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Abstract

Currently the science of astronomy for the study of origins and evolutions is greatly ad-

vancing both theoretically and observationally. However, there are a number of works

for further developments. For example, the data extracted on earth is highly extinct

due to stellar winds, background radiations and planetary atmospheres. So motivated

by this astrophysical relevant issue we were interested to study on the effect of atmo-

spheric extinction on astronomical photometry and spectroscopy theoretically. The

standard Plancks black body radiation law was used for perfect (non-extinct) radia-

tion. To see the effect of earth’s atmosphere we assumed an exponential atmosphere

that obeys the Beer-Bouguet-Lambert law of the optical depth equation. The results

are in agreement with observational works and the standard theories. However, this

work is limited to high approximations.

ix
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Introduction

I. Background of the study and literature review

Throughout history humans have looked to the sky to navigate the vast oceans, to

decide when to plant their crops and to answer questions of where we came from and

how we got here. It is a discipline that opens our eyes, gives context to our place in

the Universe and that can reshape how we see the world [11]. The first systematic

observation of the sky was considered to be carried out by the Chinese as early as

the 14th century BC [21] while the concept of stellar magnitudes is at least as old

as Ptolemy’s Almagest (ca. 137 AD). Ptolemy’s catalogue was based, or largely bor-

rowed (with an incorrect value for precession) from the star catalogue of Hipparchus;

as early as the second century B.C. The literature on Ptolemys star catalogue is quite

extensive [12], Hipparchus divided the visible stars into six classes according to their

apparent brightness [8], stars were ranked from 1 to 6 with 1 being the brightest and

6 being the dimmest (you can already see a problem that a higher number means a

dimmer star).

Instead of changing this system, modern astronomy has simply slapped a mathemat-

ical underpinning to the magnitude scale. We do so by requiring that a difference in

five magnitudes corresponds to a star having a flux that is precisely 100 times greater.

Mathematically, we compare the magnitudes to the fluxes [12].

1
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In 1610 Galileo published the first telescopic observations showing that the Milky

Way consists of numerous stars. By the time Galileo was observing the heavens with

a small refractor at the beginning of the 17th century, the Chinese had been recording

celestial phenomena for nearly 3000 years [19]. Many of those observations are of use

to modern astronomers.

Traditional eye based estimation of stellar brightness is usually thought to be doing

very well at 10% accuracy [5]. There are many variables of large amplitude where

data of this accuracy are still useful, particularly when coverage is extensive, so that

observations can be averaged [19]

While these early observations are of course important, in order to study stars sys-

tematically we must be able to make quantitative measurements to obtain their basic

properties. Only quantitative measurements can form the nucleus of a theoretical un-

derstanding and against which model predictions can be tested. Detailed knowledge

of celestial visibility is required to extract the maximum information out of visual

astronomical observations.

Observational astronomy becomes science only when answer the basic properties of

star quantitatively: How far away is that object? How much energy does it emit?

How hot is it? what about its motion? [26]

Modern astronomers study stars by measuring and analyzing the light they radi-

ate. Most of what we know about astronomical sources comes from measuring their

spectral energy distributions (collect and analyze the electromagnetic radiation these

objects emit into space). The only means for investigating distant stars, nebulae, and

galaxies is to collect and analyze the electromagnetic radiation these objects emit into

space [26].
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The goal of the observational astronomer is to make measurements of electromagnetic

radiation from celestial objects with as much detail, or finest resolution possible. The

perfect astronomical observing system would tell us the amount of wave length, from

the entire sky in arbitrarily small angle slice. Such a system does not exist [6].

Ground- based astronomical observations are affected by the earth’s atmosphere. If

the space between the radiation source and observer is not completely empty, the

passage of light through a medium (or atmosphere) is affected. The earth’s atmo-

sphere allows only small fraction of all wave lengths of electromagnetic radiation to

penetrate. For accurate result it is important to estimate the amount of light being

blocked on its path to Earth [25].medskip

Global strategy of observational astronomy requires exact knowledge of properties of

Earth’s atmosphere. Light from astronomical object is scattered and absorbed by air

molecules and aerosols and this cause a significant loss of flux, intensity depending

on the wave length and weather conditions. In order to overcome this problem, as-

tronomers have developed plenty of tools which is measuring extinction [25]. It is

the absorption and scattering of electromagnetic radiation by aerosols and molecules

between an emitting astronomical object and the observer.

However, most of this radiation is absorbed or distorted by the atmosphere before it

can reach a ground-based telescope, only visible light and some radio waves, infrared,

and ultraviolet light survive the passage from space to the ground. This limited

amount of radiation has provided astronomers enough information to estimate the

general shape and size of the universe and categorize its basic components [17]. On

the other hand the advancement of both science and technology has given the oppor-

tunity for achieving high-precision photometric measurements in upcoming multiband
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sky surveys. PanSTARRS (Panoramic Survey Telescope and Rapid Response System)

and LSST (Large Synoptic Survey Telescope) motivates a comprehensive assessment

of the limitations of ground-based CCD ( charge-coupled device) photometry. The

science goals for future ground-based all-sky surveys, pose stringent requirements on

the stability and uniformity of photometric measurements [6], [10].

The first astronomy practiced was optical astronomy and measuring star brightness

is an ancient idea. Up to Galileo Galilei (1609), the most important means of obser-

vation in astronomy was the human eye. But Over the centuries, astronomers have

developed the capability of their instruments to give them greater power to detect

and measure astronomical sources. Modern astronomy began in the renaissance with

the observations of Tycho Brahe and Galileo and the theoretical work of Kepler and

Newton.

At the beginning of the 17th century telescope was invented in Holland and in 1609

Galileo Galilei made his first astronomical observations with this new instrument.

The progress of our knowledge of the sky may be traced through a series of major

discoveries which often follow the development of new technologies such as the tele-

scope, computers, and space observatories [3].

Astronomy is now carried out across the entire electromagnetic spectrum from the

radio to the gamma ray. Astronomers use more precise tools to obtain the calculation

[3]. But the natural and artificial environments restrict the development of astronomy

and challenge its advances. It is convenient to describe the environmental challenges

through the techniques that are used to make the measurements: optical, radio, etc

[9].

Earths atmosphere is an incredibly important fluid that supports life on Earth. We are
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actually physically connected because we constantly share and recycle air molecules

through our lungs. Although the atmosphere of the Earth is very important for life,

it does cause systematic observational uncertainties significant for ground-based as-

tronomical observations. [9].

The theory of atmospheric extinction was developed only when the knowledge of the

precise magnitudes of the stars became of interest, and again the extinction at low

altitude was not important. The basic physics of atmospheric extinction was first

presented by Pierre Bouguer in 1729 [22].

Photometry can be said to have started with measurements on the sun and the moon

by Pierre Bouguer (1729) and by Johann Heinrich Lambert (1760). Systematic work

on stars began only after Norman Pogson had defined stellar magnitudes (1850) [19].

Processes that attenuate(extinction)light as it propagates through the atmosphere

include absorption and scattering (Rayleigh) by molecular constituents (O2, O3, wa-

ter vapor, and trace elements), scattering (Mie) by airborne macroscopic particulate

aerosols with physical dimensions comparable to the wavelength of visible light, and

shadowing by ice crystals and water droplets in clouds[6]. Analysis and correction for

this component of atmospheric extinction requires special care(the fitting model for

atmospheric transmittance of light). But the state-of-the-art of measurement science

and calibration technology has now developed in precision and field applicability to

the point where we must look at the column of atmosphere through which light travels

to our telescopes to realize the precision and accuracy now required for astrophysical

measurements[9] since extinction depend on transparency, elevation of the observer,
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and the zenith angle, the angle from the zenith to ones line of sight. Therefore, look-

ing vertically, the zenith angle is 0o, and is 90o at the horizon.

Astronomers who specialize in photometry need to compensate for atmospheric ex-

tinction: the reduction in a celestial object’s apparent brightness when its light passes

through the atmosphere. Parrao and Schuster [23] in 2003 points out that precise at-

mospheric extinction determinations are needed not only for stellar photometry but

also for any sort of photometry, spectroscopy, spectrophotometry and imaging. when-

ever accurate, absolute and well-calibrated photometric measurements are required

for the derivation of physical parameters in the studies of galaxies, nebulae, planets,

and so forth. Precise determinations of the atmospheric extinction ultimately deter-

mine the scientific value of the telescope data .

Within the next decade a suite of observatory class instruments directly measuring

Earths atmosphere and telescope throughput will enable routine, probably accurate

photometric measurements to sub - 1% accuracy [7], often achieving the fundamental

photon noise limit. Examples of requirements for precise and accurate photometry

for research ranging from stars to dark energy are described.

The extraterrestrial extinction is not taken into account in this study, because it is

not important for atmospheric attenuation and is not discussed herein.

II. Statement of the problem

Ground-based astronomical observations are affected by the Earths atmosphere. Light

from astronomical objects is scattered and absorbed by air molecules and aerosols.

This extinction effect can cause a significant loss of flux, depending on the wavelength

and weather conditions. The signal of the targeted object is further deteriorated by
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background radiation, which is caused by light from other astronomical radiation

sources scattered into the line of sight and emission originating from the atmosphere

itself.

Research Questions

• How Earth’s atmosphere affects spectral energy distribution of astronomical

object?

• How do we determine the standard (exo-atmospheric) photometry of astronom-

ical object?

• How the component of earth’s atmosphere reduces the flux/Luminosity of star?

• What can astronomers do to capture(compensate) the missing electromagnetic

radiation for study?

III. Objectives

General Objective

To study earth’s atmospheric extinction effect on astronomical observation: Theoret-

ical model versus observation.

Specific Objectives

• To derive relevant observable parameters that enter in the extinction effect of

observation.

• To er derive spectral energy distribution radiation law with and without extinc-

tion.
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• To see the effect of seeing/airmass.

• To analyze the effect of atmospheric depth on astronomical photometry and

spectroscopy.

IV. Methodology

Planck’s radiation law is being used to derive relevant parameters like brightness mag-

nitudes (such as apparent, absolute, bolometric magnitudes), and other observable

parameters. The atmospheric extinction is being considered by assuming an exponen-

tial atmosphere. Then the optical thickness related to extinction is an exponential

one, where the Beer-Bouguer-Lambert law is considered. The analytically derived

equations are used to generate numerical data computationally using MATHEMAT-

ICA to analysis.

The outline of the work is as follows;

In chapter one we introduced some basic tools of astronomical observations and pa-

rameters. In chapter two we discuss the black-body radiation phenomena, which is

of primary importance in thermal radiation theory and practice and the fundamental

law of radiation of such system. The quantitative black-body radiation laws and their

corollaries are addressed in detail for later use. In chapter three we derive the relevant

equations for the appropriate astronomically observable parameters. In chapter four

we discuss our results. Finally, in chapter five we give our summary and conclusion.



