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Abstract

The present generation scientific status in broad, generally or otherwise with specula-

tion historically linked to the open sky observations and the physical interpretations

of the phenomena, ”Astronomy of the ancient people.” The interpretations were more

philosophical while the observational tests were much constrained. But, today we are

contended with diverse but interdisciplinary sciences, as it has to be. Irrespective

of this fact, Astronomy is still the field of natural philosophy as well as the science

of discovery including, the origin, evolution and age of the universe at the other

extreme development of the science as the measure of the knowledge of human be-

ings. The transport phenomena by energy is a crucial physical process in star-forming

molecular clouds. As a molecular cloud collapses, gravitational potential energy is

converted(transformed) into thermal energy and radiated away, if this thermal energy

is not lost, the resulting pressure would halt the collapse.

Magnetic and gravitational forces can both play important roles in transforming an-

gular momentum in star-forming molecular cloud formation. During star-forming

molecular clouds, the amount of energy inflow is increasing but the amount of en-

ergy outflow is decreasing , the radius of the cloud reduces, and temperature in-

creases(heats up).

As a cloud of interstellar gas collapses to form a star, approximately half of the po-

tential energy would be transformed to thermal energy and the other half would be

radiated in the form of electromagnetic radiation. There is an overall progress in

astronomy and astrophysics, several problems ranging from observational limitations

vii
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to theoretical developments have remained unresolved. For example, the origin, evo-

lution and structure of stars, galaxies and interstellar media ISM are not yet fully

developed. However, according to the current astrophysical understanding, most of

the substances that make up our world are formed in stars. Meanwhile, the process of

star formation is inextricably tied up with the formation and early evolution of plane-

tary systems. It is generally believed that stars are formed from dust molecular clouds

made up of mostly from hydrogen gas. The questions : How these molecular clouds

MCs form into stars? What dynamical quantities responsible for star-formation?

How these dynamical systems affect or responsible for star-formation? What is the

coupling dynamics between these quantities and how do they evolve? Are some funda-

mental questions to be answered in star-formation and stellar evolution. The current

picture is that seeded magnetic field, turbulence and gravity play role in the formation

and evolution of interstellar clouds and in star formation. The existing models about

how these parameters play role are not yet concisely and concretely established. The

main objective of this project is to study the role of transport phenomena (particle-

energy) and the dynamical controlling parameters responsible for stellar evolutionary

scenario.

Key words :stellar-formation-dynamism:transport phenomena:molecular clouds
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Introduction

Understanding the formation, structure, and evolution of stars and stellar systems

remains one of the most basic pursuits of astronomical science, and is a prerequisite to

obtaining an understanding of the universe as a whole. So currently astrophysical at-

tention has increasingly focusing on the details and refinements that make the current

models of stars so quantitatively accurate. On the other hand, recent developments

in cosmology may actually have elevated that discipline to diversified research areas.

The theoretical foundations of galactic structure seem to be in a close relation to that

of stellar structure as scientific studies reveal.

The observational evidences for star origin, formation, structure and properties are

all intrinsic. Observational astronomers gather these important information from the

spectrums that come out of them. So based on the kind of spectrum that comes out

we have diverse field of observation like: Gama-ray astronomy, x-ray astronomy, radio

astronomy, etc.

What theoretical physicists(astrophysicist) do is to model the opbservational facts

based on physical principles(natural laws). To this end they model the principles in

terms of microscopic and macroscopic parametrs like temperature, pressure, density,

magnetic field. These parameters are all directly or indirectly either modeled based

on hypothesis or derived from the observational spectrum. For detailed information

1
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one can refer [1], [9] & [10]. So understanding the physics underlying the structure

formation and evolution of molecular clouds (MCs) is an important cornerstone to a

predictive statistical theory of star formation (McKee & Ostriker2007 and the refer-

ences therein [11]).

Despite the fact that, there is an overall progress in the field, several problems ranging

from observational limitations to theoretical developments have remained unresolved.

For eg. the evolution of structure and transport process and the dynamical control-

ling parameters within, from, and between stars such as variable magnetic fields,

accretion, convection, shocks, pulsations, and winds responsible for (eg. Carpenter,

Kenneth G.et. al 2009 [4]) are all not well established. The energy transport near the

surface of the Sun and other Sun-like stars dominated by convection excites sound

waves traveling throughout the stars enable to study their interiors. However, as

reviews report the interaction of these phenomena is poorly understood.

Motivated by this scientific background and rationale, we have worked on a specific

research topic: Transport Phenomena in Star Forming Molecular Clouds.

Statement of the problem

To be precise one can raiuse the following questions:Where stars are being formed?

How stars will evolve out of dusts? How molecular stars are formed? How the molecu-

lar clouds form into stars? What dynamical quantities responsible for star-formation?

How stellar interiors evolve? How these dynamical systems affect or responsible for

star-formation? What is the coupling dynamics between these quantities and how do

they evolve? Are some fundamental questions to be answered in star - formation and

evolution.
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The focus of our research is to answer partially on the mechanims of transportation in

star forming molecular clouds. In particular during star formation where we discuss

on the dynamical parameters involved in transporting matter and energy-momentum.

Objectives

1. General Objective Study transport phenomena in stellar evolution.

2. Specific Objectives

• To study the dynamic parameters in transport phenomena.

• To study the controlling mechanisms of the dynamic parameters in stellar

formation and structure.

• To analyse and derived concluding remarks on the current theoretical pic-

ture of star formation in MCs.

Method

Our approach was a pure theoretical analysis, where the relevant parameters are

derived from the Boltzmann transport equations (BTE). The main steps we have

followed were:

1. Detailed mathematical derivation and theoretical analysis that involve magne-

tohydrodynamics equations coupled with gravity where the BTE is considered.

2. Implementing boundary conditions derived the relevant dynamic parameters

and analysed
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3. The relevant particle-energy transport system is then analyzed in relation to

star-forming molecular clouds.

4. Generate theoretical data from the theoretical formula using computation. For

the numerical computation MATHEMATICA 10 is used.

5. The results is compared and analyzed with the recent literatures and obser-

vational data. Observational data is used from free science source National

Aeronautics Space and Administration (NASA), and European Space Agency

(ESA)

6. Summary and conclusion is given.

The general design of this work: In chapter one we give the basic theory of stellar

formation. and molecular cloud formation and the the governing stellar evolutionary

equations. In chapter two we give basic statistical distributions and derive basic

princioples from BTE. In chapter three we implement BTE in to analyze the relevant

particle-energy transport system in relation to conservation laws. In chapter four we

discuss the results of our work and finally in chapter five we give our summary and

concluding remarks.



Chapter 1

Basic Theory of Stellar Formation
and Structure

1.1 Introduction

Stars are the fundamental units of luminous matter in the universe and they are re-

sponsible, directly or indirectly, for most of what we see when we observe it. They

also serve as our primary tracers of the structure and evolution of the universe and its

contents. Consequently, it is of central importance in astrophysics to understand how

stars form and what determines their properties. The generally accepted view that

stars form by the gravitational condensation of diffuse matter in space is very old,

indeed almost as old as the concept of universal gravitational attraction itself, having

been suggested by Newton in 1692. Star formation occurs as a result of the action

of gravity on a wide range of scales, and different mechanisms may be important on

different scales, depending on the forces opposing gravity. On galactic scales, the

tendency of interstellar matter to condense under gravity into star-forming clouds is

counteracted by galactic tidal forces, and star formation can occur only where the gas

becomes dense enough for its self gravity to overcome these tidal forces, for example

in spiral arms. On the intermediate scales of star-forming ‘giant molecular clouds’,

5
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turbulence and magnetic fields may be the most important effects counteracting grav-

ity, and star formation may involve the dissipation of turbulence and magnetic fields.

On the small scales of individual pre stellar cloud cores, thermal pressure becomes

the most important force resisting gravity, and it sets a minimum mass that a cloud

core must have to collapse under gravity to form stars. After such a cloud core has

begun to collapse, the centrifugal force associated with its angular momentum even-

tually becomes important and may halt its contraction, leading to the formation of

a binary or multiple system of stars. When a very small central region attains stellar

density, its collapse is permanently halted by the increase of thermal pressure and

an embryonic star or ‘protostar’ forms and continues to grow in mass by accretion.

Magnetic fields may play a role in this final stage of star formation, both in mediating

gas accretion and in launching the bipolar jets that typically announce the birth of a

new star.

Understanding the structure and evolution of stars, and their observational proper-

ties, requires laws of physics involving different areas e.g. thermodynamics, nuclear

physics, electrodynamics, plasma physics.

