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Many applications in public health, medical and biomedical or other studies demand modelling of two or
more longitudinal outcomes jointly to get better insight into their joint evolution. In this regard, a joint model
for a longitudinal continuous and a count sequence, the latter possibly overdispersed and zero-inflated (ZI),
will be specified that assembles aspects coming from each one of them into one single model. Further, a
subject-specific random effect is included to account for the correlation in the continuous outcome. For
the count outcome, clustering and overdispersion are accommodated through two distinct sets of random
effects in a generalized linear model as proposed by Molenberghs et al. [A family of generalized linear
models for repeated measures with normal and conjugate random effects. Stat Sci. 2010;25:325–347];
one is normally distributed, the other conjugate to the outcome distribution. The association among the
two sequences is captured by correlating the normal random effects describing the continuous and count
outcome sequences, respectively. An excessive number of zero counts is often accounted for by using a
so-called ZI or hurdle model. ZI models combine either a Poisson or negative-binomial model with an
atom at zero as a mixture, while the hurdle model separately handles the zero observations and the positive
counts. This paper proposes a general joint modelling framework in which all these features can appear
together. We illustrate the proposed method with a case study and examine it further with simulations.

Keywords: clustering; conjugate random effect; hurdle model; joint model; normal random effect;
overdispersion; zero-inflation

1. Introduction

Many longitudinal studies involve collecting data on more than one outcome from a given subject
repeatedly over time. These outcomes include, but are not limited to, continuous, count, and binary
data. For example, in HIV studies, sero-positive patients are monitored until they develop AIDS
or die, and their immune system is regularly measured using markers such as the CD4 lymphocyte
count, the estimated viral load, or whether viral load is below detectable limits. In the case of the
Jimma Infant Growth Study described in the next section is a continuous outcome, such as body
weight, is measured repeatedly from each infant. At the same time, the health condition of a child
was also assessed to see if the child has experienced a specific disease, like diarrhoea, whereby
the number of days of illness, as a count outcome, were recorded so as to measure the magnitude
of the disease burden.

∗Corresponding author. Email: geert.molenberghs@uhasselt.be
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2 W. Kassahun et al.

Extensive literature is available on the analysis of single longitudinal outcomes. For a Gaussian
longitudinal response, the linear mixed model is very popular.[1,2] Subject-level random effects
that are of a Gaussian type are introduced in such a model to capture the within-subject correlation.

In the literature, several models are available to jointly model various longitudinal and possibly
also time-to-event outcomes.[3] Horrocks and van den Heuvel [4] consider the problem of predict-
ing the achievement of successful pregnancy, in a population of women undergoing treatment for
infertility, based on longitudinal measurements of adhesiveness. For this purpose, they used a joint
model consisting of a linear mixed-effects submodel for the longitudinal adhesion outcome and a
generalized linear submodel for the primary binary end point. Molenberghs and Verbeke [5] dis-
cuss a number of techniques that jointly model continuous and discrete outcomes. The correlation
between the sequences is then captured by allowing the normal random effects to be correlated.

Molenberghs et al. [6] proposed a unified modelling framework for the analysis of overdis-
persed and hierarchical non-Gaussian data by bringing together normal random effects to capture
correlation over time and conjugate random effects and to capture overdispersion all within the
generalized linear model framework. The resulting model is referred to as the combined model.
For a count outcome, overdispersion is accommodated by using observation-specific Gamma
random-effects, leading to the negative-binomial model. Booth et al. [7] extended the negative
binomial log-linear model to the case of dependent counts, where dependence among the counts
is handled by including also normal random effects. This particular instance of the combined
model can be termed the Poisson-gamma-normal model.

Zero-inflated (ZI) count models provide a way of modelling the excess zeros in addition to
allowing for overdispersion by using two simultaneously operating data generation processes;
one generates only zeros and the other is either a Poisson or a negative-binomial data-generating
process. Overdispersion and excess zeros for count data in a univariate setup are studied by,
for example, Lambert [8] and Greene.[9] Multi-level ZI Poisson regression is considered by Lee
et al.[10] The hurdle model, which is a two-part model, is also available to model excess zeros.[11]
One part is a binary model for whether the response outcome is zero or positive. Conditional on
a positive outcome, the second part uses a truncated Poisson or negative-binomial that modifies
an ordinary distribution by conditioning on a positive outcome. The two models do not constrain
each other in any way. For ZI correlated data, the hurdle model has been studied by Min and
Agresti.[12]

Our joint modelling approach for longitudinal continuous and count sequences, the latter possi-
bly overdispersed and ZI, requires to assemble aspects coming from each one of them in one single
model. These include the correlation from the continuous, as well as the correlation, overdisper-
sion, and zero-inflation features from the count sequence. In spite of this apparent complexity, the
model can be implemented in standard software, such as the Statistical Analysis System (SAS)
procedure NLMIXED.

The rest of the paper is organized as follows. In Section 2, a motivating case is described with
analysis reported in Section 5. In Section 3, a review is given on the single longitudinal continuous
model and the so-called combined model and its extensions to account for an excess of zeros,
followed by formulation of a joint modelling framework to also deal with correlation, overdisper-
sion, and zero-inflation. Avenues for parameter estimation and ensuing inferences are explored
in Section 4. Section 6 deals with a simulation study to investigate the importance of accounting
for an excess of zeros and overdispersion. Some concluding statements are given in Section 7.

2. The Jimma Infant Growth Study

The study was conducted in Ethiopia in the administrative zones of Jimma, Keffa, and the Illubabor,
and described in detail by Asefa and Tessema.[13] Children were examined for their first-year
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Table 1. Jimma Infant Growth Study.

Age (months) Mean weight (s.d.) Mean days of illness (s.d.)

0 3.11(0.52) 0.01(0.19)
2 4.88(0.78) 0.91(4.24)
4 5.97(0.99) 1.28(4.62)
6 6.67(1.12) 1.56(4.87)
8 7.13(1.21) 2.14(5.93)
10 7.50(1.26) 2.63(6.66)
12 7.84(1.28) 2.67(6.95)

Mean and standard deviation of weight and days of illness at each of the seven follow-
up times.

growth characteristics. At baseline, there were a total of 7969 infants who were visited every
two months starting from birth until the age of one year. Risk factors, including socio-economic,
maternal, and infant-rearing factors, were recorded in order to be able to study their relationship
with the child’s early survival.

