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Abstract

In this research analytical and numerical calculations have been made to identify

the dependence of third order nonlinear refractive index and absorption coefficient

on optical laser intensity and transition energy. Analytical expressions for the third-

order nonlinear absorption coefficients and refractive index changes are obtained by

using compact density matrix approach. The obtained result indicates that both third

order NL absorption coefficient and refractive index changes experience a blue shift by

increasing the transition energy. Moreover high laser intensity induces a pronounced

magnitude of third order NL absorption coefficient and refractive index changes.
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Chapter 1

Introduction

1.1 Background of the Study

What is NONLINEAR OPTICS ?

The ordinary experiences of everyday life reflection, refraction, diffraction, ab-

sorption, e.t.c. explain a wide variety of common visual experiences, which are in-

dependent of the intensity of light. Such optical phenomena is the realm of the so

called linear optics[11].

Nonlinear optics is a field of study concerned with the interaction of intense

electromagnetic radiation and matter in which the matter responds in a nonlinear

manner to the incident optical fields. In other words, nonlinear optics (NLO) is the

branch of optics that describes the behavior of light in nonlinear media, in which

the polarization P responds nonlinearly to the electric field E of the light[1,11]. This

nonlinearity is typically observed at very high light intensities, such as those provided

by lasers. Such high powers of laser beams made it possible, for the first time, to

observe that the effect of light on a medium can indeed change its optical properties,

such as refractive index and absorption coefficient.

With the advent of the laser in 1960, nonlinear optics went from the realm of
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theoretical prediction to experimental reality, and it becomes a rapidly growing field

of research in recent decades. In fact, the beginning of the field of nonlinear optics

is taken to be the discovery of second-harmonic generation by Fraken et al. (1961),

shortly after the demonstration of the first working laser by Maiman in 1960 [1,4] and

first observation of third harmonic generation (THG) Terhuneetal.(1962) [3].

Nonlinear optical phenomena are ”nonlinear” in a sense that they occur when

the response of a material system to an applied optical field depends in a nonlinear

manner on the strength of the optical field. For example, second-harmonic generation

occurs as a result of the part of the atomic response that scales quadratically with the

strength of the applied optical field. Consequently, the intensity of the light generated

at the second-harmonic frequency tends to increase as the square of the intensity of

the applied laser light [1,11].

In linear optics, light traveling through media induces an oscillating polarization

that is linear with its electromagnetic field. In nonlinear optics, coherent light can

distort the oscillating polarization; these distortions can create or enhance new fields

that then radiate from the oscillating nonlinear polarization [2].

This nonlinearity is highly pronounced in nanoparticles, 500 times their bulk coun-

terpart [17]. Nanoscale materials are under active research over the past few decades,

owing to their interesting versatile properties, quite different from those of the bulk

form [6,8].Thus the nonlinear optical properties of nanostructured semiconductors are

the topics of current theoretical and experimental interest,[5,9,10]. Amongst the var-

ious NLO materials investigated, direct band-gap semiconductors, such as zinc oxide

have attractive nonlinear properties that make them ideal candidates for NLO based

devices.
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Some of the potential applications of oxide semiconductor nanocrystals are in field

emission displays, solar cells, gas sensors, photovoltaic, display devices and laser

fabrication [7-9, 11]. The refractive index of a material is the key parameter that

affects all optical properties. Any modification of the refractive index, leads to new

optical properties of absorption and dispersion of the medium [14].

1.2 Statement of the problem

.

Recently the nonlinear optical response of nanoparticles (ZnO) is greatly inves-

tigated theoretically and experimentally in relation with confining energy, impu-

rity,e.t.c. But, up to our knowledge there is no studies concerning ZnO spherical

quantum dot in density matrix formalism. What are the effects of transition energy

and optical laser intensity on NL-RIC and AC of spherical QD ?

1.3 Objectives

1.3.1 General objective

.

Mainly our research work focused on the third-order nonlinear optical phenomena

and nonlinear optical properties of ZnO quantum dot. We determined the effect

of transition energy and optical intensity on third order nonlinear refractive index

changes and absorption coefficient of ZnO quantum dot.

1.3.2 Specific objective

In this theoretical research the following specific works are done:
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• We calculated the transition energy of ZnO quantum dot.

• Analytically we developed equation of third order NL susceptibility.

• Numerical calculations of third order NL absorption coefficient and refractive

index changes of ZnO quantum dot was performed.

1.4 Significance of the Study

ZnO has emerged as one of the promising materials due to its unique properties such

as high mechanical and chemical stability, excellent electrical and optical properties

together with its natural abundance and non-toxicity [13]. ZnO thin films (QD) have

potential technological application. Most of its potentials arises from it’s nonlinear

optical property, which is basically described by the nonlinear refractive index and

absorption coefficients. We believe that our results can be useful and helpful in pro-

viding some additional knowledge to the scientific society and researchers in relation

to third order nonlinear ; refractive index and absorption coefficient of ZnO quantum

dot.

