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Abstract
In this thesis, we have seen the Hamiltonian and the master equation for the second har-
monic light beam and one-mode subharmonic light beams coupled to vacuum reservoir.

Employing the master equation, we have determined the c-number Langevin equa-
tion for the second harmonic light beam and one-mode subharmonic light beams. Using
the solution of c-number Langevin equation we established the Q function and then we
calculated the mean photon number, the variance of photon number and the quadra-
ture fluctuation for both second harmonic light beam and one-mode subharmonic light
beams.

Finally, we have determined the density operator for the superposition of second
harmonic light beam and one-mode subharmonic light beams. Using the superposed
density operator, we have calculated the mean photon number, the variance of photon
number and the quadrature fluctuation for superposed light beams. We found that the
mean photon number is a simple sum of the mean photon number of the separate lights
at steady state and the degree of squeezing for superposed light beam is 55.57% at
threshold and steady state.
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Chapter 1

Introduction

Non-linear optics has been a rapidly growing scientific field in recent decades. It is
based on phenomenon related to the interaction of intense coherent light with matter.
Non-linear optics is the study of the interaction of light with matter under conditions
in which the non-linear response of the atoms plays an important role. During the
past three decades optics has secured a good place in the application areas previously
dominated by electronics. Developments in the field of non-linear optics holds promise
for important application in the optical information processing, telecommunications and
integrated optics. Because of the emergency of this field from solid-state physics in
which inorganic semiconductors, insulators and crystals have constituted a major part
of scientific base for the early experimental and theoretical investigations were primarily
concerned with the material from these classes [1].

The non-linear terms in the interaction of light with atoms give rise to a variety of
optical processes, in addition to multi-photon absorption (which is also a non-linear
phenomenon arching because of the excitation of an atom by processes, in which two
or more photons are absorbed). A beam of monochromatic light in interaction with
atoms can be partially converted into light, whose frequencies are harmonics of the
fundamental frequency. Similarly, beams of two or more frequencies can be combined
to produce a light beam and can alter the refractive index of a medium through which it
passes, by an amount proportional to the intensity of the beam [1].

Second harmonic generation was first demonstrated by peter Fran ken, A.E. Hill,
C.W Peters, and G. Weinreich at the University of Michigan, Ann Arbor, in 1961 [2].
The demonstration was made possible by the invention of the laser, with a wavelength
of 694 nm into a quartz sample. They sent the output light through a spectrometer,
recording the spectrum on photographic paper, which indicated the production of light
at 347nm. Famously, when published in the journal Physical Review Letters [2], the
copy editor mistook the dim spot (at 347nm) on the photographic paper as a speck of
dirt and removed it from the publication [2]. The formulation of second harmoonic
generation was initially described by N. Bloembergen and P.S.Pershan at Harvard in
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1962 [3]. In their extensive evaluation of Maxwell’s equations at the planar interface
between a linear and non linear medium, several riles for the interaction of light in
non-linear mediums were elucidated.

S.F Piraere, M.Xiao, H.J. Kinnble and J.L. Hall, showed the squeezing properties of
light experimentally [4]. Morover, Fesseha Kassahun theoreticaly studied the case for
which the nonlinear crystal is placed inside a cavity driven by coherent light and coupled
to two indipendent vacuum reservoirs via a single port-mirror. Employing the lineariza-
tion scheme of approximation, he obtaind closed form expression for the quadrature
variance, the mean photon number and the squeezing spectrum for the fundamental
mode as well as the second harmonic mode [5].

Squeezing state of light has played a crucial role in the development of quantum
optics. Squeezing is one of the nonclassical features of light that have been exten-
sively studied by several authors [6,7]. In a squeezing state the quantum noise in one
quadrature is below the vacuum-state level or the coherent-state level at the expense of
enhanced fluctuation in the conjugate quadrature, with the product of the uncertainties
in the two quadratures satisfying the uncertainty relation. Because of the quantum noise
reduction achievable below the vacuum level, squeezed light has potential applications
in the detection of weak signal and low-noise communication [8-10].

A one-mode sub-harmonic generation, consisting of a nonlinear crystal pumped by
coherent light and placed in a cavity coupled to a vacuum reservoir, is a prototype source
of a single-mode squeezed light. In this system a pump photon of frequency 2ω is down
converted into a pair of highly correlated signal photons each of frequency ω. Sub-
harmonic generator is one of the most reliable source of squeezed light. A theoretical
analysis of the quantum fluctuation and photon statistics of the signal mode produced
by a sub-harmonic generator has been made by a number of authors [11-13]. A max-
imum of 50% squeezing of the intracavity signal mode produced by the sub-harmonic
generator has been predicted by a number of authors [14,15].

In this thesis, we study the squeezing and statistical properties of light produced by
superposed second harmonic light beam and twin one-mode subharmonic light beams.
We carry out our study of second harmonic light beam, twin one-mode subharmonic
light beams and superposed light beams, using the solution of the c-number Langevin
equations obtained with the aid of the master equation. Employing the solution of the
resulting equation we calculated the antinormally orderd characterstic function and then
Q function of the separate light beams. And with the help of the superposed density
operator, we get the mean photon number, the variance of the photon number and the
quadrature fluctuation for the superposed light beams.
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Chapter 2

Second Harmonic Light

In second harmonic generation a light mode of frequency ω0 (the fundamental mode)
interacts with a nonlinear crystal and is up converted into a light mode of frequency
2ω0 (the second harmonic mode). It so happens that the second harmonic mode is in
a squeezed state.The fundamental mode which is initially in a coherent state also gets
squeezed as time progresses[5].

We consider the case for which the nonlinear crystal is placed inside a cavity driven
by coherent light and coupled to two independent vacuum reservoirs via a single port
mirror. Employing the linearizion scheme of approximation, we obtain closed form
expression of the Q function for the second harmonic light [5].

2.1 Linearizing differential equations
The process of second harmonic generation is described by the Hamiltonian[5]

Ĥ = iε(â† − â) +
iλ

2
(b̂†â2 − b̂â†2), (2.1.1)

Figure 2.1: Schematic Diagram for SH-light
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where â(b̂) is the anihilation operator for the fundamental (second harmonic) mode, λ is
the coupling constant and ε is proportional to the amplitude of the driving coherent light
[5]. Applying Eq.(2.1.1) and taking into account the interaction of the fundamental and
second harmonic modes with two independent vacuum reserviors, the master equation
for the cavity modes can be written as[5]

dρ̂

dt
= ε(â†ρ̂− ρ̂â† + ρ̂â− âρ̂) +

λ

2
(b̂†â2ρ̂− ρ̂b̂†â2 + ρ̂b̂â†2 − b̂â†2ρ̂)

+
κa
2

(2âρ̂â† − â†âρ̂− ρ̂â†â) +
κb
2

(2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂†b̂), (2.1.2)

in which κa and κb are the cavity damping constants.
Now employing the relation

d

dt
〈Â〉 = Tr(

dρ̂

dt
Â), (2.1.3)

together with Eq.(2.1.2), we readily obtain

d

dt
〈â(t)〉 = ε− κa

2
〈â(t)〉 − λ〈b̂(t)â†(t)〉, (2.1.4)

d

dt
〈â(t)â(t)〉 = 2ε〈â(t)〉 − κa〈â2(t)〉 − 2λ〈b̂(t)â†(t)â(t)〉 − λ〈b̂(t)〉, (2.1.5)

d

dt
〈â†(t)â(t)〉 = ε(〈â†(t)〉+ 〈â(t)〉 − κa〈â†(t)â(t)〉

−λ〈b̂†(t)â2(t)〉 − λ〈b̂(t)â†2(t)〉, (2.1.6)

d

dt
〈b̂(t)〉 = −κb

2
〈b̂(t)〉+

λ

2
〈â2(t)〉, (2.1.7)

d

dt
〈b̂(t)b̂(t)〉 = −κb〈b̂2(t)〉+

λ

2
〈b̂(t)â2(t)〉 (2.1.8)

and

d

dt
〈b̂†(t)b̂(t)〉 = −κb〈b̂†(t)b̂(t)〉+

λ

2
〈b̂†(t)â2(t)〉+

λ

2
〈b̂(t)â†2(t)〉. (2.1.9)

Next we note that the c-number equations corresponding to Eqs. (2.1.4), (2.1.5),
(2.1.6), (2.1.7), (2.1.8) and (2.1.9) are

d

dt
〈α(t)〉 = ε− κa

2
〈α(t)〉 − λ〈β(t)α∗(t)〉, (2.1.10)
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d

dt
〈α(t)α(t)〉 = 2ε〈α(t)〉 − κa〈α2(t)〉 − 2λ〈β(t)α∗(t)α(t)〉 − λ〈β(t)〉, (2.1.11)

d

dt
〈α∗(t)α(t)〉 = ε(〈α∗(t)〉+ 〈α(t)〉)− κa〈α∗(t)α(t)〉

−λ〈β∗(t)α2(t)〉 − λ〈β(t)α∗2(t)〉, (2.1.12)

d

dt
〈β(t)〉 = −κb

2
〈β(t)〉+

λ

2
〈α2(t)〉, (2.1.13)

d

dt
〈β(t)β(t)〉 = −κb〈β2(t)〉+

λ

2
〈β(t)α2(t)〉 (2.1.14)

and

d

dt
〈β∗(t)β(t)〉 = −κb〈β∗(t)β(t)〉+

λ

2
〈β∗(t)α2(t)〉+

λ

2
〈β(t)α∗2(t)〉. (2.1.15)

On the basis of Eqs.(2.1.10) and (2.1.13), one can write

dα

dt
= ε− κa

2
α− λβα∗ + g(t) (2.1.16)

and

dβ

dt
= −κb

2
β +

λ

2
α2 + f(t), (2.1.17)

where g(t) and f(t) are noise forces associated with the normal ordering. When taking
the expectation value of Eq.(2.1.16) and comparing with Eq.(2.1.10) and taking the
expectation value of Eq.(2.1.17) and comparing with Eq.(2.1.13), we see that

〈g(t)〉 = 0, (2.1.18)

〈f(t)〉 = 0. (2.1.19)

We next proceed to determine the correlation properties of the noise forces.To this end,
the solution of Eq.(2.1.16) can be written as

α(t) = α(0)e−
1
2
κat +

∫ t

0

e−( 1
2
κa)(t−t′)[g(t′)− λβ(t′)α∗(t′) + ε]dt′, (2.1.20)
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Multiplying this equation by g(t) on the left and taking the expectation values with the
condition that the noise force at a time should not affect cavity mode variables at an
earlier time, we see that

〈g(t)α(t)〉 =

∫ t

0

e−κa(t−t′)〈g(t)g(t′)〉dt′. (2.1.21)

On account of Eq.(2.1.16) and d
dt
〈α(t)α(t)〉 = 〈α(t)dα

dt
〉+ 〈dα

dt
〉, we have

〈 d
dt
α(t)〉 = 2ε〈α(t)〉 − ε〈α(t)2〉 − 2λ〈β(t)α∗(t)α(t)〉

+2〈g(t)α(t)〉. (2.1.22)

Inspection of Eq.(2.1.11) and (2.1.22) indicates that

2〈g(t)α(t)〉 = −λ〈β(t)〉 (2.1.23)