For our purposes, two outcome variables will be considered, namely (1) body weight (kg),
measured longitudinally from each infant and (2) number of days of diarrhoeal illness recorded
at each visit to assess the diarrhoeal disease burden (Table 1). For the latter, of the nearly 49,000
total observations, only about 8000 observations are non-zero (i.e. roughly 85%), indicating that
there is a dominance of zero counts. It is then useful to assess the connection between both by
studying their association which can be addressed in a joint modelling context.

3. Methodology

In this section, existing models will be reviewed, extended, and combined. To describe these
without ambiguity and to ensure that the links between them are clearly seen, we will make a few
terminology conventions. Indeed, we have different data types (continuous and count), different
types of random effects (normal and conjugate) that may or may not be combined into a single
model, the possibility to accommodate zero inflation, and the possibility to analyse two or more
outcomes jointly.All of these options create a large number of model variations. We can effectively
describe them by introducing a symbol of the form (XYZ) for each outcome model, with X being
the outcome type, Y the presence of absence of normal random effects, and Z the presence or
absence of a conjugate random effect. For example, (NN-) stands for the linear mixed model,
as the first ‘N’ is for the normal outcome and the second one for the normal random effect. In
this case, there is no need for a conjugate random effect. For counts, we may see such models
as (PNG) for the Poisson model with normal and gamma random effects. The generalized linear
mixed model corresponding to it would be (PN-), whereas the negative binomial model is denoted
as (P-G). When two outcomes are jointly analysed, we will write (NN-)(PNG). Should there be
correction for zero inflation, then we might write ZI(NN-)(PNG) or H(NN-)(PNG) when hurdle
model ideas are used. We observe that the notation obviates the need to use the terms ‘joint’ or
‘combined’, given that these aspects are now unambiguously clear from notation.

3.1. A model for longitudinal continuous data

For a longitudinal Gaussian outcome, the linear mixed model (NN-) provides a general and flexible
modelling framework based on a random-effects approach.[2] Suppose that Yij are the jth con-
tinuous outcome measured for subject i = 1, . . . , N , j = 1, . . . , ni. A linear mixed-effects model
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4 W. Kassahun et al.

can be represented as Yij = x′
ijβ + z′

ijbi + εij. The xij and zij are p-dimensional and q-dimensional
vectors of known covariate values, β is a p-dimensional vector of unknown fixed regression coef-
ficients, bi is a q-dimensional vector of the random effects, and εi an ni-dimensional vector of
residual variation. The subject-specific random effect bi and the residual error εi are independent
and assumed to follow normal distributions bi ∼ N(0, D) and εi ∼ N(0, �i), respectively.

3.2. A combined model for count data

Molenberghs et al. [6] proposed a unified modelling framework for the analysis of overdispersed
and hierarchical non-Gaussian data by bringing together normal random effects and overdispersion
random effects within the generalized linear model framework.

Let Yij be the jth outcome measured for subject i = 1, . . . , N , j = 1, . . . , ni. In general, the
combined family is given by

fi(yij | bi, ξ, θij, φ) = exp{φ−1[yijηij − ψ(ηij)] + c(yij, φ)},
with η and φ being the natural and dispersion parameter, respectively, and ψ(·) and c(·) known
functions specifying a particular distribution of the exponential family distribution.

For count data, we assume that Yij ∼ Poi(λij = θijκij), with the conditional mean λij modelled
as θijκij with

κij = exp(x′
ijξ + z′

ijbi), (1)

bi ∼ N(0, D), θij ∼ Gamma(α, β), and ξ a p-dimensional vector of unknown fixed regression
coefficients. Further, α and β are shape and scale parameters, respectively. These can be general-
ized as well, for example, when the gamma process parameters would be measurement occasion
specific. The measurement-specific gamma random-effect θij is used to accommodate residual
overdispersion, while the subject-specific normal random effect bi is used to model the correla-
tion coming from the hierarchy in the data as well as some overdispersion. Using the notational
conventions from the beginning of this section, this model is denoted as (PNG).

3.3. ZI combined model

Count data exhibiting an excess number of zeros beyond what can be allowed for by a standard
probability distribution are very common. Such data are often modelled by using the so-called ZI
models, which assume two independent data generation processes as sources of zeros. Assume
that for observation i, one can account for the excess of zeros by introducing the probability πi

for the point mass (process 1) and the probability 1 − πi for the count component (process 2;
[14,15]). Process 1 generates only zeros, whereas process 2, fi(yij | bi, ξ, θij), generates counts
from, say, a (PNG) model. In its most general form, the ZI(PNG) is then given as the following
mixture:

Yij ∼
{

0 with probability πij,

fi(yij | bi, ξ, θij) with probability 1 − πij,
(2)

leading to the probabilities p(Yij = yij | bi, ξ, θij, πij) given by

p(Yij = yij | bi, ξ, θij, πij) =
{

πij + (1 − πij)fi(0 | bi, ξ, θij) if yij = 0,

(1 − πij)fi(yij | bi, ξ, θij) if yij > 0.
(3)

The Bernoulli model is used to model the zero-inflation component πij = π(x′
2ijγ) by using

commonly used links such as the logit or probit. The model may contain known regressors x2ij,
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a vector of zero-inflation coefficients γ to be estimated. Note that the xij in Section 3.2 are
now replaced by x1ij for the non-zero count part. The regressors in the count and zero-inflation
component can either be overlapping, a subset of the regressors can be used for the zero-inflation,
or different regressors for the two parts can be used.

The conditional mean and variance of the ZI(PNG) are as follows:

E(Yij | bi, ξ, θij) = θijκij(1 − πij), (4)

Var(Yij | bi, ξ, θij) = θijκij(1 − πij)

[
1 + θijκij

(
πij + 1

α

)]
. (5)

It can be seen that the conditional variance is inflated as a result of the overdispersion in the data
(parameter α) and as a result of zero-inflation (parameter π ).