.
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Chapter 2

Literature Review

2.1 Nonlinear Optics and Nanoparticles

.

Nanomaterial,that exhibit peculiar properties which are not shown by their bulk

counterparts, have attracted much interest from both fundamental and technologi-

cal researchers. Among the various nonlinear optical (NLO) materials investigated,

wide band gap semiconductors, especially zinc oxide (ZnO), have attractive nonlinear

properties that make them ideal candidates for NLO-based devices [9]. Nano sized

ZnO in the form of quantum dots, nanowires, Nano-belts, etc. are referred to as the

material of the 21st century [23].

2.1.1 Nonlinear Polarization and Susceptibility

. The most usual procedure for describing nonlinear optical phenomena is based on

expressing the polarization P(t) in terms of the applied electric field strength E(t).

The nonlinear susceptibility is a quantity that is used to determine the nonlinear

polarization of a material medium in terms of the strength of an applied optical -

frequency electric field. It thus provides a framework for describing nonlinear optical
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phenomena: such as, nonlinear refraction and absorption coefficient [1]. In case of

linear optics, the induced polarization depends linearly on the electric field strength

in a manner that can often be described by the relationship;

P (t) = ε0χ
(1)E(t) (2.1.1)

where the constant of proportionality χ(1)is known as the linear susceptibility and ε0

is the permittivity of free space. In nonlinear optics, the optical response can often be

described by generalizing Eq.(2.1.1) and expressing the polarization P(t) as a power

series in the field strength E(t) [1,11]

P (t) = ε0[χ
(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...] (2.1.2)

= P (1)(t) + P (2)(t) + P (3)(t) + ...

Where, χ(2) and χ(3) are the second- and third-order nonlinear optical susceptibilities,

respectively. The nonlinear polarization given by Eq.(2.1.2) is only for a material

system that is lossless and dispersionless. In general, the nonlinear susceptibilities

depend on the frequencies of the applied fields. Third-order optical nonlinearities

cover a vast and diverse area in nonlinear optics[12]. The contribution of third order

nonlinear polarization is

P (3)(t) = ε0χ
(3)E3(t) (2.1.3)

Which is induced by an applied field ~E(t) that consists of three frequency component

~E(t) = E1e
(−iω1t) + E2e

(−iω2t) + E3e
(−iω3t) + c.c. (2.1.4)

Where, c.c. is the complex conjugate of the electric field vector. For the simple case

in which the applied field is monochromatic, E(t)is given by

~E(t) = E cosωt (2.1.5)
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Then, through use of trigonometry identity,

cos3 ωt =
1

4
cos 3ωt+

3

4
cosωt

we can express the third order nonlinear polarization as

P (3)(t) = ε0E
3 1

4
cos 3ωt+ ε0E

3 3

4
cosωt (2.1.6)

The two terms in the above equation(eq.2.1.6) has their own descriptions. The first

term, a response at frequency 3ω that is created by an applied field of frequency ω is

the nonlinear contribution to the polarization at the frequency of the incident field.

Hence it is the nonlinear contribution of the polarization to the nonlinear index of

refraction [1]. The index of refraction in the presence of this type of nonlinearity can

be represented as

n = n0 + n2I (2.1.7)

Where n0 is the linear index of refraction and n2 is an optical constant that char-

acterizes the strength of the optical nonlinearity, and where, I = 2nr

µc
|E(ω)|2 , is the

intensity of the incident wave.

2.1.2 Nonlinear Index of Refraction and Absorption Coeffi-
cient

Nonlinear Index of Refraction

The refractive index of a material is the key parameter that affects many optical

properties. Many of the interesting phenomena of nonlinear optics derive their be-

havior from the nonlinear index of refraction. which led to a variety of fascinating

applications. It is also central to many fundamental scientific investigations.Even

though several diverse physical effects contribute to the nonlinear index of refraction,
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generally, it can be defined a[11]s a change in the refractive index or the spatial dis-

tribution of the refractive index of a medium due to the presence of optical waves.

The nonlinear index of refraction has generated significant scientific and technological

interest and it has been utilized in or considered for a variety of applications, such

as: Nonlinear spectroscopy, Correcting optical distortions, Opticalswitching, Optical

logic gates, Optical data processing, Optical communications, Optical limiting, Passive

laser mode-locking, Wave guide switches and modulators. These applications derive

from several phenomena that have been discovered and are related to the nonlinear

refractive index [11,12].

