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Abstract

In this research, we investigate the squeezing and statistical properties of coherently

driven degenerate three-level laser with parametric amplifier for the cavity mode

coupled to a single-mode a vacuum reservoir via a single-port mirror. We first de-

rived the master equation in the linear approximation scheme which is used to de-

termine stochastic differential equations. We carry out analysis applying the solu-

tions of c-number Langevin equations associated with the normal ordering, we de-

termined the quadrature squeezing and squeezing spectrum. Using the antinormal

order characteristic function, we obtain the Q-function to analyze the squeezing

and statistical properties of the generated cavity radiation. Expanding the density

operator in the normal order and applying the completeness relation for coherent

states, we determined the Q-function of superposed light to analyze the squeezing

and statistical properties. We have found that a single light is 47.9% squeezed below

the coherent state level at steady state. The effect of parametric amplifier is to in-

crease the intra-cavity squeezing by a maximum of 50%. The maximum intracavity

squeezing is found to be 93.2% below coherent state level. The mean photon num-

ber of superposed light beam is twice of that of single light beam. The squeezing

of the superposed light of single-mode light increases with linear gain coefficients

with a squeezing of 95.8% below coherent state level.
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1

INTRODUCTION

Degenerate parametric amplifier is a typical source of squeezed light, with a maxi-

mum of 50% intracavity noise reduction [1-5]. Some authors have also established

that a three-level laser under certain conditions generates squeezed light [6-7]. A

squeezed state is now belonging to the selected technologies for detection of weak

signals and in low noise communication [8-10]. We define a three-level laser as a

quantum optical system in which three-level atoms in a cascade configuration and

initially prepared in a coherent superposition of the top and bottom levels are in-

jected at a certain rate into a cavity coupled to a vacuum reservoir via a single-port

mirror see Fig.1.1. The three-level laser in which a considerable role is played by the

coherent superposition of the top and bottom level of the injected atoms have been

studied by different authors [7, 8, 9, 10, 12, 13, 14, 16, 17].

The squeezing in such a laser is due to the coherent superposition of the top and

bottom levels. It now appears that a highly squeezed light could be generated by a

combination of these two quantum optical systems. The set of energy levels of an

atom consists of an infinite number of discrete levels corresponding to the bound

states of the electrons [11]. For a three-level atom, out of these set of energy lev-

1
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Figure 1.1: Schematic diagram of three-level laser with a degenerate parametric am-

plifier (DPA)

els only three-levels interact with electromagnetic radiation. When the three-level

atom interacts with radiation, then it under goes a transition from top to bottom

level via the intermediate level by emitting two photons. If the two photons gener-

ated have different frequencies, a two-mode light is generated. In this case the atom

is called non-degenerate three-level atom. But, when the frequencies of these pho-

tons are equal, the atom generates a single-mode light. For this condition the atom

is called degenerate three-level atom.

Ansari [7] has found the quadrature variance of degenerate three-level laser us-
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ing the steady state solution of the expectation value of cavity mode variables. He

found that the cavity mode is in squeezed state if the probability for the injected

atoms to be in the bottom levels is larger than the probability to be in the top levels.

And almost perfect squeezing can be achieved for slightly high probability for the

atoms to be in the bottom levels and for large value of linear gain coefficient. Ale-

bachew and Fesseha [12] have studied the squeezing properties of the cavity mode

produced by a degenerate three-level laser whose cavity contains a parametric am-

plifier by applying the solution of the stochastic differential equations, with the top

and bottom levels of injected atoms coupled by the pump mode emerging from the

parametric amplifier. In this study they showed that the optical system generates

light in a squeezed state with a maximum interacavity squeezing of 93% below the

coherent state level. Recently, Misrak [13] has studied the squeezing properties of

cavity mode produced by degenerate three-level laser with parametric amplifier by

applying the solution of stochastic differential equations. This study showed that

the quantum optical system generates squeezed light and the degree of squeezing

increases with the linear gain coefficient with maximum interacavity squeezing of

96.5% below the coherent state level. The injected coherent superposition creates a

population transfer pathway which is the basis for the correlated two photon emis-

sion.

In this thesis, we seek to analyze the squeezing and statistical properties for de-

generate three-level laser whose cavity contains parametric amplifier for single light

and for superposition of light beams produced by pair of degenerate three-level

lasers. By making use of stochastic differential equations, we carry out the analysis
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applying the solutions of c-number Langevin equations associated with the normal

ordering. These equations are obtained using the master equation derived in the

linear approximation scheme in the good cavity limit. This is used to analyze the

squeezing and statistical properties of the generated cavity radiation with the aid of

the pertinent stochastic differential equations associated with the normal ordering.

Imposing the requirement that the c-number equations of evolution for the first

and second-order moments have the same forms as the corresponding operator

[14], we obtain stochastic differential equations, associated with the normal order-

ing, for the dynamical variables of the cavity mode. The solutions of the result-

ing equations are then used to calculate the quadrature variance and the squeezing

spectrum. Applying the same solutions, we also determine the antinormally or-

dered characteristic function with the aid of which the Q function is obtained. K.

Fesseha [15] has shown that the effect of parametric amplifier is to increase the in-

tracavity squeezing by a maximum of 50%. Finally, the Q function is used to calcu-

late the mean photon number and the photon number distribution. Furthermore,

using the Q-function, we obtain the Q-function for the superposition of two light

beams produced by three-level lasers. Upon employing this Q-function, we de-

termine the squeezing and statistical properties of the single-mode light obtained

from superposition of two light beams produced by three-level lasers. We then cal-

culate the mean photon number, the variance of photon number, the photon num-

ber distribution and the quadrature variance of the superposed light beams.
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STOCHASTIC DIFFERENTIAL EQUATIONS

2.1 The Hamiltonian

A three-level laser consists of a cavity in which three-level atoms in a cascade config-

uration are injected at a constant rate ra and removed from the cavity after a certain

time τ . We represent the top, middle, and bottom levels by |a〉, |b〉 and |c〉 respec-

tively. In addition, we assume that the cavity mode to be at resonance with the two

transitions |a〉→ |b〉 and |b〉→ |c〉, and with direct transition between levels |a〉 and |c〉

to be dipole forbidden. The interaction of a three-level atom with the cavity mode

can be described in the interaction picture by the Hamiltonian

Ĥ = ig

[
â†(|b〉〈a|+ |c〉〈b|)− â(|a〉〈b|+ |b〉 〈c|)

]
, (2.1)

where g is the coupling constant and â is the annihilation operator for the cavity

mode. In this study we take the initial state of a three-level atom to be

ϕ(0)〉 = Ca(0)|a〉+ Cc(0)|c〉, (2.2)

and hence the initial density operator for a single atom has the form

ρ̂A(0) = ρ(0)
aa |a〉〈a|+ ρ(0)

ac |a〉〈c|+ ρ(0)
ca |c〉〈a|+ ρ(0)

cc |c〉〈c|, (2.3)

5



2.2 The Master Equation 6

where ρ(0)
aa = |ca|2, ρ(0)

ac = CaC
∗
c , ρ(0)

ca = CcC
∗
a and ρ(0)

cc = |cc|2, and

A = 2rag
2/γ2 (2.4)

is the linear gain coefficient. It can be readily established that the equation of the

density operator for the cavity mode has in the linear approximation given as [18].

2.2 The Master Equation

The quantum analysis of the interaction of a system such as a cavity mode or a

two-level atom with the external environment is a relatively complex problem. The

external environment, usually referred to as a reservoir, can be thermal light, or-

dinary or squeezed vacuum. We are interested in the dynamics of the system and

this is describable by the master equation, the Fokker-Planck equation, or quantum

Langevin equations. In this section, we obtain the above set of dynamical equations

for a cavity mode coupled to a squeezed vacuum reservoir via a single-port mirror.

The resulting equations are easily adaptable to the case when the external environ-

ment is either a thermal or a vacuum reservoir. We then focus our study when the

cavity mode is couple to a vacuum reservoir. A system coupled with a squeezed

vacuum reservoir can be described by the Hamiltonian

Ĥ = ĤS + ĤSR. (2.5)

The equation of evolution of density operator is given by

d

dt
X̂(t) = −i

[
ĤS(t) + ĤSR, X̂(t)

]
, (2.6)
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where X̂(t) is the density operator for the system. Using equation (2.6) the reduced

density operator

ρ̂(t) = TrX̂(t) (2.7)

evolves in time according to

d

dt
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
− iT r

[
ĤSR(t), X̂(t)

]
, (2.8)

in which TrR indicates the trace over the reservoirs variables only. On the other

hand, a formal solution of Eq. (2.6) can be written as

X̂(t) = X̂(0)− i

∫ t

0

[
ĤS(t′) + ĤSR(t′), X̂(t′)

]
dt′. (2.9)

In order to obtain mathematically manageable that X̂(t′) by some approximately

valid expression. Then, in the first place, we would arrange the reservoir in such

a way that its density operator R̂ remains constant in time. This can be achieved

by letting a beam of thermal light (or light in a vacuum state) of constant intensity

fall continuously on the system. Moreover, we decouple the system and reservoirs

density operators, so that

X̂(t′) = ρ̂(t′)R̂. (2.10)

Therefore, with the aid of this, one can rewrite Eq. (2.9) as

X̂(t′) = ρ̂(t′)R̂−
∫ t

0

[
ĤS(t′) + ĤSR(t′), ρ̂(t′)R̂

]
dt′. (2.11)

Now on substituting (2.11) in to (2.8) there follows
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d

dt
ρ̂(t) = −i

[
ĤSR(t), ρ̂(t)

]
− i

[
〈ĤSR(t)〉R, ρ̂(0)

]

−
∫ t

0

[
〈ρ̂SR(t)〉R,

[
ĤS(t′), ρ̂(t′)

]]
dt′

−
∫ t

0

TrR

[
ĤSR(t′),

[
ĤSR(t′), ρ̂(t′)R̂

]]
dt′, (2.12)

where the subscript R indicates that the expectation value is to be calculated using

the reservoirs density operator R̂. A light mode confined in a cavity, usually formed

by two mirrors, is called a cavity mode. A commonly used cavity has a single port-

mirror. One side of each cavity is a mirror through which light can enter or leave the

cavity. We now proceed to obtain the equation of evolution of the reduced density

operator, in short the master equation, for the cavity mode coupled to a squeezed

vacuum reservoir via a single port-mirror. We consider the reservoirs to be com-

posed of large number of submodes. Thus, the interaction of a cavity mode with

squeezed vacuum reservoirs can be described by

ĤSR(t) = iΣkλk(â
†b̂k exp i(ω0 − ωk)− âb̂†k exp−i(ω0 − ωk)), (2.13)

where â and b̂ are annihilation operator for the cavity and the reservoir submode

respectively. In view of this, we have

〈ĤSR(t)〉R = iΣkλk

[
(â†〈̂bk〉 exp i(ω0 − ωk)− â〈b̂†k〉 exp−i(ω0 − ωk)t)