Chapter 1

Basic Tools and Parameters In
Astronomical Observation

Introduction

History of astronomy is, history of the science that studies all celestial object in the

universe. The field of astronomy have developed from simple observation (by eye)

about the movement of sun and moon in to sophisticated theories nature of the uni-

verse. Celestial measurements reaching back 3000 years or more carried out in many

cultures world wide [3].

Observational astronomy is the practice of observing celestial object by using tele-

scope and other astronomical tools and focused on getting data, in contrast with

theoretical astrophysics which is mainly concerned with finding out the measurable

implication of physical model.

As a science, the study of astronomy is somewhat hindered in that direct experiments

with the properties of the distant universe are not possible. However, this is partly

compensated by the fact that astronomers have a vast number of visible examples of

stellar phenomena that can be examined. This allows for observational data to be

plotted on graphs, and general trends recorded.

9
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Theoretical astronomy is the use of analytical model of physics and chemistry to de-

scribe astronomical objects and astronomical phenomenon. Then astronomy includes

observation and theories about celestial objects [3].

Astronomical objects send enormous range of electromagnetic radiation and are known

through the radiation they emit. Astronomers learn about astronomical objects by

observing the energy that they emit in the form of electromagnetic radiation which

travel through out the universe in the form of waves or photons that can range from

gamma rays, which have extremely short wave lengths, to visible light to radio waves

, which are very long. The whole range of these different wave lengths makes up

electromagnetic spectrum. Since Earth’s atmosphere complicates studies by absorb-

ing many wave length’s of the electromagnetic spectrum, astronomers study EMR by

using deferent techniques for different wave lengths[24].

Earth’s atmosphere is a great impediment in many kind of astronomy. At some fre-

quencies the radiation can penetrate the atmosphere and ground- based observations

are feasible but at other frequencies the atmosphere is opaque and observations must

be carried out above earth’s atmosphere. Space missions can overcome this limitation

as will ground-based adaptive optics systems that are now coming into operation [5].

1.1 Basic Tools

There are three basic components of a modern system for measuring radiation from

astronomical sources: the telescopes, the wavelength-sorting device, and the detec-

tors.

Astronomy is now carried out across the entire electromagnetic spectrum from radio to
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the gamma ray as well as cosmic ray,neutrinos,and gravitational waves. Observational

astronomy may be divided according to the observed region of the electromagnetic

spectrum (fig.11). Some parts of the spectrum can be observed from the Earth’s

surface by different tools such as optical telescope, radio telescope, and Infrared tele-

scope(for shorter infrared wave length) while other parts are only observable from

either high altitudes or outside the Earth’s atmosphere by using Gamma ray tele-

scope, X-ray telescope, and Ultraviolet telescope [3]. Fig. 1.1 shows the bands of

Figure 1.1: Radiation and Earth’s Atmosphere [Source, Astronomy, Senior
Contributing Authors, page 154)]

the electromagnetic spectrum and how well Earths atmosphere transmits them. Note
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that high-frequency waves from space do not make it to the surface and must therefore

be observed from space.

1.2 Basic Parameters In Astronomical Observa-

tion

The measurement of the brightness of radiating objects in the sky is astronomical

photometry, is a technique of astronomy concerned with measuring the flux, or inten-

sity of an astronomical object’s electromagnetic radiation and when we deal mainly

with, centers around which a region of the electromagnetic spectrum to which the

human eye is sensitive is optical photometry [5]. The quantitative measurement of

the basic properties of stars and galaxies came from observing the electromagnetic

radiation they emit for earth’s atmosphere is nearly transparent around the range of

visible light and some infrared (IR), while the other is the radio window long wave

lengths.

UVB Photometry

Stellar photometry come in to use in 1861 as a means of measuring colors. This

technique measured the magnitude of a star at specific frequency ranges, allowing

determination of the overall color, and there fore temperature of a star. In the year

1950 H.J. Johnson and Morgan developed UVB photometric system. By 1951 an in-

ternationally standardized system of UBV-magnitudes (Ultraviolet-Blue-Visual) was

adopted [16].

These bands have been chosen in such a way that (B-V) and (U-B) are zero for A0

stars and surface temperature of such star is 10,000 K. Note that U, V and B mag-

nitudes are apparent magnitudes. Their corresponding absolute magnitudes are MU ,
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MV and MB.

Photoelectric photometry using the CCD is now frequently used to make ob-

servations through telescope. These sensitive instruments can be designed to view in

parts of the spectrum that are individual photons, and can be designed to view in

parts of the spectrum that are invisible to the eyes [16].

Spectroscopy stellar spectroscopy is the fundamental tool for investigating the na-

tures of stars and is central to our understanding of modern astronomy and astro-

physics. Spectroscopy is the study of what kinds of light we see from an object. It is a

measure of the quantity of each color of light (or more specifically, the amount of each

wavelength of light). It is a powerful tool in astronomy and most of what we know

in astronomy is a result of spectroscopy: it can reveal the temperature, velocity and

composition of an object as well as be used to infer mass, distance and many other

pieces of information. Spectroscopy is done at all wavelengths of the electromagnetic

spectrum, from radio waves to gamma rays [18].

1.2.1 Magnitude

As the magnitudes were introduced by the Greek astronomer Hipparchus 130 BC, the

modern magnitude system has its origin in the ancient Greek. Magnitude is a num-

ber that measures the brightness of a star or galaxy. In magnitude, higher numbers

correspond to fainter objects, lower numbers to brighter objects; the very brightest

objects have negative magnitudes. The Hipparchus arranged the visible stars in to

six brightness rank, and he called the first rank the brightest and were ranked as six

the faintest. The ranks were called magnitude [8].
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When modern astronomers talented to make more exact measurement of the bright-

ness of stars, they understood that, Hipparchus magnitude scale was roughly log-

arithmic. This system remains intact to this day, though with some modification.

In steady of changing Hipparchus magnitude system, modern astronomer has added

precision to the magnitude scale that a difference in five magnitudes corresponds to

star having precisely a flux (f) of 100 times greater [12], were f is the energy flux going

through the area per unit time.

Accordingly in 1856 the Oxford astronomer Norman R. Pogson proposed that math-

ematical scale of stellar magnitudes with the difference of five magnitudes be exactly

defined as a brightness ratio of 100 to 1. That means a first magnitude star is 100

times as brighter than a 6th-magnitude star or conversely, a 6th-magnitude star is

100 times dimmer than a 1st-magnitude star. One magnitude thus corresponds to a

brightness difference of exactly the fifth root of 100 (the logarithm of which equals

0.4) or very close to 2.512 a value known as the Pogson ratio. This implies that a

star of magnitude m is 2.512 times as bright as a star of magnitude m +1 [13].

The magnitude logarithmic scale is setup still in use today. Enough it to say that the

our sensory organs and the brain perceive stimuli (such as light, sound, and taste)

proportional to the logarithm of the stimulus. This is known as the Weber-Fechner

psychophysical law [14].

Now, magnitudes are quantified by a logarithmic equation, So defined modern magni-

tude scale where the ratio of flux of two stars corresponds to their magnitude difference

according to:

F1

F2

= 2.512m2−m1 (1.2.1)
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Where F1 and F2, respectively represent,the recorded flux and m1 and m2 the corre-

sponding magnitude. This leads to the formula

m = −2.512logF + c (1.2.2)

This expression is often referred to as pogson’s formula, and the coefficient (-2.5) is

the Pogson scale, C is an arbitrarily choosen constant.

F1

F2

= 100
(m1−m2)

5 = 10
(m1−m2)

2.5 (1.2.3)

or

m1 −m2 = −2.5log
F1

F2

. (1.2.4)

this equation is the fundamental equation needed to define and deal with magnitudes.

The most common use of magnitudes is for expressing the apparent brightness of stars

to give a definite number for a magnitude of a star, instead of just the magnitude

difference between pairs of stars, we must pick a starting place, or zero point, for the

magnitude system. To oversimplify some what we pick the star Vega, and say it has

magnitude of 0.00. Then the magnitude of any other star is simply related to the flux

ratio of that star and Vega as follows:

m1 = −2.5log10
f1

fvega

The magnitude of Vega does not appear, because it is defined to be 0.00. These

magnitudes are called apparent magnitudes, because they are related to the flux of

the star, or how bright the star appears to us [4].

Astronomers use two different magnitudes, Apparent (m) and Absolute (M) magni-

tude.
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1.2.2 Apparent Magnitude

Apparent magnitude is the brightness of an object as it appears to be. The brightness

of a star in physical units is its flux which has the units of Watts per square meter in

MKS. In terms of the magnitude system, the flux is described as an apparent magni-

tude. However, astronomers almost never use flux to describe brightness of objects,

they use magnitude. It depends on how far away the object is from the observer (like

an objects flux). The brighter an object appears, the lower its magnitude value (e.i.,

inverse relation ship). It is simply a measure of the apparent flux density of the star

as measured from earth [8]. The basic formula has been given already as eqn (1.2.4).

1.2.3 Absolute Magnitude( M )

Absolute magnitude is a concept that was invented after apparent magnitude when

astronomers needed a way to compare the intrinsic, or absolute brightness of celestial

objects. Astronomers use this magnitudes which stars are truly bright and which are

truly faints because distance is no longer variable. Therefore, it reflects the intrinsic

amount of light out put by the source and never changes (like an objects luminosity).

It is apparent magnitude that an observer would measure at a distance of d = 10 pc

from the source and that the source (in the absence of light loss in the intervening

space) would have if situated at this distance 10 parsec (32ly). It is a measure of flux

at 10 pc away from earth [8]. A light-year is the distance light travels in one year

about 6 trillion miles, or 10 trillion kilometers. 1pc = 206, 265AU = 3.08 ∗ 1016m.

Absolute magnitude (M) then satisfies:

m−M = 5log
d

10pc
(1.2.5)

m = M + 5log
d

10pc
(1.2.6)
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where, m is for apparent magnitude, d is the distance from the source to earth.

Magnitudes for stars range in practise from about -10 to +17,but the possible

range of values is theoretically unlimited. Example, Sun has an absolute magnitude

of 4.2, Sirius has an absolute magnitude of 1.47, Betelgeuse has an absolute magnitude

-5.14.

Clearly there must be a relationship between m, M and d and this can be derived

from the inverse square law if we neglect any dimming of a star that might occur due

to interstellar absorption (i.e. fog). Assuming that the only factor causing a star to

dim as it moves away from us is the geometric effect of spreading its light over an

increasingly large sphere, can be written as f = L
4πd2 where L is the luminosity of

the star, d is its distance and f is its flux measured at Earth. This is a statement

of the inverse square law for light, that the flux of an object changes as the inverse

square of its distance. By using the definition of absolute magnitude employing the

magnitude m−M = −2.5 log f
f(at10pc)

we can determine the additive term of apparent

magnitude.

f

f(at10pc)
=

102

d2

∆m = 5 log10 d− 5 (1.2.7)

where, ∆m is distance modules.