Nonlinear Absorption

Refers to the change in transmittance of a material as a function of intensity. At suffi-

ciently high intensities, the probability of a material absorbing more than one photon

before relaxing to the ground state can be greatly enhanced. The many different

effects produced by nonlinear absorption in the frequency dependent transmittance

of a material have led to several applications in science and technology, such as non-

linear spectroscopy and optical limiting [11,12]. The nonlinear refractive index n2 is

related to the real part of nonlinear susceptibility[Reχ(3)] and the imaginary part of

third order susceptibility [Imχ
(3)] determines the strength of the nonlinear absorp-

tion[9,16,21,27].

∆n(ω)

nr

=
1

2n2
r

Reχ(ω) (2.1.8)

The nonlinear absorption coefficient,β is related to Imχ
(3) by the relation,

β(3)(ω) =
ω

nr

√
µ

ε0
Imχ

(3)(ω) (2.1.9)

Where nr is the refractive index of the medium, ε0 is the permittivity of free space

and c is the velocity of light in vacuum. From the real and imaginary parts of χ(3),
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the modulus of third order nonlinear susceptibility can be found out using the above

two equations.

| χ(3) |= [| Reχ
(3) | + | Imχ(3) |]

1
2 (2.1.10)

The magnitude of (χ(3)) is significantly affected by the crystallite size and it deter-

mines the strength of nonlinearity of the material [11].

2.2 Maxwell’s Equation of Electromagnetic Wave

Light is an electromagnetic wave. It consists of electric and magnetic fields, E and H.

For most of optics, the optical wave may be characterized by defining its electric field.

The magnetic field is related to the electric field through Maxwell’s equations. The

nonlinearity in the response of a material system to an intense laser field can cause the

polarization of the medium to develop new frequency components not present in the

incident radiation field. These new frequency components of the polarization act as

sources of new frequency components of the electromagnetic field. Thus, Maxwell’s

electromagnetic wave equations describe these phenomena. The general forms of

Maxwell’s equations of electromagnetic waves are described by the following four

equations [1,18];

~∇. ~D = ~ρ (2.2.1)

~∇. ~B = 0 (2.2.2)

~∇× ~E = −∂
~B

∂t
(2.2.3)

~∇× ~H =
∂ ~D

∂t
+ ~J (2.2.4)
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Where E is electric field, D is electric displacement, H is magnetic field intensity, B

is magnetic induction, ~ρ is the electric charge density and J is the electric current

density. In regions of space where there are no free charges and no free current, we

have

~ρ = 0

and

~J = 0

Taking the assumptions that the material is nonmagnetic and nonlinear, we can use

the relations

~B = µ0
~H and ~D = µ0

~E + ~P (2.2.5)

~P is the total polarization. So that

~P = ~PL + ~PNL

2.2.1 Electromagnetic Wave Equation of NLO

After some substitutions and operations of equations (2.2.1) to (2.2.4), we obtain

Maxwell’s optical wave equation for nonlinear medium, which can be written as [1,11]:

~∇× ~∇× ~E + µ0ε0
∂2 ~E

∂t2
+ µ0

∂2 ~P

∂t2
= 0 (2.2.6)

By substituting µ0ε0 = 1
c2

, we obtain

~∇× ~∇× ~E +
∂2 ~E

c2∂t2
= − ∂2 ~P

ε0c2∂t2
= 0 (2.2.7)

From vetor identity we know that

11



~∇× ~∇× ~E = ~∇(~∇. ~E)− ~∇2 ~E

But the first term of the right hand side of the identity equation is either vanish or

its contribution is negligible, thus the wave equation will reduced to

~∇2 ~E − ∂2 ~E

c2∂t2
=

∂2 ~P

ε0c2∂t2
(2.2.8)

For simple case of an isotropic, dispersionless material, the wave equation becomes

−~∇2 ~E +
ε(1)∂2 ~E

c2∂t2
= −∂

2 ~P (NL)

ε0c2∂t2
(2.2.9)

Where ε(1) is relative permittivity, a dimensionless scalar quantity, which is different

for each material [1]. The nonlinear response of the medium acts as a source term

which appears on the right-hand side of the equation. Equation (2.2.9) can developed

to an equation which is valid for each frequency component of the field.

−~∇2 ~En +
ε(1)(ωn)

c2
∂2 ~E

∂t2
= − 1

ε0c2
∂2 ~P

(NL)
n

∂t2
(2.2.10)

2.3 Nonlinear Susceptibility of a Classical Anhar-

monic Oscillator

The Lorentz model of the atom, which treats the atom as a harmonic oscillator, is

known to provide a very good description of the linear optical properties. By allowing

the possibility of a nonlinearity in the restoring force exerted on the electron, the

Lorentz model can be extend to provide a description for NLO. Though the classical

model of optical nonlinearities presented here has its own shortcoming, however, it

provides a good description for those cases in which all of the optical frequencies are

considerably smaller than the lowest electronic resonance frequency of the material
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system [1]. For the case of noncentrosymmetric media, we take the equation of motion

of the electron position x to be of the form

m(ẍ) + 2γẋ + ω2
0x + ax2) = −e ~E(t) (2.3.1)