3.4. Hurdle combined model

The hurdle model, as an alternative approach to account for an excess of zeros, is a two-part
model with a truncated count distribution for the positive counts and a hurdle component for the
zero counts.[11] Suppose that occurrence of zeros is governed by a probability πi, and non-zero
counts and follows a truncated-at-zero probability mass function, such as a truncated (PNG). The
H(PNG) leads to a probability mass function of the form as in the following:

p(Yij = yij | bi, ξ, θij, πij) =
⎧⎨
⎩

πij if yij = 0,

(1 − πij)
fi(yij | bi, ξ, θij)

1 − fi(0 | bi, ξ, θij)
if yij > 0.

(6)

where the πij are parameterized similarly to what was presented in Section 3.3.

3.5. A joint combined model for continuous and ZI count data

Let Yij denote a longitudinal continuous outcome, and Zik an overdispersed count outcome,
potentially with excess zeros and overdispersion with densities f1i(yij) and f2i(zik), respectively
(i = 1, . . . , N , j = 1, . . . , n1i, and k = 1, . . . , n2i). Note that the number of measurements per
sequence can but does not have to be the same.

Formulation of a joint model will be based on a random-effects approach. Precisely, each
sequence will incorporate normal random effects, which are potentially correlated between them.
This means that the correlation between both sequences for the same subject is induced by the
shared or correlated normal random effects. At the same time, the normal random effects induce
correlation within the sequences as well. We still allow for additional overdispersion by poten-
tially integrating gamma random effects into the count sequence. This leads to the base model
(NN-)(PNG).

The normal random effects, b1i and b2i, are incorporated into the continuous and count
sequences, respectively. They follow the joint distribution

bi = (b1i, b2i)
′ ∼ N

([
0
0

]
,

[
D11 D12

D′
12 D22

])
.

In this general formulation, the two sets of random effects are different but correlated. The
sequences would be independent only if D12 = 0. It is possible to let some components be shared
between b1i and b2i. If all are common, this is a pure shared random-effects model. The mod-
eller can assess and then choose whether a shared random effects or a correlated random effects
approach is more plausible, or even a hybrid of both.
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6 W. Kassahun et al.

Further allowing for zero inflation, the resulting model becomes ZI(NN-) (PNG) or H(NN-)
(PNG), with joint distribution:

fi(yij, zik | b1i, b2i, β, ξ, θik , πik) = f1i(yij | b1i, β) × f2i(zik | b2i, ξ, θik , πik). (7)

For the continuous outcome, f1i(yij | b1i, β) is the linear mixed model (NN-), as discussed in
Section 3.1, and for the count sequence, f2i(zik | b2i, ξ, θik , πik) is the ZI(PNG), as presented in
Section 3.3. Similarly, for the hurdle version, we bring together the (NN-) and the H(PNG) into
the H(NN-)(PNG), where f2i(zik | b2i, ξ, θik , πik) is now defined as in Section 3.4.

4. Estimation

Let us consider the count component.We will make use of the partial marginalization for parameter
estimation, as presented in [6]. By this we refer to integrating the likelihood over the gamma
random effects only, leaving the normal random effects untouched. The corresponding conditional
probability for the (PNG) is as follows:

f (yij | bi, ξ, θij) =
∫

f (yij | bi, ξ, θij)f (θij | αj, βj) dθij

=
(

αj + yij − 1
αj − 1

)
·
(

βj

1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij ,

where κij is as in Equation (1). For the ZI(PNG) case:

f (yij | bi, ξ, θij, πij) = I(yij = 0)πij

+ (1 − πij)

(
αj + yij − 1

αj − 1

)
·
(

βj

1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij ,

with πij = π(x′
2ijγ). Note that, with this approach, we assume that the gamma random effects

are independent within a subject. This is fine, given that the correlation is induced by the normal
random effects.

Applying the above principle to the ZI(NN-)(PNG) leads to

fi(yij, zik | b1i, b2i, β, ξ, θik , πik) = 1

(2π)ni/2|�i|1/2
e−(1/2)(yi−Xiβ−Zib1i)

′�i
−1(yi−Xiβ−Zib1i)

×
∏

k

f (zik | b2i, ξ, θik , πik).

Similarly, the H(PNG), say f ∗(yij), as discussed in Section 3.4, can be spelled out as

f ∗(yij | bi, ξ, θij, πij)

= I(yij = 0)πij + (1 − πij)

(
αj + yij − 1

αj − 1

)
·
(

βj

1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij

× 1

1 − (1/(1 + κijβj))
αj

.
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Consequently, the partially marginalized form for the H(NN-)(PNG) is

fi(yij, zik | b1i, b2i, β, ξ, θik , πik) = 1

(2π)ni/2|�i|1/2
e−(1/2)(yi−Xiβ−Zib1i)

′�i
−1(yi−Xiβ−Zib1i)

×
∏

k

f ∗(zik | b2i, ξ, θik , πik).

For all of these, it is straightforward to obtain the fully marginalized probability and to optimize
the resulting likelihood, by numerically integrating over the normal random effects. This can
be done using a tool, such as the SAS procedure NLMIXED, that allows for normal random
effects in arbitrary, user-specified models. While the SAS procedure NLMIXED is equipped with
default starting values, it is advisable to provide user-defined starting values instead. These can
be obtained, for example, from models without random effects, with some trial and error. It is
equally wise to ensure that both the outcomes values as well as the covariates have magnitudes that
are neither very large nor extremely small, because this may jeopardize stability of the iterative
process. Also, it is useful, for example, to first fit the individual models and use the output as
starting values for the joint model. Against this background, our data analysis proceeded without
difficulty. Example NLMIXED code is provided in Appendix 1, for both the data analysis and the
simulation study.