]
. (2.14)

For squeezed vacuum reservoir to good approximation, a strong pump (signal)

mode can be treated classically. In this case the Hamiltonian take form

Ĥ =
iε

2
(â2 − â†2), (2.15)
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with ε = λβ0, where ε is the parametric amplifier, λ is the coupling constant be-

tween these two modes and β0 is assumed to be real, positive and constant which is

replaced in the position of operator b̂. The state vector for the signal mode initially

in coherent state |α〉 is expressible as

|ψ(t)〉 = e
εi
2

(â2−â†2)|α〉. (2.16)

It proves to be useful to introduce an ideal squeezed coherent state defined by

|α, r〉 = Ŝ(r)|α〉, (2.17)

in which

Ŝ(r) = e
r
2
(â2−â†2) (2.18)

is the squeeze operator and the squeeze parameter r is taken for convenience to

be real and positive. For α = 0 the squeezed coherent state reduces to a squeezed

vacuum state or in short squeezed vacuum. We assume the reservoir submodes to

be independent and consider the case for which the squeezed vacuum is incident

on a system from one direction. Then on account of (2.17) with α = 0 and (2.18),

the density operator for a single submode has the form

ρ̂κ = Sk(r)|0k〉〈0k|S†(r), (2.19)

where

Sκ = e
r
2
(b̂2k−b̂†2k ) (2.20)

is the squeeze operator. The expectation value of the operator b̂k can thus be ex-

pressed as

〈b̂k〉 = 〈0k|b̂k(r)|0k〉, (2.21)
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in which

b̂k(r) = S†k(r)b̂kSk(r). (2.22)

Now on comparing (2.22) with the ideal squeezed state, called displaced squeezed

vacuum given in the form

â(r) = S†âS(r) (2.23)

and

â = a cosh r − a† sinh r, (2.24)

we see that

b̂k(r) = b̂k cosh r − b̂†k sinh r. (2.25)

Hence on introducing (2.25) in to (2.24), we have

〈b̂k〉 = cosh r〈0k|bk|0k〉 − sinh r〈0k|b†k|0k〉. (2.26)

It then follows that

〈b̂k〉 = 0 (2.27)

and

〈b̂†k〉R = 0. (2.28)

Employing Eqs. (2.27) and (2.28) in to (2.14) we can easily express

[
〈ĤSR(t)〉R, ρ̂(0)

]
= 0, (2.29)
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and

[
〈ĤSR(t)〉R,

[
ĤS(t′), ρ̂(t′)

]]
= 0. (2.30)

Since the submodes are assumed to be independent, we note that for κ′ 6= κ

〈b̂†j b̂k′〉 = 〈b̂†k〉〈b̂k′〉 (2.31)

and in view of (2.27), we see that

〈b̂†kb̂k′〉 = 0. (2.32)

On the other hand, for k′ = k the expectation value of b̂†kb̂k′ is expressible in the form

〈b̂†kb̂k′〉 = 〈0k|S†k(r)b̂
†
kb̂kSκ(r)|0k〉. (2.33)

Using the unitary property of the squeezed operator, this can be written as

〈b̂†kb̂k′〉 = 〈0k|b̂†k(r)b̂k|0k(r)〉, (2.34)

where b̂κ is defined by (2.22). Hence on introducing of Eq. (2.24) and its adjoint in

to (2.34) leads to

〈b̂†kb̂k′〉 = 〈0k|
[
b̂†kb̂k cosh2(r) + b̂†k sinh2(r)b̂k′ b̂

†
k − cosh(r) sinh(r)(b̂†kb̂

†
k + b̂kb̂k)

]
|0k〉, (2.35)

from which follows

〈b̂†kb̂k′〉 = sinh2 r〈0k|b̂k′ b̂†k|0k〉, (2.36)

we assume that the reservoir submode operator satisfy the commutation relation

[
b̂i, b̂

†
j

]
= δij. (2.37)
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Now applying the commutation relation, we arrive at

〈b̂†kb̂k′〉 = sinh2 r, (2.38)

which holds for k′ = k. Therefore, on account of (2.32) and (2.38)

〈b̂†kb̂k′〉 = Nδkk′ , (2.39)

where N = sinh2 r. In addition, with the aid of (2.37) and (2.39), one easily gets

〈b̂kb̂†k′〉 = (N + 1)δkk′ . (2.40)

It can also be readily verified in a similar manner that

〈b̂kb̂k′〉 = −Mδkk′ , (2.41)

withM = cosh r sinh r, expression (2.41) can be written as

〈b̂kb̂k′〉 = −Mδk′,2k0−k
. (2.42)

where k ≈ 2k0−k.

In view Eqs. (2.27)-(2.30), expression (2.12) reduces to

d

dt
ρ̂ = −i

[
ĤS(t), ρ̂

]
−

∫ t

0

Tr

[
R̂ĤSR(t)ĤSR(t′)ρ̂(t′)

]
dt′

−
∫ t

0

ρ̂(t′)Tr

[
R̂ĤSR(t′)ĤSR(t)

]
dt′

+

∫ t

0

Tr

[
ĤSR(t′)ρ̂(t′)R̂ĤSR(t′)

]
dt′

+

∫ t

0

Tr

[
ĤSR(t′)ρ̂(t′)R̂ĤSR(t)

]
dt′. (2.43)
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Furthermore, using Hamiltonian described by (2.13) we have

− TrR(R̂ĤSR(t)ĤSR(t′) = I1ââ
† + I2â

†â+ I3â
2 + I4â

†2, (2.44)

where

I1 = −
∑
j,k

λjλk〈b̂†j b̂k〉R exp

[
− i(ω0 − ω)t+ i(ω0 − ω)t′

]
, (2.45)

I2 = −
∑
j,k

λjλk〈b̂j b̂†〉R exp

[
i(ω0 − ωj)− i(ω0 − ω)t′

]
, (2.46)

I3 = −
∑
j,k

λjλk〈b̂†j b̂†〉R exp

[
− i(ω0 − ωj)− i(ω0 − ω)t′

]
, (2.47)

I4 = −
∑
j,k

λjλk〈b̂j b̂k〉R exp

[
− i(ω0 − ωj)− i(ω0 − ω)t′

]
. (2.48)

In view of Eqs. (2.39), (2.40) and (2.42) one can easily write the relations in the form

〈b̂j b̂k〉R = Nδjk, (2.49)

〈b̂j b̂†k〉R = (N + 1)δjk, (2.50)

〈b̂j b̂k〉R = 〈b̂†j b̂
†
k〉R = −Mδj,2k0−k

, (2.51)

from these relations it is not difficult to obtain

I1 = −N
∑

k

λ2
k exp−i(ω0 − ωk)(t− t′), (2.52)

I2 = −(N + 1)
∑

k

λ2
k exp i(ω0 − ωk)(t− t′), (2.53)

I3 = −M
∑

k

λ2k0−k exp

[
i(ω0 − ω2k0−k)t− i(ω0 − ωk)t

′
]
, (2.54)
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I4 = −M
∑

k

λ2k0−k exp

[
i(ω0 − ω2k0−k)t+ i(ω0 − ωk)t

′
]
. (2.55)

Assuming the frequencies of the reservoirs submodes to be closely spaced summa-

tion over k can be converted in to an integration over ω

∑
k

λ2
k exp i(ω0 − ωk)(t− t′) =

∫ t

0

g(ω)λ2
k exp i(ω0 − ωk)(t− t′)dω. (2.56)

Replace g(ω) and λ2(ω0) by g(ω)λω2
0 and extend the lower limit of integration to∞

∑
k

λ2
k exp i(ω0 − ωk)(t− t′) = g(ω0)λ

2(ω0)

∫ t

0

exp i(ω0 − ωk)(t− t′)dω. (2.57)

Let ω′ = ω-ω0, then

∑
κ

λ2
κ exp i(ω0 − ωκ)(t− t′) = g(ω0)λ

2(ω0)

∫ t

0

exp iω′(t− t′)dω, (2.58)

from which follows

∑
k

λ2
k exp i(ω0 − ωκ)(t− t′) = κδ(t− t′), (2.59)

where

κ = 2Πg(ω0)λ
2(ω0) (2.60)

is defined to be the cavity damping constant. On account of (2.53) Eq. (2.52) and

(2.53) take the form

I1 = −κNδ(t− t′), (2.61)

I2 = −κ(N + 1)δ(t− t′). (2.62)

Performing a similar procedure, one can also readily establish

I3 = I4 = −κmδ(t− t′). (2.63)
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Hence, the combination of (2.44), (2.61), (2.62), and (2.63) yields

Tr(R̂ĤSR(t)ĤSR(t′)) = κ

[
(N + 1)â†â+Nââ† +Mâ2 +Mâ†

]
δ(t− t′). (2.64)

In view of this result

∫ t

0

Tr(R̂ĤSR(t)ĤSR(t′)ρ̂(t′)dt′ =
κ

2

[
(N + 1)â†âρ̂+Nââ†ρ̂+Mâ2ρ̂+Mâ†2ρ̂

]
. (2.65)

With ρ̂ = ρ̂(t), it is not hard to see that

∫ t

0

ρ̂(t′)Tr(R̂ĤSR(t)ĤSR(t′)dt′ =
κ

2

[
(N + 1)ρ̂â†â+Nρ̂ââ† +Mρ̂â2 +Mρ̂â†2

]
. (2.66)

In addition, employing (2.13) one can write

Tr(R̂ĤSR(t′)ρ̂(t′)ĤSR(t)dt′ = −
[
I1â

†ρ̂(t)â+ I2âρ̂(t)â
† + I3âρ̂(t

′)â+ I4â
†ρ̂(t′)â†

]
, (2.67)

so that the application of the results described by (2.61), (2.62) and (2.63)

leads to

∫ t

0

TrR

(
ĤSR(t)ρ̂(t′)R̂ĤSR(t)