The amplitude of the polarization component oscillating at frequency ωq is given in

terms of this amplitude by

P3(ωq) = −Ner(3)(ωq) (2.3.2)

Where,

r(3)(t) =
∑

q

r(3)ωqe
−iωqt (2.3.3)

Recalling the definition of third-order nonlinear susceptibility, the polarization will

be

P
(3)
i ωq =

∑
ijk

∑
mnp

χ
(3)
(ijkl)(ωq, ωm, ωn, ωp)Ej(ωm)Ek(ωn)El(ωp) (2.3.4)

Thus the third-order nonlinear susceptibility in terms of first order susceptibility will

becomes

χ
(3)
(ijkl)(ωq, ωm, ωn, ωp) =

bmω3
0

3N3e4
[χ(1)(ωq)χ

(1)(ωm)χ(1)(ωn)χ(1)(ωp)]×[δijδkl+δikδjl+δilδjk]

(2.3.5)

Where b is a parameter that characterizes the strength of the nonlinearity.

2.4 Quantum Mechanical Description of NLO

The quantum-mechanical theory of nonlinear optical susceptibility allows each atom

to possess many energy eigenvalues. Quantum-mechanical (perturbation theory) of

the atomic wave function enables as to derive an expressions and make more accurate
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predictions of the nonlinear optical susceptibility. One of the fundamental assump-

tion of quantum mechanics is that all of the properties of the atomic system can be

described in terms of the atomic wave-function ψ(r,t), which is the solution to the

time-dependent Schrodinger equation [1]

~
∂Ψ

∂t
= Ĥψ (2.4.1)

Here Ĥ is the Hamiltonian operator

Ĥ = Ĥ0 + V̂ (t) (2.4.2)

Where Ĥ0 is Hamiltonian for a free atom and V̂ (t) is the interaction Hamiltonian,

which describes the interaction of the atom with the electromagnetic field. The

interaction Hamiltonian is given as

V̂ (t) = −µ̂ · ~E(t) (2.4.3)

Here µ̂ = −er is the electric dipole moment operator. So that

~
∂Ψ

∂t
= [Ĥ0 + V̂ (t)]ψ (2.4.4)

2.4.1 Density Matrix Formulation of QM and NL Suscepti-
bility.

Since we have done our research using density matrix formalism, in this section we

develop the nonlinear optical susceptibility through use of the basic principles of

quantum mechanics.

Why we use Density Matrix Formalism?

We use this formalism because it is capable of treating effects, such as collisional

broadening of the atomic resonances that cannot be treated by Anharmonic Oscil-

latory Model or by simple theoretical formalism based on the atomic wave function.
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We know that nonlinear effects become particularly large when one of the frequencies

of the incident laser field, or when sums or differences of these frequencies, becomes

equal to a transition frequency of the atomic system. But the above models or formal-

ism does not allow us to describe the width of these resonances, and thus it cannot

tell us how accurately we need to set the laser frequency to that of the atomic reso-

nance. They also do not tell us how strongly the response is modified when the laser

frequency lies within the width of the resonance [1]. That is why we choose Density

Matrix Formalism for our research work.

Now it is time to begin by reviewing how the density matrix formalism derived from

the basic laws of quantum mechanics. If a quantum-mechanical system (such as an

atom) is known to be in a particular quantum-mechanical state s, we can describe all

of the physical properties of the system in terms of the wave function ψs(r, t) appro-

priate to this state. This wave function obeys the Schrodinger equation;

i~
∂Ψs(r, t)

∂t
= Ĥψs(r, t) (2.4.5)

To determine how the wave evolves in time,we can represent the wave function of

state s as;

Ψs(r, t) =
∑

n

Cs
n(t)un(r) (2.4.6)

The function un(r) is energy eigen-solution of time- independent Schrodinger equa-

tion

Ĥ0un(r) = Enun(r) (2.4.7)

and Cs
n(t) is the expansion coefficient which gives the probability amplitude that the

atom, which is known to be in state s, is in energy eigenstate n at time t.

The time evolution of Ψs(r, t) can be specified in terms of the time evolution of

each of the expansion coefficient Cs
n(t). To determine how these coefficients evolve in
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time, let us introduce equation (2.4.6) into Schrodingers equation (2.4.5) to obtain

i~
∑

n

dCs
n(t)

dt
un(r) =

∑
n

Cs
n(t)Ĥun(r) (2.4.8)

In order to simplify this equation, we multiply each side from the left by u∗m and

integrate over all space. Using orthogonality condition the right-hand side is simplified

by introducing the matrix elements of the Hamiltonian operator Ĥ, defined through;

Hmn =

∫
u∗m(r)Ĥun(r)d3r (2.4.9)

We thereby obtain the result

i~
d

dt
Cs

m(t) =
∑

n

ĤmnC
s
n(t) (2.4.10)

Equation (2.4.10) is entirely equivalent to the Schrodinger equation (2.4.5), but it is

written in terms of the probability amplitudes Cs
n(t). According to QM postulate

the expectation value of any observable quantity A, that corresponds to a Hermitian

operator Â is given by ;

〈A〉 =

∫
ψ∗sÂψsd

3r =
∑
mn

Cs∗
mC

s
nAmn (2.4.11)

Where Amn, are the matrix elements.

