed.

During the formation of composite, due to the diffusion and surface roughness, the

interface between the nonlinear inclusions and the host matrix is not very sharp,

leading to an interfacial layer, whose physical properties are different from those of

either the inclusions or the host. It is shown that both interfacial property and the

size of metallic particles can dramatically affect the optical bistable behavior of the

metal-dielectric composite.
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Chapter 1

Introduction

The search for new materials is one of the defining characteristics of modern science

and technology. Novel mechanical, electrical, magnetic, chemical, biological, and op-

tical devices are often the result of the fabrication of new materials. Recent advances

in optical science and technology, such as the development of new lasers, detectors,

and photonic devices, have relied heavily on advances in materials research[1].

The physics of metal-dielectric composites has recently gained increasing interest

because of their unique linear and nonlinear optical properties, and their high ap-

plication potential as nonlinear media and media for optical data storage [2]. The

effective optical properties of composite materials were first devoted to the analysis of

linear media and were recently extended to the study of materials with one nonlinear

component under very restrictive conditions, that is, very low concentration of the

nonlinear component with nonlinear contributions being treated as purely real and

as low field approximation to the assumed leading linear behavior.

In a composite, where metal and dielectric components combine with each other

in a disordered manner, the boundary conditions in the system are so complicated
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that the determination of its electromagnetic response by solving Maxwell’s equa-

tions becomes intractable. Fortunately, under certain conditions the situation can be

simplified significantly. For the study of the optical properties of a composite system

with an in homogeneity scale much smaller than the wavelength of interest, elec-

trodynamic scattering by individual metal or dielectric particles is overshadowed by

the average response of the whole system. Therefore, we can investigate the optical

properties of a microscopically heterogeneous composite by evaluating the effective

dielectric function of the macroscopically uniform medium. We obtain this effective

dielectric function in terms of the permittivity’s of the individual components as well

as their respective volume fractions. This method is known as the effective medium

approach. The most widely used effective medium approach for describing the optical

properties of such composite material is the Maxwell- Garnett theory (MGT) [3].

1.1 Statement of the problem

The nonlinear optical properties of metal-dielectric composite materials have been

the subject of numerous studies in recent years due to their technological potential

applications . Because of their potential uses in optical devices, the most commonly

considered materials are made of nonlinear particles embedded in linear host. The

nonlinearities of such materials may be strongly enhanced relative to bulk samples of

the same materials, and optical bistability may arise in them under certain conditions.

These effects are the results of a possibly great enhancement of the electric field within

the particles. This enhancement can be produced by an appropriate ratio of the host-

to-particle complex dielectric permittivity and by a modification of the field inside a

given particle by neighboring particles.
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In general the effects of interfacial layer and particle size on optical bistability

were not well understood for non-linear composites in which the host medium is non-

linear. The purpose of the study is, therefore, the investigations of the important

features of optical bistability for such system.

1.2 Objectives of the Study

1.2.1 General objective

To understand the optical properties of nonlinear cylindrical metal- linear dielectric

composite materials that are separated by an interfacial layer. In doing so the optical

bistability phenomena will be investigated.

1.2.2 Specific objective

The specific objectives of this study are:

To describe the influence of interfacial layer on the bistability property,

To explain the influence of size on the optical bistability.

1.3 Significance of the Study

This study will have its own contribution for the advancement of utilization 0f optical

bistability in modern world. Thus, the engineering of nonlinear optical materials

will be highly developed and it will provide good opportunity on knowledge and

application for the research.

.
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Chapter 2

Literature Review

2.1 Material Response to Electromagnetic Radia-

tion (EMR)

Electromagnetic radiation is a form of radiant energy released by certain electromag-

netic processes [4]. EMR consisting of electromagnetic waves, including radio waves,

infrared, visible light, ultraviolet, X-rays and gamma rays. Visible light is one type

of electromagnetic radiation, other familiar forms are invisible electromagnetic radi-

ations such as X-rays and radio waves. Electromagnetic waves are waves which can

travel through the vacuum of outer space. Mechanical waves, unlike electromagnetic

waves, require the presence of a material medium in order to transport their energy

from one location to another.

When materials are exposed to electromagnetic radiation, it is important to be

able to predict and alter their responses. This is possible when we are familiar with

their optical properties and understand the mechanisms responsible for their optical

behaviors. By ”optical property” is meant a material’s response to exposure to elec-

tromagnetic radiation and, in particular, to visible light. For example, in discussing

on optical fiber materials, we note that the performance of optical fibers is increased

5



by introducing a gradual variation of the index of refraction at the outer surface of

the fiber. This is accomplished by the addition of specific impurities in controlled

concentrations. For instance we know light is one type of electromagnetic radiation.