1.2.4 Visual magnitude

In daylight the human eye is most sensitive to radiation with a wavelength of about

550 nm, the sensitivity decreasing towards red (longer wavelengths) and violet (shorter
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wavelengths). The magnitude corresponding to the sensitivity of the eye is called the

visual magnitude Mv.

1.2.5 Photographic magnitude

Brightness of star measured photographically: the magnitude of a star determined

by measuring its size on a photographic plate. Depending on the color of the star,

photographic magnitude and visual magnitude can differ because the eye and standard

photographic plates have different color sensitivities. Photographic plates are usually

most sensitive at blue and violet wavelengths, but they are also able to register

radiation not visible to the human eye. Photographic magnitudes can be measured

with photographic plates sensitive to other region of the electromagnetic spectrum.

1.2.6 Bolometric magnitude and Bolometric correction

The bolometric magnitude is a measure of the energy spectral flux density (W m-

2 Hz-1) integrated over the entire appropriate frequency band(integrated over all

wavelengths. It is a measure of the bolometric flux density F (W/m2) magnitude of

a star.

Bolometric magnitudes go beyond the restriction of magnitude at some particular

wavelength, or range of wavelengths, and refer to the total power of the source and

includes those unabsorbed due to an instrumental pass-band, the earth’s atmospheric

absorption and extinction by interstellar dust. It is based upon the total energy flux

in and near the optical band (IR, optical, UV). The distribution of radiation from

a star approximates a black-body spectrum with superimposed absorption lines; it

peaks in the visible range for many stars and falls toward zero.

The electromagnetic radiation that astronomical objects emit are varies with wave
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lengths. To measure all the electromagnetic radiation, we must have observe at

all wave lengths from gamma ray (the shortest wave lengths) to radio wave (the

longest wave length). The object must be observed by ground based telescope (for

earth’s atmosphere is transparent) and space based telescope (for earth’s atmosphere

is opaque). This is not trivial to determine because some regions of the spectrum

are absorbed by the atmosphere (for example) and theoretical models are used to

determine correction for the effects.

The Bolometric correction is the correction applied to a magnitude (apparent or

absolute) to get the bolometric value. Then the bolometric correction BCx is defined

as

mbol = mx + BCx, (1.2.8)

where x is stands for the particular pass bands.

Mbol = MV + BCv (1.2.9)

where the subscript V refers to the V or Visual pass-band (a yellow-green filter) of

the UBV or UBVRI photometric systems, and BC is the bolometric correction which

is determined as a function of temperature or spectral type.

The BCv bolometric correction zero point was derived by assuming for the sun

Mbol = 4.74 and Mv = 4.81 from the observed V = −26.76 mag. Thus we assigned

visual bolometric correction BCv of -0.07 mag for the solar model. The bolometric

correction is then the quantity that must be added to the visual magnitude to obtain

the bolometric one. By definition, the bolometric correction is zero for radiation of

solar type stars (or, more precisely, stars of the spectral class F5).[28]

BC = mbol − V = MBol −MV (1.2.10)
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1.2.7 Absolute Bolometric Magnitude and Luminosity

The absolute bolometric magnitude is a direct measure of the bolometric luminosity

of a star. It is the energy output integrated over the ultraviolet, visual, and Infrared

as fitting for the temperature of the star. The bolometric magnitude Mbol of an

arbitrary star is related to luminosity L as :

Mbol −Mbol,� = −2.5log
L

L�
(1.2.11)

Mbol = −2.5log
L

L�
+ 4.74 (1.2.12)

Where, L� = 3.845×1026 Mbol,� = 4.74. To define the zero point of the absolute bolo-

metric magnitude scale by specifying that a radiation source with absolute bolometric

magnitude MBol = 0 mag has a radiative luminosity of exactly;

L0 = 3.0128 ∗ 1028W

1.2.8 Luminosity

Luminosity is an expression of true brightness of an object how much radiation is

emitted per second. It is also a measure of the radiative power of a source, and relates

to the entire output, and thus can be directly connected with absolute bolometric

magnitude. The most basic stellar property we can think of measuring is its luminosity

and one of the basic direct observable quantities for star. It depends where star is in

its evolutionary sequence (the effective temperature ), size of a star and extinction.

One of the basic direct observable quantities for star [15]. As the radius increases, the

surface area will also increase, and the constant luminosity has more surface area to

illuminate, leading to a decrease in observed brightness. Measuring luminosity means
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deriving accurate measurements, for each of these components and without which an

accurate luminosity figure remains elusive.

To measure total luminosity, assuming that no light is absorbed during its journey

out side of the shell i.e at r > R and by neglecting any effect (relativistic effect) then

the inverse square law for the energy flux is cogent.

F =
L

A
(1.2.13)

F =
L

4πr2
(1.2.14)

Where A = 4πr2 is the surface area of the illuminated sphere with radius r and r is

the distance from the observer to the light source,F is flux density

=⇒ L = 4πr2F (1.2.15)

The inverse square law for energy flux out side of the star at a distance r > R is

Fα 1
r2 , where R is radius of star. The total luminosity of star is the product of surface

area and the radiation emitted per area.

L = AσT 4 (1.2.16)

(assuming the star is a black body).

L = 4πR2σT 4 (1.2.17)

where σ is the Stefan-Boltzmann constant

1.2.9 Intensity

Specific intensity is the energy per unit area normal to the direction of radiation, per

unit solid angle, per unit time, per unit wave length (or frequency). The intensity
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including all possible frequencies is called the total intensity I, and is obtained by

integrating Iν over all frequencies.

1.2.10 Flux and flux density

More important quantities from the observational point of view are the energy flux

and the flux density (Fv, F). The flux density gives the power of radiation per unit

area. Observing radiation of a source means measuring the energy collected by the

detector during some period of time, which equals the flux density integrated over

the radiation-collecting area of the instrument and the time interval about the total

flux density. Flux is just the average of intensity over all directions.

1.2.11 Color, Temperature and Luminosity of stars

Temperature is one of the most basic quantities in physics and astrophysics. The

color of a star is primarily a function of its effective temperature. The frequencies of

detected photons may be an indicator of the temperature of the originating bodies.

For example, photons from the sun at optical frequencies tell us that the surface layers

of the sun have temperature of 6000 K (kelvin). The luminosity and temperature of

stars are often deduced from observed broad band colors and magnitudes. Empirical

color-temperature relations and color-bolometric magnitude corrections are normally

used to transform observed standard magnitudes and colors to temperature and lu-

minosity. Careful measurement of star’s light spectrum gives about its temperature.

1.2.12 Color Temperature

The color temperature Tc is derived from broadband UBV photometry, the measure-

ment of fluxes in the U, B, and V bands, under the assumption that the observed



23

object has a black-body spectrum. The relative flux densities in these bands are a

measure of the color of the objet. The color temperature of a light source is deter-

mined by comparing its chromaticity with a theoretical, heated black-body radiator.

The temperature (in k) at which the heated black-body radiator matches the color

of the light source is that source’s color temperature. From Wiens displacement law,

we get the color temperature, T = constant/λmax. It shows for which wavelength

radiation has its maximal intensity and hence which color the star appears to have.

1.2.13 Color index

One way to classify stars or galaxies is by the ratio of the flux at one wavelength to

the flux at another wavelength and this ratio is a strong function of temperature [2].

Flux usually is measured through color filters as, U,B or V filters. Flux through e.g.,

B filter is called B magnitude written mB.

A color index is the ratio of fluxes in two color bands for the same star or the dif-

ference between the apparent magnitudes of a star in two different spectral region

[5]. The color index that is used very often is the U-B index and B -V changes with

temperature. Hot star has negative color index and the cooler star has positive color

index. That is, hot star tend to be brighter in the blue part of the spectrum that

in the visual or red part of the spectrum and for such stars, B < V . Cooler stars

are brighter in the visual band pass than in the blue band pass so V < B. There

fore, it convey useful information about a star’s spectrum and temperature. Thus

by measuring the ratio of fluxes, we can learn about the temperature of the star or

galaxy (there are empirical correction terms to account for the non-ideal black body

behavior of stars and galaxies).
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The standard wavebands for optical astronomy are U, B, and V and all are in the

broadband UBV system approximately 100 nanometers wide for each filter. U stands

for ultraviolet and is centered at 365 nm, B stands for blue and is centered at 440

nm and V stands for visual and is centered at 550 nm [2]. For example the B filter

passes only light from about 3900nm to 4900nm. The difference between magnitudes

in a pair of this wavebands tells about the temperature, or color, of the star and it is

called color index(or colors )and it measure the slope of the spectral energy distribu-

tion(SED) between bands 1 and 2.

To measure the index, one observes the magnitude of an object successively through

two different filters such as U and B or B and V where U is sensitive to UV rays, B

is sensitive to blue light and V is sensitive to visible light.

U −B α − log
FU

FB

(1.2.18)

B − V α − log
FB

FV

(1.2.19)

are color indices of stars.

mB −mV = B − V = −2.5log10
FV

FB

+ constant (1.2.20)

where

mλ1 −mλ2 = −2.5log
Fλ2

Fλ2

(1.2.21)

The constant appears in the above equation is a function of the zero points of the two

band (where we define the zero point of the color system).You might think that if

B− V = 0.00, fB = fV . But this is not how the color system is defined. Historically,

astronomers picked a set of stars of spectral class A (including Vega) and defined
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the average color of these stars to have all colors equal to 0.00. For an A star, fB is

not equal to fV , so that a non-zero constant is needed in equation to make the color

come out to 0.00. Thus, the B − V color of Vega is 0.00, the B- V color of the Sun,

redder than Vega, is about 0.63. The B − V colors of the hottest (bluest) stars are

about−0.3. The color of Betelgeuse, the very red star marking one of the shoulders

of Orion, is about B − V = 1.54.

Example: Color Indices and Bolometric Corrections Sirius, the brightest-appearing

star in the sky, has U, B, and V magnitudes of mU = −1.47, mB = −1.43, and

mV = −1.44. Thus for Sirius,

U −B = −1.47− (−1.43) = −0.04 (1.2.22)

andB − V = −1.43− (−1.44) = 0.01 (1.2.23)

The bolometric correction for Sirius is BC = −0.09, so its apparent bolometric mag-

nitude is

mbol = mV + BC = −1.44 + (−0.09) = −1.53

[30]



Chapter 2

Black Body Radiation

2.1 Introduction

The influence of blackbody radiation has been great on both theory and technology

since physicists begun to explore such radiation. The features of blackbody radiation

have been applied in many fields, such as, cosmic microwave background radiation,

temperature measurements of astrophysical object, color temperature, infrared tem-

perature etc [19]. A blackbody is an object which is a perfect absorber (absorbs at

all wavelengths) and a perfect emitter (emits at all wavelengths) and does not reflect

any light from its surface. An object is called a blackbody if its surface re-emits all

radiation that it absorbs thus it radiates continues emission. The continuum emission

radiated is described by only one parameter, the objects temperature.