5. Analysis of the Jimma Infant Growth Study

We analyse the Jimma Infant data as introduced in Section 2, where body weight as well as number
of days of diarrhoeal illnesses were measured repeatedly for each infant. The two outcomes will
be modelled jointly to capture association between them. Denote by Yij and Zik weight and
number of days of illness measurements for the ith infant at the jth and kth visit. We formulate a
ZI(NN-)(PNG) or a H(NN-)(PNG) model for these data. The means are μij and κik , respectively.
We model these as μij = β0 + b1i + β1Aij + β2Aij

2, and κik as ln(κik) = ξ0 + b2i + ξ1Aik . The
quadratic effect of age, β2, is included to improve the model’s fit. A graphical inspection of age
versus average weight revealed a nonlinear trend and hinted on a quadratic one. To account for
excess zeros, the zero-inflation probability πik is written as logit(πik) = γ0 + γ1Aik . Here, Aij is
the age of the ith infant at the jth visit. Further, b1i and b2i represent subject-specific intercepts,
assumed normally distributed and possibly correlated with mean and variance–covariance matrix
given by

(b1i, b2i)
′ ∼ N

[(
0
0

)
,

(
d1 ρ

√
d1

√
d2)

ρ
√

d1

√
d2 d2

)]
.

We examine the zero-inflation as well as the overdispersion aspect. The first issue can be addressed
using a special type of the hurdle model, also known as the zero-altered model.[12] These authors
consider the testing problem for zero-inflation. This model requires the same covariates as well
as the same distributional forms in the two parts. Explicitly, we assume,

ln[−ln(1 − πik)] = a1 + a2(ξ0 + ξ1Aik) + b2i,

ln(κik) = ξ0 + ξ1Aik + b2i.

By setting, a2 = 1, and testing whether a1 = 0, one can test for zero-inflation. If a1 < 0, then the
data are ZI; If a1 > 0, the data are zero-deflated. Fitting the zero-altered combined model showed
strong evidence of zero-inflation (a1 = −2.0689, likelihood ratio test statistic = 3343, on one
degree of freedom).
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8 W. Kassahun et al.

Table 2. Jimma Infant Growth Study.

(NN-) & (PNG) (NN-)(PNG)
Effect Parameter Estimate (s.e.) Estimate (s.e.)

Continuous process (weight)
Intercept β0 3.2767(0.0112) 3.2768(0.0112)
Age β1 0.7680(0.0026) 0.7680(0.0026)
Age × Age β2 −0.0335(0.0002) −0.0335(0.0002)
Std. dev. error σ 0.6298(0.0022) 0.6298(0.0022)
Std. dev. random effect

√
d1 0.8298(0.0072) 0.8299(0.0072)

Count process (days of illness)
Intercept ξ0 −1.1567(0.0557) −1.2094(0.0551)
Age ξ1 0.2246(0.0072) 0.2279(0.0072)
Std. dev. random effect

√
d2 0.3654(0.0507) 0.4611(0.0435)

Negative-binomial parameter α 17.9605(0.2914) 17.6345(0.2858)

Common parameter
Corr. random effect ρ – −0.6282(0.0565)
−2log-likelihood 172,241 172,054

H(NN-), (PNG), and (NN-)(PNG) models.

We also fitted the H(NN-)(PN-) and compared it with the H(NN-)(PNG). The difference in
deviance is 94, 181 − 86, 379, which evidently is extremely significant (p < .0001). This strongly
underscores the presence of the overdispersion parameter α.

Parameter estimates for the (NN-), (PNG), and (NN-)(PNG) models are presented in Table 2.
Technically, the separate models were fitted for the two outcomes together anyway, but assuming
that ρ = 0, which is entirely equivalent to fitting the models separately. Clearly, body weight
and number of days of diarrhoeal illness show a strong inverse relationship as evidenced by the
correlation of the random effects in the (NN-)(PNG). In addition, likelihood comparison shows a
convincing improvement in model fit, when random effects are allowed to correlate. Comparing
the separate and joint models, while parameter estimates for the continuous outcome remain the
same, small changes are observed in the count part. All parameters are statistically significant in
all models considered.

Table 3 gives the hurdle counterparts to the models in Table 2, i.e. (NN-), H(PNG), and H(NN-)
(PNG). Evidently, the linear mixed model (NN-) is left unaltered because the hurdle aspect
applies to the count process only. Similarly, Table 4 shows the ZI counterparts, (NN-), ZI(PNG),
and ZI(NN-)(PNG). We deduce that the fit is improved quite a bit further, implying that the excess
zeros need to be accommodated in the model. The aforementioned inverse relationship remains.
While accounting for the excess zeros does not bring changes in the parameters for the continuous
process, this is not the case for the counts, where the estimates change with their corresponding
standard errors getting relatively smaller. When the excess zeros are accounted for, the negative
binomial parameter α gets much smaller in Tables 3 and 4, as compared to the corresponding
value in Table 2. This underscores, once again, the connection between the zero-inflation and
overdispersion phenomena. Indeed, when ZI is unaccounted for the overdispersion aspect of the
models captures a certain amount of this effect.

Turning to Tables 2–4 with an eye on the overdispersion parameter α, we see that it drops
drastically when comparing Table 2 with Tables 3 and 4. Because in our parameterization, larger
values for α imply more pronounced overdispersion effects, it is clear that accounting for excess
zeros explains a good amount of apparent overdispersion. The amount explained is relatively
invariant to whether the two processes are estimated jointly or rather separately. The reduction also
holds regardless of whether either a ZI or a hurdle correction is made. Finally, even after correction
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Table 3. Jimma Infant Growth Study.

(NN-) & (PNG) H(NN-)(PNG)
Effect Parameter Estimate (s.e.) Estimate (s.e.)

Continuous process (weight)
Intercept β0 3.2767(0.0112) 3.2767(0.0112)
Age β1 0.7680(0.0026) 0.7680(0.0026)
Age × Age β2 −0.0335(0.0002) −0.0335(0.0002)
Std. dev. error σ 0.6298(0.0022) 0.6298(0.0022)
Std. dev. random effect

√
d1 0.8298(0.0072) 0.8299(0.0072)

Count process (days of illness)
Intercept ξ0 2.0437(0.0251) 2.0225(0.0251)
Age ξ1 0.0185(0.0028) 0.0199(0.0028)
Std. dev. random effect

√
d2 0.4374(0.0118) 0.4392(0.0118)

Negative-binomial parameter α 0.3271(0.0104) 0.3259(0.0103)
Inflation intercept γ0 2.8383(0.0290) 2.8383(0.0290)
Inflation Age γ1 −0.1687(0.0035) −0.1687(0.0035)

Common parameter
Corr. random effect ρ – −0.2255(0.0246)
−2log-likelihood 165,475 165,395

(NN-), H(PNG), and H(NN-)(PNG) models.