The response of materials to light is described by a number of quantities, often

called ”optical constants.” Among these the following are some of them:(ε) dielectric

constant (ε), the electrical conductivity (σ), the susceptibility(χ), the refractive in-

dex (n), the extinction coefficient (k), the electromagnetic skin depth (δ), the surface

impedance (Z), and many others. These quantities are neither constant nor indepen-

dent. They are functions of the frequency, temperature, pressure, external magnetic

field, and many other things. By knowing two of these, one that describes the ab-

sorption in the solid (such as the electrical conductivity or the extinction coefficient)

and one that describes dispersion (such as the dielectric constant or the refractive

index), all of the others may be calculated [5] Classically, EMR consists of electro-

magnetic waves, which are synchronized oscillations of electric and magnetic fields

that propagate at the speed of light. The oscillations of the two fields are perpendic-

ular to each other and perpendicular to the direction of energy and wave propagation,

forming a transverse wave. Electromagnetic waves can be characterized by either the

frequency or wavelength of their oscillations to form the electromagnetic spectrum,

which includes, in order of increasing frequency and decreasing wavelength: radio

waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and

gamma ray [5]. Electromagnetic waves are produced whenever charged particles are

accelerated, and these waves can subsequently interact with any charged particles.

EM waves carry energy, momentum and angular momentum away from their source

particle and can impart those quantities to matter with which they interact. In the
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classical sense, electromagnetic radiation is considered to be wave-like, consisting of

electric and magnetic field components that are perpendicular to each other and also

to the direction of propagation.

In the quantum theory of electromagnetism, EMR consists of photons, the ele-

mentary particles responsible for all electromagnetic interactions. Quantum effects

provide additional sources of EMR, such as the transition of electrons to lower energy

levels in an atom and black-body radiation. The energy of an individual photon is

quantized and is greater for photons of higher frequency. This relationship is given

by Planck’s equation E = hν, where E is the energy per photon, ν is the frequency

of the photon, and h is Planck’s constant. A single gamma ray photon, for example,

might carry 100,000 times the energy of a single photon of visible light.

2.1.1 Electromagnetic Radiation in Vacuum

EMR can travel not only through air and solid materials, but also through the vacuum

of space. If there is no medium, there are neither electric nor magnetic dipoles nor free

currents. Maxwell’s equations describe how electromagnetic radiation is propagated.

He showed that a varying magnetic field induces an associated varying electric field

perpendicular to the magnetic field and this varying electric field in turn induces an

associated varying magnetic field in the plane of the initial magnetic field. Together

these two varying fields form an electromagnetic wave propagating at the speed of

light in a direction perpendicular to both the electric and magnetic fields. In his elec-

tromagnetism law, James Clerk Maxwell, predicted the possibility of electromagnetic

waves, that is waves consisting of oscillating electric and magnetic fields. Further,

he predicted that the fields would oscillate in a direction perpendicular to the wave
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velocity, that is, the waves would be transverse. According to his prediction, all elec-

tromagnetic radiation traverses a vacuum at the same velocity, that of light namely,

3× 108m/s (186,000 miles/s). This velocity (c) is related to the electric permittivity

of a vacuum εo and the magnetic permeability of a vacuum µo as;

c =
1

√
εoµo

(2.1.1)

Finally, from known electric and magnetic constants, he was able to calculate that the

velocity of these waves in vacuum should be about 3×108m/s. This value is identical

to the speed of light in vacuum which had been measured fairly accurately by that

time. These predictions immediately suggested that light is an electromagnetic wave.

2.1.2 Electromagnetic Radiation in Material Medium

In any kind of media EMR moves with speed less than speed of EMRs in vacuum,

Because any transferring medias have ability of resisting the flow of energies in it.

For that matter it is impossible to say that speed of light in a medium like water

or air is 3 × 108m/s . The optical phenomena that occur within solid materials

involve interactions between the electromagnetic radiation and atoms, ions, and/or

electrons. Two of the most important of these interactions are electronic polarization

and electron energy transitions.

Electronic Polarization

One component of an electromagnetic wave is simply a rapidly fluctuating electric.