1.2 Interstellar Dust and Sites of Star Formation

The interstellar medium(ISM) is a mixture of ∼ 90 percent gas and ∼one percent dust

by mass which permeates the space between stars. Interstellar hydrogen amounts

∼ 89 percent of the gas content in the ISM and it is found in a variety of chemical

forms, temperatures, densities which characterize different phases coexisting in the

ism. The ISM is powered by energy emitted by stars[13]. Interstellar space is filled

with various gas and dust. In certain concentration of these materials gives rise to
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nebulae (a cloud where star is born), and their locations are entirely random. Most

of the star formation in galaxies occurs in spiral arms, which are marked primarily

by their concentration of luminous young stars. Star formation occurs also near the

centers of some galaxies, including our own Milky Way galaxy. But this nuclear star

formation is often obscured by interstellar dust and its existence is inferred only from

the infrared radiation emitted by dust heated by the embedded young stars. The gas

from which stars form, whether in spiral arms or in galactic nuclei, is concentrated in

massive and dense molecular clouds whose hydrogen is nearly all in molecular form.

Some nearby molecular clouds are seen as dark clouds against the bright background

of the Milky Way because their interstellar dust absorbs the starlight from the more

distant stars. In some nearby dark clouds many faint young stars are seen, most

distinctive among which are the T Tauri stars, whose variability, close association

with the dark clouds, and relatively high luminosities for their temperatures indicate

that they are extremely young and have ages of typically only about 1 million years

(Herbig 1962; CohenandKuhi 1979). These T Tauri stars are the youngest known

visible stars, and they are pre-main-sequence stars that have not yet become hot

enough at their centers to burn hydrogen and begin the main-sequence phase of

evolution. Some of these young stars are embedded in particularly dense small dark

clouds, which are thus the most clearly identified sites of star formation[7].

1.3 Cloud formation

Since molecular clouds are transient features, it follows that they are constantly being

formed and destroyed. The rate at which interstellar gas is presently being collected

into star -forming molecular clouds in our galaxy is related to the star formation rate,
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and it can be estimated empirically from the observed star formation rate and the

efficiency of star formation in molecular clouds. The total rate of star formation in

our galaxy is of the order of 3Msun per year, and since only about few percent or less

of the mass of a typical molecular cloud converted into stars; it implies that at least

150Msun of gas per year is being turned into star - forming molecular clouds.since the

total amount of gas in our galaxy is about 5 × 109Msun, the average time required

to collect gas into giant molecular cloud must then be about 30Msun. A similar

estimate for the solar neighborhood, where the time scales are somewhat longer than

the Galactic average, yields a formation time scale for molecular clouds of about

50Myear. This estimated formation time is not much longer than the cloud life time

of 20Myear, thus the formation of molecular clouds must itself be a rather rapid

process, and cannot take many dynamical timescales. Since the timescales for the

formation, internal evolution, and destruction of molecular clouds are all of the same

order. These processes probably cannot be clearly separated in time, and they may

all go on simultaneously in different parts of a star-forming complex. Two possible

formation mechanisms for molecular clouds:

i. Cloud growth by random collisions and coalescence and

ii. Gravitational instability The first possibility, i.e., the building of large clouds

from smaller ones by random collisions and coalescence, predicts formation times

of at least 100Myear for giant molecular clouds, and therefore probably cannot be

the primary formation mechanism because this is longer than the cloud formation

timescale estimated empirically, in any case, most collisions between smaller clouds

are probably disruptive and so are not likely to result in coalescence. The second

possible mechanisms, i.e. large-scale gravitational instability and amplification effects
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in the Galactic gas layer, is almost certainly more important because it can collect

gas into large complexes on a time scale that is only about 40Myear in the solar

neighborhood, in good agreement with the estimated cloud formation time. Evidences

show that gravitational instability effects are indeed primarily responsible for both

molecular cloud formation and star formation in galaxies is provided by the fact that

star formation is observed to occur only where the surface density of gas in galactic

disks exceeds a threshold which is close to the critical value predicted for the onset of

gravitational instability. The formation of massive molecular clouds by gravitational

instability or swing amplification effects in a turbulent interstellar medium (ISM)

must also involve complex smaller-scale processes, including collisions between the

small clouds that were present in the initial medium and the building up of large

clouds by accretion processes. Collisions almost certainly play a role in the building

up of large molecular clouds, it nevertheless seems clear that purely random collisions

cannot build them fast enough and that more ordered large-scale motions are therefore

required, such as those that are involved in the formation of large cloud complexes or

spiral arm segments in galaxies. This conclusion is of course, consistent with the fact

that most of the star formation in galaxies is observed to occur in large complexes or

spiral arm segments [8].

1.4 Cloud Collapse and Fragmentation

A giant molecular cloud must begin forming stars after the cloud itself has formed,

since relatively few of the largest molecular clouds are not forming stars. Even if as

half of all molecular clouds are not forming stars. The time delay between the for-

mation of a molecular cloud and the onset of star formation in it cannot exceed the
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subsequent duration of the star formation activity, which is of the order of 10Myear.

Since it takes somewhat longer than this to build large molecular clouds, it is likely

that star formation begins in molecular cloud, star formation must begin within a

time not much longer than the dynamical or free-fall time of such a cloud. Collapse

and star formation can occur in the densest part of a cloud even if the cloud as a whole

is not collapsing, and because there is no evidence that most star -forming clouds are

undergoing any rapid overall collapse. Star formation involves the collapse of a cloud

or part of a cloud under gravity and associated fragmentation of the cloud into smaller

and smaller bound clumps; because molecular clouds typically contain many times

the ’Jeans mass’, which is the minimum mass for gravitational bound fragments. It

is possible, however, that much of the small-scale structure that eventually develops

into stars and groups of stars is present from the beginning because star -forming

clouds are assembled from gas that has much small-scale structure. Fragmentation

does not occur in star -forming clouds, at least in the sense that small-scale density

fluctuations are strongly amplified with time, is provided by the fact that one of the

few large molecular clouds that is not presently forming stars contains relatively few

small clumps compared with clouds that are forming stars. If this cloud is at an early

stage of evolution and will later evolve to a star-forming stage, this suggests that many

more small clumps will be formed in this process. For a variety of reasons, including

the effects of initial asymmetries, magnetic fields, and turbulence, the collapse of the

densest parts of molecular clouds will almost certainly not be spherical but will tend

to produce flattened or filamentary structures. Two basic types of processes could be

involved:

(1) the observed dense clumps and cloud cores might originate from small density
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fluctuations in molecular clouds that are amplified by their self-gravity; such a grav-

itational fragmentation process might, in principle, generate a hierarchy of progres-

sively smaller and denser clumps[5]. (2) Alternatively, the observed clumpy structure

might be generated by supersonic turbulent motions that compress the gas in shocks;

a hierarchy of compressed regions or clumps might be produced by a hierarchy of tur-

bulent motions. Almost certainly, both gravity and turbulence play important roles

in fragmenting molecular clouds into the observed dense star-forming clumps. GMCs

are highly clumped, so that a typical molecule is in region with a density significantly

greater than average [2].

1.5 Basic Stellar Evolutionary Equations

The basic theory of stellar structure assumes spherical symmetry, so that all variables

depend on only one thing, the distance (r) from the center of the star. On spherical

shells of radius r, all physical variables (temperature, density, pressure chemical com-

position) are assumes to be uniform. The principle variables of stellar structure are

pressure (P), temperature(T), density (ρ), luminosity through a shell at r L(r) and

mass interior to r (Mr).

For an isolated, static, spherically symmetric star, four basic laws/equations are

needed to describe structure.

All physical quantities depend on the distance from the center of the star alone.
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1.6 The Basic Equations of Stellar Structure

(1) Conservation of mass:

For a spherically symmetric star, the mass interior to some radius R is

M(r) =

∫ R

0

4πr2ρ(r)dr (1.6.1)

Where ρ is density mass, Written in terms of the differential, this is

dM

dr
= 4πr2ρ(r)dr (1.6.2)

However, over its lifetime, a star’s radius will change by many orders of magnitude,

while its mass will remain relatively constant. Moreover, the amount of nuclear

reactions occurring inside a star depends on the density and temperature not where

it is in the star. A better and more natural way to treat stellar structure is therefore

to use mass as the independent parameter, rather than r. Thus

dr

dM
=

1

4πr2ρ
(1.6.3)

This is the Lagrangian form of the equation (rather than the Eulerian form). All

the equations of stellar structure will be expressed in the Lagrangian form, and

most of the parameters will be expressed in per unit mass, rather than per unit

size or volume.

(2) Conservation of Energy (at each radius, the change in the energy flux equals

the local rate of energy of release). Consider the net energy per second passing out-

ward through a shell at radius r. If no energy is created in the shell, then the amount

of energy in equals the amount of energy out, and dL
dr

= 0. However, if additional

energy is released or absorbed within the shell, then dL
dr

will be non-zero. Let’s define



13

ε as the energy released per second by a unit mass of matter. Then

dL

dr
= 4πr2ρε (1.6.4)

Where L is the luminosity. In the Lagrangian form

dL

dr
= ε (1.6.5)

Note that ε has three components.

1. εn, the total energy created by nuclear reactions.

2. εν , the energy input into neutrinos, and

3. εg, the energy produced or lost by gravitational expansion or contraction.

Thus

dL

dr
= εn + εν + εg (1.6.6)

In general, the contribution from reactions will always be positive, while the energy

in neutrinos will always be lost from the system.