)
dt′ =

κ

2

[
(N + 1)âρ̂â† +Nâ†ρ̂â+Mâρ̂â+Mâ†ρ̂â†

]
(2.68)

and

∫ t

0

TrR

(
ĤSR(t′)ρ̂(t′)R̂ĤSR(t)

)
dt′ =

k

2

[
(N + 1)âρ̂â† +Nâ†ρ̂â+Mâρ̂â

]
. (2.69)
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Therefore, on account of Eqs. (2.65), (2.66), (2.68) and (2.69), Eq. (2.43) for the

squeezed vacuum reservoir, it takes the form

d

dt
ρ̂ = −i

[
ĤS, ρ̂

]
+
κ

2
(N + 1)

[
2âρ̂â† − â†âρ̂− ρ̂â†â

]

+
κN

2

[
2â†ρ̂â− ââ†ρ̂− ρ̂ââ†

]

+
κM

2

[
2âρ̂â− â2ρ̂− ρ̂â2 + 2â†ρ̂â† − â†ρ̂− ρ̂â†2

]
. (2.70)

The effects of the reservoir are incorporated via the parameter N and M , with M =√
N(N + 1). Note that, for vacuum reservoir, N = M = 0 then the equation given

(2.70) reduces to

d

dt
ρ̂ = −i

[
ĤS, ρ̂

]
+
κ

2

[
2âρ̂â† − â†âρ̂− ρ̂â†â

]
. (2.71)

Now employing interaction Hamiltonian given by Eq. (1) for the cavity mode in to

Eq. (2.71) can be expressible as

d

dt
ρ̂ = −iT r

[(
igâ†(|b〉〈a|+ |c〉〈b|)− â(|a〉〈b|+ |b〉 〈c|)

)
, ρ̂AR(t)

]

+
κ

2

[
2âρ̂â† − â†âρ̂− ρ̂â†â

]
. (2.72)

After performing the trace operation and the cyclic property, we have

d

dt
ρ̂ = g

[
〈a|ρ̂ARâ

†|b〉+ 〈b|ρ̂ARâ
†|c〉 − 〈b|ρ̂ARâ|a〉 − 〈c|ρ̂ARâ|b〉

−â†〈a|ρ̂AR|b〉 − â†〈b|ρ̂AR|c〉+ â〈b|ρ̂AR|a〉+ â〈c|ρ̂AR|b〉
]

+
κ

2

[
2âρ̂â† − â†âρ̂− ρ̂â†â

]
, (2.73)
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in which the matrix element

ρ̂αβ = 〈α|ρ̂AR|β〉, (2.74)

with α, β = a, b, c, so that Eq. (2.73) can be written as

d

dt
ρ̂ = g

(
ρ̂abâ

† − â†ρ̂ab + ρ̂bcâ
† − â†ρ̂bc + âρ̂ba − ρ̂baâ+ âρ̂cb − ρ̂cbâ

)

+
κ

2

[
2âρ̂â† − â†âρ̂− ρ̂â†â

]
. (2.75)

Suppose ρ̂AR(t, t′) is the density operator for single atom plus the cavity mode at a

time t, with the atom injected at time tj such that

(t− τ) ≤ tj ≤ t. (2.76)

The density operator for all atoms in the cavity mode at time t can be written as

d

dt
ρ̂(t) = ra

∑
j

ρ̂AR(t, tj)∆tj, (2.77)

where ra∆tj is the number of atoms injected in to the cavity at a time ∆tj . Integrat-

ing in the limit ∆tj→ 0

ρ̂AR(t) = ra

∫ t

t−τ

ρ̂AR(t, t′)dt′. (2.78)

Differentiating with respect to time t, we get

d

dt
ρ̂AR(t) = ra(ρ̂AR(t, t)− ρ̂AR(t, t− τ) + ra

∫ t

t−τ

d

dt
ρ̂AR(t, t′)dt′. (2.79)

One can write

ρ̂AR(t, t) = ρ̂A(t)ρ̂(t), (2.80)
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where ρ̂(t) being the density operator for the cavity mode alone and ρ̂AR(t, t − τ)

represents the density operator for an atom plus the cavity mode at a time t, with

the atom being removed from the cavity at this time

ρ̂AR(t, t− τ) = ρ̂AR(t, t− τ)ρ̂AR(t). (2.81)

Using Eqs. (2.80) and (2.81), one can write Eq. (2.79) as

d

dt
ρ̂AR(t) = ra(ρ̂A(t)− ρ̂AR(t, t− τ)ρ̂(t)) + ra

∫ t

t−τ

∂

∂t
ρ̂AR(t, t′)dt′. (2.82)

In the absence of damping of the cavity mode by a vacuum reservoir, the density

operator ρ̂AR(t, t′) evolves in time according to

∂

∂t
ρ̂AR(t, t′) = −i

[
Ĥ, ρ̂AR(t, t′)

]
, (2.83)

so that using this and taking in to account (2.78), one can put Eq. (2.82) in the form

d

dt
ρ̂AR(t) = ra

(
ρ̂A(t)− ρ̂AR(t, t− τ)ρ̂(t)

)
− i

[
Ĥ, ρ̂AR(t, t)

]
. (2.84)

Furthermore, tracing over the atomic variables and taking in to account the damp-

ing of the cavity mode by a vacuum reservoir and using the fact that

Trρ̂A(t) = Trρ̂AR(t− τ) = 1,

we have

d

dt
ρ̂(t) = −iT rA

[
Ĥ, ρ̂AR(t, t)

]
+

1

2
κ

(
2âρ̂â† − ρ̂â†â− â†âρ̂

)
. (2.85)
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On the other hand, from Eq. (2.84) that

d

dt
ρ̂αβ = ra

(
〈α|ρ̂A(0)|β〉 − 〈α|ρ̂(t− τ)|β〉

)
ρ̂(t)

− i

(
〈α|ĤAR|β〉 − 〈α|ρ̂ARĤ|β〉

)
− γραβ, (2.86)

where γραβ is included to account for the decay of the atom due to spontaneous

emissions and γ is considered to be the same for all the three levels, is the atomic

decay rate. We assume that the atoms are removed from the cavity after they have

decayed to a level other than the middle or bottom level. We then see that

〈α|ρ̂A(t− τ)|β〉 = 0, (2.87)

so that Eq. (2.86) reduces to

d

dt
ρ̂αβ = ra(〈α|ρ̂A(0)|β〉ρ̂(t)− i(〈α|ĤAR|β〉 − 〈α|ρ̂ARĤ|β〉)− γραβ. (2.88)

Inserting Eqs. (2.1) and (2.3) in to Eq. (2.88) we have the following expressions

d

dt
ρ̂ab = g

(
ρ̂acâ

† + âρ̂bb − ρ̂aaâ

)
− γρ̂ab, (2.89)

d

dt
ρ̂bc = g

(
âρ̂cc − ρ̂bbâ− â†ρac

)
− γρ̂bc, (2.90)

d

dt
ρ̂aa = raρ̂

(0)
aa ρ̂+ g

(
ρ̂abâ

† + âρ̂ba

)
− γρ̂aa, (2.91)

d

dt
ρ̂bb = g

(
ρ̂bcâ

† + âρ̂cb − â†ρ̂ab − ρ̂baâ

)
− γρ̂bb, (2.92)

d

dt
ρ̂ac = raρ̂

(0)
ac ρ̂+ g

(
âρ̂bc − ρ̂abâ

)
− γρ̂ac, (2.93)

d

dt
ρ̂cc = raρ̂

(0)
cc ρ̂− g

(
â†ρ̂bc + ρ̂cbâ

)
− γρ̂cc. (2.94)

By dropping the g terms in Eqs. (2.91)- (2.94) and imposing the condition that κ� γ

(the good-cavity limit) since the atomic variable reach steady state in the relatively



2.2 The Master Equation 20

short period of γ−1, we can take the time derivative of such variable to be zero, keep-

ing the zeroorder and cavity mode variables at time t. This is termed as adiabatic

approximation scheme. Then we get

ρ̂aa =
raρ

(0)
aa

γ
ρ̂, (2.95)

ρ̂bb = 0, (2.96)

ρ̂ac =
raρ

(0)
ac

γ
ρ̂, (2.97)

ρ̂cc =
raρ

(0)
cc

γ
ρ̂. (2.98)

Moreover, substituting Eqs. (2.95)-(2.97) in to Eq. (2.89) yields

d

dt
ρ̂ab =

gra

γ

(
ρ(0)

ac ρ̂â
† − ρ(0)

aa ρ̂â

)
− γρ̂ab. (2.99)

Now on account of Eqs. (2.96)− (2.98), Eq. (2.90) takes the form

d

dt
ρ̂bc =

gra

γ

(
ρ(0)

cc âρ̂− ρ(0)
ac â

†ρ̂

)
− γρ̂bc. (2.100)

Using once more the adiabatic approximation, we easily find

ρ̂ab =
gra

γ

(
ρ(0)

ac ρ̂â
† − ρ(0)

aa ρ̂â

)
, (2.101)

ρ̂bc =
gra

γ

(
ρ(0)

cc âρ̂− ρ(0)
ac â

†ρ̂

)
, (2.102)
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On account of (2.101) and (2.102), the master equation for the cavity mode cou-

pled with a vacuum reservoir given by Eq. (2.75) takes the form

d

dt
ρ̂ =

1

2
Aρ(0)

aa

(
2â†ρ̂â− ρ̂ââ† − ââ†ρ̂

)

+
1

2
(Aρ(0)

cc + κ)

(
2âρ̂â† − ρ̂â†â− â†âρ̂

)
+

1

2
Aρ(0)

ac

(
ρ̂â†2 − â†2ρ̂− 2â†ρ̂â†

)

+
1

2
Aρ(0)

ca

(
ρ̂â2 + â2ρ̂− 2âρ̂â

)
, (2.103)

where A = 2rag
2/γ2 is the linear gain coefficient, κ is assumed to be the cavity

damping constant and γ is the spontaneous atomic decay rate. It is worth mention-

ing that the quantum properties of the light generated by the three-level laser are

determine by the master equation (2.103). It is easy to observe that with ρ(0)
aa = 1 and

ρ
(0)
ac = ρ

(0)
cc = 0, this equation reduces to the master equation for the two-level laser

operating bellow threshold.