Table 4. Jimma Infant Growth Study.

(NN-) & ZI(PNG) ZI(NN-)(PNG)
Effect Parameter Estimate (s.e.) Estimate (s.e.)

Continuous process (weight)
Intercept β0 3.2767(0.0112) 3.2767(0.0112)
Age β1 0.7680(0.0026) 0.7680(0.0026)
Age × Age β2 −0.0335(0.0002) −0.0335(0.0002)
Std. dev. error σ 0.6298(0.0022) 0.6298(0.0022)
Std. dev. random effect

√
d1 0.8298(0.0072) 0.8299(0.0072)

Count process (days of illness)
Intercept ξ0 2.0270(0.0259) 2.0020(0.0260)
Age ξ1 0.0190(0.0029) 0.0205(0.0029)
Std. dev. random effect

√
d2 0.4464(0.0123) 0.4500(0.0123)

Negative-binomial parameter α 0.3259(0.0104) 0.3261(0.0104)
Inflation intercept γ0 2.8071(0.0292) 2.8051(0.0292)
Inflation age γ1 −0.1686(0.0035) −0.1685(0.0035)

Common parameter
Corr. random effect ρ – −0.2409(0.0245)
−2log-likelihood 165,461 165,369

(NN-), ZI(PNG), and ZI(NN-)(PNG) models.

for excess zeros, there convincingly remains an amount of overdispersion. This underscores that
both overdispersion as well as excess zeros need to be accounted for.

From Tables 3 and 4, we further observe that the H(NN-)(PNG) and the ZI(NN-)(PNG) are
very similar, not only in terms of parameter estimates but also as far as resulting inferences go.
In count data modelling, the choice among ZI and hurdle models should be based not only on
model fit but also on assumptions about the underlying data generation process.[16] If zeros are
expected to come from both the point mass and the count component, then ZI models may be
preferable. In addition, in the presence of strong evidence of zero-inflation, zero-inflation models
may provide better fit. On the other hand, Min and Agresti [12] discuss why the hurdle model

D
ow

nl
oa

de
d 

by
 [

H
IN

A
R

I]
 a

t 0
4:

41
 3

0 
O

ct
ob

er
 2

01
3 



10 W. Kassahun et al.

is, in general, preferred to the ZI model: it allows to test for zero-inflation, it works also in the
zero-deflation setting and its two parts are separate.

6. Simulation study

A simulation study is conducted to assess the impact of not appropriately accounting for the excess
zero counts as well as mis-specification of the overdispersion in joint modelling of hierarchical
continuous and count outcome. We choose to conduct this study following three different settings.

6.1. Simulation settings

Data are generated in the spirit of the design and outcomes of the data in Section 2, which consist
of body weight and counts of the number of days of diarrhoeal disease illnesses among infants
measured repeatedly over time. Age in months is considered as the time variable.

A random sample of 250 data sets are generated under three scenarios. S1: from a ZI(NN-)
(PNG); S2 from a ZI(NN-)(PN-); S3 from a (NN-)(PNG). Model fitting is based on these three
models, supplemented with others: ZI(NN-)(PNG), H(NN-)(PNG), or (NN-)(PNG); also, the
versions without overdispersion are considered: ZI(NN-)(PN-), H(NN-)(PN-), or (NN-)(PN-).

We consider 200 subjects with 10 measurements per subject. The continuous response Yij

is modelled as Yij = β0 + β1Aij + β2Aij
2 + b1i + εij. The subject-specific random intercept b1i

and the residual error εi are assumed independent, and generated from normal distribution with
mean 0 and standard deviations 2 and 0.6, respectively. The count outcome Zik is modelled using
predictor function κik = exp{ξ0 + b2i + ξ1Aik}. Whenever we want to place overdispersion into
the model simulated from the outcome is generated directly from a negative-binomial process
with Zik ∼ NB(ψik , θ), where θ = 1 and ψik = (1 + κik/θ)−1. As before, Aij represents the age
at which the jth measurement is taken for the ith subject. Practically, age is generated from
the empirical distribution observed in the Jimma Infant Growth Study. The random intercept
b2i follows a mean-zero normal with variance 1.5. When zero-inflation is present, this is added
by defining the final response vector Z∗

i with components Zik
∗ = (1 − uik)Zik , where the uik

are Bernoulli random variables with parameters πik and logit(πik) = γ0 + γ1Aik . To correlate
the two processes, the random intercepts b1i and b2i are allowed to correlate with one another,
with ρ = −0.5. When generating data, the true parameter values were β = (3.3, 0.77, −0.03)T,
ξ = (2, 0.02)T, and γ = (2, −0.2)T.

6.2. Simulation results

The results under S1 are summarized in Tables 5 and 6. Clearly, the ZI(NN-)(PNG) and the
H(NN-)(PNG) result in estimates very close to the true values. However, as can be seen from
the (NN-)(PNG), omitting zero-inflation highly affects the estimates in the count component,
with a non-negligible amount of bias loaded on the correlation parameter. Further, when both
zero-inflation and overdispersion are mis-specified, by fiting the (NN-)(PN-), as given in Table 6,
a similar phenomenon is evident, where now the random-effects variance tries to recover from
mis-specifying the overdispersion.

Under scenario S2, the results of which are presented in Table 7, the impact of omitting the
extra zeros is still evident, though the overdispersion parameter α in the (NN-)(PNG) seems to
help recover from mis-specification. Further, we also note that correlation is overestimated as
a result of the mis-specification. These results, once more, underscore the necessity of models
appropriately accounting for the excessive zeros.
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Table 5. Simulation study under scenario S1.