Stars are fairly well approximated radiate in a similar fashion to a blackbody, with

surface temperatures ranging from 6000 K (M dwarfs) to 40,000 K (O type) and

this is why we want to deal with blackbody radiation. All normal (byronic) mat-

ter emits electromagnetic radiation when it has a temperature above absolute zero

and conversely all normal matter absorbs electromagnetic radiation to some degree.

knowing blackbody radiation is used to know astrophysical information derived from

26
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the EM spectrum [3]. since the study of astronomy is somewhat hindered in that

direct experiments with the properties of the astronomical object or not possible.

2.2 Radiation and Temperature

Some astronomical objects emit mostly infrared radiation, others mostly visible light,

and others mostly ultraviolet radiation. The type of electromagnetic radiation emit-

ted by the Sun, stars, and other dense astronomical objects determines obviously

their temperature.

At the microscopic level, everything in nature is in motion; the temperature of some-

thing is thus a measure of the average motion energy of the particles that make it

up. This motion is responsible for much of the electromagnetic radiation on Earth

and in the universe. As atoms and molecules move about and collide, or vibrate in

place, their electrons give off electromagnetic radiation. The characteristics of this

radiation are determined by the temperature of those atoms and molecules.

Since electromagnetic radiation is the only source which we use to get information

about astronomical object (distant universe), it is of high importance in astrophysics

to know the processes which produce this kind of radiation, so thermal radiation(black

body radiation) is the one. It is the thermal motion of atoms produces electro- mag-

netic radiation at all wavelengths [5].

Then, to understand the relationship between temperature and electromagnetic radi-

ation, in more quantitative detail, to study and understand the spectra of radiation

emitted by a physical object or a body in thermal equilibrium maintained at tempera-

ture T; we imagine this an idealized model (black-body radiation). This is commonly

pictured as a cavity or empty bottle (box) in which waves (photons) are bouncing
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back and forth between walls at a certain temperature defining the temperature of

the cavity. The bottle has a little peephole through which radiation is escaping to be

observed. As it absorbs energy it heats up and re-radiates the energy as electromag-

netic radiation until absorption and radiation are in balance [29]. It has a specific

spectrum and intensity that depends only on the body’s temperature.

The continuous spectrum produced by a black body is distinctive and can be shown

Figure 2.1: Continuous spectrum of black body radiation [Source, AST1100 Lecture
Notes 6 Electromagnetic radiation]

as an intensity plot of intensity against emitted wavelength (fig 2.1). This plot is

called the black body curve or the Planck curve, after the German physicist Max

Planck (1900) who first postulated that electromagnetic radiation was quantized [29].

Wien’s displacement law states that the black body radiation curve for different

temperature peaks at a wavelength that is inversely proportional to the temperature.

The shift of that peak is a direct consequence of the Planck radiation law, which

describes the spectral brightness of black body radiation as a function of wavelength

at any given temperature.

The spectrum of a black body given by Planck’s law is continuous in the UV to NIR

and also for the star and their spectrum spectrum peaks at a wavelength that depends
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on the temperature, so that cool objects radiate with a peak in the infrared, while

hot objects glow in colors that range from red through yellow to blue as the object’s

temperature increases [3].

2.2.1 Spectra

Electromagnetic spectrum refers to the full range of all frequencies of electromagnetic

radiation and also to the characteristics distribution of electromagnetic radiation

emitted by the particular object. The spectral distribution of electromagnetic ra-

diation from a celestial object can reveal much about the physical processes taking

place at the object. By obtaining and analyzing the spectrum from a distant we can

identify what type of object it is and determine a wealth of characteristics for the

object.

Three general types of spectra were now known, a continuous spectrum and two

Figure 2.2: Spectral formation [Source, Figure: www.nthu.edu.tw]

types of line spectra.

• A continuous spectrum - showing all the component colors of the rainbow, and

the overall hill-shaped spectrum of electromagnetic radiation emitted by a black

body by thermal emission [5]. Such a spectrum contains no lines because light

of all colors is present in it.
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• Absorption spectrum - dark-line spectra like the solar spectrum and those from

stars or continuous spectrum, but with the flux of certain frequencies reduced

because something absorbed them between the source and Earth. The dark

lines correspond to wavelengths of light where the energy of photons at that

wavelength matches the difference in energy between two energy levels in some

atom or molecule in the stellar atmosphere. If you looked at the source of

the continuous spectrum (light bulb, core of a star) through a spectrograph, it

would have the familiar Blackbody spectrum, with a dark line where the light

had been absorbed. This is an absorption line.

• Emission spectrum - bright-line spectra as emitted from gas discharge tubes

and some nebulae. An emission spectrum looks very different rather than a

continuous spectrum, we see emission at specific wavelengths. Because it can

only emit those same wavelengths that it can absorb, and those wavelengths

will depend on the atoms comprising the gas [3].

Spectral lines arise from atoms or molecules undergoing transitions between two en-

ergy states differing in energy by ∆E and it is an excess (emission) or deficiency

(absorbtion) of radiation at a specific frequency relative to nearby frequencies. While

an emission line adds light of a particular wavelength, an absorption line subtracts

light of a particular wavelength. They provide powerful diagnostics of the regions that

form the line. The formation of spectral lines is quantified with the radiation transfer

equation. Its solution for different conditions gives insight to the formation of both

absorption and emission lines. An absorption line can be diagnosed by superposed lie

upon a continuum spectrum. An emission line may or may not be superposed upon

a continuum spectrum [3]
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2.3 Plank’s law

The idea of light in the form of energy quanta [29] of size hν was introduced by

Planck to explain the radiation energy B(T) emitted by a black body as a function of

frequency (wave length) and temperature T, per unit frequency, surface area, viewing

solid angle and time.

Many interesting phenomena emitting thermal radiation follow approximately the

theoretical curve of a black body radiation. To determine the temperature and other

properties of such body Planck’s law becomes a source of information about them.

Planck’s law gives the spectral distribution of electromagnetic emission for a black

body at a given temperature. Here our main objective is to derive Planck’s radia-

tion formula because Planck’s radiation function plays an important role as the only

source function in the radiative transfer equation when a non-scattering medium is in

local thermodynamic equilibrium so that a beam of monochromatic intensity passing

trough the medium will undergo absorption and emission processes simultaneously

[29, 1].

The Planck function is derived in the frequency domain using the method of oscilla-

tors. To derive the form of a black-body spectrum we need to apply some elementary

quantum mechanics and to know the number density of photon states for a given

energy level and the average energy of each state, using Boltzmann formula.

Planck postulated that atoms oscillating in the walls of the cavity have discrete ener-

gies given by E = nhν. The energy level of a harmonic oscillator are equally spaced

by ∆E = En+1−En = hν, En = nhν for n = 0,1,2,3,.... , where n is integer (quantum
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number), h is Planck’s constant, ν is frequency and ∆E is quantum of energy emitted

when an atom changes its energy state.

For energy of a mode En, there are n photons in the mode. Each photon has an

energy equal to hν, the energy of a mode is quantized. To obtain the probability

n photons P(n) in the mode of frequency, we start from the definition temperature

Boltzmann factors (According to statistical mechanics, when local thermodynamic

equilibrium (LTE) holds in the material, the state populations will obey a Boltzmann

distribution proportional to e
−E
kT ). Where E is the state energy, T is temperature,

and k is Boltzmanns constant.

P (En) = Ae
−En
kT (2.3.1)

A is normalizing constant

∞∑
n=0

P (En) = A
∞∑

n=0

e
−nhν

kT
= 1 (2.3.2)

The sum of all the probabilities must be 1. Using the fact that:
∑

xn = 1 + x + x2 +

x3 + x4... = 1
1−x

, x = e
−hν
kT , therefore, A = 1− x = 1− e

−hν
kT ,

P (En) = (1− e
−hν
kT )e

−En
kT orP (n) = (1− e

−hν
kT )e

−nhν
kT , (2.3.3)

For the expression of probability P(n) there are n photons in at the temperature T.

< n >=
∞∑

n=0

nP (n) = (1− e
−hν
kT )

∞∑
n=0

ne
−nhν

kT , (2.3.4)

∞∑
n=0

ne
−nhν

kT =
∞∑

n=0

ne−αn,
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where α = hν
kT ∞∑

n=0

ne−αn = − ∂

∂α

∞∑
n=0

e−αn

=
∂

∂α
(

1

1− e−α
) =

−∂

∂α
(

1

1− e−α
) =

e−α

(1− e−α)2
(2.3.5)

< n > =
e
−hν
kT

1− e
−hν
kT

(2.3.6)

< n > =
1

e
hν
kT − 1

(2.3.7)

or

< n >=
1

e
hc

λkT − 1
(2.3.8)

Eqn(2.3.8) is the thermal average distribution of photons plank’s distribution.

Multiplying this number by energy per photon (hν), it gives the mean thermal energy.

< En >= hν < n >=
hν

e
hν
kT − 1

, (2.3.9)

or

< E >=
hc
λ

e
hc

λkT − 1
. (2.3.10)

This equation is the average energy per mode or quantum is the energy of the quantum

times the probability that it will be occupied.

2.3.1 The Planck Spectral Energy Distribution in Terms of
Frequency and wavelength Domain

To show this we need the number of modes of oscillation of electromagnetic wave

in a cavity in the frequency interval ν to ν + dν per unit volume. consider a one-

dimensional box of side L and in equilibrium only standing waves are possible, and
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these will have nodes at the ends.X = 0, L.

L

λ
=

nx

2
, nx = 1, 2, 3, .. (2.3.11)

ny =
2L

λ
, ny = 1, 2, 3, ...nz =

2L

λ
, nz = 1, 2, 3, ... (2.3.12)

Where λ is wave length. In 3D, each triplet of integers (posetive) (nx, ny, nz) corre-

spond to a possible mode of standing wave inside the cavity. To find the number of

modes with frequency between ν and ν + dν, look at fig 2.3 an array of points. Each

Figure 2.3: An array of points in acavity

cube has side c
2L

. Each point in this space, (nx, ny, nz), represents a mode and each

points represent two mode and are distributed uniformly in this space. So there are

two modes per unit volume of n-space. λ = c
ν

=⇒ ν = nxc
2L

. There are two indepen-

dent polarizations possible for photons. By noting that n = (n2
x + n2

y + n2
z)

1
2 is the

radius of sphere in n-space. Actually the number of triplets of positive integers is

equivalent to the volume of one octant of the space (one-eight of the spherical shell)

whose thickness is dn. Then the number of modes that lie between n and n + dn

is equal to the number of n-space points inside the spherical shell times two. The
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volume of spherical shell of radius n and dn is 4πn2dn and so the number of modes in

the octant is 2(1
8
)4πn2dn. The factor 2 comes from two possible states of polarization

for each standing wave. If we convert the result interms of frequency,

n =
2L

λ
=

2Lν

c
, dn =

2L

c
dν

Thenumberofmodesintheoctant = (
π4L2ν2

c2
)(

2L

c
)dν

Let N(ν)dν represent the number of standing waves in the cavity in [ ν, ν +dν ], then

we get the result

N(ν)dν =
8πL3ν2

c3
dν (2.3.13)

N(ν)dν =
8πV ν2

c3
dν (2.3.14)

L3 has been replaced by V of the cavity and equation 2.3.14 is the number of modes

of oscillation in the frequency interval ν to ν+dν. Thus, per unit volume, the number

of states is

N(ν)dν =
8πν2

c3
dν (2.3.15)

The factor 4πν2dν is the volume of thin spherical shell.