As long as the initial state and the Hamiltonian operator Ĥ for the system are known,

the formalism described by Eqs.(2.4.5) through (2.4.11) is capable of providing a

complete description of the time evolution of the system and of all of its observable

properties. However, there are circumstances under which the state of the system

is not known in a precise manner.Under such circumstances, where the precise state

of the system is unknown, the density matrix formalism can be used to describe the

system in a statistical sense using the probability P(s) that the system is in the state
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s. Thus in terms of P(s), we define the elements of the density matrix of the system

by

ρnm =
∑

s

P (s)Cs∗
mC

s
n (2.4.12)

The off-diagonal elements of the density matrix are, in certain circumstances, propor-

tional to the induced electric dipole moment of the atom. The density matrix is useful

because it can be used to calculate the expectation value of any observable quantity.

Since the expectation value of an observable quantity A for a system known to be in

the quantum state s is given according to Eq.(2.4.11) , the expectation value for the

case in which the exact state of the system is not known is obtained by averaging Eq.

(2.4.11) over all possible states of the system, to yield

〈A〉 =
∑

s

P (s)
∑
mn

Cs∗
mC

s
nAmn (2.4.13)

Through use of Eq. (2.4.12), this equation can alternatively be expressed as

〈A〉 =
∑
mn

ρnmAmn (2.4.14)

The double summation can be simplified as

〈A〉 =
∑

n

(ρ̂Â)nn (2.4.15)

Where ρ̂ denotes the density operator. We have just seen that the expectation

value of any observable quantity can be determined straightforwardly in terms of the

density matrix. In order to determine how any expectation value evolves in time, it

is thus necessary only to determine how the density matrix itself evolves in time. By

direct time differentiation of Eq. (2.4.12), we finaly obtain that

ρ̇ =
1

i~
[Ĥ, ρ̂]ij (2.4.16)
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Equation (2.4.16) describes how the density matrix evolves in time as the result of

interactions that are included in the Hamiltonian Ĥ. However, as mentioned above,

there are certain interactions (such as those resulting from collisions between atoms)

that cannot conveniently be included in a Hamiltonian description. Such interactions

can be include in the formalism by adding phenomenological damping terms to the

equation of motion (2.4.16)

ρ̇ =
1

i~

[
[Ĥ0 − µ̂E(t), ρ̂]ij

]
− Γij(ρ− ρ(0))ij (2.4.17)

Once we obtain the time evolution of the density matrix, by using iterative proce-

dures, perturbation expansions, variable substitution techniques and integrating with

respect to time for ρ
(1)
nm we get [1,12],

ρ(1)
nm =

∫ t

−∞

−i
~

[
V̂ (t), ρ̂(0)

]
nm
e(iωnm+γnm)(t−t)dt (2.4.18)

and in general for ρ
(N)
nm

ρ(N)
nm =

∫ t

−∞

−i
~

[
V̂ (t), ρ̂(N−1)

]
nm
e(iωnm+γnm)(t−t)dt (2.4.19)
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Chapter 3

Materials and Methodology

3.1 Materials

For this work an intensive survey of literature from Published articles, books and

thesis was assessed and carried out. Software applications; Mathlab, Latex, and

Mathematica was applied for mathematical operations, graphs and editing text.

3.2 Methodology

Here in this research work we used analytic and computational methods.

3.2.1 Analytical

The analytical method that was applied for this research are Schrodinger Equation

and density matrix formalism.

3.2.2 Computational

Using the analytical methods described above third-order nonlinear; absorption co-

efficient and refractive index changes was calculated and the obtained results are

discussed and elaborated graphically.
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Chapter 4

Third order Nonlinear Refractive
Index and Absorption Coefficient
of ZnO Quantum Dot

In this research analytical and numerical calculations have been made to describe

the dependence of third order nonlinear refractive index and absorption coefficient on

optical intensity and transition energy of the quantum dot. The frequency response

of the real and imaginary part of third order nonlinearity is studied using compact

density matrix approach. The change in the real and imaginary part of third order

nonlinear susceptibility of ZnO quantum dot is investigated with respect to the change

in frequency of laser source and transition energy.