Moreover, with the pump mode treated classically, a degenerate parametric ampli-

fier is describable in the interaction picture by the Hamiltonian

Ĥ =
1

2
iε(â†2 − â2), (2.104)

where ε is real and constant and proportional to the amplitude of the pump mode.

The master equation associated with this Hamiltonian Ĥ can be derived using the

commutation relation

dρ̂

dt
= −i

[
Ĥ, ρ̂

]
. (2.105)
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and on account of Eq. (2.104), we see that

dρ̂

dt
=

ε

2

(
ρ̂â2 − â2ρ̂+ â†2ρ̂− ρ̂â†2

)
. (2.106)

Therefore, Eq. (2.106) represents the master equation for the pump mode treated

classically for degenerate parametric amplifier in the interaction picture. Now tak-

ing in to account Eqs. (2.103) and (2.106), the master equation for the cavity mode

of a three-level laser containing parametric amplifier can be written as

dρ̂

dt
=
ε

2

(
ρ̂â2 − â2ρ̂+ â†2ρ̂− ρ̂â†2

)

+
1

2
Aρ(0)

aa

(
2â†ρ̂â− ρ̂ââ† − ââ†ρ̂

)
+

1

2
(Aρ(0)

cc + κ)

(
2âρ̂â† − ρ̂â†â− â†âρ̂

)
+

1

2
Aρ(0)

ac

(
ρ̂â†2 + â†2ρ̂− 2â†ρ̂â†

)
+

1

2
Aρ(0)

ca

(
ρ̂â2 + â†2ρ̂− 2âρ̂â

)
. (2.107)

2.3 Stochastic Differential Equations

We next seek to obtain stochastic differential equations for the cavity mode vari-

ables. To this end applying Eq. (2.107), we are able to find the time evolution of the

expectation value of the annihilation operator

d

dt
〈â〉 = Tr

(
dρ

dt
â

)
, (2.108)
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from which follows

d

dt
〈â〉 = Tr

[
ε

2

(
ρ̂â2 − â2ρ̂+ â†2ρ̂− ρ̂â†2

)
â

+
1

2
Aρ(0)

aa

(
2â†ρ̂â− ρ̂ââ† − ââ†ρ̂

)
â

+
1

2
(Aρ(0)

cc + k)

(
2âρ̂â† − ρ̂â†â− â†âρ̂

)
â

+
1

2
Aρ(0)

ac

(
ρ̂â†2 + â†2ρ̂− 2â†ρ̂â†

)
â

+
1

2
Aρ(0)

ca

(
ρ̂â2 + â†2ρ̂− 2âρ̂â

)
â

]
. (2.109)

Applying this master equation along with cyclic property of trace operation, and the

commutation relations of

[a, a†] = 1 and [a, a] = [a†, a†] = 0, (2.110)

one can readily obtains

d

dt
〈â〉 = −1

2
µ〈â〉+ ε〈â†〉. (2.111)

Following similar procedures, we have

d

dt
〈â(t)â(t)〉 = −µ〈â2〉+ 2ε〈â†(t)â(t)〉+ ε+ Aρ̂(0)

ac , (2.112)

and

d

dt
〈â†(t)â(t)〉 = −µ〈â†â〉+ ε〈â2(t)〉+ ε〈â†2(t)〉+ Aρ̂(0)

aa , (2.113)

in which

µ =
1

2
A(ρ̂(0)

cc − ρ̂(0)
aa ) + κ. (2.114)
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The corresponding c-number of Eqs. (2.111), (2.112) and (2.113) are given as

d

dt
〈α(t)〉 = −1

2
µ〈α(t)〉+ ε〈α∗(t)〉, (2.115)

d

dt
〈α2(t)〉 = −µ〈α2(t)〉+ 2ε〈α∗(t)α(t)〉+ Aρ(0)

ac , (2.116)

d

dt
〈α∗(t)α(t)〉 = −µ〈α∗(t)α(t)〉+ ε〈α2(t)〉+ ε〈α∗2(t)〉+ Aρ(0)

aa . (2.117)

On the bases of Eq. (2.115), one can write

d

dt
α(t) = −1

2
µα(t) + εα∗(t) + f(t), (2.118)

where f(t) is a noise force, the properties of which remain to be determined. We see

that Eq. (2.115) and the expectation value of Eq. (2.118), will have identical forms if

〈f(t)〉 = 0. (2.119)

Now applying the relation

d

dt
〈α2(t)〉 = 2〈α(t)

d

dt
α(t)〉 (2.120)

along with Eq.(2.118), one can readily get

d

dt
〈α2(t)〉 = −µ〈α2(t)〉+ 2ε〈α∗(t)α(t)〉+ 2〈α(t)f(t)〉, (2.121)

and using the partial differentiation of

d

dt
〈α∗(t)α(t)〉 = 〈α∗(t) d

dt
α(t)〉+ 〈α(t)

d

dt
α∗(t)〉, (2.122)
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up on inserting Eq. (2.118) and its complex conjugate, in to Eq. (2.122) we see

that

d

dt
〈α∗(t)α(t)〉 = −µ〈α∗(t)α(t)〉+ ε〈α2(t)〉+ ε〈α∗2(t)〉

+ 〈α(t)f ∗(t)〉+ 〈α∗(t)f(t)〉. (2.123)

We note that the c-number Eqs. (2.112) and (2.121) will have the same forms if

〈α(t)f(t)〉 =
1

2
(ε+ Aρ(0)

ac ), (2.124)

and similarly in view of Eqs. (2.113) and (2.123), we have

〈α(t)f ∗(t)〉+ 〈α∗(t)f(t)〉 = Aρ(0)
ac . (2.125)

A formal solution of Eq. (2.118) can be written as

α(t) = α(0)e−µt/2 +

∫ t

0

e−µ(t−t′)/2

[
εα∗(t′) + f(t′)

]
dt′. (2.126)

We then see that

〈α(t)f(t)〉 = 〈α(0)f(t)〉e−µt/2 +

∫ t

0

e−µ(t−t′)/2ε

(
〈α∗(t′)f(t)〉

)
dt′

+

∫ t

0

e−µ(t−t′)/2〈f(t)f(t′)〉dt′. (2.127)

Assuming that the noise force f at a time t does not affect the cavity mode variables

at earlier times

〈α∗(t′)f(t)〉 = 0 (2.128)

and taking in to account Eq. (2.124), we have∫ t

0

e−µ(t−t′)〈f(t)f(t′)〉dt′ = 1

2
(ε+ Aρ(0)

ac ). (2.129)



2.3 Stochastic Differential Equations 26

One can then write on the bases of this result

〈f(t)f(t′)〉 = (ε+ Aρ(0)
ac )δ(t− t′). (2.130)

It can also be established in a similar manner that

〈f ∗(t)f(t′)〉 = Aρ(0)
aa δ(t− t′). (2.131)

It is worth mentioning that Eqs. (2.130) and (2.131) describe the correlation prop-

erties of the noise force f(t) associated with the normal ordering. Now introducing

a new variable defined by

α±(t) = α∗(t)± α(t), (2.132)

on account of Eq. (2.118) one can readily write

d

dt
α∗(t) = −1

2
µα∗(t) + εα(t) + f ∗(t). (2.133)

Differentiating Eq. (2.132), one can obtain

dα±
dt

(t) =
d

dt
α∗(t)± d

dt
α(t). (2.134)

Upon substituting Eq. (2.118) and (2.133) in to Eq. (2.134), we can readily get

dα±
dt

= −1

2
λ∓α± + f ∗(t)± f(t), (2.135)

where

λ∓ = µ∓ 2ε. (2.136)

The solution of Eq. (2.135) can be written as

α±(t) = α±(0)e−λ∓t/2 +

∫ t

0

e−λ∓(t−t′)/2

[
f ∗(t′)± f(t′)

]
dt′. (2.137)
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It then follows that

α+(t) = α+(0)e−λ−t′/2 +

∫ t

0

e−λ−t/2

[
f ∗(t′) + f(t′)

]
dt′ (2.138)

and

α−(t) = α−(0)e−λ+t′/2 +

∫ t

0

e−λ+t/2

[
f ∗(t′)− f(t′)

]
dt′. (2.139)

Combining with

α±(t′) = α∗(t′)± α(t′), (2.140)

which then follows

α(t) = A(t)α(0) +B(t)α∗(0) + F (t), (2.141)

in which

A(t) =
1

2
(e−λ−t/2 + e−λ+t/2), (2.142)

B(t) =
1

2
(e−λ−t/2 − e−λ+t/2), (2.143)

and

F (t) = F+(t) + F−(t), (2.144)

with

F∓(t) =

∫ 1

0

e−λ∓(t−t′)/2

[
f(t′)± f ∗(t′)

]
dt′. (2.145)
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Upon substituting Eqs. (2.142), (2.143) and (2.145) in to Eq. (2.141) we readily

see that

α(t) =
1

2
α(0)

(
e−λ−t/2 + e−λ+t/2

)
+

1

2
α∗(0)

(
e−λ−t/2 − e−λ+t/2

)

+
1

2

∫ 1

0

e−λ∓(t−t′)/2

[
f(t′)± f ∗(t′)

]
dt′. (2.146)

Rewriting Eq. (2.146), we readily get

α(t) =
1

2
α(0)e−λ∓t/2 +

1

2
α∗(0)e−λ∓t/2

+
1

2

[ ∫ 1

0

e−λ∓(t−t′)/2f(t′)± f ∗(t′)

]
dt′. (2.147)
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THE QUADRATURE FLUCTUATIONS

In this chapter, we seek to calculate the quadrature variances of the cavity modes as

well as the squeezing spectrum of the output mode produced by a degenerate three-

level laser whose cavity contains a parametric amplifier driven by coherent light

and coupled to a vacuum reservoir, using the solutions of the stochastic differential

equations and the correlation properties of the noise forces.

3.1 Quadrature Variance

The squeezing properties of single mode light are described by two quadrature op-

erators is defined by

â+ = â† + â (3.1)

and

â− = i(â† − â), (3.2)

where â+ and â− are Hermitian operators representing physical quantities called

plus and minus quadratures, respectively, while â† and â are the creation and anni-

hilation operators for light mode a respectively. With the help of Eqs. (3.1) and (3.2),

29
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we can show that the two quadrature operators satisfy the commutation relation.