ZI(NN-)(PNG) H(NN-)(PNG) (NN-)(PNG)
Effect Parameter True Mean (RB) Mean (RB) Mean (RB)

Continuous process
Intercept β0 3.3 3.2967(−0.0010) 3.2965(−0.0011) 3.2965(−0.0011)
Age β1 0.77 0.7716(0.0021) 0.7716(0.0021) 0.7716(0.0021)
Age × Age β2 −0.03 −0.0301(0.0033) −0.0301(0.0033) −0.0301(0.0033)
Std. dev. error σ 0.6 0.5995(−0.0008) 0.5995(−0.0008) 0.5995(−0.0008)
Std. dev. random effect

√
d1 2 1.9875(−0.0063) 1.9873(−0.0063) 1.9875(−0.0063)

Count process
Intercept ξ0 2 1.9771(−0.0115) 2.1452(0.0726) −0.1694(−1.0847)
Age ξ1 0.02 0.0229(0.1450) 0.0220(0.1000) 0.2177(9.8850)
Std. dev. random effect

√
d2 1.5 1.4779(−0.0147) 1.3409(−0.1061) 1.3107(−0.1262)

Negative-binomial parameter α 1 0.9922(−0.0078) 1.0509(0.0509) 11.8950(10.8950)
Inflation intercept γ0 2 1.9956(−0.0022) 2.2092(0.1046) –
Inflation age γ1 −0.2 −0.1982(−0.0090) −0.1876(−0.0620) –

Common parameter
Corr. random effect ρ −0.5 −0.5028(0.0056) −0.5005(0.0010) −0.5629(0.1258)
Frequency of convergence 250 250 250

Mean and relative bias (RB) of the parameter estimates in the ZI(NN-)(PNG), H(NN-)(PNG), and (NN-)(PNG).

Table 6. Simulation study under scenario S1.

ZI(NN-)(PN-) H(NN-)(PN-) (NN-)(PN-)
Effect Parameter True Mean (RB) Mean (RB) Mean (RB)

Continuous process
Intercept β0 3.3 3.2843(−0.0048) 3.2920(−0.0024) 3.2959(−0.0012)
Age β1 0.77 0.7716(0.0021) 0.7717(0.0022) 0.7716(0.0021)
Age × Age β2 −0.03 −0.0302(0.0067) −0.0301(0.0033) −0.0301(0.0033)
Std. dev. error σ 0.6 0.5994(−0.0010) 0.5995(−0.0008) 0.5995(−0.0008)
Std. dev. random effect

√
d1 2 1.9882(−0.0059) 1.9877(−0.0062) 1.9875(−0.0063)

Count process
Intercept ξ0 2 1.1335(−0.4333) 2.0159(0.0080) −0.4531(-1.2266)
Age ξ1 0.02 0.0254(0.2700) 0.0258(0.2900) 0.1617(7.0850)
Std. dev. random effect

√
d2 1.5 1.5664(0.0443) 1.4261(−0.0493) 1.7943(0.1962)

Negative-binomial parameter α 1 – – –
Inflation intercept γ0 2 1.9724(−0.0138) 2.2087(0.1044) –
Inflation age γ1 −0.2 −0.1946(−0.0270) −0.1876(−0.0620) –

Common parameter
Corr. random effect ρ −0.5 −0.4461(0.1078) −0.4361(0.1278) −0.4058(−0.1884)
Frequency of convergence 233 250 250

Mean and relative bias (RB) of the parameter estimates in the ZI(NN-)(PN-), H(NN-)(PN-), and (NN-)(PN-).

Scenario 1 leads to about 75% of zeros with a similar fraction (72%) in Scenario 2. Scenario 3
is qualitatively different, with roughly 18% of zeros. Comparing mean and standard deviation
shows that all three are overdispersed. Under Scenarios 1 and 2, this stems to a large part from
extra zeros, whereas in Scenario 3 this is ‘pure’ overdispersion. When data are overdispersed,
but not subject to considerable zero-inflation as in S3, fitting models allowing for extra zeros
is less important. As given in Table 8, the (NN-)(PNG), which is the true model, performs
well. In addition, we observe that the (NN-)(PN-) model is also doing well, but this probably
may not be the case when data are subject to much higher levels of overdispersion than those
considered here.
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12 W. Kassahun et al.

Table 7. Simulation study under scenario S2.

ZI(NN-)(PN-) H(NN-)(PN-) (NN-)(PNG)
Effect Parameter True Mean (RB) Mean (RB) Mean (RB)

Continuous process
Intercept β0 3.3 3.3254(0.0077) 3.2939(−0.0019) 3.2958(−0.0013)
Age β1 0.77 0.7697(−0.0004) 0.7711(0.0014) 0.7710(0.0013)
Age × Age β2 −0.03 −0.0300(0.0000) −0.0301(0.0033) −0.0301(0.0033)
Std. dev. error σ 0.6 0.5994(−0.0010) 0.5996(−0.0007) 0.5996(−0.0007)
Std. dev. random effect

√
d1 2 1.9850(−0.0075) 1.9856(−0.0072) 1.9855(−0.0073)

Count process
Intercept ξ0 2 1.2304(−0.3848) 2.0508(0.0254) 0.0834(−0.9583)
Age ξ1 0.02 0.0204(0.0200) 0.0203(0.0150) 0.1948(8.7400)
Std. dev. random effect

√
d2 1.5 1.5021(0.0014) 1.4244(−0.0504) 1.2189(−0.1874)

Negative-binomial parameter α 0 – – 9.9406
Inflation intercept γ0 2 1.8843(−0.0579) 2.0889(0.0445) –
Inflation age γ1 −0.2 −0.2038(−0.0190) −0.1955(−0.0225) –

Common parameter
Corr. random effect ρ −0.5 −0.4954(−0.0092) −0.4890(0.0220) −0.6126(−0.2252)
Frequency of convergence 241 250 250

Mean and relative bias (RB) of the parameter estimates in the ZI(NN-)(PN-), H(NN-)(PN-), and (NN-)(PNG).

Table 8. Simulation study under scenario S3.