When the system is in thermal equilibrium each mode of oscillation will attain the

same energy Ē. There fore, the energy density of radiation per unit frequency interval

per unit volume is, multiplying the number of mode of standing wave whose frequency

lies between ν and ν + dν (eqn 2.3.14) by average energy (eqn 2.3.10) and divide by

the volume of cavity. U(ν)dν is the energy per unit volume between ν and ν + dν is,

expressed in terms of either frequency or wavelength:

du = u(ν)dν =
(N(ν)dν)Ē

V 3
(2.3.16)
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u(ν)dν = (
8πν2

c3
)

hν

e
hν
kT − 1

dν (2.3.17)

u(ν)dν = (
8πhν3dν

c3
)

1

e
hν
kT − 1

(2.3.18)

Eqn.(2.3.18) is the monochromatic (or spectral) energy density of Planck. To find the

dependence of the total energy density of radiation U up on temperature, integrating

this over all frequencies or wavelengths.

U =

∫ ∞

0

U(ν)dν (2.3.19)

U =
8πh

c3

∫ ∞

0

ν3dν

e
hν
kT − 1

. (2.3.20)

Change the variable to x = hν
kT

, so dx = h
kT

dν. Then,

U =
8πh

c3
(
kT

h
)4

∫ ∞

0

x3dx

ex − 1
(2.3.21)

The integral is a standard integral, the value of which is∫∞
0

x3dx
ex−1

= π4

15

U = (
8π5k4

15c3h3
)T 4 (2.3.22)

U = aT 4 (2.3.23)
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Eqn 2.3.23 is the total energy density of radiation where a = 8π5k4

15c3h3 is radiation

constant. Specific intensity is generally related to the differential amount of radiant

energy, dE, that crosses an area element, dA, in directions confined to differential

solid angle dΩ.

dEν = BνcosθdAdνdΩdt (2.3.24)

Bν is specific intensity of the radiation at the frequency ν in the direction of the solid

angle dΩ. Its dimension is Wm−2Hz−1sr−1.

dE

dV
= uνdν =

8πhν3dν

c3

1

e
hν
kT − 1

(2.3.25)

dE =
8πh

c3

ν3

e
hν
kT − 1

dνdv = B(ν, T )cosθdAdΩdtdν (2.3.26)

Figure 2.4: Intensity is the energy of radiation passing through area dA into a solid
angle dΩ per time, per wavelength [Source, AST1100 Lecture Notes, page 6]

B(ν, T ) =
8πν3hcdtdAdν

c3(e
hν
kT − 1)dAdΩdtdν

(2.3.27)
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where V = cdtdA and dΩ = 4π

The specific intensity for blackbody radiation - the Planck radiation law in

terms of the frequency ν and temperature T, is

B(ν, T ) =
2hν3

c2

1

e
hν
kT − 1

(2.3.28)

Eqn. (2.3.28) is planck’s function of spectral radiance in frequency ν domain [Wm−2Hz−1sr−1

] where h = 6.626∗10−34Js and k = 1.381∗10−23Jk−1 are the Planck and Boltzmann

constants and c = 3 ∗ 108m the speed of light. The planck’s law as spectral radiance

function in the wave length domain is;

Bνdν = −Bλdλ (2.3.29)

The minus sign indicates that the wave length decreases with increasing frequency.

c = λν =⇒ ν = c
λ
,

dν

dλ
= − c

λ2
, (2.3.30)

Bλ = −Bν
dν

dλ
(2.3.31)

Bλ = Bν(
c

λ2
) (2.3.32)

B(ν, T ) =
2hc2

λ5

1

e
hc

λkT − 1
(2.3.33)

The Stefan Boltzmann power law - The total intensity of radiation depends up

on temperature and is proportional to the fourth power of temperature as B α T 4.

The total intensity can be found by using either of planck radiation law integrating

over all frequencies or wave lengths eqn.(2.3.28 or 2.3.33) respectively.

B(T ) =

∫ ∞

0

B(ν, T )dν (2.3.34)
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B(T ) =
2h

c2

∫ ∞

0

ν3

e
hν
kT − 1

dν (2.3.35)

Definingx = hν
kT

gives to

B(T ) =
2k4

c2h3
T 4

∫ ∞

0

x3

ex − 1
dx (2.3.36)

B(T ) =
2π4k4

15c2h3
(T 4) (2.3.37)

B(T ) = βT 4 (2.3.38)

with β = 2π4k4

15c2h3 Since the black body radiance may be considered as an example of

isotropic radiance, the radiative flux density (F) also called the irradiance. Then flux

density of F for isotropic radiation of intensity B is integrating eqn. (2.3.28) over all

frequencies and all possible solid angles gives the energy flux F emitted per surface

area A by a black body. Using that the angular interval consist of the solid angle

dΩ = dθsinθdφ = dφ(dcosθ) by taking in to account only the perpendicular area

A ⊥= Acosθ is visible.

F =

∫ ∞

0

dν

∫
dΩB(ν)cosθ (2.3.39)

∫
dΩcosθ =

∫ 2π

0

dφ

∫ π
2

0

dθsinθcosθ = π

∫ π
2

0

dθsin2θ = π (2.3.40)

Now,

F = π

∫ ∞

0

Bνdν = π

∫ ∞

0

2hν3

c2

1

e
hν
kt − 1

dν (2.3.41)

By using Eqn(2.35)

F (T ) = πB(T ) (2.3.42)
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Then insert Eqn(2.3.38) in to Eqn(2.3.42)

F (T ) = πβ(T 4) (2.3.43)

σ = πβ (2.3.44)

F (T ) = σT 4 (2.3.45)

in (Wm−2; blackbody radiation) where σ = πβ = 5.67 ∗ 10−8Jm−2s−1k−4 is the

Stefan-Boltzmann constant.

The flux radiated from the surface of a black body is related to the energy density

as:

Fν =
c

4
uν

or

Fλ =
c

4
uλ

The flux (eqn.2.3.45) increases rapidly with temperature. A doubling of the temper-

ature yields a power greater by a factor of 16.

Now the flux density in terms of frequency and wavelengths are

Fν = Bνπ =
2πhν3

c2

1

e
hν
kT − 1

(2.3.46)

F = Bλπ =
2πhc2

λ5

1

e
hc

λkT − 1
(2.3.47)

From the Steffan-Boltzmann law we get a relation between the luminosity (L) and

temperature of a star if the flux density on the surface is F.

L = 4πR2F (2.3.48)
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If the star is assumed to radiate like a black-body, then by substituting equation

(2.3.45) in to (2.3.48)

L = 4πσR2T 4 (2.3.49)

(L is luminosity of spherical object, R is stellar radius.

By inserting eqn. (2.3.42) in to eqn. (1.2.4) (i.e the relation ship between magnitude

and flux )

m1 −m2 = −2.5log
πB1

πB2

(2.3.50)

Bλ1

Bλ2

=
λ5

2

λ5
1

=
e

hc
λ2kT − 1

e
hc

λ1kT − 1
(2.3.51)

The temperature T solved from this equation is a color temperature. Then eqn.

(1.2.4)

m1 −m2 = −2.5log

[
(
λ2

λ1

)5

(
e

hc
λ2kT

e
hc

λ1kT

)]
(2.3.52)

m1 −m2 = 12.5log(
λ1

λ2

)− 2.5
hc

kTλ2

−
(
−2.5hc

kTλ1

)

m1 −m2 = 12.5log(
λ1

λ2

) +
2.5hc

kT

(
1

λ1

− 1

λ2

)
loge (2.3.53)

m1 −m2 = −2.5log(
ν2

ν1

)3 +
h

kT
(ν2 − ν1)loge

2.3.2 Effective Temperature

This temperature is the temperature that the object would have if it were a perfect

blackbody. That is, the effective temperature of a star is the temperature of a black

body that would emit the same total amount of electromagnetic radiation and with

the same luminosity per surface area (FBol) as the star. It is defined according to the

Stefan-Boltzmann law FBol = σT 4
eff that the total (bolometric) luminosity of a star
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is then L = 4πσR2T 4
eff , where R is the star radius. It is the most important physical

quantity often used as an estimate of a body’s surface temperature when the body’s

emissivity curve (as function of wavelength) is not known.

Teff = (
L

4πσR2)
1
4

(2.3.54)

If the flux density at a distance r is

F
′
=

L

4πr2
=

R2

r2
F = (

α

r2
)2σT 4

eff (2.3.55)

where α = 2R
r

is the observed angular diameter of the star. For direct determination

of the effective temperature, we must measure the total flux density and the angular

diameter of the star. If we assume that at some wavelength λ the flux density Fλon the

surface of the star is calculated from planck’s law, we get the brightness temperatureTb

In the isotropic case :

Fλ = πBλ(Tb) (2.3.56)

F
′

λ =
R2

r2
Fλ (2.3.57)

F
′

λ =

(
α

2

)2

πBλ(Tb) (2.3.58)

At low frequency and high temperatures, hν << kT

Bν =
2ν2kT

c2

In radio astronomy, brightness temperature is used to express the intensity (or

surface brightness) of the source. If the intensity at frequency νisIν , the brightness

temperature is

Iν = Bν(Tb) (2.3.59)
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Tb =
c2

2kν2
Iν (2.3.60)

Tb =
λ2

2k
Iν (2.3.61)

Spectral radiance of black-body radiation is expressed by wavelength as:

Bλ = 2hc2

λ5
1

e
hc

λkT −1

Iλ = BλTb (2.3.62)

For long-wave radiation hc << kT .