(3) Equation of Energy Transport: (relation between the energy flux and the

local gradient of temperature).

Assume that the star is in thermal equilibrium at each radius the gas is neither heating

up nor cooling down with time. The transport equation also describes how energy is

transported through the layers of the star, i.e. how the gas affects the radiation as

it travels through. Depends on local density, opacity and temperature gradient. Let

the rate of energy generation per unit mass be ε. Then:

dL = 4πr2ρdr × qdL
dr

= 4πr2ρε (1.6.7)

(4) Equation of Hydrostatic Equilibrium

The force of gravity pulls the stellar material towards the center. It is resisted by the
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pressure force due to the thermal motions of the gas molecules. The first equilibrium

condition is that these forces are in equilibrium.

Radial forces acting on the element:

Gravity inward : Fg = −Gm∆m

r2

Pressure (net force due to difference in pressure between upper and lower faces):

Fp = p(r)dS − p(r + dr)dS = p(r)dS −
[
p(r) +

dp

dr
xdr

]
dS = −dp

dr
drdS

Mass of element: 4m = ρdrdS

Applying Newton’s second law (′F = ma′)

4mr̈ = Fg + Fp = −Gm4m
r2

− dp

dr
drdS

Acceleration = 0 everywhere if star static.

Setting acceleration to zero, and substituting for ∆m:

0 = −GmρdrdS
r2

− dp

dr
drdS (1.6.8)

dp

dr
= −Gm

r2
ρ (1.6.9)

The basic equations are supplemented by

∗ Equations Of State (pressure of a gas as a function of density and temperature)

∗ Opacity (how transparent it is to radiation)

∗ Nuclear Energy Generation Rate as f(ρ, T )

Equation Of State In Stars: Interior of a star contains a mixture of ions, elec-

trons, and radiation (photons). For most stars (exception very low mass stars and

stellar remnants) the ions and electrons can be treated as an ideal gas and quantum

effects can be neglected.
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TotalpressureP = Pi + Pe + Pr = Pgas + Pr

Where

Pi is the pressure of the ions

Pe is the pressure of the electrons

Pr is the radiation pressure.

Gas Pressure: The equation of state for the ideal gas is :

Pgas = nkT

Where n is the number of particles per unit volume, T is temperature and k is the

Boltzmann constant; n = ni +ne, where ni and ne are the number of densities of ions

and electrons. In terms of the mass density ρ:

Pgas =
ρ

µmH

kT

Where mH is the mass of hydrogen and µ is the average mass of particles in units of

mH .

The ideal gas constant is:

R =
k

mH

⇒ Pgas =
R

µ
ρT

Radiation Pressure: For black body radiation

Pgas =
1

3
aT 4

Where a is the radiation constant:

a =
8π5k4

15c3h3
=

4σ

c

Gas Pressure is most important in low-mass stars.

Radiation pressure is most important in high mass stars.
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1.7 Time scales of Stellar Evolution

There are three important timescales in the life of stars.

1.7.1 Dynamical time scale

Dynamical time scale is the measure of the time scale on which a star would expand or

contract if the balance between pressure gradients and gravity was suddenly disrupted

(same as free-fall time scale):

τdyn =
characristicradius

characteristicvelocity
=

R

vesc

Escape velocity from the surface of the star is given by

vesc =

√
2GM

R

G is gravitational constant.

τdyn =

√
R3

2GM
(1.7.1)

In terms of mean density, then becomes

τdyn =
1√
Gρ̄

(1.7.2)

Where ρ̄ is the mean density of the star (molecular cloud).

1.7.2 Kelvin-Helmholtz Time scale

Thermal timescale is the time required for sun to radiate all its reservoirs of thermal

energy.

τKH =
U

L
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Virial theorem: the thermal energy U is roughly equal to the gravitational potential

energy

τKH =
GM2

RL

Important timescale: determines how quickly a star contracts before nuclear fusion

starts-i.e. sets roughly the pre-main-sequence lifetime. Most stars, most of the time in

hydrostatic and thermal equilibrium, with slow changes in structure and composition

occurring on the (long) time scale τnuc as fusion occurs.

•Dynamical time scale: timescale of collapsing star, supernova

•Thermal/kelvin-Helmholtz Timescale of star before nuclear fusion starts, pre-

main-sequence lifetime.



Chapter 2

Statistical Distributions and
Boltzmann Transport Equations

2.1 Fundamental Principles and Statistical Dis-

tributions

The phase space (higher-dimension space) includes the momentum -distribution of

particles which make up the star as well as their location. The three cartesian co-

ordinates represent the spatial volume and the three cartesian coordinates represent

the components of the velocity of the particles. The volume of the space is

dV = dx1dx2dx3dv1dv2dv3 (2.1.1)

If the number of particles in small volume dV is N, then the phase density is given

by

f(x1, x2, x3, v1, v2, v3)dV = N (2.1.2)

A macro state of a system is said to be specified when the number of particles in

each phase space volume dV is specified. It the phase density is specified everywhere,

the the macro state of the system is specified. In addition to the number of particles

in each volume, it makes a difference which particles are in which volumes. If the

18
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specification of individual particles can be accomplished, then it can be said that

a micro state is specified. In a system which is continually rearranging itself by

collisions, the most probable macro state becomes the most likely state in which to

find the system. A system which is in its most probable macro state is said to be in

statistical equilibrium. If the total number of particles N to be arranged sequentially

among m volumes, then the total number of sequences is simply N!. However, within

each volume (the ith volume), Ni particles Ni! indistinguishable sequences which must

be removed when the allowed number of particles is counted. Thus, the total number

of allowed micro states in a given macro state is

W =
N !∏
i=1Ni!

(2.1.3)

The particle distribution of the most probable macro state is unique and is the equi-

librium macro state. A system which is reached its equilibrium macro state is in

strict thermodynamic equilibrium. The statistical distribution of micro state verses

macro state given by equation (2.1.3) is the Maxwell-Boltzmann statistics. The phase

space volumes are indeed differential and arbitrarily small. There is a limit to how

well the position and momentum (velocity, if the mass is known) of any particle can

be determined. Within that phase space volumes, particles are indistinguishable and

the limit is the Heisenberg uncertainty principle and it is stated as

∆p∆x ≥ h

2π
= ~, (2.1.4)

the differential cell volumes into compartments of size h3 so that the total number of

compartments

n =
dx1dx2dx3dp1dp2dp3

h3
(2.1.5)
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the total number of micro state per macro state is

W =
∏
i

Wi (2.1.6)

Where Wi is the number of micro states per cell of phase space which can be expressed

in terms of the number of particles Ni in cell.

2.2 Statistical Equilibrium For A Gas

To find the macro state of a steady equilibrium for a gas, we follow basically the

same procedures regardless of the statistics of the gas. In general, we wish to find

that macro state for which the number of microstates is a maximum. So by varying

the number of particles in a cell volume we will search for: dW = 0. Or equivalently

d lnW = 0, since lnW is a monotonic function of W [14]. The use of logarithms is

that it makes easier to deal with the factorials through the use of Stirring’s formula

for the logarithm of a factorial of a large number.

In general we have three statistical distributions where one is classical and the other

two are quantum: Maxwell-Boltzmann (MB) for classical gases, Bose-Enistein (BE)

for quantum gases of family Bosons and for quantum gases of family Fermions.

The maximum macro state W of the distributions are:

lnWMB = lnN !−
∑
i

ln(Ni!) Maxwell-Boltzmann (2.2.1)

lnWBE =
∑
i

ln(n+Ni − 1)!− lnNi!− ln(n− 1)! Bose-Enistein (2.2.2)

lnWFD =
∑
i

ln(2n)!− (2n−Ni)!− lnNi1 Fermi-Dirac (2.2.3)

Imposing the condition for the most probable macro state we will find the additional

constraints, arising from conservation laws (particle number and energy), on the sys-

tem which have not been directly incorporated into these equations. These can be
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achieved by taking the variations of the total particle density and total energy of the

system given as:

δ

[∑
i

Ni

]
= δN = 0 (2.2.4)

δ

[∑
i

WiNi

]
=

∑
i

WiδNi = 0 (2.2.5)

Where wi is the energy of an individual particle. These additional constraints rep-

resent new information about the system. One of the standard methods of solving

these equations in order to extract the new information is the method of Lagrange

multipliers. Since equations (2.2.4 & 2.2.5)represent quantities which are zero we can

multiply them by arbitrary constants (say βi) and add constants to them (say αi )

equations 2.2.1 - 2.2.3 to get

MB :
∑
i

lnNi − lnα1 + ln β1WiδNi = 0 (2.2.6)

BE :
∑
i

{ln
[

(n+Ni)

Ni

]
− α2− β2Wi}δNi = 0 (2.2.7)

FD :
∑
i

{ln
[

2n−Ni

Ni

]
− lnα3− β3Wi}δNi = 0 (2.2.8)

The solutions of these equations are respectively given as:

MB : Ni/α1 = 2n/Ni (2.2.9)

BE : n/Ni = α2 exp(Wiβ2)− 1 (2.2.10)

FD : 2n/Ni = α3 exp(Wiβ3) + 1 (2.2.11)

All that remains is to develop a physical interpretation of the undetermined Param-

eters αj andβj . For example let us look at Maxwell-Boltzmann statistics how this

can be done.
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Then,

Ni = α1e
−Wi/(kT ) (2.2.12)

If the cell volumes of phase space are not all the same size, it may be necessary to

weigh the number of particles to adjust for the different cell volumes. We call these

weight functions gi. Then,

N =
∑
i

giNi = αi
∑
i

gie
−Wi/(kT ) ≡ α1U(T ) (2.2.13)

The parameter U(T ) is called the partition function and it depends on the composition

of the gas and the parameter T alone. Now if the total energy of the gas is E , then,

E =
∑
i

giWiNi

=
∑
i

giWiα1e
−wi/(kT )

=

[∑
iWigi1Nie

−Wi/(KT )
]

U(T )
(2.2.14)

= NKT

(
l.nU

l.nT

)
For a free particle like that found in a monatomic gas, the partition function U is:

U(T ) =
(2πmkT )2/3v

h3
(2.2.15)

Where, V is the specific volume of the gas, m is the mass of the particle, and T is

the kinetic temperature.