H(NN-)(PNG) (NN-)(PNG) (NN-)(PN-)
Effect Parameter True Mean (RB) Mean (RB) Mean (RB)

Continuous process
Intercept β0 3.3 3.2938(−0.0019) 3.2946(−0.0016) 3.2948(−0.0016)
Age β1 0.77 0.7721(0.0027) 0.7721(0.0027) 0.7721(0.0027)
Age × Age β2 −0.03 −0.0302(0.0067) −0.0302(0.0067) −0.0302(0.0067)
Std. dev. error σ 0.6 0.5993(−0.0012) 0.5993(−0.0012) 0.5992(−0.0013)
Std. dev. random effect

√
d1 2 1.9872(−0.0064) 1.9878(−0.0061) 1.9875(−0.0063)

Count process
Intercept ξ0 2 2.0627(0.0314) 1.9954(−0.0023) 1.9537(−0.0232)
Age ξ1 0.02 0.0189(−0.0550) 0.0194(−0.0300) 0.0175(−0.1250)
Std. dev. random effect

√
d2 1.5 1.4143(−0.0571) 1.4852(−0.0099) 1.5223(0.0149)

Negative-binomial parameter α 1 1.0082(0.0082) 1.0012(0.0012) –
Inflation intercept γ0 0 −1.4481 – –
Inflation age γ1 0 −0.0157 – –

Common parameter
Corr. random effect ρ −0.5 −0.4963(−0.0074) −0.4986(−0.0028) −0.4864(−0.0272)
Frequency of convergence 250 250 249

Mean and relative bias (RB) of the parameter estimates in the H(NN-)(PNG), (NN-)(PNG), and (NN-)(PN-).

In addition, across our simulation study, we learned that the ZI models are relatively harder to
fit when compared to the hurdle models, where convergence of models is never an issue, with
convergence guaranteed for the latter. Further, in scenarios S1 and S2, though data are generated
from the ZI(NN-)(PNG), the H(NN-)(PNG) is also performing very well.

7. Concluding remarks

In this paper, we have described a joint modelling strategy for a hierarchical continuous and
count outcome, where the latter is subject to zero-inflation as well as overdispersion. Our work
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builds upon that of Molenberghs et al. [17] and Molenberghs et al. [6] who combined normal and
gamma random effects in the generalized linear model family to induce association and adjust
for overdispersion. We show that these ideas can be extended to a joint modelling framework for
a continuous and count sequence simultaneously. This allows for an improvement in model fit,
and for enhanced statistical inferences. However, any failure to appropriately account for such
features may result in a substantial impact on the parameter and precision estimates. When zero-
inflation is omitted from the model, the overdispersion component will try to recover from this
mis-specification, though both are eventually needed.

Fitting a ZI(NN-)(PNG) model, even when correctly specified, is relatively more complex than
a H(NN-)(PNG). The latter has several additional advantages, in particular the possibility to test
for zero inflation. In the real data analysis, there were no model convergence issues, which is
reassuring. Of course, as we learned from analysing these data, both overdispersion as well as
additional zero inflation were convincingly present. Furthermore, the set of data was very large.
These are comfortable conditions to reach convergence. In the simulation study, the hurdle model
was at an advantage when it came to model fit. Practically, readers may consider both approaches,
hurdle and ZI, and perhaps use the relevant parameters from the hurdle model as starting values
for the ZI fit.

In terms of estimation, we have focused on maximum likelihood estimation. This can be done by
integrating over the random effects, using a combination of analytical and numerical techniques.
Precisely, the likelihood was integrated analytically over the conjugate (gamma) random effect,
using techniques outlined in Molenberghs et al.[6] The so-resulting likelihood, still conditional
on the normal random effect, is integrated numerically over the said random effect, using the SAS
procedure NLMIXED.

In conclusion, we note that our approach corrects for overdispersion and/or allows for joint
modelling. In our example, both phenomena were present, although overdispersion results in a
larger deviance reduction than joint modelling. One lesson to be drawn from this is that the user
should carefully assess whether one or the other correction, both of them, or perhaps none of the
two is necessary. Note also that joint modelling may be of interest in its own right. For example, one
may be interested in measuring the strength of the association between both processes (estimating
one or more correlation parameters) or in assessing its significance. Also, it is possible to derive
prediction equations for an outcome or set of outcomes in one sequence, based on the outcomes
in the other sequence and/or earlier measurements of the same sequence.
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Appendix 1. SAS code

A.1. SAS code for analysis of the Jimma Infant Growth Study

The following SAS code can be used to fit the models to the Jimma Infant Growth Study, as described in Section 5.

/*
resp is the response variable
name=1 is an indicator for the count sequence and name=2
is for the continuous sequence

*/

/* (NN-) & (PNG) */
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.03359 sigma=0.7202

beta21=-1.1599 beta22=0.2250 tau1=0.6845 tau2=0.3699 alpha=17;
if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age+b2;
expeta=exp(eta);
m = 1/alpha;
p = 1/(1+alpha*expeta);
ll = lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1/p);
end;
model resp ˜ general(ll);
random b1 b2 ˜normal([0,0],[tau1**2, 0,tau2**2]) subject=id;
run;

/* (NN-)(PNG) */
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.03359 sigma=0.7202
beta21=-1.1599 beta22=0.2250 tau1=0.6845 tau2=0.3699 rho=-0.1 alpha=17;
if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age+b1;
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
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eta = beta21 + beta22*age+b2;
expeta=exp(eta);
m = 1/alpha;
p = 1/(1+alpha*expeta);
ll = lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);
end;
model resp ˜ general(ll);
random b1 b2 ˜normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;
run;

/*(NN-) & H(PNG) */
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
alpha=0.333 a0=2.04 a1=-0.037;

if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age + b2;
expeta=exp(eta);
eta_prob=a0+a1*age;
expeta_prob=exp(eta_prob);
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = eta_prob-log(1+expeta_prob);
end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)
- log(1 -( 1 + alpha*expeta)**(-m));

end;
end;
model resp ˜ general(ll);
random b1 b2 ˜normal([0,0],[tau1**2,0,tau2**2]) subject=id;
run;

/*H(NN-)(PNG)*/
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
rho=-0.1 alpha=0.333 a0=2.04 a1=-0.037;

if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age + b2;
expeta=exp(eta);
eta_prob=a0+a1*age;
expeta_prob=exp(eta_prob);
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = eta_prob-log(1+expeta_prob);
end;
else do;
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16 W. Kassahun et al.