For the visible range of frequencies, this electric field interacts with the electron

cloud surrounding each atom within its path in such a way as to induce electronic

polarization, or to shift the electron cloud relative to the nucleus of the atom with
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each change in direction of electric field component. Electric polarization has two

basic consequences. These are some of the radiation energy may be absorbed and

light waves are retarded in velocity as they pass through the medium. The second

consequence is manifested as refraction

Electron Transitions

The absorption and emission of electromagnetic radiation may involve electron transi-

tions from one energy state to another. An electron may be excited from an occupied

state at energy E2 (the second energy level), to a vacant and higher lying one, de-

noted E4 (Fourth energy level), by the absorption of a photon of energy. The change

in energy experienced by the electron, ∆E, depends on the radiation frequency as

follows: ∆E = hν where, again, h is Planck’s constant and v is the frequency of the

wave. At this point it is important that several concepts be understood. First, since

the energy states for the atom are discrete, only specific ∆E ’s exist between the

energy levels; thus, only photons of frequencies corresponding to the possible ∆E’s

for the atom can be absorbed by electron transitions. Furthermore, all of a photon’s

energy is absorbed in each excitation event

2.2 Linear and Nonlinear Optics

In linear optics it is assumed that an optical disturbance propagating through an

optical medium can be described by a linear wave equation and the polarization den-

sity depends linearly on the electric field strength. Nonlinear optics is the discipline

in physics in which the electric polarization density of the medium is studied as a

nonlinear function of the electromagnetic field of the light [6]. Being a wide field
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of research in electromagnetic wave propagation, nonlinear interaction between light

and matter leads to a wide spectrum of phenomena, such as optical frequency conver-

sion, optical solitons, phase conjugation, and Raman scattering. In addition, many

of the analytical tools applied in nonlinear optics are of general character, such as

the perturbative techniques and symmetry considerations, and can equally well be

applied in other disciplines in nonlinear dynamics. The field of nonlinear optics is

complex and encompasses myriads of interesting effects and practical applications.

In spite of its richness, most of the effects can be described accurately with just a

few equations. Nonlinear optics is therefore limited to a simple analysis of Maxwell’s

equations which govern the propagation of light. In dielectric media and in absence

of free charges or currents the Maxwell’s equations[7] are given by

∇ ·D = 0 (2.2.1)

∇ ·B = 0 (2.2.2)

∇× E = −∂B

∂t
(2.2.3)

∇×H = J +
∂D

∂t
(2.2.4)

where D is the electric displacement J is the current density, B and E are the magnetic

and electric fields respectively. H and D are related to the magnetic and electric fields

respectively as

B = µH,D = εoE + PandJ = σE (2.2.5)
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where σ is the conductivity of the media, P is the total polarization, ε0 and µ0 are

the permittivity and permeability of free space respectively. The total polarization

is the summation of linear and nonlinear polarization parts. In the linear part of

polarization, the polarization is directly proportional to the electric field. Which can

be expressed as:

P = εoχE (2.2.6)

Therefore the total polarization can be expressed as;

P = Pl + Pnl (2.2.7)

where Pl and Pnl are the linear and nonlinear polarizations respectively

P = εoχE + Pnl (2.2.8)

Then it is possible to express the electric field displacement vector as;

D = εoE + εoχE + Pnl (2.2.9)

Substituting equation (2.2.9) into (2.2.3) gives us;

∇×H =
∂(σE + εoE + εoχE + Pnl)

∂t
(2.2.10)

Then we can now use these Maxwell’s equations to develop the wave equation for this

phenomenon. Let’s us determine the time derivative of equations (2.2.3) and (2.2.10).

It becomes;

∇× ∂E

∂t
= −∂2B

∂t2
(2.2.11)

∇× ∂H

∂t
= εo(1 + χ)

σ2E

∂t2
+

∂2Pnl

∂t2
+ σ

∂E

∂t
(2.2.12)
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And the curl of these two equations also looks like as follows;

∇×∇× E = −∇∂B

∂t
= −µ∇× ∂H

∂t
(2.2.13)

∇×∇×H = εo(1 + χ)∇× ∂E

∂t
+ σ∇× E (2.2.14)

Then combining equation (2.2.11) with (2.2.13):

∇× ∂E
∂t

+∇×∇× E = −∂2B
∂t2

− µ∇× ∂H
∂t

⇒ ∇×∇× E = −(∇× ∂E
∂t

+ ∂2B
∂t2

)− µ(εo(1 + χ)∂2E
∂t2

+ ∂2Pnl

∂t2
+ σ ∂E

∂t
)

⇒ ∇×∇× E = −µ(εo(1 + χ)∂2E
∂t2

+ ∂2Pnl

∂t2
+ σ ∂E

∂t
)