Making use of Eqs.(2.1.21) and (2.1.23), we have

−1

2
λ〈β(t)〉 =

∫ t

0

e−( 1
2
κa)(t−t′)〈g(t)g(t′)〉dt′ (2.1.24)

and in view of Eqs.(2.1.16) and (2.1.18), we obtain

〈g(t)g(t′)〉 = −λ〈β(t)〉δ(t− t′). (2.1.25)

Following the same procedure,we readily obtain

〈g(t)g(t′)〉 = 〈g∗(t)g(t′)〉 = 〈g(t)g∗(t′)〉 = 0. (2.1.26)

〈f(t)f(t′)〉 = 〈f ∗(t)f(t′)〉 = 0 (2.1.27)

Dropping the noise force in Eq.(2.1.17), so that we have

d

dt
β = −κb

2
+
λ

2
α2. (2.1.28)

Since Eqs.(2.1.16) and (2.1.28) are nonlinear differential equations, it is not possibel to
obtain exact solution of these equations. We carried out our analysis using linearized
differential equations. Here in order to obtain the steady state values of the pertinent
variables, we set the time derivatives in Eqs.(2.1.16) and (2.1.28) equal to zero and we
get[5]

1

2
κa〈α〉ss + λ〈βα∗〉ss = ε, (2.1.29)
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κb〈β〉ss − λ〈α2〉ss = 0. (2.1.30)

Now Applying the semiclassical approximations

〈βα∗〉ss = 〈β〉ss〈α∗〉ss (2.1.31)

and

〈α2〉ss = 〈α〉2ss, (2.1.32)

we have

1

2
κaα0 − λβ0α

∗
0 = ε, (2.1.33)

κbβ0 = λα2
0, (2.1.34)

in which α0 = 〈α〉ss and β0 = 〈β〉ss. Moreover, upon multiplying Eqs.(2.1.29) and
(2.1.30) by λ we see that

ε∗1ε2 +
1

2
κaε1 = λε, (2.1.35)

ε2
1 = κbε2, (2.1.36)

where

ε1 = λα0, (2.1.37)

ε2 = λβ0. (2.1.38)

Multiplying Eq.(2.1.35) by ε∗1 and taking into account Eq.(2.1.36), we have

κbε
∗
2ε2 +

1

2
κaε

∗
1ε1 = λεε∗1. (2.1.39)

Upon subtracting this equation from its complex conjugate,we arrive at

ε∗1 = ε1. (2.1.40)

In additon, with the aide of Eq.(2.1.36) along with Eq.(2.1.40), it can be easly verified
that

ε∗2 = ε2. (2.1.41)
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We next proceed to linearize Eqs.(2.1.16) and (2.1.28), about the steady state values α0

and β0. To this end, we express α(t) and β(t) as [16]

α(t) = α0(t) + α′(t), (2.1.42)

β(t) = β0(t) + β′(t), (2.1.43)

in which α′(t) and β′(t) repersents small variations about the steady state variables.
Now substituting Eqs.(2.1.42) and (2.1.43) into Eqs.(2.1.16) and (2.1.28) and neglecting
second-order terms in α′(t) and β′(t), one can obtain

d

dt
α′ = −1

2
κaα

′ − ε2α
′∗ − ε1β

′ + g(t), (2.1.44)

d

dt
β′ = −1

2
κbβ

′ + ε1α
′, (2.1.45)

where we have taken into account Eqs.(2.1.33) and (2.1.34).
It proves to be convenient to introduce new variables defined by

α± = α′∗ ± α′, (2.1.46)

β± = β′∗ ± β′, (2.1.47)

so that on account of Eqs.(2.1.44), (2.1.45), (2.1.46) and (2.1.47), one obtains

d

dt
α± = −(

1

2
κa ± ε2)α± − ε1β± + g±(t), (2.1.48)

d

dt
β± = −1

2
κbβ± + ε1α±, (2.1.49)

in which

g±(t) = g∗(t)± g(t). (2.1.50)

Then Eq.(2.1.48) and Eq.(2.1.49) can be represented in the form

d

dt
U(t) = −AU(t) +N(t), (2.1.51)
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where

U(t) =

[
α±(t)
β±(t)

]
, (2.1.52)

N(t) =

[
g±(t)

0

]
, (2.1.53)

A(t) =

[
a±(t) ε1

−ε1 b

]
, (2.1.54)

with

a± =
κa
2
± ε2, (2.1.55)

b =
κb
2
. (2.1.56)

In order to solve Eq.(2.1.51), we need to introduce the eigenvalues and eigenvectors of
matrix A. We apply, the eigenvector equation [19]

AVi = λiVi, (2.1.57)

with i = 1 and the eigenvectors

Vi(t) =

[
Xi

Yi

]
, (2.1.58)

subject to the normalization condition

X2
i + Y 2

i = 1. (2.1.59)

Eq.(2.1.57) has nontrivial solution, only if

det(A− λI) = 0. (2.1.60)

Employing Eq.(2.1.60) togther with Eq.(2.1.54), we have[
a± (t)− λ ε1

ε1 b− λ

]
= 0, (2.1.61)

so that the characterstic equation takes the form

λ2 − λ(a± + b) + a±b+ ε2
1 = 0. (2.1.62)

9



Solving for λ , the eigenvalues are found to be

λ1± =
1

2
[a± + b+

√
(a± + b)2 − 4ε2

1], (2.1.63)

λ2± =
1

2
[a± + b−

√
(a± + b)2 − 4ε2

1]. (2.1.64)

We next seek to obtain the eigenvectors of matrix A. The eigenvector corresponding to
λ± is expressible as

V1 =

[
X1

Y1

]
. (2.1.65)

Employing Eq.(2.1.57) and taking into account Eq.(2.1.64), one can write[
a±(t) ε1

−ε1 b

](
X1

Y1

)
= λ±

(
X1

Y1

)
. (2.1.66)

It then follows

a±X1 + ε1Y1 = λ±X1, (2.1.67)

−ε1X1 + bY1 = λ±Y1. (2.1.68)

Using Eq.(2.1.67) along with (2.1.59), we see that

X1 =
ε1√

(λ1± − a±)2 + ε2
1

, (2.1.69)

Y1 = (
λ1± − a±

ε1

)X1. (2.1.70)

In view of Eq.(2.1.67) and Eq.(2.1.68), the eigenvectors corresponding to λ± can be
written as

V1 =
1√

(λ1± − a±)2 + ε2
1

[
ε1

λ1± − a±

]
. (2.1.71)

Follwing a similar procedure, the eigenvectors corresponding to λ2± can also be estab-
lished as

V2 =
1√

(λ1± − a±)2 + ε2
1

[
ε1

λ2± − a±

]
. (2.1.72)
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From Eqs.(2.1.69) and (2.1.70), we can construct a matrix V of the eigenvectors of
matrix A as column matrices as

V =
[
V1 V2

]
=

[
ε1/E1± ε1/E2±

(λ1± − a±)/E1± (λ2± − a±)/E2±

]
, (2.1.73)

in which

E1± =
√

(λ1± − a±)2 + ε2
1, (2.1.74)

E2± =
√

(λ2± − a±)2 + ε2
1. (2.1.75)

We next proceed to determaine the inverse of matrix V.
Applying the relation

det(V − λI) = 0 (2.1.76)

and taking into account Eq.(2.1.71), one can readily obtain the characterstic equation as

λ2 − (
ε1

E1±
+
λ2± − a±
E2±

)λ− ε1(λ1± − λ2±)

E1±E2±
I = 0. (2.1.77)

Hence applying the Cayley-Hamilton theorem that a matrix satisfies its own character-
stic equation, we see that

V 2 − (
ε1

E1±
+
λ2± − a±
E2±

)V − ε1(λ1± − λ2±)

E1±E2±
I = 0. (2.1.78)

Multiplying Eq.(2.1.74) by V −1 and rearranging, we have

V −1 =
E1±E2±

ε1(λ1± − λ2±)
(V − (

ε1

E1±
+

(λ2± − a±)

E2±
)I). (2.1.79)

Inserting Eq.(2.1.73) into (2.1.79), we get

V −1 =
1

λ1± − λ2±

[
−E1±(λ2± − a±)/ε1E1± E1±

E±(λ2± − a±)/ε1 −E2±

]
. (2.1.80)

In view of the fact that V V −1 = I , Eq.(2.1.51) can be written as

d

dt
U(t) = −V V −1AV V −1U(t) +N(t). (2.1.81)

Multiplying this equation by V −1 from the left, we see that

d

dt
V −1U(t) = −V −1V V −1AV V −1U(t) + V −1N(t). (2.1.82)
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We note that the matrix V −1AV is the diagonal matrix D having the eigenvalues of A
along its main diagonal and hence Eq.(2.1.82) can be put in the form

d

dt
V −1U(t) = −DV −1U(t) + V −1N(t), (2.1.83)

where

D =

[
λ±1 0
0 λ±2

]
. (2.1.84)

The formal solution of Eq.(2.1.83) can be written as

U(t) = V e−DtV −1U(0) +

∫ t

0

V eD(t−t′)V −1N(t′)dt′. (2.1.85)

Using Eq.(2.1.84), one can write

e−Dt =

[
e−λ1±t 0

0 e−λ2±t

]
(2.1.86)

and

e−D(t−t′) =

[
e−λ1±(t−t′) 0

0 e−λ2±(t−t′)

]
. (2.1.87)

On account of Eqs.(2.1.73), (2.1.79), (2.1.86) and (2.1.52), we have

V e−DtV −1U(0) =

[
ε1/E1± ε2/E2±
(λ1± − a±)/E1± (λ2± − a±)/E2±

] [
e−λ1±t 0

0 e−λ2±t

]
(

1

λ1± − λ2±
)

[
−E1±(λ2± − a±)/ε1E1± E1±

E±(λ2± − a±)/ε1 −E2±

] [
α± (0)
β ± (0)

]
,(2.1.88)

V e−DtV −1U(0) =
1

λ1± − λ2±


((λ1± − a±)e−λ2±t − (λ2± − a±)e−λ1±t)α(0)

+ε1(e−λ1±t − e−λ2±t)β±(0)
(λ1±−a±)(λ2±−a±)

ε1
(e−λ2±t − e−λ1±t)α(0)

+((λ1± − a±)e−λ1±t − (λ2± − a±)e−λ2±t)β(0)

 . (2.1.89)

Moreover, using Eqs.(2.1.53), (2.1.73), (2.1.80) and (2.1.87), we see that∫ t

0

V e−D(t−t′)V −1N(t′)dt′ =

1

λ1± − λ2±

[∫ t
0
((λ1± − a±)e−λ2±(t−t′) − (λ2± − a±)e−λ1±(t−t′))g±(t′)dt′∫ t

0
(λ1±−a±)(λ2±−a±)

ε1
(e−λ2±(t−t′) − e−λ1±(t−t′))g±(t′)dt′

]
.(2.1.90)
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Employing Eqs.(2.1.52), (2.1.81) and (2.1.86), one can readily obtain

α±(0) =
1

λ1± − λ2±
[(λ1± − a±)e−λ2±t

−(λ2± − a±)e−λ1±t)a±(0) + ε1(e−λ1±t − e−λ2±t)β±(0)

+

∫ t

o

((λ1± − a±)e−λ2±(t−t′) − (λ2± − a±)e−λ1±(t−t′))g±(t′)dt′] (2.1.91)

and

β±(0) =
1

λ1± − λ2±
[
(λ1± − a±)(λ2± − a±)