Now using Eqs. 2.2.14 & 2.2.15 we obtain the familiar classical energy of gases given

as:

E =
3

2
NkT (2.2.16)
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This is only correct if, T is the kinetic temperature. Thus we arrive at a self-consistent

solution if the parameter T is to be identified with the kinetic temperature. The

situation for a photon gas in the presence of material particles is not simple, because

the matter acts as a source and sinks for photons. Now we can no longer apply the

constraint dN = 0 . This is equivalent to adding lnα2 = 0 (α2 = 1) to the equations

of condition. It is also possible to show in a similar fashion that β2 = 1/(KT ) in

Bose-Einstein statics so that the appropriate solution to eq. 2.2.10 is

Ni

n
=

1

e(hv/KT ) − 1
(2.2.17)

Where the photon energy wi has been replaced by hv in a volume h3.

The distinguishability condition of this statistics looks for the number of phase space

given by

n =
2

h3
dx1dx2dx3dp1dp2dp3 (2.2.18)

We can replace the rectangular form of the momentum volume,dp1dp2dp3 , by It’s

spherical counterpart 4πp2dp and remembering that the momentum of a photon is,

hv/c , we get:

dN

v
=

8πv3

c3 1

e(
hv
c )
− 1

(2.2.19)

Here we have replace Ni with dN . This assumes that the number of particles in any

phase space volume is small compared to the total number of particles. Since the

energy per unit volume dEv is just hvdN/V , we get the relation known as Planck’s

law or sometimes as the black body law:

dEv =
8πv2

c3

1

e(
hv
KT ) − 1

dv =
4π

c
Bv(T ) (2.2.20)

The parameter Bv(T ) is known as the Planck function. This, then, is the law for

photons which are in strict thermodynamic equilibrium. If we were to consider the
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Bose-Einstein result for particles and let the number of Heisenberg compartments

be much larger than the number of particles in any volume, we would recover the

result for Maxwell-Boltzmann statistics. This is further justification for using the

Maxwell-Boltzmann result for ordinary gases.

2.2.1 Thermodynamic Equilibrium - Strict and Local

In stars, as throughout the universe, photons outnumber material particles by a large

margin and continually undergo interactions with matter. Indeed, it is the interplay

between the photon gas and the matter. If both components of the gas(photons and

particles) are in statistical equilibrium, then we should expect the distribution of the

photons to be given by Planck’s law and the distribution of particle energies to be

given by the Maxwell-Boltzmann statistics. In some cases, when the density of mat-

ter becomes very high and the various cells of phase space become filled, it may be

necessary to use Fermi-Dirac statistics to describe some aspects of the matter. When

both the photon and the material matter components of the gas are in statistical

equilibrium with each other, we say that the gas is in strict thermodynamic equi-

librium. If the photons depart from their statistical equilibrium (i.e., from Planck’s

law), but the material matter continues to follow Maxwell-Boltzmann Statistics (i.e.,

to behave as if it were still in thermodynamic equilibrium), we say that the gas is in

local thermodynamic equilibrium (LTE)[14]and[10].
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2.3 Boltzmann Transport Equation (BTE)

In stellar astrophysical, modeling gas flows around stars or in interstellar space, the

ideal gas assumption is very much accurate. Therefore, in our analysis of the stel-

lar evolution including magnetic field dynamism we apply the classical Boltzmann

statistical distributions and derive the dynamic equations from Boltzmann transport

equations.

The Boltzmann transport equation in six dimensional position-velocity phase space

basically expresses the change in the phase density within a differential volume, in

terms of the flow through these faces, and the creation or destruction of particles

within that volume. In the canonical position-momentum coordinate system, the

Boltzmann transport equation (BTE) is given by

3∑
i=1

(ẋi
∂f

∂xi
+ ṗi

∂f

∂pi
) +

∂f

∂t
= S - BTE (2.3.1)

where f ≡ f(x, ẋ; t) is the number densty distribution function, S is the rate of

particle creation/destruction, ẋi = ∂xi
∂t

and ṗi = ∂pi
∂t

This equation can be recast in vector notation as

∂f

∂t
+ ~v ·

−→
∇f + ~F · ~∇pf = S (2.3.2)

where ~F is force and ~∇p is the momentum gradient.

In conservative field system since ~F = −~∇Φ where Φ is a scalar potential (eg. gravi-

tational scalar potential), then, BTE will be given as

∂f

∂t
+ ~v.∇f − 1

m
∇Φ.∇vf = S (2.3.3)

The potential gradient ∇Φ has replaced the momentum time derivative while ∇v is a

gradient with respect to velocity. The quantity m is the mass of a typical particle. It
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is also not unusual to find the BTE written in terms of the total stokes time derivative

D

Dt
=

∂

∂t
+ ~v · ∇ (2.3.4)

where ~v is the flow velocity and ∂
∂t

is the Eulerian time derivative.

If we take ~v to be a six-dimensional ’velocity’ and ∇ to be a six-dimensional gradient

the BTE becomes

Df

Dt
= S (2.3.5)

2.4 Boltzmann Transport Equation and Liouville’s

theorem

If the creation/destruction rate of particles is zero (S = 0), we will obtain the homo-

geneous Boltzmann Transport Equation (BTE) given as

∂f

∂t
+ ~v · ∇f − 1

m
∇Φ.∇vf = 0 The Liouville’s theorem (2.4.1)

The physical interpretation of Liouville Equation is the 6N-dimensional analogue of

the equation of continuity of an incompressible fluid. It implies that the phase points

of the ensemble are neither created nor destroyed.

In Astrophysics it is called the Vlasov equation, or sometimes the Collision less Boltz-

mann Equation. It is used to describe the evolution of a large number of collision less

particles moving in a gravitational potential.

In the case of classical statistical mechanics, the number of particles N is very large,

(of the order of Avogadro’s number, for a laboratory-scale system). Setting ∂ρ
∂t

= 0

gives an equation for the stationary states of the system and can be used to find

the density of microstates accessible in a given statistical ensemble. For eg. in an
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equilibrium of the Maxwell-Boltzmann statistical distribution ρ is given as

ρ ∝ eH/(kBT )

where H is the Hamiltonian, T is the temperature and kB is the Boltzmann constant.

2.5 The Moments of BTE and Conservation Laws

The equations of fluid dynamics can b e derived by calculating moments of the Boltz-

mann equation for quantities that are conserved in collisions of the particles.

The nth moment of a function f with primary variable x is

Mn [f(x)] =

∫
xnf(x)dx (2.5.1)

2.5.1 The zeroth moment of BTE and the Continuity Equa-
tion

When n = 0 as in eq. 2.5.1 we derive the local spatial density given as

ρ = m

∫ +∞

−∞
f(x,~v)d~v (2.5.2)

The related BTE is∫ +∞

−∞

(
∂f

∂t
+

3∑
i=1

vi
∂f

∂xi
+

3∑
i=1

v̇i
∂f

∂vi

)
d~vi =

∫ +∞

−∞
Sd~v (2.5.3)

The integral of the creation rate S over all velocity space becomes the creation rate

for particles in physical space, which we call =.