Because ∇× ∂E
∂t

+ ∂2B
∂t2

= 0

⇒ ∇×∇× E + µεo(1 + χ)
∂2E

∂t2
+

∂2Pnl

∂t2
+ σµ

∂E

∂t
= 0 (2.2.15)

On the other hand combining equation (2.2.12) with (2.2.14) leads us;

∇ × ∂H
∂t

+∇ × ∇ ×H = εo(1 + χ)∂2E
∂t2

+ ∂2Pnl

∂t2
+ σ ∂E

∂t
+ εo(1 + χ)∇ × ∂E

∂t
+ σ∇ × E

Rearranging and eliminating similar terms in the above equation leads us;

∇×∇××H + µεo(1 + χ)
∂2H

∂t2
+ µσ

∂H

∂t
= 0 (2.2.16)

But since we are not interested on the magnetic field we will ignore equation (2.2.16)

and manipulating equation (2.2.15) using the following condition can leads as to the

required wave equation. From identity we know that;

∇×∇× E = ∇(∇ · E)−∇2E (2.2.17)

But from Maxwell’s equation we know that;

∇.E = 0

As a result equation (2.2.17) can be reduced to;

∇×∇× E = −∇2E (2.2.18)
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Substituting equation (2.2.18) into (2.2.15) gives the general wave equation for non-

linear polarization, which is expressed as;

∇2E = µεo(1 + χ)
∂2E

∂t2
+ µ

∂2Pnl

∂t2
+ σµ

∂E

∂t
(2.2.19)

But since all are constants it is possible to express the coefficients of the second term

as

ε = εo(1 + χ)

Therefore equation (2.2.19) can be expressed as;

∇2E = µε
∂2E

∂t2
+ µ

∂2Pnl

∂t2
+ σµ

∂E

∂t
(2.2.20)

2.2.1 Nonlinear Polarization

In linear optics, the polarization density depends linearly on the electric field strength

in a manner that can often be described by the relationship.

P = εoχE

where εo is the permittivity of free space and χ is the electric susceptibility of the

medium. As the magnitude of the applied electric field increases, the linear rela-

tionship between P and E breaks down and we enter the realm of nonlinear optics.

Then, the resulting polarization can be expressed as a series in increasing powers of

the electric field. Mathematically, such a series can be expressed as,

P(t) = εo[χ
(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...]

where we ignored the vector nature of the fields as well as dispersion, for simplicity.

The expansion coefficients, χ(1) and χ(2), etc, are identified as linear and nonlinear

susceptibilities, respectively.In general, the nonlinear susceptibilities depend on the

frequencies of the applied fields, but under our present assumption of instantaneous

response, we take them to be constants[8].We shall refer to P = χ(2)E(2) as the
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second-order nonlinear polarization and P = χ(3)E(3) as the third-order nonlinear

polarization.

2.2.2 Nonlinear Optical Materials

A NLO material is a compound in which a nonlinear polarization is invoked on ap-

plication of an intense electric field. This electric field results from the external

application of an intense laser source. NLO materials for integrated nonlinear optics

pose stringent problems as regards their process ability, adaptability and interfac-

ing with other materials. These additional requirements are intrinsically related to

the fabrication of nonlinear integrated devices, which besides efficiently performing

the expected nonlinear operation, must be miniaturized, compact, reliable and with

precisely reproducible characteristics in large-scale production and long term oper-

ation. On the basis of the three types of cohesive forces that bind the charges and

polarization together, the NLO materials can be classified into the following cases:

ionic crystals,which essentially consist of oxygen-polyhedra based solids,covalent crys-

tals essentially dealing with semiconductors and molecular crystals that with organic

materials, disordered and amorphous solids, in particular glasses and polymers, com-

posites and inhomogeneous artificial solids [9].

The nonlinear frequency preserving effects are the ones that are most seriously

considered in integrated optical devices. They can be either all optical or hybrid

(parametric) effects. All optical nonlinearities essentially involve valence electron

motion and are in general weaker than the hybrid ones where the ionic motion, vibra-

tional, orientational or translational can set up very large nonlinearities; the situation

however is reversed as regards the speed of establishing and erasing these nonlineari-

ties, the electronic polarization being much faster than the ionic ones. The magnitude
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and speed of the nonlinearities are essential characteristics in any assessment of the

material for NLO devices[10].