ε1

×e−λ1±t − e−λ2±t)α±(0) + (λ1± − a±)e−λ1±t − (λ2± − a±)e−λ2±t)β±(0)

+

∫ t

o

(λ1± − a±)(λ2± − a±)

ε1

(e−λ1±(t−t′) − e−λ2±(t−t′))g±(t′)dt′], (2.1.92)

In view of Eqs.(2.1.46) and (2.1.47), we note that

α′(t) =
1

2
(α+(t)− α−(t)), (2.1.93)

β′(t) =
1

2
(β+(t)− β−(t)). (2.1.94)

Applying Eqs.(2.1.89) and (2.1.90) and taking into account (2.1.85) and (2.1.93) and
(2.1.52), we can see that

α′(t) = P+(t)α+ +R+(t) + E+ − P−(t)α− +R−(t) + E+ (2.1.95)

and

β′(t) = S+(t)α+ + T+(t) + F+ − S−(t)α− + T−(t) + F+, (2.1.96)

in which

P±(t) =
1

2(λ1± − λ2±)
(λ1± − a1±)e−λ2±t − (λ2± − a1±)e−λ1±t, (2.1.97)

R±(t) =
1

2(λ1± − λ2±)
e−λ1±t − e−λ2±t, (2.1.98)

S±(t) =
(λ1± − a±)(λ2± − a±)

2(ε1λ1± − λ2±)
(e−λ2±t − e−λ2±t), (2.1.99)
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T±(t) =
1

2(λ1± − λ2±)
(λ1± − a1±)e−λ2±t − (λ2± − a1±)e−λ1±t, (2.1.100)

E±(t) =
1

2(λ1± − λ2±)

∫ t

0

((λ1± − a1±)e−λ2±(t−t′) − (λ2± − a1±)e−λ1±(t−t′))

×(g∗(t′)± g(t′))dt′, (2.1.101)

F±(t) =
(λ1± − a±)(λ2± − a±)

(2ε1λ1±

∫ t

0

(e−λ2±(t−t′) − e−λ2±(t−t′))

×(g∗(t′)± g(t′))dt′. (2.1.102)

Moreover, using Eqs.(2.1.46) and (2.1.47), we have

α±(0) = α′∗(0)± α′(0)), (2.1.103)

β±(0) = β′∗(0)± β′(0)). (2.1.104)

Inserting Eqs.(2.1.103) and (2.1.104) into Eqs. (2.1.95) and (2.1.96), we find

α′(t) = (P+(t)− P−(t))α′∗(0) + (P+(t)− P−(t))α′(0)

(R+(t)−R−(t))β′∗(0) + (R+(t)−R−(t))β′(0)

+(E+(t)− E−(t)) (2.1.105)

β′(t) = (S+(t)− S−(t))α′∗(0) + (S+(t)− S−(t))α′(0)

(T+(t)− T−(t))β′∗(0) + (T+(t)− T−(t))β′(0)

+(F+(t)− F−(t)) (2.1.106)

Finally, with the aid of Eqs.(2.1.42) and (2.1.43) together with Eqs.(2.1.101) and (2.1.102),
we get

α(t) = α′(t) + α0 (2.1.107)

and

β(t) = β′(t) + β0. (2.1.108)

For a cavity mode initially in vacuum state, the above expressions take the form

α(t) = E+(t)− E−(t) + α0, (2.1.109)

β(t) = F+(t)− F−(t) + β0. (2.1.110)
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2.2 The Q function
Next we wish to find the Q function for the second harmonic light employing the anti-
normally ordered chracterstic function.

2.2.1 Q function for the second harmonic light
The Q function for second harmonic light is expressible as

Q(β∗, β, t) =
1

π2

∫
d2ηφa(η

∗, η, t)eη
∗β−ηβ∗ , (2.2.1)

where the antinormally ordered characterstic function φa(η∗, η, t) is defined as

φa(η
∗, η, t) = Tr(ρ̂e−η

∗b̂eηb̂
†
). (2.2.2)

Then applying the identity eÂeB̂ = eB̂eÂe[Â,B̂] along with c-number variable associated
with normal ordering, we get

φa(η
∗, η, t) = e−η

∗η〈eηβ∗+η∗β〉. (2.2.3)

Assuming the fundamental mode to be initially in a vacuum state, we see from Eq.(2.1.106)
and (2.1.108), that

〈β(t)〉 = 0. (2.2.4)

β is Gaussian variable with zero mean, we can write [5]

〈e−η∗β+ηβ∗〉 = e( 1
2
〈−η∗β+ηβ∗〉2) = e

1
2

(η∗2〈β2〉+η2〈β∗2〉)−η∗η〈β∗β〉 (2.2.5)

It then follows that

φa(η
∗, η, t) = e−(1+〈β∗β〉)η∗η+ 1

2
(η∗2〈β2〉+η2〈β∗2〉). (2.2.6)

Taking into account Eqs.(2.1.109) and (2.1.110) along Eqs.(2.1.101) and (2.1.102) and
the correlation properties in Eqs.(2.1.25) and (2.1.26), we obtain

〈β∗β〉 = (F+(t)− F−(t) + β0)(F+(t) + F−(t) + β0),

then it follows

〈β∗β〉 = F 2
+ − 2F+F− + 2β0(F+ + F−) + β2

0 + F 2
−.

Using Eq.(2.1.19), we obtain

〈β∗β〉 = β2
0 + 〈F 2

+〉 − 〈F 2
−〉. (2.2.7)
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Similarly we have

〈β2〉 = 〈β∗2〉 = β2
0 + 〈F 2

+〉 − 〈F 2
−〉. (2.2.8)

Then the antinormally ordered characterstic function takes the form

φa(η
∗, η, t) = exp[−cη∗η +

d

2
(η2 + η∗2)], (2.2.9)

where

c = 1 + β2
0 +

ε2(λ1− − a−)2(λ2− − a−)2

4ε2
1(λ1− − λ2−)2

[
1

λ2−
(1− e−λ2−t)

+
1

λ1−
(1− e−λ1−t) − 4

λ1− + λ2−
(1− e−λ1−+λ2−)t)]

−ε2(λ1+ − a+)2(λ2+ − a+)2

4ε2
1(λ1+ − λ2+)2

[
1

λ2+

(1− e−λ2+t)

+
1

λ1+

(1− e−λ1+t) − 4

λ1+ + λ2+

(1− e−λ1++λ2+)t)] (2.2.10)

and

d = β2
0 +

ε2(λ1− − a−)2(λ2− − a−)2

4ε2
1(λ1− − λ2−)2

[
1

λ2−
(1− e−λ2−t)

+
1

λ1−
(1− e−λ1−t) − 4

λ1− + λ2−
(1− e−λ1−+λ2−)t)]

−ε2(λ1+ − a+)2(λ2+ − a+)2

4ε2
1(λ1+ − λ2+)2

[
1

λ2+

(1− e−λ2+t)

+
1

λ1+

(1− e−λ1+t) − 4

λ1+ + λ2+

(1− e−λ1++λ2+)t)] (2.2.11)

On account of Eqs.(2.1.63), (2.1.64) and (2.1.55) the steady state form of Eqs.(2.2.10)
and (2.2.11), can be written as

c = 1 +
ε2

κb
[

ε
κa
2

+ ε2

]2 +
ε2

2

2
[

1

(κa+κb
2
− ε2)(κa

2
+ ε2)

− 1

(κa+κb
2

+ ε2)(κa
2

+ 3ε2)
].(2.2.12)

and

d =
ε2

κb
[

ε
κa
2

+ ε2

]2 +
ε2

2

2
[

1

(κa+κb
2
− ε2)(κa

2
+ ε2)

− 1

(κa+κb
2

+ ε2)(κa
2

+ 3ε2)
].(2.2.13)

Substituting Eq.(2.2.9) into (2.2.1), we find

Q(β∗, β, t) =
1

π2

∫
d2zexp[−cz∗z − β∗z + βz∗ +

d

2
(z2 + z∗2)]. (2.2.14)
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Performing the integration, over the variable z the Q function for the second harmonic
light takes the form

Q(β∗, β, t) =
1

π

√
l2 −m2exp[−lβ∗β +

m

2
(β2 + β∗2)], (2.2.15)

where

l =
c

c2 − d2
, (2.2.16)

m =
d

c2 − d2
. (2.2.17)

2.3 Photon statistics
We now proceed to calculate the mean and variance of the photon number of the second
harmonic light using the Q function.

2.3.1 The mean photon number of second harmonic light
The mean photon number for the second harmonic light is defined as

n̄ = 〈b̂†(t)b̂(t)〉. (2.3.1)

The mean photon number of the second harmonic light interms of Q function can be
written as

n̄ =

∫
d2βQ(β∗, β, t)(ββ∗ − 1). (2.3.2)

Upon substituting Eq.(2.2.15) into Eq.(2.3.2), we see that

n̄ =
1

π

√
l2 −m2

∫
d2
βexp(−lβ∗β +

m

2
(β2 + β∗2)(ββ∗ − 1), (2.3.3)

n̄ =
√
l2 −m2

d2

dxdy

∫
d2β

π
exp(−lβ∗β + xβ + yβ∗

+
m

2
(β2 + β∗2))|x=y=0 − 1,

Then carrying out the differentiation, it becomes

n̄ =
l

l2 −m2
− 1. (2.3.4)
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It can be rewritten as

n̄ = c− 1 (2.3.5)

and this leads to

n̄ = β2
0 +

ε2(λ1− − a−)2(λ2− − a−)2

4ε2
1(λ1− − λ2−)2

[
1

λ2−
(1− e−λ2−t)

+
1

λ1−
(1− e−λ1−t) − 4

λ1− + λ2−
(1− e−λ1−+λ2−)t)]

−ε2(λ1+ − a+)2(λ2+ − a+)2

4ε2
1(λ1+ − λ2+)2

[
1

λ2+

(1− e−λ2+t)

+
1

λ1+

(1− e−λ1+t) − 4

λ1+ + λ2+

(1− e−λ1++λ2+)t)] (2.3.6)

Using Eqs.(2.1.63) and (2.1.64) along with (2.1.55) and (2.1.56) the mean photon
number of second harmonic light at steady state, have the form

n̄ss =
ε2

κb
[

ε
κa
2

+ ε2

]2 +
ε2

2

2
[

1

(κa+κb
2
− ε2)(κa

2
+ ε2)

− 1

(κa+κb
2

+ ε2)(κa
2

+ 3ε2)
]. (2.3.7)

By setting ε = 0, (which means that, when the driving light is switched off from the
system) we get

n̄ss =
ε2

2

2
[

1

(κa+κb
2
− ε2)(κa

2
+ ε2)

− 1

(κa+κb
2

+ ε2)(κa
2

+ 3ε2)
], (2.3.8)

and for ε2 = 0

n̄ss = 0, (2.3.9)

meaning that the system is with out the nonlinear crystal.