It is possible to express in terms of c-number variables associated with the normal

ordering as

∆α2
± = 1± 〈α±(t), α±(t)〉, (3.3)

in which α±(t) is given by Eq. (2.132). We consider here the case for which the cavity

mode is initially in the vacuum state. Hence on account of Eq. (2.137) along with

Eq. (2.119), we see that

〈α±(t)〉 = 0, (3.4)

and expression (3.3) takes the form of

4α2
± = 1± 〈α2

±(t)〉. (3.5)

Furthermore, one easily gets with the aid of Eq. (2.135) that

d

dt
〈α2

±(t)〉 = −λ∓〈α2
±(t)〉+ 2〈α±(t)f ∗(t)〉 ± 2〈α±(t)f(t)〉. (3.6)

On account of Eq. (2.132) along with Eqs. (2.124) and (2.125), we note that

〈α±(t)f ∗(t)〉 =
1

2
[ε+ A(ρ(0)

ca ± ρ(0)
aa )], (3.7)

〈α±(t)f(t)〉 =
1

2
[Aρ(0)

aa ± (ε+ ρ(0)
ac )]. (3.8)

Therefore, in view of this result, Eq. (3.6) can be rewritten as

d

dt
〈α2

±(t)〉 = −λ∓〈α2
±(t)〉+ 2ε+ A(ρ(0)

ac + ρ(0)
ca ± 2ρ(0)

aa ). (3.9)

With the cavity mode initially in a vacuum state, the solution of this equation has

the form

〈α2
±(t)〉 =

2ε+ A(ρ
(0)
ac + ρ

(0)
ca ± 2ρ

(0)
aa )

λ∓
[1− e−λ∓t]. (3.10)
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It proves to be more convenient to introduce a new parameter defined by

ρ(0)
aa =

1− η

2
, (3.11)

so that in view of the fact that

ρ(0)
aa + ρ(0)

cc = 1 (3.12)

and

|ρ(0)
ac |2 = ρ(0)

aa ρ
(0)
cc , (3.13)

one easily finds that

ρ(0)
cc =

1 + η

2
(3.14)

and

|ρ(0)
ac | =

1

2
(1− η2)1/2. (3.15)

Up on setting

ρ(0)
ac = |ρ(0)

ac |eiθ (3.16)

and taking in to account of Eq. (2.136), along with Eq. (2.114), expression (3.10) can

thus be put in the form

〈α2
±(t)〉 =

2ε+ A[(1− η2) cos θ ± (1− η)]

Aη + κ∓ 2ε
[1− e−(Aη+κ∓2ε)t]. (3.17)

Now a combination of Eqs. (3.5) and (3.17) yields

∆α2
±(t) = 1± 2ε+ A[(1− η2) cos θ ± (1− η)]

Aη + κ∓ 2ε
[1− e−(Aη+κ∓2ε)t], (3.18)
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Figure 3.1: Plots of quadrature variance (∆a−)2 Vs η [Eq. (3.22)] for κ = 0.8, θ = 0,and

2ε = Aη + κ and for different values of linear gain coefficient.
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Figure 3.2: Plots of (∆a−)2 for single mode [Eq. (3.23)] versus η of for κ = 0.8 and

ε = 0 and for different values of linear gain coefficient.
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so that at steady state

∆α2
+(t) =

κ+ A[(1 + (1− η2)1/2 cos θ]

Aη + κ− 2ε
. (3.19)

and

∆α2
−(t) =

κ+ A[(1− (1− η2)1/2 cos θ]

Aη + κ+ 2ε
. (3.20)

Since no well-behaved solution of Eq. (2.135) exists for (Aη + κ)<2ε, we interpret

(Aη + κ) = 2ε as the threshold condition. Hence the solution of of this equation given

by Eq. (2.137) is valid for 2ε<(Aη+κ).

On the other hand, we note that from Eq. (2.104) that ε is the only parameter

representing the parametric amplifier. And inspection of Eq. (3.20) shows that the

effect of this parameter is to decrease the value of the quadrature variance ∆ a2
−. In

addition, we see that expressions in Eqs. (3.19) and (3.20) take at threshold the form

∆α2
+ →∞ (3.21)

and

∆α2
−(t) =

κ+ A[(1− (1− η2)1/2 cos θ]

2(Aη + κ)
. (3.22)

Now upon setting ε = 0 in Eq. (3.20) it reduces to

∆α2
−(t) =

κ+ A[(1− (1− η2)1/2 cos θ]

(Aη + κ)
. (3.23)

Comparing the resulting expression (3.23) with Eq. (3.22) along with Fig.3.2, we ob-

serve that the effect of the parametric amplifier is to increase the intracavity squeez-
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Figure 3.3: Plots of intra-cavity quadrature variance (∆a−)2 for single mode [Eq.

(3.22) and (3.23)] versus η of for κ = 0.8,A = 75, and in the absence of the parametric

amplifier with ε = 0, (green curve) and in the presence of the parametric amplifier

with 2ε = Aη + κ, (pink curve)

ing by a maximum of 50%. The degree of squeezing increases with linear gain coeffi-

cients and it appears that almost perfect squeezing can be achieved for sufficiently

large values of the linear gain coefficient.

Fig.3.3 indicates that the squeezing vanishes for η =0 and η =1 which corresponds

to maximum injected atomic coherence, ρ(0)
ac =1/2, and no injected atomic coher-

ence, ρ(0)
ac =0, respectively. However, as can be seen from the pink curve, the presence

of the parametric amplifier leads to some degree of squeezing for η=0.

3.2 Squeezing Spectrum

The squeezing spectrum of a single-mode light is expressible in terms of c-number

variables associated with the normal ordering as

Sout
± (ω) = 1 + 2Re

∫ ∞

0

〈αout
± (t), αout

± (t+ τ)〉sseiωτdτ, (3.24)
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where the subscript ”ss” stands for steady state and

αout
± (t) = α∗out(t)± αout(t). (3.25)

We note that for a cavity mode coupled to a vacuum reservoir, the output and intra-

cavity variables are related by

αout
± (t) =

√
κα±(t). (3.26)

In view of Eqs. (3.4) and (3.26), the squeezing spectrum can be put in the form

Sout
± (ω) = 1 + 2κRe

∫ ∞

0

〈α±(t)α±(t+ τ)〉sseiωτdτ. (3.27)

Furthermore, the solution of the expectation value of of Eq. (2.135)can be written

as

〈α±(t+ τ)〉 = 〈α±(t)〉e−λ∓τ/2〉, (3.28)

so that on account of the quantum regression theorem, have

〈α±(t)α±(t+ τ)〉 = 〈α2
±(t)〉e−λ∓τ/2. (3.29)

Now with the aid of Eq. (3.29) together with Eq. (3.17), the squeezing spectrum

is found to be

Sout
± (ω) = 1± 2κε+ κA[(1− η2)1/2 cos θ ± (1− η)]

ω2 + [1
2
(Aη + κ∓ 2ε)]2

, (3.30)

It is easy to see that at threshold

Sout
+ (ω) =

ω2 + κ2 + κA[(1 + (1− η2) cos θ]

ω2
(3.31)
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Figure 3.4: Plots of squeezing spectrum (Sout
− (0) [Eq. (3.32)] versus η of for κ = 0.8,

θ = 0.ω = 0 and for different values of linear gain coefficient.

and

Sout
− (ω) =

ω2 + A2η2 + κA[(1− (1− η2) cos θ]

ω2 + [Aη + κ]2
. (3.32)

As shown in Fig.3.4, the squeezing spectrum of the out put cavity variable

〈Sout(0)
− 〉 increases as the linear gain coefficients, A, increases. For A=75, k=0.8, θ=0

and ω=0, the maximum squeezing spectrum gives 98.9%. For A=5 and the same val-

ues of k, θ and ω, the squeezing spectrum is 86.2% at maximum value of η=1.



4

PHOTON STATISTICS

In this chapter, with the aid of the antinormally-ordered characteristic function, we

obtain the Q function. Using the Q function, we obtain the mean photon num-

ber, the photon number variance and the photon number distribution for the cavity

mode.

4.1 The Q Function

The Q function is expressible in the form

Q(α∗, α, t) =
1

π2

∫
d2zφ(z∗, z, t)exp(z∗α− zα∗), (4.1)

where the antinormally ordered characteristic function φ(z∗,z,t) is defined in the

Heisenberg picture by

φ(z∗, z, t) = Tr(ρ̂(0)ez∗â(t)e−z∗â†(t)). (4.2)

Applying the identity

eAeB = eBeAe[A,B], (4.3)

37
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the expression for the characteristic function can be written in terms of c-number

variables associated with the normal ordering as

φ(z∗, z, t) = e−z∗z〈exp(zα∗ − z∗α)〉, (4.4)

so that employing Eq. (2.141) and assuming that α(0)is independent of the noise

force F (t), we get

φ(z∗, z, t) = e−z∗z〈exp[(zA− z∗B)α∗(0) + (zB − z∗A)α(0)]〉

〈exp(zF ∗ − z∗F )〉. (4.5)

Considering the cavity mode to be initially in a vacuum state, we see that

〈exp[(zA− z∗B)α∗(0) + (zB − z∗A)α(0)]〉 = 1 (4.6)

and hence

φ(z∗, z, t) = e−z∗z〈exp(−zF ∗ − z∗F )〉. (4.7)

On account of the fact that F is Gaussian random variable, one can express Eq. (4.7)

in the form [18]

φ(z∗, z, t) = e−z∗z exp(
1

2
〈[zF ∗ − z∗F ]2〉). (4.8)

It then follows that

φ(z∗, z, t) = e−z∗z exp(
1

2
〈[z2F ∗2 + z∗2F 2 − 2z∗zF ∗F ]〉). (4.9)

Furthermore, from Eq. (2.144) and (2.145) one easily gets

〈F 2〉 = 〈F 2
+〉+ 〈F 2

−〉+ 2〈F+F−〉, (4.10)
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〈F ∗F 〉 = 〈F 2
+〉 − 〈F 2

−〉. (4.11)

Applying Eq. (2.145) along with Eqs. (2.130) and (2.131), it can be easily established

that

〈F 2
+〉 =

2ε+ A(ρ
(0)
ac + ρ

(0)
ca + 2ρ

(0)
aa )

4λ−
[1− e−λ−t], (4.12)

〈F 2
−〉 =

2ε+ A(ρ
(0)
ac + ρ

(0)
ca − 2ρ

(0)
aa )

4λ+

[1− e−λ+t], (4.13)

〈F+F−〉 =
2ε+ A(ρ

(0)
ac − ρ

(0)
ca )