In the conservative field system (eq.2.3.3), the zeroth moment of BTE is given as

∂

∂t

∫ +∞

−∞
fd~v +

∫ +∞

−∞
~v · ∇fd~v −

∫ +∞

−∞

~∇Φ

m
· ~∇vfd~v∇ = = (2.5.4)
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In view of eq. 2.5.2, the first integral of the left hand side of eq.2.5.4 is given by

∂

∂t

∫ +∞

−∞
fd~v =

1

m

∂ρ

∂t
(2.5.5)

The second integral of the left hand side of eq. 2.5.4 is simplified to yield (See

appendix A.1) ∫ +∞

−∞
~v · ~∇fd~v = ~∇ ·

∫ +∞

−∞
~vfd~v (2.5.6)

Now using eqs. 2.5.3 - 2.5.6

∂ρ

∂t
+m~∇ ·

∫ +∞

−∞
~vfd~v − ~∇Φ ·

∫ +∞

−∞

~∇vfd~v = =m (2.5.7)

For realistic physical system with finite velocity the second integral of the left hand

side equation has to vanish. Then,

∂ρ

∂t
+m~∇ ·

∫ +∞

−∞
~vfd~v = =m (2.5.8)

Using the normalized mean flow velocity ~u , a measure of the mean flow rate of the

material defined as

~u =

∫ +∞
−∞ ~vf(~v)d~v∫ +∞
−∞ f(~v)d~v

(2.5.9)

the zeroth moment of BTE yields the continuity equation

∂ρ

∂t
+ ~∇ · (ρ~u) = =m (2.5.10)

In the absence of creation field, the continuity equation gives the familar local matter

conservation.
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2.5.2 The First Moment of BTE and the Euler-Lagrange
Equations of Hydrodynamic Flow

Multiplying the BTE by the local particle velocity ~v and integrating over all velocity

space will produce momentum like moments given as∫ +∞

−∞
~v
∂f

∂t
d~v +

∫ +∞

−∞
~v · ~∇fd~v +

∫ +∞

−∞
(~̇v · ~∇vf)d~v =

∫ +∞

−∞
~vSd~v (2.5.11)

The integral of this equation are not a simple scalars or vectors, but are the vector

outer products called tensors.

Using the expressions of local spatial density ρ and the mean velocity ~u, the first

integral of the left hand side of this equation is given by (See appendix A.2.1.)∫ +∞

−∞
~v
∂f

∂t
d~v = n

∂~u

∂t
− (~u.~∇n+ ~∇n.~u)~u+

∫ +∞

−∞
~uSd~v (2.5.12)

where n = ρ/m, the number density.

The second integral of the left hand side of this moment like equation as discussed

earlier is ∫ +∞

−∞
~v · ~∇fd~v =

∫ +∞

−∞
~v(~v · ~∇f)d~v (2.5.13)

The third integral of the left hand side of eq. 2.5.11 is as worked out in appendix

A.2.2 given by ∫ +∞

−∞
~v(~v · ~∇vf)d~v = n

~∇Φ

m
(2.5.14)

Using eqs. 2.5.12 - 2.5.14 in eq. 2.5.11 we obtain

n
∂~u

∂t
− (~u.~∇n+ ~∇n.~u)~u+

∫ +∞

−∞
~v(~∇.(~vf)d~v + n

~∇Φ

m
=

∫ +∞

−∞
S(~v − ~u)d~v (2.5.15)

Defining the velocity tensor ←→u as

←→u =

∫ +∞
−∞ ~v~vf(~v)d~v∫ +∞
−∞ f(~v)d~v

(2.5.16)
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Now usung eq. 2.5.15 & eq. 2.5.16 we find

ρ
∂u

∂t
+ ρ(~u.~∇)~u+ ~∇.(ρ(~~u− ~u~u)) + n~∇Φ =

∫ +∞

−∞
mS(~v − ~u)d~v (2.5.17)

The quantity ρ(~u−~u~u) is called the pressure tensor. Then we define the mean pressure

tensor of f(v) as ←→p equal to

←→p =

∫ +∞
−∞ f(v)(~v − ~u)(~v − ~u)d~v∫ +∞

−∞ f(v)d~v
(2.5.18)

It describes the different between the local flow ~v and the mean flow ~u.

Finally the first velocity moment of the BTE is given by

∂~u

∂t
+ (~u.∇)~u = −∇Φ− 1

ρ
∇P +

1

ρ

∫ +∞

−∞
mS(~v − ~u)d~v (2.5.19)

This set of vector equations are called Euler-Lagrange equations of hydrody-

namic flow.

On the other hand the assumption of excessive collisions where ~v is considered

to be random and the assumption S to be symmetrical implies the integral over all

velocity space vanishes. Then Euler-Lagrange equations of hydrodynamic flow of

BTE is given by

∂~u

∂t
+ (~u.∇)~u = −∇Φ− ∇P

ρ
(2.5.20)

Under the assumption of a nearly isotropic velocity field, P will be P(ρ) and an

expression known as an equation of state. From equation (3.5.14)the left-hand side

is zero. The Euler-Lagrange equations of hydrodynamic flow is

∇P = −ρ∇Φ (2.5.21)
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Which is known as the equation of hydrostatic equilibrium. This equation is usu-

ally an expression of the conservation of linear momentum. The zeroth moment

of the BTE results in the conservation of matter, where as the first velocity moment

equations which represent the conservation of linear momentum. The second velocity

moment represent an expression for the conservation of energy.

2.6 Boltzmann Transport Equation and the Virial

Theorem

The Euler-Lagrange equations of hydrodynamic flow are vector equations and repre-

sent vectors. We can obtain a scalar result by taking the scalar product of a position

vector with the flow equations and integrating over all space with the system. The

origin of the position vector is important only in the interpretation of some of the

terms which will arise in the expression.

So now the spatial first moment of the Euler-Lagrange equations of hydrodynamic

flow eq. 2.5.20. ∫
V

~r ·
(
∂~u

∂t
+ (~u.∇)~u+∇Φ +

∇P
ρ

)
dV = 0 (2.6.1)

Working out this equation (See appendix A.3) gives us

1

2

d2I

dt2
− 2T − 2U + Ω = 0 (2.6.2)

Where I is the moment of inertia, T is kinetic energy in bulk motion and U is the

internal energy and Ω is the total potential energy of the system.

This equation 2.6.2 is known as the Non-averaged form of the virial theorem.

For a system in equilibrium, the time average of eq.2.6.2 removes the accelerative
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changes of the moment of inertia((< d2I
dt2

>= 0)) so that

2 < T > +2 < U > + < Ω >= 0 (2.6.3)

The theorem which permits is the Ergodic theorem.

2.7 Stellar Evolution, Hydrodynamics and Mag-

netohydrodynamics

2.7.1 Hydrodynamics

Astrophysical fluids are complex, with a number of different components: neutral

atoms and molecules, ions, dust grains (often charged), and cosmic rays. The mag-

netic fields generally ties all these fluids together except where gradients are very

steep, as in shocks. It is the study of the motion of the fluids (liquids and gas).

Although fluids are made of particles, it is sufficient to treat a fluid as a continuous

substance in many situations. Moreover, in the fluid approximation, we treat the

ensemble of particles as a single fluid. To describe an ensemble of particles precisely

we need to know the position and velocity of each particle [2]. It is the study of fluid

flow (gas and liquids) in the motion. To describe an ensemble of particles precisely

we need to the position and velocity of each particle. Although fluids are made of

particles. If the number of particles is large enough to perform statistics then it makes

sense to describe the ensemble with a distribution function n.

δN = N(r, u, t)δr3δu3 (2.7.1)

Where δN is the number of particles in a small volume in position/velocity space at

time t, r is the space coordinate (a vector with as many components as the space
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has dimensions ) and u is the velocity. A small volume in physical space (i.e., δr3 =

δxδyδz) can contain particles with completely different velocities.

2.8 The Hydrodynamic Equation

There are three equations of hydrodynamics which come from the conservation of

momentum, mass, and energy laws. They are partial differential equations (PDEs)

containing the time derivatives of the velocity and the two thermodynamics variables.

There are three equations of hydrodynamics equations; which come from conservation

of (mass, momentum, and energy)laws[14].

2.8.1 The Continuity Equation

The first equation of hydrodynamics is that of continuity, or the conservation of mass

stated as, the rate at which mass accumulates in an element of volume is equal to the

net rate at which it flows in through that elements boundaries. The rate of mass flow

through any unit element of area ρ~u.n̂, where ρ, is the density, ~u is the velocity and

n̂ is the unit normal to the surface. Using vector calculus, the net mass flow from an

infinitesimal element of unit volume is given by ∇.(ρ~u) , and the contained mass is

ρ, so that the equation of continuity is

∂ρ

∂t
+∇.(ρ~u) = 0 (2.8.1)

∂

∂t

∫
ρdV = −

∫
S

ρ~u.~ndS = −
∫
V

∇.(ρ~u)dV (2.8.2)

This gives us the equation of continuity which describes the conservation of mass in

a fluid volume:

∂ρ

∂t
+∇.(ρ~u) = 0 (2.8.3)

If ρ is constant the fluid is called incompressible, and ∇.~u = 0
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2.8.2 Conservation of Momentum

The second equation of hydrodynamics is equivalent to F = ma, or the conservation

of momentum. The momentum density of the gas is ρū. As from the continuity

equation above, the change of the total momentum in volume V is determined by

how much momentum is flowing in or out and by any external force acting on the

volume of gas, which can be expressed as pressure force-P I acting on each surface of