2.3.2 The variance of the photon number for second harmonic light
We next proceed to obtain the variance of the photon number for second harmonic light
employing the Q function. The variance of the photon number for second harmonic
light is defined as

(∆n)2 = 〈(b̂†(t)b̂(t))2〉 − 〈(b̂†(t)b̂(t))〉2 (2.3.10)

18



and again

〈(b̂†(t)b̂(t))2〉 = 〈(b̂2(t)b̂†2(t))〉 − 3〈(b̂(t))b̂†(t)〉+ 1. (2.3.11)

We know that

〈(b̂2(t)b̂†2(t))〉 =

∫
d2βQ(β∗, β, t)β2β∗2. (2.3.12)

Substituting Eq.(2.2.15) into Eq.(2.3.12), we see that

〈(b̂2(t)b̂†2(t))〉 =
1

π

√
l2 −m2

∫
d2
βexp(−lβ∗β +

m

2
(β2 + β∗2)β2β∗2 (2.3.13)

Upon carrying out the integration one can readily find

〈(b̂2(t)b̂†2(t))〉 =
√
l2 −m2

∂2

∂l2

∫
d2β

π
(exp

(
− lβ∗β +

m

2
(β2 + β∗2)

)
)

〈(b̂2(t)b̂†2(t))〉 =
√
l2 −m2

∂2

∂l2
1√

l2 −m2
.

Upon carrying out the differentiation, we readily find

〈(b̂2(t)b̂†2(t))〉 =
2l2 +m2

(l2 +m2)2
.

On account of Eqs.(2.2.16) and (2.2.17) along with (2.2.12) and (2.2.13), we get

〈(b̂2(t)b̂†2(t))〉 = 2c2 + d2. (2.3.14)

Introducing Eq.(2.3.14) togther with Eq.(2.3.5) into Eq.(2.3.11), we see that

〈(b̂†(t)b̂(t))2〉 = 2c2 + d2 − 3c+ 1. (2.3.15)

Finally, using Eq.(2.3.15) togther with Eq.(2.3.5), the variance of photon number
becomes

(∆n)2 = 2c2 + d2 − 3c+ 1− (c− 1)2 (2.3.16)

and this leads to

(∆n)2 = c2 + d2 − c. (2.3.17)
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Finally, using Eqs.(2.2.12) and (2.2.13), the variance of photon number have the
form

(∆n)2 =
ε2

κb
[

ε
κa
2

+ ε2

]2 +
ε2

2

2
[

1

(κa+κb
2
− ε2)(κa

2
+ ε2)

− 1

(κa+κb
2

+ ε2)(κa
2

+ 3ε2)
]

+2[
ε2

κb
[

ε
κa
2

+ ε2

]2 − ε2
2

2(κa+κb
2

+ ε2)(κa
2

+ 3ε2)
]2

+2[
ε2

2

2(κa+κb
2
− ε2)(κa

2
+ ε2)

]2. (2.3.18)

Then by setting ε = 0, (which means that, when the driving light is switched off from
the system) we see

(∆n)2 =
ε2

2

2

[
1

(κa+κb
2
− ε2)(κa

2
+ ε2)

− 1

(κa+κb
2

+ ε2)(κa
2

+ 3ε2)

]

−ε2
2

[
1

(κa+κb
2

+ ε2)(κa
2

+ 3ε2)
+ [

1

(κa+κb
2
− ε2)(κa

2
+ ε2)

]2

(2.3.19)

and by setting ε2 = 0

(∆n)2 = 0, (2.3.20)

meaning that the system is with out the nonlinear crystal.

2.4 Quadrature fluctuation
We next proceed to obtain the quadrature variance and quadrature squeezing for second
harmonic light.

2.4.1 Quadrature variance
The the plus and minus quadrature operators of the second harmonic light are defined
as

b̂+ = b̂† + b̂ (2.4.1)

and

b̂− = i(b̂† − b̂). (2.4.2)
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The quadrature variance interms of the quadrature operators can be written as

(∆b±)2 = 1± 〈: (b̂±(t), b̂±(t)) :〉. (2.4.3)

Note the :: , 〈 and 〉 in Eq.(2.4.3) indicates normal ordering.
This leads to

(∆b±)2 = 1 + 2〈(b̂†b̂)〉 ± (〈b̂†2〉+ 〈b̂2〉)∓ (〈b̂†2〉 ± 〈b̂2〉)2. (2.4.4)

The expectation value of b̂2 using the Q function can be put in the form

〈b̂†2〉 = 〈b̂2〉 =

∫
d2βQ(β∗, β, t)β∗2 (2.4.5)

which the use of Eq.(2.2.15) becomes

〈b̂†2〉 = 〈b̂2〉 =
1

π

√
l2 −m2

∫
d2
βexp(−lβ∗β +

m

2
(β2 + β∗2)β2, (2.4.6)

and can be written as

〈b̂†2〉 = (l2 −m2)
1
2
∂2

∂p2

∫
1

π
d2βexp

(
− lβ∗β + pβ +

m

2
(β2 + β∗2)

)
|p=0. (2.4.7)

We now proceed to evaluate the integral employing standard integration, we see

〈b̂†2〉 =
(l2 −m2)

1
2

(l2 −m2)
1
2

∂

∂p
(

lp

l2 −m2
exp

(
lp

2(l2 −m2)

)
)|p=0,

differentiating this equation we get

〈b̂†2〉 = 〈b̂2〉 =
m

(m2 − l2)2
, (2.4.8)

on account of Eqs.(2.2.16) and (2.2.17) along with (2.2.11), one can easily find

〈b̂†2〉 = 〈b̂2〉 = d. (2.4.9)

On the other hand, the expectation value of b̂ in terms of Q function can be given as

〈b̂†〉 = 〈b̂〉 =
1

π

√
l2 −m2

∫
d2
βexp(−lβ∗β +

m

2
(β2 + β∗2)β. (2.4.10)

Performing the integration, we get

〈b̂〉 = (l2 −m2)
1
2
∂

∂a

∫
1

π
d2βexp

(
− lβ∗β + aβ +

m

2
(β2 + β∗2)

)
|a=0, (2.4.11)

21



it follows

〈b̂〉 =
(l2 −m2)

1
2

(l2 −m2)
1
2

(
la

l2 −m2
exp

(
la

2(l2 −m2)

)
)|a=0, (2.4.12)

so that applying the condition a = 0 results

〈b̂〉 = 0. (2.4.13)

Now substituting Eqs. (2.1.102), (2.3.5) and (2.4.9) into Eq.(2.4.4), the quadrature
variance of the second harmonic light become

(∆b±)2 = 1± 4〈F 2
±〉. (2.4.14)

(∆b±)2 = 1∓ (c− 1)− d.

Finally, the quadrature variance can be rewritten as

(∆b±)2 = 1∓ ε2(λ1± − a±)2(λ2± − a±)2

ε2
1(λ1± − λ2±)2

[
1

λ2±
(1− e−λ2±t)

+
1

λ1±
(1− e−λ1±t) − 4

λ1± + λ2±
(1− e−λ1±+λ2±)t)

]
(2.4.15)

At steady state, it become

(∆b±)2
ss = 1∓ 2ε2

2

(κa+κb
2
± ε2)(κa

2
+ (2± 1)ε2)

. (2.4.16)

It is easy to see that the second harmonic light is in squeezed state and the squeezing
occurs in the plus quadrature.

2.4.2 Quadrature squeezing
The quadrature squeezing for second harmonic light can be defined as[5]

S+ = 1− (∆b+)2. (2.4.17)

Then applying Eq.(2.4.16) into Eq.(2.4.17), we have

S+ =
2ε2

2

(κa+κb
2

+ ε2)(κa
2

+ 3ε2)
. (2.4.18)

For the value of κa = κb = κ, the graph of S+ vs ε2 looks like as shown below and
we can easly see that, the maximum degree of squeezing for second harmonic light is
about 66.7% [16]
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Figure 2.2: a plot of S+ Vs ε2
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Chapter 3

Twin One-mode Subharmonic
Generator

Sub-harmonic generator is one of the most interesting and well characterized optical
devices in quantum optics. In this device, a pump photon interacts with a nonlinear
crystal in side a cavity and is down-converted into two highly correlated photons. If
these photons have the same frequency, the device is called a one-mode subharmonic
generator, otherwise it is called a two-mode subharmonic generator [17].

3.1 Master equation
We first obtain the master equation, for the twin light beams produced by subharmonic
generator. The process of subharmonic generator leading to the creation of twin light
modes with the same frequencies can be described by the Hamiltonian [17]

Figure 3.1: Schematic Diagram for twin one-mode subharmonic light
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Ĥ = iµ(b̂† − b̂) + iλ(b̂†â1â2 − b̂â†1â
†
2), (3.1.1)

where â1 and â2 are the annihilation operators for the light beams, b̂ is the annihilation
operator for the pump mode, λ is the coupling constant and µ is proportional to the
amplitude of the coherent deriving pump mode. We may refer to a Hamiltonian of the
form described by Eq.(3.1.1) as first order Hamiltonian [18]. We note that the master
equation for a cavity mode coupled to any reservoir can be written as [17]

dρ̂

dt
= −i[Ĥs, ρ̂]− i[〈ĤSR〉R, ρ̂(t− h)]− h[〈ĤSR〉R, Ĥs, ρ̂]

−hTrR[ĤSR, [ĤSR, ρ̂R̂]], (3.1.2)

where ĤSR is the Hamiltonian describing the interaction of the system with reservior
with density operator R̂, TrR is trace over reservoir variables and Ĥs is given by Eq.
(3.1.1). The Hamiltonian describing the interaction of twin light beams coupled to any
reservoir is expressiable as [17]

ĤSR = iλ′(â†1â1in − â†1inâ1 + â†2â2in − â†2inâ2), (3.1.3)

in whichλ′ is coupling constant.
In fact, the expectation value of Eq.(3.1.3), can be written as

〈ĤSR〉 = iλ′TrR[R̂(â†1â1in − â†1inâ1 + â†2â2in − â†2inâ2)]. (3.1.4)

Now applying the density operator of the two mode vacuum reservoir R̂ = |01, 02〉〈02, 01|
and the trace operator we obtain

〈ĤSR〉R = iλ′[(â†1〈02, 01|â1in|01, 02〉 − 〈02, 01|â†1in|01, 02〉â1

+〈02, 01|â†2â2in|01, 02〉 − 〈02, 01|â†2in|01, 02〉â2)].(3.1.5)

Thus with the aid of the eigenvalue equation for the number state

â1|n1, n2〉 =
√
n1|n1 − 1, n2〉 (3.1.6)

and

â2|n1, n2〉 =
√
n2|n1, n2 − 1〉, (3.1.7)

one can see that

〈ĤSR〉R = 0. (3.1.8)
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In view of this result, Eq.(3.1.2) becomes

dρ̂

dt
= −i[Ĥs, ρ̂]− hTrR(Ĥ2

SRρ̂R̂− ĤSRρ̂R̂ĤSR)

+hTrR(ĤSRρ̂R̂ĤSR − ρ̂R̂Ĥ2
SR) (3.1.9)

dρ̂

dt
= −i[Ĥs, ρ̂]− h〈Ĥ2

SR〉Rρ̂− hρ̂〈Ĥ2
SR〉R

+2h〈ĤSRρ̂R̂ĤSR〉R (3.1.10)