4λ+

[1− e−µt], (4.14)

so that in view of these results, there follows

〈F 2〉 =
2ε+ A(ρ

(0)
ac + ρ

(0)
ca + 2ρ

(0)
aa )

4λ−
[1− e−λ−t]

+
2ε+ A(ρ

(0)
ac + ρ

(0)
ac − 2ρ

(0)
aa )

4λ+

[1− e−λ+t]

+
2ε+ A(ρ

(0)
ac − ρ

(0)
ca )

4λ+

[1− e−µt], (4.15)

〈F ∗F 〉 =
2ε+ A(ρ

(0)
ac + ρ

(0)
ca + 2ρ

(0)
aa )

4λ−
[1− e−λ−t]

− 2ε+ A(ρ
(0)
ac + ρ

(0)
ac − 2ρ

(0)
aa )

4λ+

[1− e−λ+t]. (4.16)

Now on account of Eqs. (4.15) and (4.16), the characteristic function (4.9) can be

written as

φ(z∗, z, t) = exp[−az∗z + (bz2 + b∗z∗2)/2], (4.17)
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where the coefficients are expressible in terms of the parameter η as

a = 1 +
2ε+ A[1− η + (1− η2)1/2 cos θ]

4(Aη + κ− 2ε)
[1− e−(Aη+k−2ε)t]

− 2ε+ A[η − 1 + (1− η2)1/2 cos θ]

4(Aη + κ+ 2ε)
[1− e−(Aη+k+2ε)t] (4.18)

b =
2ε+ A[1− η + (1− η2)1/2 cos θ]

4(Aη + κ− 2ε)
[1− e−(Aη+k−2ε)t]

+
2ε+ A[η − 1 + (1− η2)1/2 cos θ]

4(Aη + κ+ 2ε)
[1− e−(Aη+k+2ε)t]

+
iA(1− η2)1/2 sin θ

2(Aη + κ)
[1− e−(Aη+k)t]. (4.19)

Finally, introducing Eq. (4.17) in to Eq. (4.1) and carrying out the integration, the Q

function for the cavity mode is found to be

Q(α∗, α, t) =
[u2 − vv∗]1/2

π
exp[−uα∗α+ (uα2 + v∗α∗2)/2], (4.20)

in which

u =
a

a2 − bb∗
, (4.21)

v =
b

a2 − bb∗
. (4.22)

4.2 The Mean Photon Number

The mean photon number can be written employing the Q function (4.20) as

〈â†â〉 = − 1

π
[u2 − vv∗]1/2

∫
d2α exp[−uα∗α+ (v∗α∗2 + vα2)]/2− 1, (4.23)
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so that on performing the integration, there follows

〈â†â〉 = −[u2 − vv∗]1/2 d

du
[

1

u2 − uu∗
]1/2 − 1. (4.24)

Therefore, carrying out differentiation and taking into account Eqs. (4.21) and (4.22)

along with (4.18) and (4.19), one readily obtains

〈â†â〉 =
2ε+ A[1− η + (1− η2)1/2 cos θ]

4(Aη + κ− 2ε)
[1− e−(Aη+k−2ε)t]

− 2ε+ A[η − 1 + (1− η2)1/2 cos θ]

4(Aη + κ+ 2ε)
[1− e−(Aη+k+2ε)t]. (4.25)

At steady state, it is not hard to observe that the parametric amplifier contributes

significantly to the mean photon number when the system is operating particularly

near threshold. Up on direct use of steady state solutions of c-number Langevine

equations,

n̄ =
A(1− η)

2(Aη + κ)
, (4.26)

which is identical with the expression obtained by Fesseha [8].

4.3 Photon Number Distribution

Furthermore, the photon number distribution for a single mode light is expressible

in terms of the Q function as [4,5]

p(n, t) =
π

n!

∂2n

∂α∗n∂αn
[Q(α∗, α, t)eα∗α]α=α∗=0. (4.27)

Thus with the aid of Eqs. (4.20) and (4.27) the photon number distribution for the

cavity mode can be written in the form

p(n, t) =
1

n!
[u2 − vv∗]1/2 ∂2n

∂α∗n∂αn
[exp(1− u)α∗α+ (v∗α∗2 + vα2)/2]. (4.28)
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Now expanding the exponential function in power series, we have

p(n, t) =
1

n!
[u2 − vv∗]1/2

∑
klm

(1− u)kv∗lvm

2l+mk!l!m!

∂2n

∂α∗n∂αn

× [(α∗)k+2lαk+2m]α∗=α=0, (4.29)

so that on carrying out the differentiation and applying the condition α=α∗ = 0,

there follows

p(n, t) =
1

n!
[u2 − vv∗]1/2

∑
klm

(1− u)kv∗lvm(k + 2l)!(k + 2m)!

2l+mk!l!m!(k + 2l − n)!(k + 2m− n)!
δk+2l,nδk+2m,n. (4.30)

Finally, on account of the result that m = l and k = n − 2l, the photon number

distribution can be written as

p(n, t) =
1

n!
[u2 − vv∗]1/2

[n]∑
l=0

n!
(1− u)n−2l(vv∗)l

22ll!2(n− 2l)!
, (4.31)

where [n]=n/2 for even n and [n]=(n − 1)/2 for odd n. The probability of finding an

even number of photons is greater than the probability of finding an odd number

of photons; whether the light is produced by a thee-level laser with or without a

parametric amplifier. This is because the photons are always generated in pairs and

the existence of some finite probability to find an odd number of photons is due to

damping of the cavity mode. We also see that the probability of finding n photons,

with n≤4, is smaller for the light generated by the three-level laser with a parametric

amplifier than for that produced without parametric amplifier, and the opposite of

this holds n≥5.



5

SUPERPOSITION OF TWO LASER BEAMS

We first seek to calculate the Q function to describe the superposition of the two

light beams, with the same frequency produced by a pair of degenerate three-level

lasers. Applying the Q function, we calculate the mean photon number, the vari-

ance of photon number, the photon number distribution and the quadrature vari-

ance.

5.1 The Q Function

The source of light emitted by a three-level atom in a cavity coupled to a squeezed

vacuum reservoir via a single port mirror is known to be a degenerate three-level

laser. In this section, we first calculate the Q functions for the superposition of two

light beams produced by three-level lasers. The Q function is used to describe the

superposition of two light beams with the same frequency with in the same or dif-

ferent states. Suppose ρ(â†, â) is the density operator for a certain light beam. Then

upon expanding the density operator in the normal order and applying the com-

pleteness relation for coherent states, one can easily establish that

ρ̂
′

=

∫
d2βQ(β∗, β +

∂

∂β
)|β〉〈β|, (5.1)
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Figure 5.1: Schematic diagram of superposition of light beams emitted from two

degenerate three-level atoms injected in to a cavity at a rate of ra

.

Where ρ̂′ is the density operator for the first light beam by injecting a light beams

in to the cavity which initially contains a light beams of the same frequency Fig. 5.1,

the density operator for superposed light beams is expressible as

ρ̂ =

∫
d2γQ

(
γ∗, γ +

∂

∂γ∗

)
D̂(γ)ρ̂

′
D̂+(γ). (5.2)

By employing the value of ρ̂′ of Eq. (5.1) in to (5.2) which turns out to be

ρ̂ =

∫
d2γd2βQ

(
γ∗, γ +

∂

∂γ

)
Q

(
β∗, β +

∂

∂β

)
|β + γ〉〈β + γ|. (5.3)

Here, the Q function for the superposition of the two light beams become

Q(α∗, α, t) =
1

π
〈α|ρ̂|α〉. (5.4)
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Up on inserting the value of ρ̂ we readily obtain

Q(α∗, α, t) =
1

π

∫
d2βd2γQ

(
β∗, β +

∂

∂β

∗)
Q

(
γ∗, γ +

∂

∂γ∗

)

× exp

[
− αα∗ − ββ∗ − γγ∗ + α∗β + αβ∗ + α∗γ + αγ∗ − β∗γ − βγ∗

]
. (5.5)

It then follows that

Q(α∗, α, t) =
1

π

∫
d2βd2γ exp

[
− α∗(α− β − γ)

]

×Q(β∗, β +
∂

∂β
) exp

[
β∗(α− β − γ)

]

×Q(γ∗, γ +
∂

∂γ
) exp

[
γ∗(α− β − γ)

]
. (5.6)

Using the binomial expansion theorem

(x+
d

dy
)l =

l∑
j

(x)l−j(
d

dy
)j, (5.7)

we readily find

Q(β∗, β +
∂

∂β
)× exp

[
β∗(α− β − γ)

]
= Q(β∗, α− γ) exp

[
β∗(α− β − γ)

]
,(5.8)

and

Q(γ∗, γ +
∂

∂γ
) exp

[
γ∗(α− β − γ)

]
= Q(γ∗, α− β) exp

[
γ∗(α− β − γ)

]
. (5.9)

In view of Eqs.(5.8) and (5.9), Eq. (5.6) takes the form

Q(α∗, α, t) =
1

π

∫
d2βd2γQ(β∗, α− γ)Q(γ∗, α− β)

× exp

[
− α∗α− β∗β − γ∗γ + α∗β + αβ∗ + α∗γ + αγ∗ − β∗γ − βγ∗

]
. (5.10)



5.1 The Q Function 46

Let Q(γ∗, γ) and Q(β∗, β) be the Q function of the first and second light beams, re-

spectively. On account of Eq. (4.20), the Q function of the first light beam is given

as

Q(γ∗, γ, t) =
(u2

1 − v2
1)

1/2

π
exp

(
− u1γγ

∗ + v1(γ
2 + γ∗2)/2

)
, (5.11)

then

Q(γ∗, α− β) =
(u2

1 − v2
1)

1/2

π
exp

(
− u1(αγ

∗ − γ∗β) + v1(α
2 + γ∗ + β2 − 2αβ)/2

)
, (5.12)

where u1 = a1

(a2
1−b21)

and v1 = b1
(a2

1−b21)
for the first light beam and u2 = a2

(a2
2−b22)

and

v2 = b2
(a2

2−b22)
for the the second light beam. Similarly, theQ function for the second

light beam is given as

Q(β∗, α− γ) =
(u2

2 − v2
2)

1/2

π
exp

(
− u2(αβ

∗ − β∗β) + v2(α
2 + γ2 + β∗2 − 2αγ)/2

)
. (5.13)