V

∂

∂t

∫
S

ρ~udV = −
∫
S

ρ~u~u.~ndS −
∫
S

P I.~ndS (2.8.4)

Where we introduce the unit tensor I, P is the pressure. Using Gauss’s theorem, we

obtain:

∂

∂t

∫
ρ~udV = −

∫
V

∇.(ρ~u~u+ P I)dV (2.8.5)

which leads to:

∂(ρ~u)

∂t
+∇.(ρ~u~u) +∇P = 0 (2.8.6)

equation (3.2.5) can be rewritten as:

~u
∂ρ

∂t
+ ρ

∂~u

∂t
+ ~u∇.(ρ~u) + ρ~u.∇~u+∇P = 0 (2.8.7)

using equation(3.2.1) one obtains:

ρ
∂~u

∂t
+ ρ~u.∇~u+∇P = 0 (2.8.8)

In this form it is called Euler’s equation. Viscous stresses and gravity and other body

forces may be readily added, if pressure -they are ”sources terms ” for momentum,

in analogy with the sources of mass one might add to the continuity equation (3.2.8)

may be rewritten, after some manipulation and the use of equation (3.2.1), in the
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form

∂

∂t
(ρ~u) +∇.(ρ~u~u+ P ) = 0 (2.8.9)

Where ~u~u is a dyad and P is the stress tensor. For in viscid fluids P is the scalar

pressure p multiplied by a unit tensor, equation (3.2.5) is written in a form analogous

to equation (3.2.1), so that it is obviously a conservation law for the momentum

density ρ~u; (ρ~u~u + P ) is the momentum flux density tensor. There generally is

no independent hydrodynamic equation derivable form the conservation of angular

momentum. Taking the cross product of a radius vector with the momentum equation

would give an equation for the conservation of angular momentum [8].

2.8.3 Conservation of Energy

an element of gas has two forms of energy : an amount 1
2
ρv2 of kinetic energy per

unit volume and internal ( thermal )energy ρε per unit volume, where ε, the internal

energy per unit mass, depends on the temperature T of the gas. According to the

equipartition theorem of elementary kinetic theory, each degree of freedom of each

gas particle is assigned a mean energy 1
2
kT . For a monatomic gas the only degrees of

freedom are the three orthogonal directions of translational motion and

ε =
3kT

2µmH

The energy conservation equation becomes :

∂

∂t

∫
v

ρ(ε+
1

2
v2)dv = −

∫
s

∇(ρ(ε+
1

2
v2 + p)dv) = 0 (2.8.10)

∂

∂t

∫
v

ρ(ε+
1

2
v2)dv +

∫
s

∇.(ρ(ε+
1

2
+ p)dv) = 0
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The conservation laws of mass, momentum and energy then become

∇.(ρv) = 0 (2.8.11)

ρ(v.∇)v +∇P = f (2.8.12)

∇.[( 1

2ρ
v2 + ρε+ P )v] = f.v (2.8.13)

Substituting the first of these equations in the third implies

f.v = ρv.∇(
1

2
v2 + ε+

P

ρ
)

f = ρv(v.∇)v +∇P =

ρv.∇(
1

2
v2 + ρε

P

ρ
) = f.v (2.8.14)

While equation (2.2.8), the Euler equation, shows that

f.v = ρv(v.∇)v + v.∇P = ρv.∇(
1

2
v2) + v.∇P (2.8.15)

∇.[(1

2
ρv2 + ρε+ P )v] = (ρ(v.∇)v +∇P ).v = ρv(v.∇)v + v.∇P

∇.[(1

2
ρv2 + ρε+ P )v] = ρv(v.∇)v + v.∇P∇.[(1

2
v2 + ε+

P

ρ
)v] = ρv(v.∇)v + v.∇P

Where (v.∇)v = 1
2
v2 − v ×∇× v

ρv.∇(
1

2
v2) + v.∇P = ρv.∇(

v2

2
+ ε+

P

ρ
)

ρv.∇(
v2

2
) + v.∇P = ρv.∇(

v2

2
) + ρv.∇(ε+

P

ρ
)

v.∇P = ρv.∇(ε+
P

ρ
)
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hence, eliminating f.v from equation (2.2.10) we get

v.∇P = ρv.∇(ε+
P

ρ
)

Expanding ∇(P
ρ

) and rearranging

v.[∇ε+ P∇(
1

ρ
) = 0

By the definition of the operator, this means that,if we travel a small distance along

a streamline of the gas,i.e.,if we follow the velocity v, the increments dε and d(1
ρ
) in

ε and 1
ρ

must be related by

dε+ pd(
1

ρ
) = 0

But from the expression for the internal energy

ε =
3

2

kT

µmH

And the perfect gas law is given by

P =
ρkT

µmH

This requires that

d(
3kT

2µmH

) +
ρkT

µmH

d(
1

ρ
) = 0

3kT

2µmH

dT +
ρkT

µmH

= 0

Where 3
2
d(1

ρ
) = − 1

ρ2
dρ Which is equivalent to

3

2
dT − ρT

ρ2
dρ = 0

3

2
dT − T

ρ
dρ = 0
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3

2
dT =

T

ρ
dρ

3

2

1

T
dT − 1

ρ
dρ = 0∫

3

2

dT

T
−
∫
dρ

ρ
= 0

3

2
ln(T )− ln(ρ) = 0

ln(T
3
2 − ρ) = 0

ln(
T

3
2

ρ
) = 0

T
3
2

ρ
= constant

ρ−1T
3
2 = constant

Finally, we get

Pρ
−5
3 (2.8.16)

2.9 Magnetohydrodynamics

The MHDEs are essentially an extension of the HDEs with one extra variable: the

magnetic field B. There is one extra term in the momentum equation and a new

partial differential equations (PDEs) called the induction equation.

2.9.1 Magnetohydrodynamics

Magnetohydrodynamics (MHD) (magneto fluid dynamics or hydromagnetics) is the

study of the magnetic properties of electrically conducting fluids. Examples of such

magneto-fluids include plasmas, liquid metals, and salt water or electrolytes. The

field of MHD was initiated by Hannes Alfvèn. For which he received the Nobel Prize
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in Physics in 1970. The set of equations that describe MHD are a combination of the

Naiver-Stokes equations of fluid dynamics and Maxwell’s equations. MHD applied to

astrophysics and cosmology since of baryonic matter content of the universe is made

up of plasma, including stars, interstellar medium and so on. Many astrophysical

systems are not in local thermal equilibrium, and therefore require an additional

kinematic treatment to describe all the phenomena within the system where the

dynamic cause is contained in Lorentz force that involves both electric and magnetic

fields. So MHD equations (MHDEs) are essentially an extension of the hydrodynamic

equations with one extra variable, the magnetic field B as primary variable.

2.10 Magnetohydrodynamic Equations and Con-

servation Laws

2.10.1 Magnetohydrodynamic Equations

The set of equations that describe MHD are a combination of the Naiver-Stokes equa-

tions of fluid dynamics and Maxwell’s equations.

MHD treats the large-scale dynamics of an ionized gas, i.e. an electrically conducting

fluid, with a magnetic field ~B throughout. So it is an extension of HD to include the

magnetic stresses. We need, then, to write down the appropriate induction equation

for the time variation of ~B. The essential feature of an electrically conducting fluid

is its inability to sustain a significant electric field in its own moving frame of refer-

ence, resulting in the magnetic field being carried along bodily with the moving fluid.

Magnetic fields both simplify and complicate astrophysical fluid flows: they simplify

them by tying the different components of the fluids together, and they complicate

them by introducing an array of new phenomena. A full description of the behavior
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of a plasma requires determining the distribution function of each component under

the influence of Maxwell’s equations. MHD simplifies this problem enormously by

assuming that the time variations are slow. As a result, the displacement current

(1/c)∂E/∂t can be neglected.

FLor = q(E + v ×B) (2.10.1)

So the well known Lorentz force per univt volume [] fromelectrodynamics becomes

f =
1

µ0

(
(B.∇)B−∇B 2

)
(2.10.2)

individual particle. So, the total force per unit volume (also called Lorentz force) is,

FLor = Fi + Fe (2.10.3)

= (niqi + neqe)E + (niqi
vi
c

+ neqe
ve
c

)B

Where Fi is the total force on the ions, ni, qi and vi are the number density, charge

and mean velocity of ions and the quantities with subscript e refer to electrons. Here

we have assumed that all ions have the same charge and there are no neutral particles.

Now letε (niqi+neqe)
neqe

is the fractional charge imbalance ratio as well as the drift velocity

as the mean velocity of the electrons relative to the fluid, i.e. vdrift ≡ (ve − u). Since

the ions carry almost all of the momentum, fluid velocity u ' vi. Hence, equation

(2.6.14) becomes [1]

FLor = neqe

[
εE + (ε

u

c
+
vdrift
c

)×B
]

(2.10.4)

Note: that in the Earth we need ε < 10−36. So electric field does not over Come gravity

and cause it to explode and that in almost all astrophysical content ε is negligible.
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Hence, we drop terms with ε(despite the fact that normally vdrift � u). Now let us

introduce electric current J = neqevdrift to simplify the Lorentz force to[12]

FLor = neqe

[
εE + (ε

u

c
+
vdrift
c

)
]
×B (2.10.5)

= neqeεE +
neqeεu

c
+
neqevdrift

c
×B

= (neqeεE +
neqeεu

c
+
J

c
)×B

= (0 + 0 +
J

c
)×B

Because ε is negligible.