Moreover, in view of Eq.(3.1.3), we can readly obtain

〈Ĥ2
SR〉 = λ′2

[
â†1â1〈â†1inâ1in〉+ â†1â1 + 〈â†1inâ1in〉â1â

†
1

+â†2â2〈â†2inâ2in〉+ â†2â2 + 〈â†2inâ2in〉â2â
†
2

]
,(3.1.11)

where

[â1in, â
†
1in] = [â2in, â

†
2in] = 1, (3.1.12)

has been used.
Now considering the mean photon number of a vacuum reservior to be zero, one can
easily obtain

〈Ĥ2
SR〉 = λ′2(â†1â1 + â†2â2). (3.1.13)

Moreover, in view of Eq.(3.1.3), one can easily prove that

TrR(ĤSRρ̂R̂ĤSR) = −λ′TrR

[
â†1ρ̂â

†
1â1inR̂â1in

−â†1ρ̂â1â1inR̂â
†
1in + â†1â

†
2ρ̂â1inR̂â2in

−â†1ρ̂â2â1inR̂â
†
2in − â1ρ̂â

†
1â1inR̂â1in

+â†1inR̂â
†
1inâ1ρ̂â1 − â†1inR̂â2inâ1ρ̂â

†
2

+â†1inR̂â2inâ1ρ̂â
†
2 − â

†
2ρ̂â
†
1â2inR̂â1in

−â†2ρ̂â1â2inR̂â
†
1in + â†2ρ̂â

†
2â2inR̂â2in

−â†2ρ̂â2â2inR̂â
†
2in − â2ρ̂â

†
1â
†
2inR̂â1in

+â2ρ̂â1â
†
2inR̂â

†
1in − â2ρ̂â

†
2â
†
2inR̂â2in

+â2ρ̂â2â
†
2inR̂â

†
2in

]
. (3.1.14)
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Then it follows

TrR(ĤSRρ̂R̂ĤSR) = λ′2TrR[−â†1ρ̂â1â1inR̂â
†
1in − â1ρ̂â

†
1â1inR̂â1in

−â†2ρ̂â2â2inR̂â
†
2in − â2ρ̂â

†
2â
†
2inR̂â2in]. (3.1.15)

Now the mean photon number of the vacuum reservior to be zero, one can easily check
that

TrR(ĤSRρ̂R̂ĤSR) = λ′2(â1ρ̂â
†
1 + â2ρ̂â

†
2). (3.1.16)

In view of Eq.(3.1.1), it is easy to get

[ĤS, ρ̂] = i[µ(b̂†ρ̂− ρ̂b̂† + ρ̂b̂− b̂ρ̂)

+λ(b̂†â1â2ρ̂− ρ̂b̂†â1â2 + ρ̂b̂â†1â
†
2 − b̂â

†
1â
†
2ρ̂). (3.1.17)

Finally, applying Eqs.(3.1.9), (3.1.13), (3.1.16) and (3.1.17), into (3.1.10), one can eas-
ily finds

d

dt
ρ̂ = µ(b̂†ρ̂− ρ̂b̂† + ρ̂b̂+ b̂ρ̂) + λ(b̂†â1â2ρ̂− ρ̂b̂†â1â2 + ρ̂b̂â†1â

†
2 − b̂â

†
1â
†
2ρ̂)

+
κ1

2
(2â1ρ̂â

†
1 − â

†
1â1ρ̂− ρ̂â†1â1)

+
κ2

2
(2â2ρ̂â

†
2 − â

†
2â2ρ̂− ρ̂â†2â2), (3.1.18)

which is the master equation for twin light beams and κ1 = 2hλ′2 is the cavity damping
constant for light mode â1 and κ2 = 2hλ′2 is the cavity damping constant for light mode
â2.

3.2 Operator dynamics
We consider here the case in which the twin light modes and the pump mode are in a
cavity coupled to a vacuum reservior via a single-port mirror. Using the relation

d

dt
〈â1〉 = Tr(

d

dt
ρ̂â1), (3.2.1)

one can easily check that

d

dt
〈â1〉 = −κ1

2
〈â1〉 − λ〈b̂â†2〉, (3.2.2)

d

dt
〈â2〉 = −κ2

2
〈â2〉 − λ〈b̂â†1〉, (3.2.3)
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d

dt
〈â†1â1〉 = −κ1〈â†1â1〉 − λ〈b̂†â1â2〉 − λ〈b̂â†1â

†
2〉, (3.2.4)

d

dt
〈â†2â2〉 = −κ2〈â†2â2〉 − λ〈b̂†â1â2〉 − λ〈b̂â†1â

†
2〉 (3.2.5)

and

d

dt
〈â1â2〉 = −1

2
(κ1 + κ2)〈â1â2〉 − λ〈b̂†â1â1〉 − λ〈b̂â†2â

†
2〉 − λ〈b̂〉. (3.2.6)

On taking κ1 = κ2 = κ, the steady state solution of Eqs.(3.2.2), (3.2.3), (3.2.4), (3.2.5)
and (3.2.6), is found to be

〈â1〉 = −2λ

κ
〈b̂â†2〉, (3.2.7)

〈â2〉 = −2λ

κ
〈b̂â†1〉, (3.2.8)

〈â†1â1〉 = −λ
κ
〈b̂†â1â2〉 −

λ

κ
〈b̂â†1â

†
2〉, (3.2.9)

〈â†2â2〉 = −λ
κ
〈b̂†â1â2〉 −

λ

κ
〈b̂â†1â

†
2〉, (3.2.10)

and

〈â1â2〉 = −λ
κ
〈b̂â†1â1〉 −

λ

κ
〈b̂â†1â2〉 −

λ

κ
〈b̂〉. (3.2.11)

Moreover, upon dropping the noise operator and in the absence of subharmonic gener-
ation (λ = 0), one can easily write the quantum Langevin equation for the operator b̂
as

d

dt
b̂ = −1

2
κb̂+ µ, (3.2.12)

where κ is the cavity damping constant. The steady-state solution for Eq.(3.2.12) is

b̂ =
2µ

k
. (3.2.13)

Now upon substituting Eq.(3.2.13) into Eqs.(3.2.7), (3.2.8), (3.2.9), (3.2.10) and (3.2.11),
one can easily arrive at

〈â1〉 = −2Γ

κ
〈â†2〉, (3.2.14)
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〈â2〉 = −2Γ

κ
〈â†1〉, (3.2.15)

〈â†1â1〉 = −Γ

κ
〈â1â2〉 −

Γ

κ
〈â†1â

†
2〉, (3.2.16)

〈â†2â2〉 = −Γ

κ
〈â1â2〉 −

Γ

κ
〈â†1â

†
2〉 (3.2.17)

and

〈â1â2〉 = −Γ

κ
〈â†1â1〉 −

Γ

κ
〈â†2â2〉 −

Γ

κ
, (3.2.18)

where

Γ =
2µλ

k
. (3.2.19)

In view of Eq.(3.2.14) and Eq.(3.2.15), we see that

〈â1〉 = 〈â2〉 = 0. (3.2.20)

Moreover, using Eqs.(3.2.16), (3.2.17) and (3.2.18), one can easily find

〈â†1â1〉 =
2Γ2

(κ2 − 4Γ2)
. (3.2.21)

〈â†2â2〉 = 〈â†1â1〉 (3.2.22)

and

〈â1â2〉 = − κΓ

(κ2 − 4Γ2)
. (3.2.23)

It can also be readly verified that

〈â2
1〉 = 〈â2

2〉 = 〈â†1â2〉 = 〈â†2â1〉 = 0. (3.2.24)

Now we take

â = â1 + â2, (3.2.25)
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to be the annihilation operator for the superposition of light mode â1 and â2 produced
by the subharmonic generator coupled to a vacuum reservoir, one can then easily check
that

[â, â†] = 2, (3.2.26)

where

[â1, â
†
1] = [â2, â

†
2] = 1 (3.2.27)

and the remaining constitutes to be zero.
We realize that the superposition of the two light beams, with the same frequencies,

constitutes a two-mode light. We wish to call the superposed light beams with the same
frequency the signal-signal light beams [17]. Now the result described by Eqs. (3.2.20)
and (3.2.24) are valid for signal-signal light beams.

3.3 The Q function
The Q function that describes the twin light beams is expressiable as

Q(α1, α2, t) =
1

π4

∫
d2zd2ηφa(z, η, t)exp[z

∗α1 − zα∗1 + η∗α2 − ηα∗2], (3.3.1)

where the anti-normally ordered characteristic function φa(z, η, t) is defined in the Heisen-
berg picture by

φa(z, η, t) = Tr(ρ̂(0)e−z
∗â1(t)ezâ

†
1(t)e−η

∗â2(t)eηâ
†
2(t)). (3.3.2)

Applying the identity

eÂeB̂ = eÂ+B̂+ 1
2

[Â,B̂] (3.3.3)

Eq.(3.3.2) can written as

φa(z, η, t) = e−
1
2

(z∗z+η∗η)Tr

(
ρ̂(0)e−z

∗â1ezâ
†
1e−η

∗â2eηâ
†
2

)
.

Then this function can be written in terms of c-number variables associated with the
normal order as

φa(z, η, t) = e−
1
2

(z∗z+η∗η)

(
exp[zα∗1 − zα1 + ηα∗2 − η∗α2]

)
.
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and taking into account the fact that â1 and â2 are the Gaussian variables with zero
mean, Eq.(3.3.2) can be put in the form

φa(z, η, t) = exp[−p(z∗z + η∗η)− q(z∗η∗ + zη)], (3.3.4)

where

p = 1− Γ

2(κ+ 2Γ)
(1− e−(κ+2Γ)t) +

Γ

2(κ− 2Γ)
(1− e−(κ−2Γ)t), (3.3.5)

q =
Γ

2(κ+ 2Γ)
(1− e−(κ+2Γ)t) +

Γ

2(κ− 2Γ)
(1− e−(κ−2Γ)t). (3.3.6)

Now introdusing Eq.(3.3.4) into Eq.(3.3.1) and carrying out the integration, using the
standared integration∫
d2
z

π
exp[−az∗z + bz + cz∗ + Az2 +Bz∗2] = [

1

a2 − 4AB
]
1
2 [
abb+ Ac2 +Bb2

a2 − 4AB
], a > 0,

we get the Q function as

Q(α1, α2, t) =
1

π2
(u2 − v2)exp[−u(α∗1α1 + α∗2α2)− v(α1α2 + α∗1α

∗
2)], (3.3.7)

in which

u =
p

(p2 − q2)
(3.3.8)

and

v =
q

(p2 − q2)
(3.3.9)

3.4 Photon statistics
It would be helpful to classify the photon statistics of light modes based on the relation
between the variance and the mean of the photon number. Hence the photon statistics of
a light mode for which (∆n)2 = n̄ is referred to as Poissonian and the photon statistics
of a light mode for which (∆n)2 > n̄ is called super- Poissonian. Otherwise the photon
statistics is said to be sub-Poissonian.[17]
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3.4.1 The mean photon number
We define the mean photon number of twin one-mode subharmonic light by

n̄ = 〈â†â〉, (3.4.1)

where

â† = â†1 + â†2 (3.4.2)

and

â = â1 + â2. (3.4.3)

Then using Eq.(3.4.2) and (3.4.3), Eq.(3.4.1) can be rewritten as

n̄ = 〈(â†1 + â†2)(â1 + â2)〉 (3.4.4)

which on account of Eq.(3.2.24), becomes

n̄ = 〈â†1â1〉+ 〈â†2â2〉, (3.4.5)

so that in view of Eqs.(3.2.21) and (3.2.22), the mean photon number can put as

n̄ =
2Γ2

κ2 − 4Γ2
+

2Γ2

κ2 − 4Γ2
. (3.4.6)

This result shows that the mean photon number of the signal-signal mode is the sum of
the mean photon number of the signal light beams.