2.3 Optical Bistability

A nonlinear system is said to be optically bistable if the system exhibits two output

intensities for the same input intensity when the input is varied over a range of values

[11,12]. Optical bistability is a rapidly expanding field of current research, because of

its potential application for laser pulse shaping, optical switching, signal processing,

memory elements, and because of the interesting phenomena it encompasses [11,13].

Optical bistability is usually studied by characterizing the transmitted or reflected

intensity as a function of input intensity in hysteresis-like curves by rapidly switching

of the excitation source. Since the first observation of optical bistability in a passive,

unexcited medium of sodium (Na) vapor in 1974 [11], bistability has been observed in

many different materials including GaAs [14], InSb [15], InAs [16], and in GaAs/GaAl

Assuper lattices [17]. Optimizing the devices by decreasing their size, switching times,

and operating power and operating them at room temperature have been the focus

of intense research activities in recent times [11].

2.4 Local Responses of material

It is customary to write Ohm’s law as;

J = σE

where J is current density at point, σ is the conductivity of the material and E is

the surrounding electric field. But this equation has a direct implication that some

sort of assumption has been taken, the assumption is that the response is local[18].

15



Because, that the current density J at point depends only on the electric field E

at that point and the conductivity σ. This statement is never completely true; the

current possesses a certain momentum and, once set in motion, takes a certain time

(e. g., the relaxation time τ ) or distance (e. g., the mean free path ) to relax back

to zero. Even though, local electrodynamics is the usual case, because the mean free

path is typically short compared to the lengths over which the field itself varies, and so

the current is indeed related to the field by a local relation. However, in pure metals

at low temperatures, the mean free path can become longer than the electromagnetic

penetration depth. In that case, currents generated within the skin depth can travel

deep into the metal, where the electric field is essentially zero. Nonlocal effects appear

also in superconductors [5].

2.5 Local Field Effects and Effective Medium The-

ory

Clausius Mossotti(Lorentz-Lorenz) relation tend to obscure the physical origin of

local-field effects by proceeding from the macroscopic dielectric function of the equiv-

alent homogeneous system to the microscopic parameters of the model. The micro-

scopic and macroscopic aspects can be made clearer by reversing the order, that is,

by first obtaining the microscopic solution and then implementing the definition of

macroscopic quantities as averages of their microscopic counter parts. This approach

also leads naturally into a treatment of effective medium theory and description of

the dielectric response heterogeneous materials [19]. Maxwell’s equations are com-

pletely analogous in that they also express dependences among macroscopic average

or observable quantities, in this case the electromagnetic fields E, D, and B = µH
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If the material is considered especially homogeneous the dielectric function ε, then a

uniform applied field will generate uniform dipole moment per unit volume, p, where

p and E are related to D and E by the macroscopic definitions as

D = εE = E + 4πP (2.5.1)

The polarizabilities α for the given dipole moment per unit volume is given by

P = αEloc = α(E− 4π

3
P) (2.5.2)

Eloc = E + 4π
3
p = E + p

3εo

The microscopic approach is ideally suited for treating heterogeneous materials which

are mixtures of constituents of different polarizabilities where the polarization Pis

given by

P = (Naαa + Nbαb)ELOC (2.5.3)

E = ELOC −
4π

3
P (2.5.4)

where Na and Nb are the volume densities of phases a and b.

The dielectric function of the mixture can be calculated from equation (2.5.1) i.e.

again with polarization

(P) = NαEloc = εoχE

εoχE = Nα(E + p
3ε0

)

εoχE = Nα
3εo

(3 + χ)ε0E

17



or χ = Nα
3εo

(3 + χ), but χ = ε− 1, and rearranging this we get

⇒ ε−1
ε+2

= 1
3εo

(Nα), this is clausius moossotti, where N is the number density

From equation (2.5.1) since

P = (Naαa + Nbαb)ELOC which E = ELOC − 4π
3

P and then

⇒ ε− 1

ε + 2
=

4π

3
(Naαa + Nbαb) (2.5.5)

In the heterogeneous dielectric and effective medium theory, it is convenient to write

equation (2.5.5) in terms of the dielectric functions εa and εb of the phases a and b

ε− 1

ε + 2
= fa

εa − 1

εa + 2
+ fb

εb − 1

εb + 2
(2.5.6)

with fa = N
V

πr2
aLa and fb = N

V
πr2

bLb

are volume fraction occupied by the phases a and b and V is the total volume of

the cylindrical system. But where r is located in the region a and b, performing the

volume averages using the above expressions the macroscopic parameters E and P

yields

ε− εb

ε + 2εb

= fa
εa − εb

εa + 2εb

(2.5.7)

Equation (2.5.7) is the Maxwell-Garnett effective-medium expression [20] Equations

(2.5.6) and (2.5.7) have the same general formula gives

ε− εh

ε + 2εh

= fa
εa − εh

εa + 2εh

+ fb
εb − εh

εb + 2εh

(2.5.8)

where εh is the dielectric function of a host medium. Thus εh equals 1(void) and εb

for the Lorentz-Lorenz and Maxwell Garnett expressions, respectively.