In view of Eqs. (5.12) and (4.13) together with taking the two identical light

beams, then u1=u2=u and v1=v2=v, Eq. (5.10) can be written as

Q(α∗, α, t) =
(u2 − v2)1/2

π
exp(−α∗α+ (2v)α2/2)×

∫
d2β

π
exp

[
− β∗β + (α∗ − vα)β + (α− uα)β∗ + vβ∗2/2+vβ2/2

]

×
∫
d2γ

π
exp

[
− γ∗γ + (α∗ − β∗ + uβ∗ − vαα)

+ (α− β − u(α− β))γ∗ + vγ∗2/2 + vγ2/2

]
. (5.14)
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Integrating Eq. (5.14) over γ, we readily get

Q(α∗, α, t) =
1

π

[
(u2 − v2)1/2

1− v2

]1/2

exp

[
−uα∗α
1− v2

+ (
−v3 + vu2 + v

1− v2
)
α2

2
+

v

1− v2

α∗2

2

]

×
∫
d2β

π
exp

[
− β∗β(

2u− u2 − v2

1− v2
) + β

α∗(u− v2) + α(u− u2)

1− v2

+ β∗
α∗(vu− v) + vu2 − 2vu

1− v2
(
β∗2

2
+
β2

2
)

]
. (5.15)

Similarly, integrating Eq. (5.15) over β gives the Q function for the superposition

of two light beams can be expressed as

Q(α∗, α, t) =
R

π
exp

[
− Uαα∗ + V (

α2

2
+
α∗2

2
)

]
, (5.16)

in which

R =

√
u2 − v2

4− 4u+ u2 − v2
(5.17)

U =
2u− u2 + v2

4− 4u+ u2 − v2
, (5.18)

and

V =
2v

4− 4u− u2 − v2
. (5.19)

By integrating Eq. (5.16) over α

∫
d2αQ(α, t) = R

∫
d2α

π
exp

[
− Uαα∗ + V (

α2

2
+
α∗2

2
)

]
(5.20)

using the identity

∫
d2z

π
exp(−azz∗ + bz + cz∗ + A′z2 +B′z∗2) =

[
1

a2 − 4A′B

]1/2

× exp

[
abc+ A′c2 +B′b2

a2−4A′B′

]
, (5.21)
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where a > 0. Up on inserting Eq. (5.21) in to Eq. (5.20) and carrying out integration

it reduces to

∫
d2αQ(α, t) = 1. (5.22)

Hence, the Q function for the superposition of the light beams produced a pair of

degenerate three-level light beams is normalized.

5.2 Photon Statistics

We now proceed to calculate the photon number distribution, the mean photon

number and variance photon number for the superposition of two light beams by

employing the Q function.

5.2.1 The Mean Photon Number

For the superposition of two light beams the mean number of photons obtained

from superposition of two identical degenerate three-level laser is represented by

an operator n̂=〈â†â〉. But 〈ânâ†m〉 is the product of operators in the antinormal order

(antinormal moments) which can be evaluated using Q function as

〈ânâ†m〉 = Tr(ρânâ†m). (5.23)

From the cyclic property of trace operation

〈ânâ†m〉 = Tr(â†mρân), (5.24)
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the completeness relation for coherent state of light leads to

〈ânâ†m〉 = Tr

( ∫
d2α

π
â†mρân|α〉〈α|

)

=

∫
d2α

π
Tr

(
â†mρân|α〉〈α|

)

=

∫
d2α

π
〈α|â†mρân|α〉

=

∫
d2α

〈α|ρ|α〉
π

α∗mαn

=

∫
d2αQ(α, α∗)α∗mαn, (5.25)

in which

Q =
〈α|ρ|α〉
π

(5.26)

is the Q function and then follows

n̄ =

∫
d2αQ(α, α∗)(α∗α− 1), (5.27)

where α∗α−1 is the c-number function corresponding to the operator n̂ in the anti-

normal order. Using Eq. (5.27), we get

n̄ =

∫
d2αQ(α, α∗)α∗α−

∫
d2αQ(α, α∗). (5.28)

Integrating Eq. (5.15) over β and substituting for U , V and R in to Eq. (5.28), we can

write the mean photon number as

n̄ = R

∫
d2α

π
exp

[
− Uαα∗ + V (

α2

2
+
α∗2

2
)α∗α

]
− 1. (5.29)



5.2 Photon Statistics 50

0 0.2 0.4 0.6 0.8 1
0

10

20

30

η

me
an

 p
ho

to
n 

nu
mb

er

Figure 5.2: Plots of steady state mean number of photons for superposed light

(dashed-line) and for single light (solid line) verses η [Eqs. (5.34) and (4.26)] for

κ = 0.8, A = 25.

Now applying the relation

∫
d2αe−α∗ααnα∗m =

∂n

∂an

∂m

∂bm

∫
d2αe−α∗α+aα+bα∗ , (5.30)

Eq. (5.29) is expressible as

n̄ = R
−∂
∂m

( ∫
d2α

π
exp

[
− Uαα∗ + V (

α2

2
+
α∗2

2
)

])
− 1. (5.31)

In view of Eq. (5.21), expression (5.31) reduces to

n̄ =
RU√

(U2 − V 2)3
− 1. (5.32)

But

R =
√

(U2 − V 2),
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then

n̄ =
U

U2 − V 2
− 1 (5.33)

which is the mean of photons for superposition of two light beams obtained from

two identical degenerate three-level lasers with steady state value

n̄ =
A(1− η)

Aη + k
= 2n̄, (5.34)

which is a simple sum of the mean photon numbers of two light beams as it can

also be seen in Fig. 5.2.

5.2.2 The Variance of Photon Number

We now seek to evaluate the variance of the photon number of the light beams ex-

pressed as

(∆n)2 = 〈n2〉 − n̄2. (5.35)

Since the mean photon number is already found, we then need to find 〈n2〉 which

needs the c-number function corresponding to the operator in the antinormal or-

der. The number operator is expressed in terms of the annihilation and creation

operators in the antinormal order using the commutation relation a†a=aa†-1 as fol-

lows:

〈n2〉 = 〈a†aa†a〉

= 〈(aa† − 1)(aa† − 1)〉

= 〈a2a†2 − 3aa† + 1〉

= 〈a2a†2〉 − 3n̄− 2 (5.36)
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and

〈a2a†2〉 =

∫
d2αQ(α, α∗, t)α2α∗2

= R

∫
d2α

π
exp

(
− Uαα∗ + V (

α2

2
+
α∗2

2
)

)
α2α∗2 (5.37)

which can be rewritten as

〈a2a†2〉 = R
∂2

∂m2

( ∫
d2α

π
exp(−Uαα∗ + V (

α2

2
+
α∗2

2
)

)
. (5.38)

Up on substituting Eq. (5.21), this reduces to

〈a2a†2〉 = R
∂2

∂m2

(
1√

U2 − V 2

)
, (5.39)

carrying out differentiation this gives

〈a2a†2〉 =
R(2U2 + V 2)

(U2 − V 2)5/2
. (5.40)

From Eqs. (5.35), (5.36) and (5.40) the variation of photon number is

(∆n)2 =
R(2U2 + V 2)

(U2 − V 2)5/2
− n̄2 − 3n̄− 2, (5.41)

which follows

(∆n)2
ss =

2Aηκ+ κ2 − A2(−2 + η2)

(Aη + κ)2
− n̄2 − 3n̄− 2. (5.42)

Using Eq. (5.34), one can readily put in steady state

(∆n)2
ss =

A(1− η)(A(2 + η) + κ)

(Aη + κ)2
. (5.43)

Eq. (5.43) can be written as

(∆n)2
ss = n̄(1 +

2A

Aη + κ
), (5.44)

where 0 < η < 1, is the photon statistic is super-Poissonian which can easily be

observed clearly in Fig.5.2
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5.2.3 The Photon Number Distribution

We seek to study the photon number distribution for the light obtained from the su-

perposition of two light beams generated by identical degenerate three-level lasers

employing the Q function (5.16). The photon number distribution for light is ex-

pressible in terms of the Q function as

P (n, t) =
Π

n!

∂2n

∂α∗n∂αn

[
Q(α∗, α, t)eα∗α

]
α=α∗=0

= π
n!

∂2n

∂α∗n∂αn

[
exp(1− U)αα∗ + V (α2

2
+ α∗2

2
)

]
α=α∗=0

(5.45)

Up on using the power series expansion, one can find

e(1−U)α∗α =
∑

i

(1− U)lαl

α∗l
, (5.46)

eV α2/2 =
∑

j

(V
2
)jα2j

j!
, (5.47)

e
V
2

α∗2 =
∑

r

V
2
α∗2r

r!
, (5.48)

so that

p(n, t) =
R

n!

∑
ljr

V
2

r+j
(1− U)l

l!r!j!

∂2n

∂α∗n∂αn

[
α2j+lα∗2r+l

]
α=α∗=0

. (5.49)

By the help of the relation

∂nxm

∂αn
=

m!

(m− n)!
xm−n, (5.50)

we get

p(n, t) =
R

n!

∑
ljr

N
2

r+j
(1− U)l(2j + l)!(2r + l)!

l!r!j!(2j + l − n)!

[
α2j+l−mα∗2r+l−n

]
α=α∗=0

. (5.51)
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If we apply the condition, the photon number distribution function under Eq. (5.49)

vanishes. This function will have non-zero value only for the condition l = n − 2r,

l = n− 2j and j = r

p(n, t) = R
∑
ljr

n!
(V

2
)r+j(1− U)l

r!j!(n− 2j)!
δ2j+l,nδ2r+l,n. (5.52)

From the property of keronecker delta function, we get

p(n, t) = R

[n]∑
j

n!
(V

2
)j(1− U)n−2j

j!(n− 2j)!

[n]∑
r

(V
2
)r

r!
. (5.53)

To avoid the factorial of a negative number we get n− 2j ≥ 0, then

r = j ≤ n/2 (5.54)

hence

p(n, t) = R

[n]∑
r=0

n!(1− U)n−2rV 2r

22r(r!)(n− 2r)!
. (5.55)

Applying the values of R, U and V , we arrive at

p(n, t) =

[
u2 − v2

4− 4u+ u2 − v2

]1/2

×
[n]∑
r=0

n!

(
4−6u+2u2−2v2

4−4u+u2−v2

)n−2r(
2v

4−4u+u2−v2

)2r

22r(r!)2(n− 2r)!
. (5.56)

Along with steady state value we get

p(n, t) =

[
(Aη + κ)2

A2η2 + 2Aκ+ 2Aκ+ κ2

]1/2

×
[n]∑
r=0

n!