Then the mean photon number of the twin one-mode subharmonic light beams can
have the form

n̄ =
4Γ2

κ2 − 4Γ2
. (3.4.7)

Thus the result in Eq.(3.4.7) represents the mean photon number of the signal-signal
light mode.

In addition, we note that the equation of evolution of the mean photon number for
the pump mode can be written as

d

dt
〈b̂†b̂〉 = −i〈[b̂†b̂, Ĥ]〉+

κ

2
Tr[(2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂b̂)b̂†b̂]. (3.4.8)

Then using Eq.(3.1.1) and the fact that

−i〈[b̂†b̂, Ĥ]〉 = µ〈b̂〉+ µ〈b̂†〉+ λ〈b̂†â1â2〉+ λ〈b̂â†1â
†
2〉 (3.4.9)
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and

κ

2
Tr[(2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂b̂)b̂†b̂] = −κ〈b̂†b̂〉 (3.4.10)

we readly obtain

d

dt
〈b̂†b̂〉 = −κ〈b̂†b̂〉+ µ〈b̂〉+ µ〈b̂†〉+ λ〈b̂†â1â2〉+ λ〈b̂â†1â

†
2〉. (3.4.11)

Now the steady state solution of Eq.(3.4.11) is

〈b̂†b̂〉 =
µ

κ
b̂+

µ

κ
b̂† +

λ

κ
〈b̂†â1â2〉+

λ

κ
〈b̂â†1â

†
2〉, (3.4.12)

so that in view of Eqs.(3.2.19) and (3.2.23), then the mean photon number of the pump
mode takes the form

〈b̂†b̂〉 =
4µ2

κ2
− 2Γ2

κ2 − 4Γ2
. (3.4.13)

We observe that the first term represents the mean photon number of the pump mode
in the absence of the harmonic generation and the second term represents the mean
photon number of light mode â1 or light mode â2.

3.4.2 The variance of photon number
Now we proceeds to obtain the variance of the photon number of twin one-mode sub-
harmonic light beams. On account of Eq.(3.4.1), the variance of the photon number of
twin one-mode subharmonic light beams is defined as

(∆n)2 = 〈(â†â)2〉 − 〈â†â〉2, (3.4.14)

or

(∆n)2 = 〈(â†â)2〉 − n̄2. (3.4.15)

Then one can put Eq.(3.4.15) in the form

(∆n)2 = 〈â†2â2〉+ 2n̄− n̄2. (3.4.16)

Now applying the fact that â is the a Gaussian variable with zero mean, we get

(∆n)2 = 2n̄+ n̄2 + 〈â†2〉〈â2〉 (3.4.17)
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and on taking into account of Eq.(3.2.25) along with Eq.(3.2.24), we arrive

(∆n)2 = 2n̄− n̄2 + 4〈â†1â
†
2〉〈â1â2〉. (3.4.18)

Hence in view of Eq.(3.4.7) and Eq.(3.2.23) the variance of the photon number for twin
one-mode subharmonic light beams takes the form

(∆n)2 =
8Γ2

κ2 − 4Γ2
+

16Γ4

(κ2 − 4Γ2)2
+

4κ2Γ2

(κ2 − 4Γ2)2
. (3.4.19)

Eq.(3.4.19) can be rewritten as

(∆n)2 =

[
4Γ2

κ2 − 4Γ2
+

8Γ4

(κ2 − 4Γ2)2
+

2κ2Γ2

(κ2 − 4Γ2)2

]

+

[
4Γ2

κ2 − 4Γ2
+

8Γ4

(κ2 − 4Γ2)2
+

2κ2Γ2

(κ2 − 4Γ2)2

]
. (3.4.20)

As we see from Eq.(3.4.20), the variance of the photon number of signal-signal mode is
the sum of the variance of the individual signal beam.

3.5 Quadrature fluctuation
We wish here to study the squeezing poroperties of twin one-mode subharmonic light
beams.

3.5.1 Quadrature variance
We now proceed to calculate the quadrature variance of twin one-mode subharmonic
light beams. To this end, we note that the variance of the plus and minus quadrature
operators for a twin one-mode subharmonic light is given by

(∆a±)2 = 〈â±, â±〉, (3.5.1)

where

â+ = â† + â, (3.5.2)

and

â− = i(â† − â) (3.5.3)
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and â is the annihilation operator for the twin one-mode subharmonic light beams. Now
on account of Eq.(3.2.20) along with Eqs.(3.2.25), (3.5.2) and (3.5.3), we see that

〈â±〉 = 0. (3.5.4)

Hence in view of this, Eq.(3.5.1) can be written as

(∆a±)2 = 〈â2
±〉. (3.5.5)

We note that

(∆a±)2 = 〈â†â〉+ 〈ââ†〉 ± 〈â2 + â†2〉 (3.5.6)

and applying Eq.(3.2.26), the quadrature variance can be put in the form

(∆a±)2 = 2 + 2〈â†â〉 ± 〈â2 + â†2〉. (3.5.7)

With the aid of Eq.(3.2.25), one can rewrite Eq.(3.5.7) as

(∆a±)2 = 2 + 2〈â†1â1 + â†2â2〉 ± 〈â2
1〉+ 〈â†21 〉

+〈â2
2〉+ 〈â†22 〉+ 2〈â1â2〉+ 2〈â†1â

†
2〉. (3.5.8)

Therefore, using Eqs.(3.2.21), (3.2.22), (3.2.23) and (3.2.24), the quadrature variance
take the form

(∆a+)2 = 2− 4Γ

κ+ 2Γ
, (3.5.9)

and

(∆a−)2 = 2 +
4Γ

κ− 2Γ
. (3.5.10)

We imimediately note that the twin one-mode subharmonic cavity light beam is in
a squeezed state and the squeezing occures in the plus quadrature. In addition, we see
that for κ = 2Γ the variance of the minus quadrature diverges. We identify κ = 2Γ as
the threshold condition. Upon setting Γ = 0, in Eqs.(3.5.9) and (3.5.10), we find

(∆a±)2 = 2. (3.5.11)

Thus we see that for Γ = 0 the cavity light is in a twin one-mode vacuum state in which
the uncertainites in the two quadrature are equal and satisfy the minimum uncertainity
relation.

35



3.5.2 Quadrature squeezing
Next we determine the quadrature squeezing for twin one-mode subharmonic light
beams. We therefore define the quadrature squeezing of the twin one-mode subhar-
monic cavity light beams by

S =
2− (∆a+)2

2
. (3.5.12)

Since on account of Eq.(3.5.9), the squeezing occures at the plus quadrature, by substi-
tuting this equation into Eq.(3.5.12), we see that

S+ =
2− (2− 4Γ

κ+2Γ
)

2
. (3.5.13)

Then Eq.(3.5.13) can be rewriten as

S+ =
2Γ

κ+ 2Γ
. (3.5.14)

Finally, we note that at steady state and at threshold there is 50% quadrature squeezing
below the vacuum state level.

Figure 3.2: a plot of S+ vs ε for κ = 2
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Chapter 4

Superposition of Second Harmonic and
One-mode Subharmonic Light Beams

In chapter two and three, we discussed the statistical and squeezing properties of the
light produced by second harmonic light and twin one-mode subharmonic light beams.
Here we seek to study the statistical and squeezing properties of the light produced by
superposition of second harmonic light with twin one-mode subharmonic light beams.
To this end, first we determine the density operator for this light mode, by assuming that
the central frequency of second harmonic light and subharmonic light beams are the
same. With the aid of the resulting density operator, we calculate the mean and variance
of photon number and also the quadrature fluctuations.

Figure 4.1: Schematic Diagram for Superposed Light Beams
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Where
1. Pump mode-1
2. SH-output light (b̂†out)
3. Horizontally Polarizing beam splitter-1
4. Mirror
5. Refracted SH-output light (b̂†out)
6. Sub-harmonic output light beam (â1)
7. Horizontally Polarizing beam splitter-2
8. Horizontally polarized subharmonic light(â1)
9. Superposed SH-light and signal light beams (ĉ†out)
10. Pump mode-2
11. Sub-harmonic output light beam (â2)
12. Horizontally polarized subharmonic light(â2)

4.1 The density operator
Here we wish to determine the superposed density operator for second harmonic light
and one-mode subharmonic light beams. Suppose ρ̂′(b̂†, b̂) be the density operator for a
certain light beam. By expanding this density operator in normal ordering we have

ρ̂′ =
∑
k,l

Ck,lb̂
†kb̂l. (4.1.1)

Recalling the completeness relation for one mode coherent light is gven by

I =
1

π

∫
d2γ|γ〉〈γ|, (4.1.2)

we can work Eq.(4.1.1) inthe form

ρ̂′ =
1

π

∫
d2γ

∑
k,l

Ck,lγ
∗k|γ〉〈γ|b̂l. (4.1.3)

Employing the relation

|γ〉〈γ|b̂l = (γ +
∂

∂γ∗
)l|γ〉〈γ|, (4.1.4)

we can express Eq.(4.1.3), as

ρ̂′ =

∫
d2γ

1

π

∑
k,l

Ck,lγ
∗k(γ +

∂

∂γ∗
)l|γ〉〈γ|, (4.1.5)
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we then note that

Q(γ∗, γ +
∂

∂γ∗
) =

1

π

∑
k,l

Ck,lγ
∗k(γ +

∂

∂γ∗
)l. (4.1.6)

Introducing Eq.(4.1.6) into Eq.(4.1.5), we see that

ρ̂′ =

∫
d2γQ(γ∗, γ +

∂

∂γ∗
)|γ〉〈γ|. (4.1.7)

In terms of displacement operator, the state vectors |γ〉 and 〈γ| can be put in the form of

|γ〉 = D̂(γ)|0〉 (4.1.8)

and

〈γ| = 〈0|D̂(−γ). (4.1.9)

By introducing Eqs.(4.1.8) and (4.1.9) into Eq.(4.1.7), we get

ρ̂′ =

∫
d2γQ(γ∗, γ +

∂

∂γ∗
)D̂(γ)|0〉〈0|D̂(−γ). (4.1.10)

Now we realize that the density operator for the superposition of second harmonic light
beam with one-mode subharmonic light beams is expressed as

ρ̂(ĉ†, ĉ, t) =

∫
d2αQ(α∗, α +

∂

∂α∗
)D̂(α)ρ̂′D̂(−α), (4.1.11)

in which

α = α1 + α2. (4.1.12)

Then substituting Eq.(4.1.10) into Eq.(4.1.11), we see that

ρ̂(ĉ†, ĉ, t) =

∫
d2αQ(α∗, α +

∂

∂α∗
)D̂(α)

∫
d2γQ(γ∗, γ +

∂

∂γ∗
)D̂(γ)|0〉〈0|

×D̂(−γ)D̂(−α). (4.1.13)

On account of Eqs.(4.1.8), (4.1.9) and (4.1.10), Eq.(4.1.13) can be rewritten as

ρ̂(ĉ†, ĉ, t) =

∫
d2αd2γQ(α∗, α +

∂

∂α∗
)Q(γ∗, γ +

∂

∂γ∗
)D̂(α)

|γ〉〈γ|D̂(−α). (4.1.14)
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we recall that

D̂(α)|γ〉 = e−α
∗γ+αγ∗|α + γ〉 (4.1.15)

and

〈γ|D̂(−α) = e−α
∗γ+αγ∗|γ + α〉. (4.1.16)

Finally, using Eqs.(4.1.15), (4.1.16) and (4.1.14), the density operator for the superposed
light beams can be written as [18]

ρ̂(ĉ†, ĉ, t) =

∫
d2αd2γQ(α∗, α +

∂

∂α∗
)Q(γ∗, γ +

∂

∂γ∗
)|α + γ〉〈γ + α|. (4.1.17)

Furthermore, the expectation value of an operator Â(ĉ†, ĉ, t) can be expressed in the
form [18]

〈Â(ĉ†, ĉ, t)〉 = Tr(ρ(t)Â(0)). (4.1.18)

Introducing Eq.(4.1.17) into Eq.(4.1.18), we find

〈Â(ĉ†, ĉ, t)〉 =

∫
d2αd2γQ(α∗, α +

∂

∂α∗
, t)Q(γ∗, γ +

∂

∂γ∗
, t)

An(γ∗, α), (4.1.19)

in which Ân(γ∗, α) = 〈α + γ|Â(ĉ†, ĉ)|γ + α〉 is c-number function corresponding to Â
in the normal order.