If fa > fb, more appropriate choice for εh in the Maxwell Garnett case is εa. However;

the resulting values of ε are different for the two choices. In the above formulation this

18



is equivalent to choosing εh = ε, in which case the left-hand side of equation(2.5.8)

vanishes and

0 = fa
εa − ε

εa + 2ε0

+ fb
εb − ε

εb + 2ε0

(2.5.9)

This is the Bruggeman effective-medium expression, or in conventional terminology,

the effective-medium approximation (EMA)
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Chapter 3

Materials and Methodology

3.1 Materials

The study deals on determining the size and interfacial layer dependence on optical

bistability in cylindrical geometry .The study is supported by different materials such

as books, published articles, thesis and dissertations, which are the main sources of

the theory. More over MatLAB Software is used to solve the problem numerically as

well as graphically.

3.2 Methodology

3.2.1 Analytical

In this thesis one of the method used to determine the size and interfacial layer

dependence of optical bistability in metal-dielectric composition is analytical method.

That is the optical bistable behavior of gold is obtained using laplace equation and

its solution as well as the continuity equation analytical method.
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3.2.2 Computational

We employed computational method using Matlab/Fortran program by developing

suitable computer codes for studying the properties of nonlinear optical media of

composite materials. To determine the effects of interfacial layer and particle size on

optical bistability in cylindrical geometry computational and graphical techniques are

employed. In general mathematical important optical relations, size and interfacial

layer dependence model equations and the result of original and review figures in

the thesis are interpreted computationally and graphically with the help of MatLAB

software.
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Chapter 4

The effect of interfacial layer and
the trend of optical bistability on
cylindrical metal dielectric
composite

4.1 Introduction

In this part of the thesis we are going to observe the interfacial effect on two different

models. On the first model the core is considered as metallic and nonlinear, whereas

on the second model the core is considered as dielectric and nonlinear. The host en-

vironment is dielectric for the cylindrical metallic core and metallic for dielectric core

and considered as linear. The surface (layer) between the two systems is considered

as interface. The composite is considered as a three phase system and the interface

has either metallic or dielectric property.

Mathematical formalism of the problem

To study the interfacial effects of the interface separating the metallic core of radius a

and the dielectric host matrix we considered the interface layer as a shell with radius
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a + δ.Interfacial effects are known to be important in different systems and can dra-

matically change the effective behavior. For example, thermal or electrical resistance

at the interface due to roughness can significantly reduce the effective conductivity

and debonding at the interface can erode effective behavior of the composite.

The mathematical formalism of this three phase is employed from the well-known

Laplace’s equation ∇2φ = 0. Because of translational symmetry along the z-axis ,φ

is independent of z, and we need only consider the problems in r − θ plane.

Assuming the quasistatic approximation that is valid, the two dimensional electro-

static potential can be expressed in the cylindrical coordinate system. With origin

at the center of cylinder and Z-axis parallel to applied electric field E0 the electric

potential φ is symmetric with respect to φ satisfying ∇2φ = 0.

The most general solution of this Laplace equation is

φ(r, θ) = A0 + B0ln(r) +
∑∞

n−1(Anr
n + Cnr

−n)[Bcos(nθ) + Dsin(nθ)]

At infinity the potential is that of a homogenous electric field i,e φ = −E0rcosθ

According to the electric potential the system are given by the solution of Laplace

equations in cylindrical coordinates [21]. The potential distribution for the three

phase system core, shell and host is given by

φc = −E0Arcosθ, r < a

φs = −E0(Br − Ca2
r

)cosθ, a < r < a + δ

φh = −E0(r − G(a+δ)2

r
)cosθ, r > a + δ

A structural parameter σ = ( a
a+δ

)2 with (0 ≤ σ ≤ 1) is defined to describe the

thickness of the shell. With the condition of the quasistatic approximation, the size
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of the particle is smaller than the wavelength of the incident wave. We have chosen the

center of the cylindrical to be the origin of the coordinate system, and the field at large

distance from the cylindrical is uniform. So the potential is continuous everywhere.