FLor =
J

c
×B (2.10.6)

However, the origin of this relative velocity of electrons to the ions comes essentially

from the difference in force on the two species. So the electrons experience a force

relative to the fluid given by[6]: FLor = Fi + Fe

Fi − FLor = neqe(E +
u

c
×B) (2.10.7)

This force will accelerate the electrons relative to the ions. And in fluids with normal

conductivity properties the drift velocity (and therefore current) established will be

proportional to this acceleration. This gives Ohm’s law.

J = σ(E +
u

c
×B) (2.10.8)

Where, σ is conductivity of the fluid which depends on mean free path, temperature,

etc. Now remember Maxwell’s equations,

∇ · E = 4πρe (2.10.9)

∇ ·B = 0 (2.10.10)
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∇× E =
1

c

∂

∂t
B (2.10.11)

Where,ρe is the net charge density. But if ∇·B = 0 is satisfied at some point in time,

∇× E = 1
c
∂
∂t
B ensures that it is satisfied at all other times, since the divergence of

curl of any vector fluid is zero. In standard MHD we make an approximation that

the charge density ρe is small, also the displacement current can be neglected, since

4πJ � ∂E
∂t

so from Ohm’s law we get

∇×B =
4π

c
J +

1

c

∂

∂t
E (2.10.12)

J = σ(E +
u

c
×B)

J
σ

= E +
u

c
×B

⇒ E =
J

σ
− (

u

c
)×B

∇× E = −1

c

∂

∂t
B

∇× J
σ
− (u

c
)×B = −1

c

∂

∂t
B

⇒ ∂
∂t
B = −c(∇× J

σ
− (

u

c
)×B)
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From equation bellow we get the relation between J and B

∂
∂t
B = −∇× (∇×B − cJ

σ
) (2.10.13)

∇×B = 4π
c
J + 1

c
∂
∂t
E

∇×B =
4π

c
J

c(∇×B) = 4πJ

J =
c

4π
∇×B

∂
∂t
B = −∇× (∇×B − cJ

σ
∂
∂t
B = −∇× (u×B − c

σ
(
c

4π
∇×B))

∂
∂t
B = −∇× (u×B − c2

4πσ
∇×B)

∂
∂t
B = ∇× (u×B − η∇×B)

∂
∂t
B = −∇× (u×B − (∇(∇×B))

∂
∂t
B = ∇× (∇×B − η∇×B)

∂

∂t
B = ∇× (u×B − η(∇× (∇×B)) (2.10.14)

Where η = c2

4πσ
is magnetic diffusivity with units cm/s. Also substituting for J in to

equation (2.8.5), Lorentz force per unit volume becomes,

FLor =
J

c
×B (2.10.15)

FLor =
c

4π

1

c
∇×B ×B (2.10.16)

FLor =
c

4π
∇ · 1

c
×B ×B (2.10.17)

FLor =
1

4π
(∇×B)×B (2.10.18)
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Thus E and J have been eliminated. Comparing this with the original hydrodynamic

equations, here we have one additional variable B, one additional induction equation

and one additional term equation(2.8.17) in the momentum equation. But, if we

assume the electrical conductivity σ is uniform, and using the constraint ∇ · B = 0

and the vector identity, ∇×∇× A = A(∇ · A)−∇2A becomes,

∂
∂t
B = ∇× (u×B − η(∇× (∇×B)) (2.10.19)

∂
∂t
B = ∇× (u×B)− η

[
B(∇ ·B)−∇2B

]
(2.10.20)

∂
∂t
B = ∇(u×B) + η∇2B (2.10.21)

∂
∂t
B = ∇(u×B) +

1

4πσ
∇2B (2.10.22)

Where σ = 1
4πσ

. Equation (2.4.21) is called magnetic field evolution equation or

induction equation. This equation, together with the fluid mass, momentum and

energy equations form a close set of equations for the MHD state variables (r,V, p,B).

Which tells us:

• How the magnetic field will evolve in time. As B changes, the Lorentz force pro-

vides a back reaction on the plasma producing - a force that modifies the velocity[14].

• It also suggests that the motion of a conducting liquid in an applied magnetic field

will induce a magnetic field in the medium.



Chapter 3

Transport Phenomena In
Star-Forming Molecular Clouds

3.1 Sources of Energy In Star-Forming Molecular

Clouds

Gravitational Energy

The total gravitational potential energy is

Ω ≤ −3

5

GM2

R
(3.1.1)

The right-hand side of the inequality is the gravitational potential energy for a star

uniform density sphere, which provides upper limit for the energy. For the gravita-

tional potential energy of a polytrope:

Ω = − 3

5− n
GM2

R
(3.1.2)

For a star in convective equilibrium ( that is n = 3
2
) the factor multiplying GM2

R

becomes 6
7
. For a polytrope of index 5, Ω→ −∞ implying an infinite central concen-

tration of material. The Virial theorem is given as

2U + Ω = 0 (3.1.3)

45
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Where U is the total internal kinetic energy of the gas which includes all motions of

the particles making up the gas. The internal kinetic energy density of a differential

gas element of the gas is

dU =
3

2
RTdm =

3

2
(Cp − Cv)Tdm (3.1.4)

Where R is the gas constant,Cp is the heat capacity at constant pressure,Cv the heat

capacity at constant volume and Cp

Cv
= γ.The internal heat energy of a differential

mass element is

du = CvTdm (3.1.5)

From equation (2.9.4) and (2.9.5) Tdm is eliminate and integrating the energy den-

sities of the entire star,

U =
3

2
< γ − 1 > U (3.1.6)

Where U is the total heat energy or the the total internal energy. The quantity

< γ − 1 > is the value of γ − 1 averaged over the star. If γ is assume that constant

throughout the star, then the Virial theorem becomes

3(γ − 1)U + (Ω) = 0 (3.1.7)

The total energy E is the sum of the internal energy and the gravitational energy,

then we can express the Virial theorem in the following ways:

u =
−Ω

3(γ − 1)
(3.1.8)

E = −(3γ − 4)u =
3γ − 4

3(γ − 1)
(Ω) (3.1.9)
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Rotational Energy

The magnitude of the rotational energy that we can expect by noting that

(1) the moment of inertia of the star will always be less than that of a sphere of

uniform density and

(2) there is a limit to the angular velocity ωc at which the star can rotate Thus, for

a centrally condensed star

ω2 ≤ 8GM

R3
p

(3.1.10)

IZ <
2
5
MR2

Which implies that the rotational energy must be bounded by

Erot =
1

2
IZω

2 <
8

135

GM2

R
(3.1.11)

Nuclear Energy

Most of the energy to be gained from nuclear fusion occurs by the conversion of

hydrogen to helium and less than one-half of that energy can be obtained by all other

fusion processes that carry helium to iron.

3.2 Energy Transport Equation

3.2.1 Energy Transport by Radiation

Stars are hotter at the center, hence the energy must flow from the center to the

surface.There are three modes of energy transport: conduction, convection and radi-

ation. Most stars are in a long-lived state of thermal equilibrium, in which energy

generation in the stellar center exactly balances the radiative loos from the surface.

Photons that carry the energy are continually scattered, absorbed and re-emitted in
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random directions. Because stellar matter is very opaque to radiation, the photon

mean free path `ph is very small (typically `ph � R).

3.2.2 Heat Diffusion by Random Motions

Fick’s law of diffusion states that, when there is a gradient ∇n in the density of

particles of a certain type, the diffusive flux J-i.e. the net flux of such particles per

unit area per second-is given by

J = −D∇n (3.2.1)

Here D is the diffusion coefficient, which depends on the average particle velocity v̄

and their mean free path `. Therefore a gradient in the energy flux ∇U gives rise to

a net energy flux

F = −D∇U (3.2.2)

Since a gradient in energy density is associated with a temperature gradient, ∇U =

(∂U
∂T

)V∇T , we can write this as an equation for heat conduction,

F = −K∇T (3.2.3)

with

K =
1

3
v̄`Cv (3.2.4)

Where K is the conductivity.

3.2.3 Radiative Diffusion of Energy

In stars the photon mean free path in much smaller than the stellar dimension(`ph �

R) so the transport of energy by photons can be considered as a diffusive process. For

photons, we cab take ū = c and U = aT 4. Hence the specific heat (per unit volume)
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is Cv = dU
dT

= 4aT 3. The photon mean free path is given by

`ph =
1

κρ
(3.2.5)

The quantity κ is the opacity and the radiative conductivity is

Krad =
4

3

acT 3

κρ
(3.2.6)

The radiative energy flux per unit time and area is

Frad = −Krad∇T = −4

3

acT 3

κρ
∇T (3.2.7)

In spherical symmetric star the flux is related to the luminosity, Frad = l
4πr2

. The

temperature gradient is

∂T

∂r
= − κρ

16πacT 3

l

r2
(3.2.8)

From mass conservation dr is given as dr = dm
4πr2ρ

. Then

∂T

∂m
= − 3

64π2ac

κl

r4T 3
(3.2.9)

This the temperature gradient required to carry the entire luminosity l by radiation.