4.1 Quantum mechanical treatment of third order

nonlinear Susceptibility

Linear and nonlinear optical properties which are connected to intersubband tran-

sitions in semiconductor have been a subject of great interest. Due to the strong

quantum confinement effects, the low-dimensional quantum systems can cause more
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amplified nonlinear optical effects than bulk materials [23,26]. In practical appli-

cations, the linear and nonlinear optical properties have a wide range of potential

application for high speed electro-optical modulators, for infrared photo detectors

and semiconductor optical amplifiers. Moreover, the nonlinear optical properties of

nanomaterials are also highly desirable for optical switching, pulse power shaping

and other nonlinear optical applications. In this section we consider the third order

nonlinear susceptibility in a quantum dot. Third order nonlinear optical absorption

coefficient and refractive index changes is derived using the compact density matrix

formalism and an iterative procedure.

4.2 The energy eigenvalues of ZnO quantum dot

A system of electrons fully confined in all three dimensions will have discrete charge

and electronic states. They are often called artificial atoms or quantum dots to reflect

the importance of quantization phenomena on their properties. Consider an electron

in a spherical quantum dot of rigid confinement. The Schrodinger equation for such

a spherical quantum dot in hard confinement is given by [20,28]:

−~2

2m∗∇
2ψ + V̂ ψ = Eψ (4.2.1)

∇2 =
1

r2

∂

∂r
(r2 ∂

∂r
) +

1

r2sinθ

∂

∂θ
(sinθ

∂

∂θ
) +

1

r2sin2θ
(
∂2

∂ϕ2
) (4.2.2)

V =

0 for r < a

∞ for r ≥ a
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Due to the spherical symmetry, the wave equation of the spherical QD separated into

angular and radial parts:

ψ(r, θ, ϕ) = Ylm(θ, ϕ)Rnl(r)

Ylm(θ, ϕ) are the spherical harmonics and Rnl(r) are the radial wave functions [20].

The well known solution of this Schrodinger equation for rigid confinement is:

ψ(r, θ, ϕ) = Ylm(θ, ϕ)
1

a

√
2

r

Jl+1/2(βnlr)

Jl+3/2(βnla)
(4.2.3)

Where, a is the radius of the quantum dot, and βnl is the n
th zero of Jl+1/2(βnla).

For an infinite spherical well, where V=0 for r < a and is infinity otherwise, Enl will

be [20]

Enl =
~2β2

nl

2m∗a2

Here we consider the first two roots of spherical Bessel functions

i.e β00 = π and β01 = 4.49

E00 =
~2β2

00

2m∗a2
=

~2π2

2m∗a2
= 0.45eV

E01 =
~2β2

01

2m∗a2
=

~2(4.49)2

2m∗a2
= 0.90eV

With the effective mass of zinc oxide (m∗ = 0.21m0), for a quantum dot of radius

a=2nm

E00 = 0.45eV and E01 = 0.90eV

For optical transition, to take place the applied photon energy must be in equal

footing with E01 − E00 = 0.45eV
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4.3 Intersubband optical Absorption coefficients and

Refractive index changes

Photoabsorption process may be defined as an optical (intersubband) transition in

low dimensional quantum mechanical systems[27]. The intersubband transitions in

quantum wells have attracted much interest due to their unique characteristics: a

large dipole moment, an ultra-fast relaxation time, and an outstanding tunability of

the transition energy. The intersubband nonlinear absorption coefficients and refrac-

tive index changes depend on the transition energy. In QDs this quantity is strongly

modified by intensity of a laser field [15]. In this section we consider the third order

nonlinear susceptibility in a quantum dot. A brief third order nonlinear refractive

index changes and absorption coefficient using the compact density matrix formal-

ism and iterative procedures are described here. A polarized electromagnetic field

interacting with the quantum-dot excites the system. The electric field vector of this

electromagnetic wave is [1,19,22]

Ẽ(t) = Ẽe−iωt + Ẽeiωt = E0cosωt (4.3.1)

Let us denote one electron density matrix as ′′ρ ′′ for the quantum dot. Then the

time evolution of the density matrix operator ρ is given by [1,10]

ρ̇ =
1

i~
[Ĥ, ρ̂]ij − Γij(ρ− ρ(0))ij

Since Ĥ = Ĥ0 − µ̂E(t)

ρ̇ =
1

i~

(
[Ĥ0 − µ̂E(t), ρ̂]ij

)
− Γij(ρ− ρ(0))ij (4.3.2)

Where Ĥ0 is the Hamiltonian for the system without electromagnetic field E(t), ρ(0) is

the unperturbed density matrix operator, and Γij is the phenomenological damping
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rate caused by the electron -phonon, electron-electron and other collision processes.

Here we describe Γij = Γ0 = 1/T0 for i 6= j. The damping constant is related to

the inverse of relaxation time T0. To solve equation (4.3.2) we have to use iterative

method.