Further boundary conditions are obtained from the cylindrical surface. These are the

normal component of the electric displacement D across the surface, because due to

∇.D = ρ
εo

, we can state that the sources of D are the true charges only. Furthermore

the tangential component of the field intensity should be continuous. The boundary

conditions for core-shell and shell-host matrix are mathematically described as follows:

The normal component is given by:

εc
∂φc

∂r
|r=a = εs

∂φs

∂r
|r=a

and

∂φc

∂θ
|r=a = ∂φs

∂θ
|r=a

where as the tangential component is given by:

εs
∂φs

∂r
|r=a+δ = εh

∂φh

∂r
|r=a+δ

and

∂φs

∂θ
|r=a+δ = ∂φh

∂θ
|r=a+δ

Using the normal component part, we obtain

εc
∂φc

∂r
|r=a = −εc(AE0cosθ)
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∂φc

∂θ
|r=a = (ArE0sinθ)

εs
∂φs

∂r
|r=a = εs(−B − ca2

a2 )E0cosθ)

∂φs

∂θ
|r=a = (Ba− ca2

a
)E0sinθ

Also using the tangential component part we obtain:

εs
∂φs

∂r
|r=a+δ = εs(−B − C a2

(a+δ)2
E0cosθ

∂φs

∂θ
|r=a+δ = B(a + δ)− C a2

(a+δ)
E0sinθ

εh
∂φh

∂r
|r=a+δ = εh(−1−G (a+δ)2

(a+δ)2
E0cosθ

∂φh

∂θ
|r=a+δ = (a−G (a+δ)2

a
E0sinθ

After differentiation and some mathematical manipulation, the solution (undeter-

mined coefficients) of the system of linear equations as follows

A−B + C = 0

εsB − εhG + εs
a2

(a+δ)2
C − εh = 0

εsB + εsC − εcA = 0

B − C a2

(a+δ)2
+ G− 1 = 0

Now using a four by four matrix and solving linear equation, we obtain:

A = 4εhεs

(εc+εs)(εs+εh)−(εc−εs)(εh−εs)σ

B = 2εh(εc+εs)
(εc+εs)(εs+εh)−(εc−εs)(εh−εs)σ
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C = 2εh(εc−εs)
(εc+εs)(εs+εh)−(εc−εs)(εh−εs)σ

G = (εc+εs)(εs−εh)+(εc−εs)(εs+εh)σ
(εc+εs)(εs+εh)−(εc−εs)(εh−εs)σ

The uniform electric field Eo inside the metallic particle is

Ec = 4εhεs

(εc+εs)(εs+εh)−(εc−εs)(εh−εs)σ
E0

The induced dipole moment of cylindrical metallic particle

p = GE0(a + δ)2 = (εc+εs)(εs−εh)+(εc−εs)(εs+εh)σ
(εc+εs)(εs+εh)−(εc−εs)(εh−εs)σ

(δ + a)2E0

4.2 Interfacial Layer Effect

Now, we consider the effect of interfacial layer through the limit δ → 0, while εs →∞

the interfacial property is concentrated on a surface of zero thickness and only the

quantity δεs is of significance, we take I = limδ→0,εs→∞δεs

To characterize the interface between particles and dielectric host, I is the interfacial

factor. It is a mixture of metal and dielectric, since I is a complex number, and I

is also complex quantity. But, the real part of the dielectric function of the metallic

particle is always negative number; whereas the imaginary part is a small, positive

one. When I is taken as a negative (or positive) value, the interface exhibits metal-

like or dielectric-like; and I=0 corresponds to the perfect interface. If we consider

η = εs

εc(Ec)
and σ = ( a

a+δ
)2

The induced dipole moment of our system becomes

GE0 = p =
q(Ec)− εh

q(Ec) + εh

(a + δ)2E0 (4.2.1)

with q(Ec) = kεc(Ec),where

K =
(1 + σ)η + (1− σ)η2

(1− σ) + (1 + σ)η
(4.2.2)
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By taking the limit of an interfacial factor

k = 1 +
I

a(εc)
(4.2.3)

Z(Ec) = Kεc(Ec) = εc(Ec) +
I

a
(4.2.4)

G =
(1 + I

aεc
)εc − εh

(1 + I
aεc

)εc + εh

(a + δ)2 (4.2.5)

Assuming that the inclusions are not too densely packed, the uniform field inside the

nonlinear particle is

Ec =
2εh〈E1〉

εc + εh + 1
a

(4.2.6)

For non-dilute mixture of nonlinear cylindrical metallic particles

Ec =
2εhE0

(εc + εh + I
a
)(1− fG

a2 )
(4.2.7)