(
A(1−η)(−Aη+κ)

A2η2+2Aκ+2Aκ+κ2

)n−2r(
A(Aη+κ)

√
1−η2

A2η2+2Aκ+2Aκ+κ2

)2r

22r(r!)2(n− 2r)!
(5.57)
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where [n]=n−1
2

for odd n and [n]=n
2

for even n. This expression represents the pho-

ton number distribution for superposed two similar light beams produced by de-

generate three level lasers having the same form as the case of light generated by

three-level laser coupled to a squeezed vacuum reservoir in chapter four. Then it

is possible to check that the photon number distribution decreases with number of

photons.

5.3 Quadrature Variance

In this section, we seek to study and evaluate the squeezing property of a single-

mode light produced as a result of superposition of two light beams generated

by three-level lasers. We next evaluate the quadrature variance of this light. The

squeezing property of single mode light is described by two quadrature operators.

â+ = â+ â† (5.58)

â− = i(â† − â), (5.59)

where â+ and â− are hermitian operators representing the physical quantities called

plus and minus quadratures, respectively while â†, â are the creation and annihila-

tion operators of the light obtained from the superposition of two light beams. The

quadrature variance can be expressed in terms of the quadrature operators as

(∆â±)2 = 〈∆â2
±〉 − 〈∆â±〉2. (5.60)

The explicit form of quadrature variance for the plus quadrature can be expressed

in terms of the creation and annihilation operators as

(∆â+)2 = 1 + 〈â2〉+ 〈â†2〉+ 2〈â†â〉 − 〈â〉2 − 〈â†〉2 − 2〈â〉〈â†〉. (5.61)
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In the same way quadrature variance of the minus quadrature will be given as

(∆â−)2 = 1 + 2〈â†â〉+ 〈â〉2 + 〈â†〉2 − 〈â2〉 − 〈â†2〉 − 2〈â〉〈â†〉. (5.62)

But

〈â†â〉 = n̄.

Then we calculate the remaining expectation values using the Q function of light

beam and the c-number variable corresponding each operator or product of oper-

ators as

〈â〉 =

∫
d2αQ(α, α∗)α, (5.63)

in which α is the c-number variable corresponding to the annihilation operator â.

Up on using Eq. (5.22), we have

〈â〉 = R

∫
d2α

π
exp

[
− Uαα∗ + V (

α2

2
+
α∗2

2
)

]
α

= R
∂

∂p

( ∫
d2α

Π
exp

[
− Uαα∗ + pα + V (

α2

2
+
α∗2

2
)

])
p=0

=
R√

U2 − V 2

∂

∂p

[
exp

(
V p2

2(U2 − V 2)

)]
p=0

= 0 . (5.64)

Similarly

〈â†〉 = 0, (5.65)

〈â2〉 = R

∫
d2α

π
exp

[
− Uαα∗ + V (

α2

2
+
α∗2

2
)

]
α2

= R
∂2

∂q2

( ∫
d2α

π
exp

[
− Uαα∗ + qα+ V (

α2

2
+
α∗2

2
)

])
q=0

=
R√

U2 − V 2

∂

∂q

[
exp

(
V q2

2(U2 − V 2)

)]
q=0

=
R√

U2 − V 2

∂

∂q

[
V q

U2 − V 2
exp

(
V q2

2(U2 − V 2)

)]
q=0
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Figure 5.3: Plots of quadrature variance (∆a−)2 for superposed light [Eq. (5.71)]

verses η for κ = 0.8, A = 3.

〈â2〉 =
V R

(U2 − V 2)3/2
. (5.66)

In the same way

〈â†2〉 =
V R

(U2 − V 2)3/2
. (5.67)

Applying Eqs. (5.64), (5.65), (5.66) and (5.67) in Eq. (5.61), the quadrature variance

for the plus quadrature becomes

(∆â+)2 = 1 + 2n̄+
2V R

(U2 − V 2)3/2
, (5.68)

with steady state value

(∆â+)2 =
Aη + 2A(1− η +

√
1− η2) + κ

Aη + κ
. (5.69)
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Figure 5.4: Plots of quadrature variance (∆a−)2 for superposed light [Eq. (5.71)]

verses η for κ = 0.8, A = 1, 2, 3.

Applying Eqs. (5.64), (5.66), (5.67) and (5.62) in Eq. (5.63), the quadrature variance

for the minus quadrature

(∆â−)2 = 1 + 2n̄− 2V R

(U2 − V 2)3/2
, (5.70)

with steady state value

(∆â−)2 =
Aη + 2A(1− η −

√
1− η2) + κ

Aη + κ
. (5.71)

From the direct look at the Eqs. (5.69) and (5.71), we could not judge the squeez-

ing property of the light. However, we can draw the graph of quadrature variance

against η for some values ofA and κ. It is observed that the light mode is in squeezed

state. Fig.5.3 of course, the squeezing occurs in the minus quadrature. We can see

Fig.5.4 is the quadrature variance for the superposition of the light beams produced

by a pair of degenerate three-level lasers for different values of A. It shows that the
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Figure 5.5: Plots of quadrature variance (∆a−)2 for single three-level laser (dashed

line) and the light beam produced by superposed (pair of) three-level laser (solid

line) verses η for κ = 0.8, A = 3.

degree of squeezing increases with the linear gain coefficient. It is seen that al-

most perfect squeezing could be achieved by taking large values of A with maximum

value of A = 3 and for small values of η. Moreover, the minimum value of quadra-

ture variance for A = 3 and κ = 0.8 is found to be 0.0425 which occurs at η = 0.4545.

This implies that the maximum squeezing is 95.8% bellow the coherent state level.

Fig.5.4 shows that for A=3 and k=0.8 the quadrature variance of the minus quadra-

ture is 0.5213 which occurs at η = 0.4545. In other words, the degenerate three-level

laser generate squeezed light with a squeezing of 47.9%. Besides, the superposition

of two light beams generate a squeezed light with quadrature squeezing of 95.8% for

the same value of A, κ and η. From this we can see that the superposition two light

beams changes the quadrature squeezing. For our case, it is found that when we su-
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perpose two identical single mode light beams, the quadrature squeezing doubles,

which can be seen in Fig.5.5



6

CONCLUSION

In this thesis, we have studied the squeezing and statistical properties of the light

generated by degenerate three-level laser in which degenerate three-level atoms

in a cascade configuration and initially prepared in a coherent superposition of

the top and bottom levels are injected into a cavity coupled to vacuum reservoir

via a single port-mirror. Applying the linear approximation scheme we found the

master equation for a light produced by degenerate three-level laser from which

we obtained the stochastic differential equations and the corresponding c-number

langevine equations. Employing these solutions, we found antinormally ordered

characteristic function which is used to find the Q function of the light beams. Us-

ing the Q function, we calculated the photon statistics of the light and it appears

that the photon statistic is super-Poissonian while the photon number distribution

decreases with photon number. We have calculated quadrature variance for A = 3

and κ = 0.8 at steady state to be 0.5213 with a squeezing of 47.9% which occurs at

η = 0.4545 and the quadrature squeezing increases with the linear gain coefficient.

We have shown that the effect of parametric amplifier is to increase the intracavity

squeezing by maximum of 50%. Our study showed that the quantum optical sys-

61
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tem generates squeezed light and the degree of squeezing increases with the linear

gain coefficient with maximum interacavity squeezing of 93.2% bellow the coherent

state level.

Applying the Q function derived for superposed light, we calculated the mean

photon number, which becomes twice that of single light beam at steady state. This

shows that the superposition of two light beams is super-Poissonian. The quadra-

ture variance for superposed of two identical light beams decreases with linear gain

coefficient having minimum value of 0.0425 for A = 3, κ = 0.8 and η = 0.4545. For

A > 3 the quadrature variance has negative values which requires further investi-

gation. The result also indicate that the superposed light mode is in squeezed state

with maximum squeezing of 95.8% bellow coherent state level for the same values

of A, κ and η.



References

[1] G. J. Milburn and D. F. Walls, Opt. Commun. 39, 401 (1981).

[2] L. A. Lugianto and G. Strini, Opt. Commun. 41, 67 (1982).

[3] M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386 (1984).

[4] J. Anwar and M. S. Zubairy, Phys. Rev. A 45, 1804 (1992).

[5] B. Daniel and K. Fesseha, Opt. Commun. 151, 384 (1998).

[6] M. O. Scully, k. Wodkiewicz, M. S. Zubairy, J. Bergou, N. Lu,and J. Meyer ter

Vehn, Phys. Rev. Lett. 60. 1832 (1988).

[7] N. A. Ansari, Phys. Rev. A 48, 4686 (1993).

[8] Fesseha Kassahun, Fundamentals of Quantum Optics (Lulu, North Carolina,

(2008).

[9] D. F. Walls, G.J Milburn, Quantum Optics (Springer,Berlin, 1995).

[10] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge, Uk, 1997).

[11] P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics and

Quantum Information (Springer-Verlag, Berlin Heidelberg, (2007).

[12] E. Alebachew and K. Fesseha, opt. commun. 265, 314, (2006).

[13] Misrak Getahun, PhD Thesis, Addis Ababa University, (2009).

[14] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University

Press, Cambridge,1997).

63



64

[15] K. Fesseha, Phys. Rev. 63, 033811 (2001).

[16] P. Meyste, M. Sargent III, elements of Quantum Optics, edn

(Springer-Verlag, Berlin, 1991)

[17] Darge and Kassahun, Coherently driven degenerate three-level laser with

parametric amplifier. PMC Physics. B 2010 3: 1.

[18] J. Anwar and M. S. Zubairy, Phys. Rev. A 49, 481 (1994).


	INTRODUCTION
	STOCHASTIC DIFFERENTIAL EQUATIONS
	The Hamiltonian
	The Master Equation
	Stochastic Differential Equations

	THE QUADRATURE FLUCTUATIONS
	Quadrature Variance
	Squeezing Spectrum

	PHOTON STATISTICS
	The Q Function
	The Mean Photon Number
	Photon Number Distribution

	SUPERPOSITION OF TWO LASER BEAMS
	The Q Function
	 Photon Statistics
	 The Mean Photon Number
	The Variance of Photon Number
	 The Photon Number Distribution

	Quadrature Variance

	CONCLUSION