ρ(t) =
∑

n

ρ(n)(t) (4.3.3)

with

∂ρ
(n+1)
ij

∂t
=

1

i~

(
[Ĥ0, ρ̂

(n+1)]ij − i~Γijρ
(n+1)
ij

)
− 1

i~
[µ̂, ρ̂(n)]ij ~E(t) (4.3.4)

Considering a centrosymmetric system, a concise expression of the electronic polar-

ization can be described as [13,16,19,21]

~P (t) = ε0χ
(1)
ω Eeiωt + ε0χ

(3)
ω Ee3iωt + c.c (4.3.5)

Where ε0, χ
(1)
ω and χ

(3)
ω are permittivity of free space, the linear and third order

nonlinear susceptibility coefficients, respectively. For simplicity, we consider a two

level system for electronic transitions. Denoting the ground state by ’g’ and the

exited state by ’e’, we obtain [19,22]

d

dt
ρ̂(n+1)

eg (t) =

[
1

i~
(Ee − Eg)− Γge

]
ρ̂(n+1)

eg

− 1

i~
[ρ̂(n)

gg (t) − ρ̂(n)
ee (t)]µeg

~E(t)− 1

i~
[µee − µgg] ~E(t)ρ(n)

ge (4.3.6)

With, µeg = 〈e|µ̂|g〉 and Γeg =
(

1
Tg

+ 1
Te

)
. Equation (4.3.6) can be solved by expand-

ing the density matrix elements as a sum of terms proportional to e±iωt and equating

terms on both sides having the same time dependence [1,16,19,21]. Neglected the

higher harmonic terms which corresponds to successive absorption or emission of
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photons we considered only the steady-state response. Under this assumption the nth

order perturbation term ρ̂(n)(t) can be written as :

ρ̂(n)(t) = ρ̃(n)(ω)e−iωt + ρ̃(n)(−ω)eiωt (4.3.7)

Using eq.(4.3.1) and (4.3.6) and neglecting the off resonance terms we obtain the

Fourier expansion coefficient [19]:

ρ(3)
eg (ω) =

[
−Ẽ|Ẽ|2µeg(ρ

(0)
gg − ρ

(0)
ee )

(~ωeg − ~ω − i~Γge)

]
[

2( 1
Γgg

+ 1
Γee

)|µeg|2Γge

(~ωeg − ~ω)2 + (~Γge)2
− (µee − µgg)

2

(~ωeg − i~Γge)(~ωeg − ~ω − i~Γge)

]
(4.3.8)

Where ωeg = (Ee−Eg)

~ , is the transition frequency.

Neglecting the first order and higher order terms,the third order electronic polariza-

tion is [23]

~P (t) = ε0χ
(3)Ee(iωt) (4.3.9)

The analytical forms of the third order nonlinear susceptibility is [19,27]

χ(3)(ω) = −

[
N |µeg|2 µcI

2nr

ε0(~ωeg − ~ω − i~Γge)

]

[
4|µeg|2

[(~ωeg − ~ω)2 + (~Γge)2]
− (µee − µgg)

2

(~ωeg − i~Γge)(~ωeg − ~ω − i~Γge)

]
(4.3.10)

Where, µeg = 〈e|µ̂|g〉 = 〈e|ez|g〉, µgg = 〈g|µ̂|g〉 = 〈g|ez|g〉, µ , is the permeability

of the medium, nr refractive index of the medium, c is speed of light, N is the

carrier density in this system and I is the incident optical intensity, which is given

as; I = 2nr

µc
|E(ω)|2

The real and imaginary parts of the third order susceptibility[] from eq.(4.3.10);

Re|χ(3)(ω)| = − µc

2nrε0

NI|µeg|2

[(~ωeg − ~ω)2 + (~Γge)2]2
[4(~ωeg − ~ω)|µeg|2
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− (µee − µgg)
2

(~ωeg)2 + (~Γge)2
× [(~ωeg−~ω)[(~ωeg)(~ωeg−~ω)−(~Γge)

2]−(~Γge)
2(2~ωeg−~ω)]]

(4.3.11)

Im|χ(3)(ω)| = − µc

2nrε0

NI|µeg|2

[(~ωeg − ~ω)2 + (~Γge)2]2
[4(~Γge)|µeg|2

− (µee − µgg)
2

(~ωeg)2 + (~Γge)2
×[(~Γge)[(~Γge)(~ωeg−~ω)+~2Γgeωeg]+[(~Γge)(~ωeg−~ω)−~2Γ2

ge]]]

(4.3.12)

The real part of susceptibility is related to the change in nonlinear refractive index :

∆n(ω)

nr

=
1

2n2
r

Reχ(ω) (4.3.13)

Thus using equation (4.3.11)and (4.3.13),the change in third-order nonlinear refractive

index will be [9,16,21]:

∆n(3)

nr

= − µc

4n3
rε0

NI|µeg|2

[(~ωeg − ~ω)2 + (~Γge)2]2
× [4(~ωeg − ~ω)|µeg|2

− (µee − µgg)
2

(~ωeg)2 + (~Γge)2
[(~ωeg − ~ω)[(~ωeg)(~ωeg − ~ω)− (~Γge)

2]− (~Γge)
2(2~ωeg − ~ω)]]

(4.3.14)

Third order nonlinear absorption coefficient is related with the imaginary part of χ(3) as

follows[16,13,27];

β(3)(ω) =
ω

nr

√
µ

ε0
Imχ

(3)(ω) (4.3.15)

Comparing equ.(4.3.12) and (4.3.15) we obtain

β(3)(ω) = − ωc

2n2
r

[
µ

ε0
]3/2 NI|µeg|2

[(~ωeg − ~ω)2 + (~Γge)2]2
× [4(~Γge)|µeg|2 −

(µee − µgg)
2

(~ωeg)2 + (~Γge)2
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×[(~Γge)[(~Γge)(~ωeg − ~ω) + ~2Γgeωeg] + [(~Γge)(~ωeg − ~ω)− ~2Γ2
ge]]] (4.3.16)

Parameters we used in this research are N = 1× 1022/m3 , radius of the QD (a1 =

1nm, a2 = 2nm, a3 = 3nm), nr = 3.2 , µ = 1.26× 10−6 , and Γ = 5× 1014/s .

The transition energies that correspond to the three different quantum radius and the

relative transition dipole moments are: for a1 = 1nm (∆E1 = 1.51 × 10−19J, µeg =

−1.6 × 10−28C −m), for a2 = 2nm(∆E2 = 0.757 × 10−19J, µeg = −1.7 × 10−28C −

m) , for a3 = 3nm(∆E3 = 0.336× 10−19J, µeg = −1.8× 10−28C −m).
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4.4 graphical descriptions.

The variation of the change in third order nonlinear refractive index with respect to

three different transition energies is described in fig.4.1

Figure 4.1: The variation of the change in third order nonlinear refractive index versus
transition energy for I = 7.189× 108W/m2.

As it is observed from figure 4.1 there is a blue shift depending on an increment of

transition energy from 0.336× 10−19J to 1.5× 10−19J .
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Moreover, the variation of change in third order refractive index is studied as a

function of optical laser intensity. Fig.4.2 shows the variation of change in third order

refractive index versus photon energy for thre different optical intensities I = 1 ×

1010W/m2, 5×1010W/m2 and 10×1010W/m2 are described in figure 4.2. The result

Figure 4.2: The change in third order nonlinear refractive index versus photon energy.
For I = 1× 1010W/m2 , 5× 1010W/m2 and 10× 1010W/m2

clearly shows that the magnitude of the change in third order nonlinear refractive

index increases as the intensity of the laser source increases. That is high optical

intensity induces large nonlinearity.
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The third order nonlinear absorption coefficient is also studied as a function of the

three different transition energy(1.5× 10−19J, 0.75× 10−19J, 0.336× 10−19J), which

was graphically demonstrated in figure 4.3. As it is observed from the figure, there

Figure 4.3: The change in third order nonlinear absorption coefficient versus photon
energy, for I = 7.189× 108W/m2.

is a blue shift as the value of transition energy increases. That is as the transition

energy increases, the spectra shifts towards the higher energy. However the absolute

magnitude of the absorption coefficient decreases.
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Finally, we have studied the effect optical Intensity on third order nonlinear ab-

sorption coefficient. The graphical analysis is made for the intensities I = 1 ×

1010W/m2, 5×1010W/m2 and 10×1010W/m2, respectively. As it is seen from figure

Figure 4.4: The change in third order nonlinear absorption coefficient versus photon
energy for three different values of optical intensity.

4.4, the third order nonlinear absorption coefficient increases with an increment of

the applied optical intensity of the electromagnetic field radiation.
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Chapter 5

Conclusion

In this research work we have performed a theoretical study of third order nonlinear

absorption coefficient and refractive index changes of spherical QD as a function of

transition energy and laser source intensity. We developed third order NL absorption

coefficient and refractive index changes using density matrix formalism. The obtained

result show that as the transition energy increases from 0.336×10−19J to 1.5×10−19J

a blue shift was observed in both absorption coefficient and refractive index changes.

Moreover as the intensity of the laser source increases from 1 × 1010W/m2 to 10 ×

1010W/m2 an amplified magnitude of third order absorption coefficient and refractive

index changes resulted, that indicates high laser intensity induces strong third order

nonlinear effects, which agreed with [13]. Theoretical study can make a significant

contribution to experimental studies and we hope that this research work can have a

significant input.
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