Q(γ∗, γ, t) =
1

π

∑
k,l

Ck,lγ
∗k(γ +

∂

∂γ∗
)l (4.1.20)

and

Q(α∗, α, t) =
1

π

∑
n,m

Cn,mα
∗n(α +

∂

∂α∗
)m, (4.1.21)

are the Q function associated with the three light beams [18].
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4.2 Photon statistics
The stastistical properties of light beam is described in terms of the mean photon number
and the variance of photon number. Here, we calculate the mean photon number and the
variance of photon number of the light produced by superposed second harmonic light
beam and twin one-mode subharmonic light beams.

4.2.1 The photon mean number
The mean photon number of the superposed light beams can be expressed in terms of
density operator as

n̄ = Tr(ρ̂(t)ĉ†(0)ĉ(0)), (4.2.1)

where ĉ repersents the annihilation operator for the superposed light beams and is de-
fined as

ĉ = b̂+ â. (4.2.2)

Employing Eq.(4.2.2), we see that

n̄ = Tr[ρ̂(t)(b̂†b̂+ b̂†â+ â†b̂+ â†â)]. (4.2.3)

Thus introducing Eq.(4.1.17) into Eq.(4.2.3), we have

n̄ =

∫
d2αd2γQ(α∗, α +

∂

∂α∗
, t)Q(γ∗, γ +

∂

∂γ∗
, t)

×Tr[|α + γ〉〈γ + α|(b̂†b̂+ b̂†â+ â†b̂+ â†â]. (4.2.4)

Then applying the cyclic property of a trace, we get

n̄ =

∫
d2αd2γQ(α∗, α +

∂

∂α∗
, t)Q(γ∗, γ +

∂

∂γ∗
, t)

×[γ∗γ + α∗α + γ∗α + α∗γ]. (4.2.5)

It follows that

n̄ =

∫
d2αQ1(α∗, α +

∂

∂α∗
, t)α∗α +

∫
d2γQ2(γ∗, γ +

∂

∂γ∗
, t)γ∗γ

+

(∫
d2αQ1(α∗, α +

∂

∂α∗
, t)α

)(
d2γQ2(γ∗, γ +

∂

∂γ∗
, t)γ∗

)

+

(∫
d2αQ1(α∗, α +

∂

∂α∗
, t)α∗

)(
d2γQ2(γ∗, γ +

∂

∂γ∗
, t)γ

)
. (4.2.6)
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With the aid of Eq.(4.1.19), one can easly put Eq.(4.2.6) in the form

n̄ = 〈b̂†(t)b̂(t)〉+ 〈â†(t)â(t)〉+ 〈b̂†(t)〉〈â(t)〉+ 〈b̂(t)〉〈â†(t)〉. (4.2.7)

In view of the fact that â is Gaussian operator with zero mean, we see that

〈b̂†(t)〉〈â(t)〉 = 0 (4.2.8)

and

〈b̂(t)〉〈â†(t)〉 = 0. (4.2.9)

On account of Eq.(4.2.7) along with Eqs.(4.2.8) and (4.2.9), we obtain

n̄ = 〈b̂†(t)b̂(t)〉+ 〈â†(t)â(t)〉. (4.2.10)

With the aid of Eqs.(2.3.7) and (3.4.7), the mean photon number of the superposed
light beams takes the form

n̄ss =

[
ε2

2

2
[

1

(κa+κb
2
− ε2)(κa

2
+ ε2)

− 1

(κa+κb
2

+ ε2)(κa
2

+ 3ε2)
]

+
ε2

κb
[

ε
κa
2

+ ε2

]2

]
+ [

4Γ2

κ2 − 4Γ2
]. (4.2.11)

This result shows that the mean photon number of the superposed light beam is the
sum of the mean photon number of the individual light beams. By setting ε2 = 0,
we find that the mean photon number of the one-mode subharmonic light beams and if
Γ = 0, we obtain the mean photon number of the second harmonic light beam.

On the other hand, well known input-output relation can be written as [18]

ĉout(t) =
√
κĉ(t)− ĉin(t), (4.2.12)

where ĉin is input resevoir mode operator.
Since the cavity mode is coupled to vacuum resevior, Eq.(4.2.12) can be written

ĉout(t) =
√
κĉ(t). (4.2.13)

In view of Eq.(4.2.13), the mean output photon number of the superposed light beam
turns to

n̄out = κn̄, (4.2.14)

where 0 < κ < 1.
This result indicates that the mean photon number of the superposed output light is κ
times the cavity light beams.
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4.2.2 The variance of photon number
The variance of the photon number can be defined as

(∆n)2 = 〈(ĉ†(t)ĉ(t))2〉 − 〈ĉ†(t)ĉ(t)〉2. (4.2.15)

Using the commutation relation

[ĉ, ĉ†] = 3. (4.2.16)

for the superposed light beams Eq.(4.2.15) can be rewritten in the form

(∆n)2 = 〈(ĉ†2(t)ĉ(t))2〉+ 3〈ĉ†(t)ĉ(t)〉 − 〈ĉ†(t)ĉ(t)〉2. (4.2.17)

With the aid of Eqs.(4.2.2) and (4.2.16), we can write Eq.(4.2.17) as

(∆n)2 = 〈â†2(t)â2(t)〉+ 〈b̂2(t)â†2(t)〉
+4〈b̂†(t)b̂(t)â†(t)â(t)〉+ 〈b̂†2(t)â2(t)〉
+〈b̂†2(t)b̂2(t)〉+ 3n̄− n̄2 (4.2.18)

Next we seek to calculate the expectation value of the operators described by Eq.(4.2.18),
so we see that

〈â†2(t)â2(t)〉 = Tr[ρ̂(â†2â2)]. (4.2.19)

Introducing Eq.(4.1.17) into Eq.(4.2.19) and using Eq.(3.2.25), we find

〈â†2(t)â2(t)〉 =

[∫
d2α1d

2α2Q(α∗1, α1 +
∂

∂α∗1
, t)Q(α∗2, α2 +

∂

∂α∗2
, t)

Tr[|α1 + α2〉〈α2 + α1|(â†21 â
2
1 + â†21 â

2
2 + â†22 â

2
1 + â†22 â

2
2)

+4â†1â1â
†
2â2]

]
. (4.2.20)

Applying the cyclic property of a trace to Eq.(4.2.20), we get

〈â†2(t)â2(t)〉 =

[∫
d2α1d

2α2Q(α∗1, α1 +
∂

∂α∗1
, t)Q(α∗2, α2 +

∂

∂α∗2
, t)

[〈α2 + α1|â†21 â
2
1|α1 + α2〉+ 〈α2 + α1|â†21 â

2
2|α1 + α2〉

+〈α2 + α1|â†22 â
2
1|α1 + α2〉+ 〈α2 + α1|â†22 â

2
2|α1 + α2〉]

]
. (4.2.21)
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One can also easily write Eq.(4.2.21) as

〈â†2(t)â2(t)〉 =

[∫
d2α1d

2α2Q(α∗1, α1 +
∂

∂α∗1
, t)Q(α∗2, α2 +

∂

∂α∗2
, t)

×[α∗21 α
2
1 + α∗21 α

2
2 + α∗22 α

2
1 + α∗22 α

2
2]

]
. (4.2.22)

Then it follows that

〈â†2(t)â2(t)〉 =

[∫
d2α1Q(α∗1, α1 +

∂

∂α∗1
, t)α∗21 α

2
1 +

∫
d2α2Q(α∗2, α2 +

∂

∂α∗2
, t)α∗22 α

2
2

+

∫
d2α1d

2α2Q(α∗1, α1 +
∂

∂α∗1
, t)Q(α∗2, α2 +

∂

∂α∗2
, t)α∗21 α

2
2

+

∫
d2α1d

2α2Q(α∗1, α1 +
∂

∂α∗1
, t)Q(α∗2, α2 +

∂

∂α∗2
, t)α∗22 α

2
1]

]
. (4.2.23)

In view of Eq.(4.1.19), one can put Eq.(4.2.23) inthe form

〈â†2(t)â2(t)〉 =

[
〈â†21 â

2
1〉+ 〈â†21 â

2
2〉+ 〈â†22 â

2
1〉+ 〈â†22 â

2
2〉

]
. (4.2.24)

Using similar procedure we get

〈b̂†2b̂2〉 = 〈b̂2b̂†2〉 − 4〈b̂†b̂〉 − 2 = 2c2 − d2 − 4c− 2

〈â†2â2〉 = 〈â†1â1〉+ 〈â†21 â
2
2〉+ 〈â†22 â

2
1〉+ 〈â†22 â

2
2〉

〈b̂2â†2〉 = 〈b̂2â†21 〉+ 〈b̂2â†1â
†
2〉+ 〈b̂2â†2â

†
1〉+ 〈b̂2â†22 〉

4〈b̂†b̂â†â〉 = 4

[
〈b̂†b̂â†1â1〉+ 〈b̂†b̂â†1â2〉+ 〈b̂†b̂â1â

†
2〉+ 〈b̂†b̂â1â2〉

]
〈b̂†2â2〉 = 〈b̂†2â1〉+ 〈b̂†2â2〉
〈â†21 â

2
1〉 = 〈â†1â1〉2 − 〈â†1â1〉

〈â†22 â
2
2〉 = 〈â†2â2〉2 − 〈â†2â2〉, (4.2.25)

and on the besis of Eqs.(3.2.20), (3.2.24), (3.2.25) and (3.2.26) along with Eq.(4.2.2),
we obtain