By using equations (4.2.1),(4.2.2) and (4.2.3) we get

Z3 + αZ2 + βZ + γ = 0

where

Z = χ
(3)
c |Ec|2

α =
2[(1−f)εc1+(1+f)εh+ I

a
]

1−f

β =
[(1−f)εc1+(1+f)εh+ I

a
]2+[(1−f)εc2]2

(1−f)2

γ =
−4ε2

hχ
(3)
c |E0|2

(1−f)2

Here, εc1(orεc2) is real (or imaginary) part of εc Equation Z3 + αZ2 + βZ + γ = 0 is

a cubic equation in Z, and signifies bistability.
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4.3 Interfacial layer dependence of optical bista-

bility

We graphically analyzed the effect of interfacial layer for both metallic core and

dielectric core and compared the threshold magnitude of bistability.For metallic core

we took cylindrical gold with real and imaginary part of dielectric constant -13.0

and 1.04 respectively.However,for dielectric core we consider a system with real and

imaginer part of the dielectric constant 6.0 and 2.04 respectively.one can observe that

the interfacial layer plays an important role in bistable behavior. For the first model
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Figure 4.1: Bistability curves for interfacial factors I = −1.5, 0, 1.5andχ
(3)
c = 10−8

for the given values of dielectric constant and radius 4nm cylindrical metallic core
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the interfacial factor I changes from a negative value I = −1.5 to a positive value

I = 1.5 that is from the metallic property to the dielectric property, the threshold

value of the bistability decreases. From this one conclude that the dielectric like

interfacial layer is favorable to reduce the threshold values.
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Figure 4.2: Bistability curves for interfacial factors I = 1.5, 0,−1.5 and χ
(3)
c = 10−8

for the given values of dielectric constant and radius 4nm cylindrical metallic core

However for the second model (dielectric core) the interfacial factor changes from

positive value (dielectric behavior) to a negative value (metallic behavior) and the

threshold value of the bistability increases. For the metallic like interfacial layer

amplifies the threshold value of the bistability.
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4.4 Size Dependence of Optical Bistability

In this part we analyzed the effect of size of the core and compared the threshold

magnitude of the bistability. The threshold value of the optical bistability depends

on the size or radius of the core, for these two models threshold bistablity for different

radii is illustrated as shown the figures below.
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Figure 4.3: Bistability curves for small radii a = 3nm, 6nm, 9nm, I = 1.5andχ
(3)
c =

10−8 for the given values of dielectric constant and radius 4nm cylindrical metallic
core

For the first model (metallic core) the threshold values of the bistability increases

with increasing the radius of the metallic core.
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Figure 4.4: Bistability curves for small radii a = 3nm, 6nm, 9nm, I = 1.5andχ
(3)
c =

10−8 for the given values of dielectric constant and radius 4nm cylindrical dielectric
core

For the second model (dielectric core)the threshold value of the bistability decreases

with the increase of the radius.
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Figure 4.5: Bistability curves for small radii a = 3nm, 6nm, 9nm, I = 1.5andχ
(3)
c =

10−8 for the given values of dielectric constant and radius 4nm cylindrical metallic
core

From the above figure we conclude that, for perfect interfacial layer (I = 0) in-

crement of the radius does not affect the threshold values of the bistablity as shown

in figure 5.

4.5 The effect of interfacial layer on induced dipole

moment

In figure 6 we observed the effect of interfacial layer on induced dipole moment.

From the figure one can observe that as interfacial factor switches from negative
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10−8 for the given values of dielectric constant and radius 4nm cylindrical metallic
core

value (metallic behavior) to a positive value (dielectric behavior) the absolute value

of the local electric field increases in magnitude with respect to the magnitude of

applied external electric field.
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Chapter 5

Conclusion

Interfacial layer plays a great role in bistability behavior. As interfacial factor I

changes from negative (metallic property) to a positive (dielectric property) the

threshold value of the bistability decreases where as when I changes from positive

(dielectric property) to a negative (metallic property) the threshold value increases.

The interfacial layer also has effect on induced dipole moment: as interfacial factor

switches from negative value to positive value the magnitude (absolute value), of the

local electric field increases with respect to the magnitude of applied external electric

field. More over, the effect of size on the bistability has a great impact: as the size

a metallic core increases, the threshold value of the bistability increases, however as

the size of the dielectric core increases the threshold value of the bistability decreases

For perfect interfacial layer the size does not affect the bistability of the system.
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