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +
resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)
- log(1 -( 1 + alpha*expeta)**(-m));

end;
end;
model resp ˜ general(ll);
random b1 b2 ˜normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;
run;

/*(NN-) & ZI(PNG)*/
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
alpha=0.333 a0=2.04 a1=-0.037;

if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age+ b1;
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age+ b2;
expeta=exp(eta);
eta_prob=a0+a1*age;
expeta_prob=exp(eta_prob);
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = log(p_0 + (1-p_0)*(p**m));end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);
end;
end;
model resp ˜ general(ll);
random b1 b2 ˜normal([0,0],[tau1**2,0,tau2**2]) subject=id;
run;

/*ZI(NN-)(PNG)*/
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
rho=-0.1 alpha=0.333 a0=2.04 a1=-0.037;

if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age + b2;
expeta=exp(eta);
eta_prob=a0+a1*age;
expeta_prob=exp(eta_prob);
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = log(p_0 + (1-p_0)*(p**m));
end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);
end;
end;
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model resp ˜ general(ll);
random b1 b2 ˜normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;
run;

/*Test for zero-inflation (zero-altered model):
comparing H(NN-)(PNG) with a1 versus H(NN-)(PNG) without a1*/

/*H(NN-)(PNG) without a1*/
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
rho=-0.1 alpha=0.333;

if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age + b2;
expeta=exp(eta);
eta_prob=beta21+beta22*age+b2;
expeta_prob=exp(eta_prob);
p_0=exp(-exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = eta_prob-log(1+expeta_prob);end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)
- log(1 -( 1 + alpha*expeta)**(-m));end;

end;
model resp ˜ general(ll);
random b1 b2 ˜normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;
run;

/*H(NN-)(PNG) with a1*/
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
rho=-0.1 alpha=0.333 a1=0;

if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age + b2;
expeta=exp(eta);
eta_prob=a1+beta21+beta22*age+b2;
expeta_prob=exp(eta_prob);
p_0=1-exp(-exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = eta_prob-log(1+expeta_prob);end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)
- log(1 -( 1 + alpha*expeta)**(-m));

end;
end;
model resp ˜ general(ll);
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18 W. Kassahun et al.

random b1 b2 ˜normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;
run;

A.2. SAS code for the simulation study

/* Scenario one: generate data from ZI(NN-)(PNG)model */

data jointsim1;
call streaminit(1234);
do ss=1 to 250 ;
mean1=0; /*mean for b1*/
mean2=0; /*mean for b2*/
sig1=2; /*SD for b1*/
sig2=1.5; /*SD for b2*/
rho=-0.5; /*Correlation between b1 and b2*/
do kk=1 to 200;
r1 = rannor(1245);
r2 = rannor(2923);
b1 = mean1 + sig1*r1;/*random effect for continuous part*/
b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;

/*random effect for count part*/
do TT=1 to 10; /*10 time points*/
sim=ss;
e=rand(’normal’,0,0.6);
id=kk;
age=TT;
mu=3.3+0.77*age-0.03*age*age+b1+e; /* continuous part*/
kappa = exp(2 + 0.02*age+b2); /* count part*/
theta = 1;
parm1 = 1/(1+kappa/theta);
yneg = rand(’NEGB’,parm1,theta);
p1=2-0.2*age; /* zero-inflation part*/
p2=exp(p1);
p=p2/(1+p2);
inf=rand(’bern’,p);
if inf=1 then do;
ynegzim=0;
end;
else do;
ynegzim=yneg;
end;
numdays=ynegzim;
output ;
end;
end ;
end;
data jointsim1;
set jointsim1;
run;

/* Scenario two:generate data from ZI(NN-)(PN-)model*/

data jointsim2;
call streaminit(1234);
do ss=1 to 250 ;
mean1=0; *mean for b1;
mean2=0; *mean for b2;
sig1=2; *SD for b1;
sig2=1.5; *SD for b2;
rho=-0.5; *Correlation between b1 and b2;
do kk=1 to 200;
r1 = rannor(1245);
r2 = rannor(2923);
b1 = mean1 + sig1*r1;
b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;

D
ow

nl
oa

de
d 

by
 [

H
IN

A
R

I]
 a

t 0
4:

41
 3

0 
O

ct
ob

er
 2

01
3 



Journal of Statistical Computation and Simulation 19

do TT=1 to 10; /*10 time points*/
sim=ss;
e=rand(’normal’,0,0.6);
id=kk;
age=TT;
mu=3.3+0.77*age-0.03*age*age+b1+e;
kappa = exp(2 + 0.02*age+b2);
ypois = rand(’POISSON’,kappa);
p1=2-0.2*age;
p2=exp(p1);
p=p2/(1+p2);
inf=rand(’bern’,p);
if inf=1 then do;
ypoiszim=0;
end;
else do;
ypoiszim=ypois;
end;
numdays=ypoiszim;
output ;
end;
end ;
end;
data jointsim2;
set jointsim2;
run;

/* Scenario three: generate data from (NN-)(PNG)model*/

data jointsim3;
call streaminit(1234);
do ss=1 to 250 ;
mean1=0; *mean for b1;
mean2=0; *mean for b2;
sig1=2; *SD for b1;
sig2=1.5; *SD for b2;
rho=-0.5; *Correlation between b1 and b2;
do kk=1 to 200;
r1 = rannor(1245);
r2 = rannor(2923);
b1 = mean1 + sig1*r1;
b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;
do TT=1 to 10; /*10 time points*/
sim=ss;
e=rand(’normal’,0,0.6);
id=kk;
age=TT;
mu=3.3+0.77*age-0.03*age*age+b1+e;
kappa = exp(2 + 0.02*age+b2);
theta = 1;
parm1 = 1/(1+kappa/theta);
yneg = rand(’NEGB’,parm1,theta);
numdays=yneg;
output ;
end;
end ;
end;
data jointsim3;
set jointsim3;
run;

/* Calculation of overall mean, std.dev. and percentage of zeros */

/* Scenario one */

proc means data=jointsim1;
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20 W. Kassahun et al.

var numdays; run;
proc freq data=jointsim1;
tables numdays;
run;

/*Scenario two*/

proc means data=jointsim2;
var numdays; run;
proc freq data=jointsim2;
tables numdays;
run;

/*Scenario three*/

proc means data=jointsim3;
var numdays; run;
proc freq data=jointsim3;
tables numdays;
run;
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