Tb =
Iλλ

5

2hc2

hc

kλ
(2.3.63)

Tb =
Iλλ

4

2kc
(2.3.64)

2.3.3 Limiting cases

Bλ(T ) =
2hc2

λ5

1

e
hc

λkT

(2.3.65)

In the limit of high temperature or long wave lengths the term in the exponential

becomes small and it is approximated with the Taylor polynomials first order term,

and

e
hc

λkT ≈ 1 +
hc

λkT

So

1

e
hc

λkT − 1
≈ 1

hc
λkT

=
λkT

hc
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Then the Planck’s black body formula reducing to

Bλ(T ) =
2ckT

λ4
(2.3.66)

F =
2ckTπ

λ4
(2.3.67)

In the limit of small frequencies i.e hν << kT

Bν(T ) =
2hν3

c2

1

e
hν
kT − 1

≈ 2hν3

c2

kT

hν

(RayleighJeans law)

Bν(T ) =
2ν2kT

c2
(2.3.68)

F =
2πν2kT

c2
(2.3.69)

L = 4πR2 2πν2kT

c2
(2.3.70)

For energy per unit volume (energy density )

U(ν, T ) ≈ 4π

c
Bν(T ) (2.3.71)

U(ν, T ) =
8πhν3

c3

1

e
hν
kT − 1

U(ν, T ) ≈ 8πkTν3

c3
(2.3.72)

U(λ, T ) =
8πhc

λ5

1

ehcλkT − 1

U(λ, T ) ≈ 8πkT

λ4
(2.3.73)
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2.3.4 Temperature brightness

Brightness temperature or radiance temperature is the temperature a black body in

thermal equilibrium with its surroundings would have to be to duplicate the observed

intensity of a grey body object at a frequency ν. This concept is used in radio

astronomy. It characterizes radiation, and depending on the mechanism of radiation

can differ considerably from the physical temperature of a radiating body.



Chapter 3

Extinction by Earth’s Atmosphere
On Spectral Energy Distribution of
Astronomical Objects

In areal observations a number of effects can complicate the picture. The theoretical

celestial brightness requires accurate models of many effects, among them atmospheric

extinction is one. Since the first pointing of a telescope towards the sky by Galileo

Galilei, the extinction properties of the atmosphere have hampered the astronomical

observations made with the instruments placed on the Earths surface. Our knowledge

of celestial objects must take into account absorption and scattering of photons as

they travel to earth atmospheres [27].

As light propagates to us from its sources it experiences various opportunities to in-

teract with material. As a result the flux of the observed object reduced. Attenuation

causes the strength of the signal to drop off rapidly after travelling a few kilometres.

Then to allow ground based observations the exact knowledge of properties of earth’s

atmosphere and correction for the effect is needed. Because the correction for optical

atmospheric extinction is one of the crucial steps for achieving accurate spectropho-

tometry from the ground. In making these observations, we must also correct for the

46
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effect of the Earths atmosphere.

So generally my concern is the astrophysically uninteresting attenuation from the

four hurdles faced by an astronomical photon and air mass. It is useful to define the

mean-free path, l, for a photon and the related opacity and optical depth.

3.1 Optical Depth

The opacity of a material is a measure of its ability to absorb light. The dimensionless

parameter, τν describing the opacity or extinction at frequency ν. In particular, the

infinitesimal increase in optical depth along a line of sight dτν , is related to the

infinitesimal path length dr according to.

dL = −αLdr (3.1.1)

dτ = αdr (3.1.2)

Where α is the factor tells how effectively the medium can obscure radiation. It is

called the opacity. Substitute eqn. (3.1.2) in to eqn. (3.1.1). Next integrate eqn.

(3.1.3) from the source (where L = L0 and r = 0).

dL = −dτL (3.1.3)

∫ L

L0

dL

L
=

∫ τ

τ0

−dτ (3.1.4)

Opacity (extinction) reduces the flux of a source according to

Lν ,obs = Lν ,0 eτν (3.1.5)
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Where τ is the optical thickness (depth) of the material between the source and

the observer, depending on wavelength and cloud properties. Gas with τλ >> 1 is

optically thick and if τλ << 1 the gas is optically thin. L, is the observed flux,

Lν ,0 is the unextincted flux( i.e., τ = 0). The flux L falls off exponentially with

increasing optical thickness. Empty space is perfectly transparent α = 0 thus the

optical thickness does not increase in empty space, and the flux remains constant.

The opacity can be due to one of four main physical processes (or a combination of

them):

• Bound-bound transitions - these are the familiar transitions between different

energy levels which cause absorption (or emission) lines at discrete wavelengths.

• Bound-free absorption - this is the process of photoionisation which will occur

for all photon energies greater than ionisation potential of a given atomic energy

level:

bound −→ unbound:ionisation

unbound−→bound:recombination

• Free-free absorption - a photon is absorbed by a free electron and an ion,free elec-

tron gains energy by absorbing a photon in the vicinity of an ion, or loses energy

by emitting a photon which share the photons momentum and energy (contin-

uum opacity). This is the inverse process of free-free emission (bremsstrahlung)

in which a free electron is decelerated by the electric potential of an ion and, as

a result, radiates.

• Electron scattering - this is the scattering of photons by free electrons without

change of photon energy.
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3.1.1 The Magnitude of The Extinction

Let F0 be the flux density on the surface of a star and Fr the flux density at a distance

r,

F0 =
L0

4πR2
(3.1.6)

L0 = 4πR2F0 (3.1.7)

R is star radius

Fr =
L

4πr2
(3.1.8)

L = 4πr2Fr (3.1.9)

by substitution L = L0e
−τ

L0e
−τ = 4πr2Fr (3.1.10)

Fr = F0e
−τ R2

r2
(3.1.11)

m−m0 = −2.5log
Fλr

Fλ0
= −2.5log(

R2

r2
)e−τ = Aλ (3.1.12)

m is the magnitude observed, m0 is the intrinsic magnitude

Aλ = −2.5 log(e−τλ) = ∆m = m−m0 = 1.086τλ (3.1.13)

3.1.2 Atmospheric Extinction

Electromagnetic Radiation is attenuated by its passage through the atmosphere. At

higher frequencies, atmospheric opacity is incompatible with ground based observa-

tion. Models for atmospheric extinction deal mainly with the wavelength dependence
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of the atmospheric extinction kλ,z, is the sum of physical elementary components, ei-

ther scattering or absorption. Rayleigh scattering on molecules, Mie(1908) scattering

on aerosol, ozone and telluric ( molecular) absorbtion and each of these has its own

form of wavelength dependence, distribution with height, and variation with time.

Atmospheric extinction is the scattering and absorption of electromagnetic radiation

[27].

3.1.3 Scattering

Scattering can be broadly defined as the redirection of radiation out of the original

direction of propagation, usually due to interactions with molecules and particles(non-

homogeneity).

Rayleigh scattering (1871) is molecular scattering. Occurs when the diameter of the

molecules and particles are many times smaller than the wavelength of the incident

EMR. The molecular scattering in the visible and near infrared primarily caused by

air particles i.e. O2 and N2 molecules. The amount of scattering is inversely related

to the fourth power of the radiation’s wavelength (I α 1
λ4 ) that means causes shorter

wavelengths (violet, blue) of energy to be scattered much more than longer wave-

lengths and it is the dominant scattering mechanism in the upper atmosphere [27].

The fact that the sky appears blue during the day is because of this phenomenon. The

Rayleigh scattering component of the extinction is reliably calculated as a function

of wavelength, altitude, and the index of refraction. The attenuation due to Rayleigh

scattering thus depends on the pressure of the atmosphere along the line of sight.

Mei Scattering - takes place when there are essentially spherical particles present in

the atmosphere with diameters approximately equal to the wavelength of radiation.
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Dust, pollen, smoke and water vapor are common causes of Mie scattering which

tends to affect longer wavelengths.

Both of them are elastic scattering, the wavelength (frequency) of the scattered light

is the same as the incident light (Rayleigh and Mie scattering).

3.1.4 Absorption

The process whereby the intensity of a beam of electromagnetic radiation is attenu-

ated in passing through a material medium by conversion of the energy of the radiation

to an equivalent amount of energy which appears within the medium; the radiant en-

ergy is converted into heat or some other form of molecular energy.

Different molecules in the atmosphere absorbing energy (EMR) at various wave-

lengths. The most important sources of telluric (molecular) absorption are molecular

oxygen and ozone. Absorption of UV −Vvisible light in the atmosphere is mainly dom-

inated by these two atmospheric gases corresponding to the largest photo absorption

cross sections and water, which absorbs strongly in the infrared. The other minor at-

mospheric species are optically thin to UV-Vis radiations. The regions below 320nm

and above 870nm are especially affected, due to strong O3 and H2O absorption, re-

spectively. Molecules produce discrete absorption lines and bands. Atmosphere is as

an absorbing slab. The opacity of ozone is responsible for the total loss of atmospheric

transmission below 300nm [27].

During the absorption process a photon is destroyed and its energy transferred to the

molecule, leading sometime to subsequent emission Wavelength Species. They pro-

duce discrete absorption features that can be very troublesome in certain wavelength

ranges. The features can be quite strong and/or variable.
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3.1.5 Refraction

More than two centuries ago Laplace established that for an atmosphere with spher-

ical symmetry whose density decreases exponentially with height, the logarithm for

the intensity of incoming light from any heavenly body is proportional to its refrac-

tion divided by the cosine of its apparent elevation angle. Most, if not all, theories

of atmospheric refraction are based on the model of a stratified spherical envelope of

air, concentric with the earth, the strata being thin shells of refractive index n. In

the simplest model there is only one homogeneous shell of constant refractive index

no, but in the more realistic approach n decreases gradually with height y.

Refraction deviate the apparent direction of a star chromatically that means in a

wavelength-dependent way, from its true direction. When light passes at an angle

through a transparent medium of different layers of air, it is bent by slightly differ-

ent angles. The material in the atmosphere causes the photons to change direction

slightly at an angle because of this the direction of an object differers from the original

position (in the absence of an atmosphere) by an amount depending on the atmo-

spheric conditions along the line of sight and the angle by which the light is bent is

determined by the index of refraction of the material [3, 4, 27].