〈ĉ†2(t)ĉ2(t)〉 = 〈b̂†2(t)b̂2(t)〉 − 4〈b̂†(t)b̂(t)〉 − 2 + 2〈b̂†2(t)〉〈â1(t)〉〈â2(t)〉
+〈â1(t)â1(t)〉2 − 〈â†1(t)â1(t)〉+ 〈â2(t)â2(t)〉2 − 〈â†2(t)â2(t)〉
+4〈b̂†(t)b̂(t)〉〈â†1(t)â1(t)〉+ 4〈b̂†(t)b̂(t)〉〈â†2(t)â2(t)〉
+〈â†1(t)â1(t)〉〈â†2(t)â2(t)〉 (4.2.26)
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On account of Eq.(4.2.17), Eq.(4.2.25), can be rewritten in the form

(∆n)2 = 〈b̂†2(t)b̂2(t)〉 − 4〈b̂†(t)b̂(t)〉 − 2 + 2〈b̂†2(t)〉〈â1(t)â2(t)〉
+〈â1(t)â1(t)〉2 − 〈â†1(t)â1(t)〉+ 〈â2(t)â2(t)〉2 − 〈â†2(t)â2(t)〉
+4〈b̂†(t)b̂(t)〉〈â†1(t)â1(t)〉+ 4〈b̂†(t)b̂(t)〉〈â†2(t)â2(t)〉
+〈â†1(t)â1(t)〉〈â†2(t)â2(t)〉+ 3n̄− n̄2. (4.2.27)

Then making the use of Eqs.(2.2.12), (2.2.13), (2.3.7), (2.4.9), (3.2.21 - 3.2.24) and
(4.2.11), the variance of the photon number of the superposed light beams is expressable
as

(∆n)2 =
ε2

κb
[
ε

y
]2 − ε3

2

κb
[
ε

y
]2(

1

sh
)− 2[

ε2

2
(

1

sh
)]2 − 2

ε3
2

κb
[
ε

y
]2(

1

xy
− 1

sh
)[

κΓ

κ2 − 4Γ2
]

+[
2κΓ

κ2 − 4Γ2
]2 + 2[

ε2

2
(

1

xy
)]2

2κΓ

κ2 − 4Γ2
+ 2ε4

2(
1

xy
− 1

sh
)2[

κΓ

κ2 − 4Γ2
]2

+
8ε2

κb
(
ε

y
)2 2Γ2

κ2 − 4Γ2
+ 4ε2

2[
1

xy
− 1

sh
]

2Γ2

κ2 + 4Γ2
+ 4(

2Γ2

κ2 + 4Γ2
)

+4(
2Γ2

κ2 + 4Γ2
)2 − ε2

2

2
(

1

xy
− 1

sh
) +

ε2

κb
[
ε

y
]2 − 2ε2

κb
[
ε

y
]2(

2Γ2

κ2 + 4Γ2
)

+[
ε2

κb
[
ε

y
]2 − ε2

2

2
(

1

xy
− 1

sh
)](

2Γ2

κ2 + 4Γ2
), (4.2.28)

where

x =
κa + κb

2
− ε2, y =

κa
2

+ ε2 (4.2.29)

and

s =
κa + κb

2
+ ε2, h =

κa
2

+ 3ε2. (4.2.30)

This result show that unlike the mean photon number, the variance of the photon number
of the superposed light beams is not the sum of the variance of the photon number of
the separate light beams. However, by setting ε = ε2 = 0, we easily get the variance of
the photon number of one-mode subharmonic light beams. While by setting Γ = 0, we
obtain the variance of the photon number of the second harmonic light beam.

On the other hand, the variance of the photon number of the superposed output light
beams can be defined as

(∆n)2
out = 〈(n̄out)2〉 − 〈n̄out〉2. (4.2.31)

Employing Eq.(4.2.12), (4.2.13) and (4.2.30), we find

(∆n)2
out = κ2(∆n)2. (4.2.32)

We see that the variance of the the photon number of the superposed output light
beams is κ2 times that of the cavity light beams.
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4.3 Quadrature fluctuation
Here we study the squeezing property of the superposed light beams.

4.3.1 Quadrature variance
Here we determine the quadrature variance for the superposed light beams. We define
the quadrature variance for the superposed light beams as

(∆c±)2 = 〈ĉ2
±(t)〉 − 〈ĉ±(t)〉2, (4.3.1)

where

ĉ+(t) = ĉ†(t) + ĉ(t) (4.3.2)

and

ĉ−(t) = i(ĉ†(t)− ĉ(t)), (4.3.3)

are the plus and the minus quadratures for the superposed light beams.
Using Eqs.(4.3.2) and (4.3.3) along with the commutation relation given by Eq.(4.2.16),

Eq.(4.3.1) can be put in the form

(∆c±)2 = 3 + 2[〈ĉ†(t)ĉ(t)〉 ± 〈ĉ2(t)〉], (4.3.4)

in which

〈ĉ†2〉 = 〈ĉ2〉, (4.3.5)

has been used.
On account of Eq.(4.1.18), Eq.(4.3.4) leads to

(∆c±)2 = 3 + 2[〈â†(t)â(t)〉+ 〈b̂†(t)b̂(t)〉 ± 〈â2(t)〉 ± 〈b̂2(t)〉
±〈â(t)b̂(t)〉 ± 〈b̂(t)â(t)〉]. (4.3.6)

Next we calculate the expectation value of âb̂, then we write

〈âb̂〉 = Tr(ρ̂(âb̂)). (4.3.7)

Using Eq.(4.1.17), we see that

〈âb̂〉 =

∫
d2αd2γQ(α∗, α +

∂

∂α∗
)Q(γ∗, γ +

∂

∂γ∗
)Tr(|γ + α〉〈α + γ|âb̂). (4.3.8)

46



Then it follows

〈âb̂〉 =

∫
d2αd2γQ(α∗, α +

∂

∂α∗
)Q(γ∗, γ +

∂

∂γ∗
)〈α + γ|âb̂|γ + α〉. (4.3.9)

Employing Eq.(4.1.12), we find that

〈âb̂〉 =

∫
d2αd2γQ(α∗, α +

∂

∂α∗
)γQ(γ∗, γ +

∂

∂γ∗
)α (4.3.10)

On account of Eqs.(4.1.18), Eq.(4.3.10) can be put in the form

〈b̂〉〈â〉 = 0. (4.3.11)

In view of Eq.(4.3.11), Eq.(4.3.4) yields

(∆c±)2 = [1 + 2〈b̂†b̂〉 ± 2〈b̂2〉] + [2 + 2〈â†â〉 ± 2〈â2〉]. (4.3.12)

Now Eq.(4.3.12) can be rewritten as

(∆c±)2 = (∆b±)2 + (∆a±)2. (4.3.13)

This show that the quadrature variance of the superposed light beams is the sum of the
separate light beams.

On account of Eqs.(2.4.16), (3.5.9) and (3.5.10), we easily find the quadrature vari-
ance of the superposed light beams as

(∆c±)2 = 3∓

[
2ε2

2

(κa+κb
2
± ε2)(κa

2
+ (2± 1)ε2)

+
4Γ

κ+ 2Γ

]
. (4.3.14)

Moreover, the squeezing for both second harmonic light beam and one-mode sub-
harmonic light beams occurs in the plus quadrature.

4.3.2 Quadrature squeezing
The quadrature squeezing of the superposition of second harmonic light beam and one-
mode subharmonic light beams can be defined as

S+ =
3− (∆c±)2

3
. (4.3.15)

It then follows

S+ =
[1− (∆b̂+)2(t)] + [2− (∆â+)2(t)]

3
. (4.3.16)
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where ∆â+ is the quadrature variance of one-mode subharmonic light beams and
∆b̂+ is second harmonic light beam.

Introducing Eq.(2.4.16) and Eq.(3.5.9) into Eq.(4.3.16), we obtain

S+ =
1

3
[1− (1− 2ε2

2

(κa+κb
2

+ ε2)(κa
2

+ (2 + 1)ε2)
) + 2− (2− 4Γ

κ+ 2Γ
)]. (4.3.17)

Finally, on account of Eq.(4.3.17), quadrature variance of the superposed light beams is

S+ =
1

3
[

2ε2
2

(κa+κb
2

+ ε2)(κa
2

+ (2 + 1)ε2)
+

4Γ

κ+ 2Γ
]. (4.3.18)

This result show that the degree of squeezing for the superposed squeezed light
beams is the average of the separate light beams that is 55.57% at steady state and at
threshold.

We have seen that the degree of squeezing of subharmonic generation enhanced by
superposition of the second harmonic generation.

Onthe other hand, the quadrature squeezing of the superposed output light beams
can be defined as

S+out =
3κ− (∆c±)out

3κ
, (4.3.19)

where 3κ to be the quadrature squeezing of the coherent light beams.
By inspection of Eq.(4.3.13) and in view of Eq.(4.2.31), the quadirature variance of

the superposed output light beams to be

(∆c±)2
out = (∆a±)2

out + (∆b±)2
out, (4.3.20)

in which

(∆a±)2
out = κ(∆a±)2

out, (4.3.21)

and

(∆b±)2
out = κ(∆b±)2

out. (4.3.22)

Introducing Eq.(4.3.20) into Eq.(4.3.19), we have

S+out =
3κ− [κ(∆a±)2

out + κ(∆b±)2
out]

3κ
, (4.3.23)

(S+)out = S+ (4.3.24)

This result shows that the quadirature squeezing of the superposed light beams is the
same as that of the cavity light.

48



Figure 4.2: a plot of S+ Vs Γ for κa = κb = κ = 1 and ε2 = Γ.
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Chapter 5

Conclusion

In this thesis, we studied the squeezing and statistical properties of light produced by
superposed second harmonic light beam and twin one-mode subharmonic light beams.
Using the solution of the c-number Langevin equations we calculated the antinormally
orderd characteristic function and then the Q function of the separate light beams.

First we have seen the second harmonic light beam, employing the linearizion scheme
approximation, to get the Q function. Then using the Q function, we analyzed the mean
photon number, the variance of the photon number and the quadrature fluctuations. We
have seen that the squeezing occurs in the plus quadrature and maximum degree squeez-
ing is 66.67%.

Next we have considered the one-mode subharmonic generator by writing the Hamil-
tonian, the master equation and the operator dynamics. Then we get the Q function of
the one-mode subharmonic light beams. Using the Q function we calculated the mean
photon number, the variance of the photon number and the quadrature fluctuations of
the one-mode subharmonic light beams. We observed that the squeezing occurs in the
plus quadrature and its maximum squeezing is 50% at steady state and at threshold.

Finally, we analyzed the statistical and squeezing properties of the superposition of
second harmonic light beam and twin one-mode subharmonic light beams. Employing
the superposed density operator, we obtained the mean photon number, which is the
sum of the mean photon number the separate light beams and the output mean photon
number is κ times that of the cavity light beams. Unlike the mean photon number, the
variance of the photon number is not the sum of the individual light beams and the
variance of the photon number of the superposed output light beams is κ2 times that of
the cavity light beams.

Moreover, the quadrature variance of the superposed light beams is simply the sum
of the quadrature variance of the individual light beams. Like that of second har-
monic light beams and one-mode subharmonic light beams, the squeezing of the su-
perposed light beams occurs in the plus quadrature. Furthermore, we see that the degree
of squeezing for superposed squeezed light beams is the average of the separate light
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beams and 55.57% at steady state and at threshold. In addition we find that the quadra-
ture squeezing of the superposed output light beams is the same as that of the cavity
light. In the same way we see that the variance of the photon number is greater than the
mean photon number therefore, the photon statistics of the one-mode subharmonic light
beams is super-Poisson.
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