Because of refraction varies with atmospheric pressure and temperature,it is very

difficult to predict accurately. However, an approximation good enough for most

practical purposes is easily derived. If the object is not too far from the zenith, the

atmosphere between the object and the observer can be approximated by a stack of

parallel planar layers,each of which has a certain index of refraction ni, outside the

atmosphere, n=1. For example, all of the atmospheric models we incorporate in our

refractive signal analysis assume a static, homogeneous, two-layer (troposphere and
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stratosphere) atmosphere. We define astronomical refraction, r, to be the angular

Figure 3.1: Refraction of alight ray traveling through the atmosphere [Source, (Fun-
damental Astronomy 5th edition, page 24)]

amount that the object is displaced by the refraction of the Earth’s atmosphere: Let

the true zenith distance be z and the apparent one ζ. Using fig. 3.1 we obtain the

following equations for the boundaries of the successive layers: Initially, we assume

a single homogeneous layer of refractive index n. The observer is at O; the observed

zenith distance of an object is sinz0. Applying the sine law of refraction at the

refracting upper surface gives: Let ζ = z0

nsin(z1) = sin(z2) (3.1.14)



54

But because all the verticals are parallel in this model, the angles z0 and z1 are equal;

so

nsin(z0) = sin(z2) (3.1.15)

This can be extended to a second layer, and then to a third. The product (nisinzi) at

every horizontal interface remains equal to the sine of the zenith distance at the top

of the whole stack, where n = 1 exactly; in particular, nsinz0 at the bottom remains

equal to sin(z) at the top of the stack. It is as though there were only the bottom

layer, of index n. The refraction, R, is the difference of the angles z0 and z2 is

R = z2 − z0. (3.1.16)

z2 = arcsin(nsinz0). (3.1.17)

the exact expression for the refraction R in the plane-parallel model is

R = arcsin(nsinz0)− z0. (3.1.18)

By approximation

z2 = z0 + R. (3.1.19)

The trigonometric identity for the sine of a sum of angles:

sinz2 = sinz0cosR + cosz0sinR. (3.1.20)

putting sinR ∼ R, and cosR ∼ 1,

sinz2 = sinz0 + Rcosz0 (3.1.21)

Insert this expression for sinz2 back into the refraction-law

nsinz0 = sinz0 + Rcosz0; (3.1.22)
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and solving for R gives

Rcosz0 = (n− 1)sinz0,

R = (n− 1)tanz0 (3.1.23)

This equation is the flat-Earth approximation for the refraction. It is proportional

to the refractivity at the observer, and the tangent of the apparent (refracted) zenith

distance.

When the altitude is over 15o, we can use an approximate formula

R =
P

273 + T
0.00452otan(90o − a), (3.1.24)

where a is the altitude in degrees, T temperature in degrees Celsius, and P the

atmospheric pressure in hectopascals.

At lower altitudes the curvature of the atmosphere must be taken into account and

an approximate formula for the refraction is then

R =
P

273 + T

0.1594 + 0.0196a + 0.00002a2

1 + 0.505a + 0.0845a2
(3.1.25)

3.2 Atmospheric Window

The Earths atmosphere has always acted as a screen between the observer and the

rest of the Universe. Atmospheric windows is then spectral regions where observation

is possible from surface of the earth and refer to Radio Window, Infrared Window,

Optical Window

• Visible range window

0.4µm - 0.7µm,
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Extinction in optical only 10-15 percent and transmit UV and visible: 0.30

- 0.75 µm atmosphere becomes opaque below 300 nm (due to ozone layer at

altitude of 20-30 km).

• Longwave window 8 - 12µm NIR (0.8-1.35 µm) partial absorption due to

water vapor and oxygen

• Beyond 1.35 µmabsorption bands Beyond 25 µm atmosphere is completely

opaque up to λof a few mm

• The radio window cover a range from a few cm to a few tens of meters

3.3 Atmospheric emission

Daytime, scattering of sunlight prevents observations in visible and near infrared and

nighttime scattering of moonlight + fluorescence (air-glow)

• Emission of spectral line in NIR due to radiative de-excitation of atoms and

radicals (OH− ) in the upper atmosphere ( 100 km)

• Above 2.3µm, atmospheric radiation is dominated by thermal emission

• Beyond 2µm, thermal emission from telescope also becomes important.

Atmospheric emission generally fluctuates in time (movement of invisible clouds of

water vapor, variable excitation of fluorescence during the night, ionospheric winds,

and so on), and the frequencies are rather high (f ∼ 0.110Hz)
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3.4 Radiative Transfer

When observing an astronomical source through a cloud of matter which lies along

the line of sight absorb the radiation from the source, scatter it or in fact emit further

radiation. Each of these will change the sources apparent intensity. Radiative transfer

is the combined effect of absorbtion and emission of electromagnetic radiation.

3.4.1 Absorbtion

Consider scant cloud of perfectly absorbing spheres of cross section σν and number

density n, as the beam of area dA propagates a distance ds into the cloud it encounters

a total absorbing cross-section of nσνds: We expect that a fraction of σνnds of the

beam to be observed.

Figure 3.2: Absorption of Radiation Through’s Earth Atmosphere [Source, Funda-
mental Stellar Parameters

]

dIν = −nσIνds = −kνIνds (3.4.1)
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where kν [cm
−1]: absorption coefficient as the fractional loss of intensity per unit

length (represents radiation taken out of the beam by absorption) and microscopically,

k = nσν

Over a distance s : ∫ s

0

dIν

Iν

= −
∫ s

0

kνds = −τν , dτ = kνds (3.4.2)

τν(s) =

∫ s

0

kν(s)ds

The beam intensity that survives passage through a uniform absorbing medium de-

creases exponentially with distance traveled as:

Iν(s) = Iν(0)e
−τν (3.4.3)

By convention, τ = 0 at top of atmosphere and increases inwards. Then infinitesimal

energy absorbed is

dEa
ν = dIa

ν cosθdAdΩdtdν (3.4.4)

dEa
ν = kνcosθdAdΩdtdνds (3.4.5)

Kν is the opacity as a function of frequency.

3.4.2 Radiative Emission

Suppose the slab of material also emits radiation at a certain rate. An excited atom

can return to its ground state through two distinct mechanisms: (i). the atom emits

energy spontaneously; (ii). it is stimulated into emission by the presence of electro-

magnetic radiation. It tells us how much radiation energy the gas emits per unit time
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Figure 3.3: Emission of Radiation [Source, Fundamental Stellar Parameters]

per unit volume per unit solid angle per unit frequency. Energy radiated into dΩ by

dAcosθ due to emission processes in dV :

dEe
ν = dIe

νdAcosθdΩdνdt

dEe
ν = ενdAdΩcosθdνdtds

dEe
ν = ενdV dΩdνdt (3.4.6)

ε is defined as the emission coefficient (represents radiation put into the beam by

emission) and has dimensions [ergcm3sr−1Hz−1s1]

3.5 The Radiative Transfer Equation

A full radiative transfer calculation gives the specific intensity received at the ground

for any given wavelength. Here scattering processes is ignored. If we combine absorp-

tion and emission together.

dEabs
ν = dIabs

ν dAcosθdΩdtdν = −kνIνcosθdAdtdνds

dEe
ν = dIe

νdAdΩdtdν = ενcosθdAdΩdtdνds
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dEa
ν + dEe

ν = (dIa
ν + dIe

ν)dAcosθdΩdνdt (3.5.1)

dEa
ν + dEe

ν = (−kνIν + εν)dAcosθdΩdνdtds (3.5.2)

dIν = (dIa
ν + dIe

ν) = (−kνIν + ε)ds (3.5.3)

dIν

ds
= −kνIν + εν (3.5.4)

Eqn (3.5.5) is the differential equation(the equation of radiative transfer) describing

the flow of radiation through matter.

The equation of radiative transfer also can be written in the form of

dIν

dτν

= −Iν + sν (3.5.5)

Where sν = εν

kν
is defined as a source function and has units of specific intensity.

Multiplying eqn. (3.5.5) both side with eτν we obtain dĪν

dτν
= s̄ν

where Ĩν = Iνe
τνands̃ν = sνe

τν

The above differential equation can be written as∫ Iν

Iν,0

dĨν =

∫ τν

0

s̃ντν

Using that Ĩν,0 = Iν,0e
0 = Iν,0 the solution to the simple integral equation is

Iν = Iν,0e
−τν +

∫ τν

0

sν(τ
′

ν)e
−(τν − τ

′

ν)dτ
′

ν (3.5.6)

where τν is the total optical depth along the line of sight (through the cloud). Eqn.

(3.5.6) is the formal solution, which, under the simplifying assumption that the source
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function is constant along the line of sight reduces to

Iν = Iν,0e
−τν + Sν(1− e−τν ) (3.5.7)

Eqn. (3.5.7) is the emergent intensity , the first term expresses the attenuation of the

background signal, the second term expresses the incident intensity attenuated by the

total optical depth (the added signal due to the emission from the cloud), while the

third term describes the clouds self-absorption.

Consider a number of different cases.

• If no cloud

There is no absorption (kν = 0) or emission(ε = 0) other than the emission from the

background source. Thus dIν

ds
= 0 =⇒ Iν = Iν,0

•Absorption Only

The cloud absorbs background radiation, but does not emit εν=Sν = 0 =⇒ dIν

dτν
=

−Iν =⇒ Iν = Iν,0e
τν

• Emission Only

The cloud does not absorb(kν = 0) but does emit we have dIν

ds
= εν

Iν = Iν,0 +

∫ l

0

ενds

• If Cloud in Thermal Equilibrium

That means specified by a single temperature T(kinetic temperature is equal to ra-

diation temperature). Since in a system in thermal equilibrium there can be no net

transport of energy, we have that

dIν

ds
= −kνdIν + εν = 0

=⇒ Iν = εν

kν
= Sν
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3.6 Air Mass

Air mass X is the path length that the light from a source must travel through the

Earth’s atmosphere to get to the observatory, relative to that for a source at the

zenith ( X = 1 at Z = 0) where Z is the zenith angle. When we look straight up,

our line of sight passes through exactly 1 air mass. However, when we look at some

angle z (the complementary angle to the altitude a) from the vertical, our line of sight

passes through more than 1 air mass. For stars that appear away from the zenith,

the light will pass through a path length of air that is X air masses thick [27]. The

airmass m(90◦ − el), ranges from 1 at zenith (el = 90◦) to about 40 at the horizon

(el = 0◦), and τ0 is the optical depth at the zenith. For different zenith angles, the

optical depth τ has to be modified for the airmass m(90◦ − el).

The dimming of a beam of light entering the atmosphere depends on how much air

is traversed by the beam. Air mass is measure of how much air of the atmosphere is

in the line of sight between the telescope and the kind of vacuum higher then, 20km

[20].

The measurement of dimming can be broken into two components : the first is a

geometrical term (X) which is a function of the star’s apparent zenith distance (Z),

and the second, a meteorological term which varies with time and place. For alti-

tudes well above the horizon(atmosphere is plane stratified and horizontal), a good

approximation standard formula for the air mass (in Astronomy) is one divided by

the cosine of the zenith angle (secz)z is star’s angle relative to the zenith [20].

airmass =
1

cosz
(= secz) (3.6.1)
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This equation indicates the airmass for a flat Earth would be simply X=sec(Z). This

is an excellent approximation for all observations far away from the horizon.

For large zenith angles z > 600 one should use a more accurate formula. However,

photometric measurements for large zenith angles are difficult and should be avoided.

Because When the star gets low towards the horizon, the starlight passes through

many air masses and appears greatly dimmed. The extinction at low altitude was

not important. For stars 5o above the horizon ( Z = 85o, X = 10.3), the star appears

2.3 mag fainter than if it was at zenith. For the extreme case of a star on the horizon

(Z = 90o so X=40) and k = 0.25 mag/airmass, the observed magnitude is about 10

mag fainter than V, which is to say that stars at the horizon are always too faint to

be visible. We compute corrections to this formula assuming a finite earth radius and

Figure 3.4: Sketch of the air mass X traversed by starlight over head, and at the
zenith angle z = 90 - a where a is the altitude angle [source, Phys 322 Observational
Astronomy Lab 6 NJIT (Prof. Gary) Spring 2017, page 4]

an exponential scale height. Let ρ(h) be the density of air at altitude h above the

telescope; the areal density is given by integration along the direction of the light ray.
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A[ρ] =

∫
ρ(h)dx (3.6.2)

x =
h

cosz
, dx =

dh

cosz
(3.6.3)

a =
A[ρ](z)

A[ρ](0)
=

∫
ρ(h) dh

cosz∫
ρ(h) dh

cos0

=
1

cosz
(3.6.4)

this is the standard expression, this result is independent of the structure of the

density functionρ(h)

In the limit of observing near the horizon, z −→ 900 the value becomes infinite,

indicating that the view through the telescope never leaves the atmosphere.

3.6.1 Extinction Coefficient

The haziness of the atmosphere is quantified by a parameter called the extinction

coefficient, k, with units of magnitudes lost per airmass. The wavelength dependence

of the atmospheric extinction is the sum of physical elementary components. Several

different physical effects contribute to continuous extinction and each of these effects

is characterized by a different effective scale height, so that their mixture will change

with altitude. These include Rayleigh scattering close to 8.2 kilometers [27], which

for the stratospheric ozone is roughly 20 kilometers, and Mei (aerosol) for aerosol

scattering the scale height varies substantially with a typical value of 1.5 kilometers

or H2O molecular absorption. For wavelength regions which are partially transpar-

ent, the atmospheric transmission will depend on the zenith angle of the observation,

as when we look at larger zenith angles we are looking through a greater thickness of

atmosphere and looking straight up (at the zenith) the minimum possible path length
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through the atmosphere.

The secantθ air mass formula strictly applies only in an in finite flat slab i.e. sig-

nificant only for lines of sight near the horizon (approaching 90 degrees. Because of

the atmosphere is curved (due to the curvature of the Earth), the secantθ air mass

is not exactly secantθ but the deference between the real air mass. The density is

the same at deferent places at the same altitude above sea level. The amount of such

extinction is lowest at the sky’s zenith and maximum near the horizon.

To reach a star’s greatest celestial altitude requires the optimal hour of the day, the

star’s local meridian, a favorable declination (i.e. similar to the observer’s latitude)

and the point in the seasons the earth’s annual cycle in axial tilt are key. K is simply

the ratio of finc and fobs at the zenith, expressed in magnitudes :

K = 2.5log(
finc

fobs(θ=0)

) (3.6.5)

Air-mass dependency of atmospheric extinction; Extinction is approximated by mul-

tiplying the standard atmospheric extinction curve (plotted against each wavelength)

by the mean air mass calculated over the duration of the observation. A dry atmo-

sphere reduces infrared extinction significantly. About one sixth of the amount of

perpendicularly incident light is extinguished in the visible domain. Clearly, if the

light has to pass through a larger path in the Earth’s atmosphere, more light will

be scattered/absorbed; hence one expects the least amount of absorption directly

overhead (zenith), increasing as one looks down towards the horizon. It can vary

from night to night, it is better to measure on good night to get accurate photometry.

Since the extinction coefficient is wavelength dependent, so it need a separate number

for each filter. The extinction stars (standard stars) should be observed at air masses
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corresponding to the range in air mass of the program objects [26](a range of not less

than 0.5 magnitudes in extinction is suggested) so that a good air mass correction

can be determined and applied to the data.

To derive the extinction coefficients plot the instrumental magnitudes obtained as a

function of the air mass. A straight line should provide a good fit to the data points.

The slope will be the extinction coefficient, K, and intercept with the Y-axis the

magnitude outside the atmosphere. Repeat for each filter and for each standard with

sufficient number of points [26]. The total extinction coefficient will be the sum of

the various components. That means, the total loss in brightness will be given by :

minst = m0 + KX =⇒ ∆m = KX,X = secθ (3.6.6)

K = Kscattering + Kabsorption (3.6.7)

K = KRelaigh + Kozone + KArosol

will represents the dimming towards the zenith.

4m = KRxg(8.2km) + KozXL(20km) + KaroXaro(1.5km) (3.6.8)

Equation 3.6.6 is valid for positions away from the horizon and while Equation 3.6.8

is valid anywhere, yet is required near the horizon for accurate answers with X is the

same for both equation for θ = 0− 60 degree. To avoid complexity we use eqn 3.6.6.

If a star’s light beam of flux F passes through a thickness of material dX with τ

dF = −FτdX (3.6.9)

dF

F
= −τdX
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∫
dF

F
=

∫
−τdX (3.6.10)

ln
F

F0

= −τX

F

F0

= e−τX (3.6.11)

log
F

F0

= −τXloge (3.6.12)

mins −m0 = KX = −2.5log
F

F0

= 2.5τXloge (3.6.13)

From eqn(3.1.13)

mins −m0 = KX = −2.5log
F

F0

= 2.5τXloge = Aλ = 1.086τλ (3.6.14)

Pigson’s formula

m−m0 = −2.512log
I

I0

The apparent intensity of a star viewed through the atmosphere is given by the

expression

I = I010
−4m
2.5 (3.6.15)

The equation becomes

I = I0e
−τ sec θ (3.6.16)

this equation is due to Lambert

Equation 3.6.14 is the combination of Lamber’s and Pgson’s formula. Beerlambert is

only for a flat earth and a flat atmosphere and fails at the horizon.
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Result and Discussion

4.1 Influence of Earth’s Atmosphere on Astronom-

ical Object’s Spectra

We wish to study the influence of earth’s atmosphere on the spectral energy distribu-

tion of astronomical objects by comparing observational result with theoretical. The

flux of an astronomical object measured on earth needs to be corrected for effects.

A completely uniform, in thermal equilibrium at temperature T that in thermal equi-

librium the photons have to follow a particular distribution, called the Planck function

according to fig(4.1)

Planck Spectrum(Exoatmospheric intensity).

Bν(T ) =
2hν3

c2

1

e
hν
kT − 1

Bλ(T ) =
2hc2

λ5

1

e
hc

λkT − 1

The intensity clearly doesn’t vary from point to point so dI
dτ

= 0, and we have

I = S = Bν,T . This means that we know the radiation intensity and the source

function for a uniform medium and in general when the gas is in thermal equilibrium

with radiation.The source function to be the planck function, and temperature T is

68
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Figure 4.1: Intensity with out atmospheric extinction with varying temperature
(Exoatmospheric intensity)

constant as discussed in section three. Then the above figure shows that the continues

spectrum of stars above the earth’s atmosphere since stars radiates approximately as

black bodies which is depend only on one parameters i.e. temperature. The higher

temperature of an astronomical object the higher spectral energy distribution.

Correction for the effects - With simple formal radiative transfer frame work we

have developed sofar we can already study and understand how spectroscopic emission

features and absorption features are formed and a spectral feature in the observed

intensity. Mathematically, we have extincted intensity or the observed intensity is as

next equation.

I = I0e
−τsecθ (4.1.1)

or

Bλ,T =
2hc2

λ5

1

e
hc

λkT − 1
e−τsecθ (4.1.2)
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To find the radiation intercepted by a real detector at an Earth-based observatory we

have been used to generate a numerical data computationally using MATIMATICA.

The results are displayed according to the following figure. This exponential attenu-

ation is why common objects appear to have sharp edges the light getting through

medium falls of exponentially fast. The exponential term defines a scale over which

radiation is attenuate. In the below graph we keep temperature and optical depth

Figure 4.2: Effect of Air Mass on Intensity

constant, by varying line of sight. We change air mass where the over all curve is at

exoatmospheric(no effect of atmosphere).

As we can see from the graph, the light we receive from an object was different than

the light that was sent. This spectral plot indicates the distinction between the light

that was sent by the star versus the light that we see and measure.

The spectral energy distribution falls off exponentially as the line of sight increases(air

mass)

• When viewed through different atmospheric paths, the extinction effect will not

be identical as determined (fig 4.1) the extinction in each direction.

• The longer the atmospheric path, the greater the loss of light(energy).
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• The lower the elevation of the line of sight, the longer the atmospheric path(air

mass), and hence the greater the effect of atmospheric extinction.

• The area under the graph decreases with increases the path length and nearly

diminished when approaches to horizon.

Figure 4.3: Effect of Atmospheric Depth on Intensity)

We keep temperature and air mass constant and change optical depth (τ).

• The large optical depth of the atmosphere is the more it reduces intensity. of

air increases with decreasing altitude

• The spectral energy is decreasing as one looks down towards the horizon.

• The more material in the medium the more reduction of energy.
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Generally when viewed through different atmospheric paths, the extinction effect

will not be identical. As altitude decreases the amount of the component of earth’s

atmosphere increases and more flux/Luminosity reduced and star’s spectra distorted

more, the intensity clearly does vary from point to point.

2. Magnitude

i). Using the relative apparent magnitude relation we derive the excess magnitude

created in the atmospheric extinction. The excess in magnitude is now a function of

the airmass at which the object is observed and is given by,

4m = KX = 2.5τ sec θ log e (4.1.3)

This is the excess magnitude created in by atmospheric extinction.

ii. The excess magnitude in the bolometric magnitude

∆M = 2.5logτ sec θ log e (4.1.4)

In magnitude, higher numbers correspond to faintest objects, lower numbers to

brighter objects as in review literature. As depth increase the excess magnitude

increase as well as line of sight. Then dimming of astronomical bright object increase

as the optical depth increase as well a length of path of light through atmosphere

increases. As dimming increases energy of astronomical object decreases as expected

(fig.4.4).
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Figure 4.4: Atmospheric extinction on magnitudes



Chapter 5

Summary and Conclusion

In this study we have considered atmospheric extinction in astronomical observation.

First we have derived theoretical equation of planck’s radiation law which is star’s

spectrum approximated with it at outer atmosphere or unextincted stars spectrum.

In the approach used here to determine the effect of atmosphere on star’s image or

spectral energy distribution, we used Plancks radiation law the only source function

in the radiative transfer equation by ignoring scattering. The medium is in local ther-

modynamic equilibrium so that a beam of monochromatic intensity passing trough

the medium undergo absorption and emission processes simultaneously. It is assumed

that the Earth’s atmosphere system is uniform in its horizontal temperature distri-

bution and is a plane over each area of consideration. Generally, from the result

observation of spectral energy distribution of astronomical object observation is af-

fected by different factors like atmospheric extinction such as Absorption atmospheric

emission, clouds, concentration of air particles in the atmosphere, dust particles in

the air, air mass and motion of the air. This extinction reduces the electromagnetic

radiation that coming from the object to the earth. It is important to make observa-

tion repeatedly rather than observing ones, in different time in a place clear medium(
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with no dust in air, no cloud) and more or less no motion of air as well as at high

altitude and small zenith angle to decrease air mass by considering plane parallel

atmosphere.
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