It gives the fourth stellar equation. In hydrostatic equilibrium,

dT

dm
=
dP

dm
.
dT

dP
= − Gm

4πr4

T

P

d log T

d logP
(3.2.10)

Where dP
dm

is given by

dP

dm
= − Gm

4πr4
(3.2.11)

and from equation (2.10.9) dT
dm

is

dT

dm
= − 3κ

64π2acr4

l

T 3
(3.2.12)

− 3κ

64π2acr4

l

T 3
= − Gm

4πr4

d log T

d logP
(3.2.13)
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Where the dimensionless radiative temperature gradient is given by

∇rad = (
d log T

d logP
)rad (3.2.14)

Then,

∇rad =
3

16πacG

κlP

mT 4
(3.2.15)

This describes the logarithmic variation of T with depth ( where depth is now ex-

pressed by the pressure ) for a star in HE if energy is transported only by radiation.

The radiative diffusion equations derived above are independent of frequency ν, since

the flux F is integrated over all frequencies. However, in general the opacity coeffi-

cient κν depends on frequency. If Fνdν represents the radiative flux in the frequency

interval [ν, ν + dν], then equation(2.10.2) must be replaced by

Fν = −Dν∇Uν = −Dν
∂Uν
∂T
∇T (3.2.16)

Where

Dν =
1

3
c`ν =

c

κνρ
(3.2.17)

The energy density Uν in the same frequency interval and Uν = hνn(ν),

Uν =
8πh

c3

ν3

exp( hν
kT

)− 1
(3.2.18)

Which is proportional to the Planck function for the intensity of black-body radiation.

The total flux is obtained by integrating equation (2.10.16) over all frequencies,

F = −
[

1

3ρ

∫ ∞
0

1

κν

∂Uν
∂T

dν

]
∇T (3.2.19)

This is equation (2.10.2) but with conductivity

Krad =
c

3ρ

∫ ∞
0

1

κν

∂Uν
∂T

dν (3.2.20)
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Comparing with equation (2.10.6) shows that the proper average of frequency as it

appears in equation (2.10.8) or equation (2.10.9) is

1

κ
=

1

4aT 3

∫ ∞
0

1

κν

∂Uν
∂T

dν (3.2.21)

This is the so-called Rosseland mean opacity. The factor 4aT 4 appearing (2.10.21) is

equal to ∫ ∞
0

[
∂Uν

∂T

]
dν

3.2.4 Conductive Transport of Energy

Collisions between the gas particles (ions and electrons) can also transport heat.

Under normal (ideal gas) conditions, however, the collisions conductivity is very much

smaller than the radiative conductivity. The average particle velocity v̄ =
√

3kT
m
� c.

So normally we can neglect heat conduction compared to radiative diffusion of energy.

At very high densities, when `e � `ph, electron conduction becomes a much more

efficient way of transporting energy than radiative diffusion. The energy flux due to

heat conduction can be written as

Fcd = −Kcd∇T (3.2.22)

such that the sum of radiative and conductive fluxes is

F = Frad + Fcd = −(Krad +Kcd)∇T (3.2.23)

The conductive opacity is Kcd given by

Kcd =
4acT 3

3`cdρ
(3.2.24)
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The we can write the combine flux due to radiation and conduction in the same form

as as the radiative flux, equation (2.10.7),

F = −4acT 3

3κρ
∇T (3.2.25)

with

1

κ
=

1

κrad
+

1

κcd

This result simply means that the transport mechanisms with the largest flux will

dominate, that is, the mechanism for which the stellar matter has the highest trans-

parency.

3.3 Energy Inflow In Star-Forming Molecular Clouds

A star is forming when molecular cloud is collapse and there is more inflow energy

due to the gravitational potential energy (stored energy), but the outflow energy is

less. A cloud with radius R, mass M, and temperature T will collapse to form a star,

if the total energy of the cloud < 0, i.e., the gravitational potential energy exceeds

the thermal energy of the cloud:

PEgrav +KEcloud = 0

Where PEgrav is given as

Egrav =

∫ R

0

dE = −G
∫ R

0

M(r)

r
dM

Where M(r) = 4πr3ρ and dM = 4πr2ρdr

PEgrav = −G
∫ R

0

[
4πr3ρ

] [4πr2ρ

r

]
dr

= −G
∫ R

0

[
4πr3ρ

3

4πr2ρ

r

]
dr
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= −G
∫ R

0

[
4πr3ρ

3
4πrρ

]
dr

= −G
∫ R

0

[
4πr3ρ

3
.4πrρ

]
dr

= −G
∫ R

0

[
4πr4ρ

3
.4πρ

]
dr

= −G
5

[
4πR3ρ

3
.4πR2ρ

]R
0

= −G
5

[
4πR5ρ

3
.4πρ

]R
0

Where 3M
R

= 4πR2ρ, and M = 4πR2ρ, then

= −G
5

[
3M

R
.M

]
= −3GM2

5R
(3.3.1)

Then, the gravitational potential energy for uniform sphere is

= −3GM2

5R
(3.3.2)

The thermal energy of the cloud is

KEcloud =
3

2
NkT

Where N is the total number of particles on cloud. Assuming an isothermal (con-

stant temperature) and constant density, r cloud, we can solve the critical radius

(Jean’s radius) at which the cloud will collapse.

3GM2

5R
=

3NkT

2

But the number of gas particles can be written as

N =
M

mH
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where mH average mass per particles in the cloud, assumed to be hydrogen.

3GM2

5R
=

3MkT

2mH

3GM

5R
=

3kT

mH

Where M is M = 4πR3

3
ρ

3G

5R

4πR3

3
ρ =

3kT

2mH

Solving for R gives and ρ = nH .mH

RJ =

√
15kT

8.πGρmH

(3.3.3)

=

√
15kT

8.πGm2
H .nH

(3.3.4)

As the cloud collapse, it loses total energy, which is radiated away. Energy of gas cloud:

E =
M

mH

3kT

2
− 3

5

GM2

R

If E < 0 then gas cloud collapse.

If E > 0 then gas can support itself. If the mass is given by

M =
4

3
πR3n.mH

E =
3kTM

2mH

− 3G

5

[
4πnmH

3

] 1
3

M
5
3 (3.3.5)

by increasing the mass, we can always cause the gravity to dominate that the gas

cloud collapse. Critical size and mass are called the Jean’s length and mass

RJ =

√
15kT

8πGm2
H .n
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A cloud is:

Bound and collapse if the total energy Etot < 0.

Unbound and expands if the total energy Etot > 0.

Etot = EGR + EKE

For a cloud of classical gas particles

EKE =
3

2
NkT

Where EKE ∝ T , Etot is minimized if T is minimized. Therefore clouds collapse

(possibly into stars)if they are cold.

Re-express the Jean’s criterion for collapse:

Etot < 0 or EGR > EKE

The Virial theorem states that for an object that is bound by gravity (as opposed to

mechanical forces, as in rock) and is stable because of counteracting pressure forces,

that kinetic energy W and potential energy U satisfy

2W + U = 0

The total energy is

E = W + U =
U

2
< 0

It can be shown that the Virial Theorem (VT) holds for a planet of mass m in a

circular orbit of radius r around a star of mass M:

W =
mv2

2

And U = −GMm
r

For a circular orbit mv2

2
= GMm

r2
from which the kinetic energy W

can calculated in terms of U.
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Application of Stars: for a star, the VT is also satisfied statistically. Consider a

star of mass having uniform density ρ = 3M
4πR3 . The mass interior to a radius r is

M(r) = M × (
r
R)3. Using this, the potential energy of the entire star is

U = −
∫ R

0

dr
GM(r)4πr2ρ

r
= −

∫ R

0

dr
GM4πr2

r
.

3M

4πR3
.
r3

R3

= −3

5

GM2

R
(3.3.6)

For the kinetic energy we consider only thermal energy of mono-particles. We have

W =< N
1

2
mv2 >=

3

2
NkT =

3

2

MkT

µmH

(3.3.7)

Where k = Boltzmanns’ constant = 1.38x10−16ergK−1, mH = mass of the hydrogen

atom (i.e. the proton) = 1.67x10−24g, and µ is the mean atomic weight, slightly

greater than 1, that takes into account that the stars are predominantly hydrogen

combined with helium. The total energy is

E = W + U = −U
2

= −3

5

GM2

R
(3.3.8)

Mean temperature of a star: using the VT we can solve for the temperature T using

W = −U
2

,

T =
GMµmH

5kR
(3.3.9)

Critical Condition: for collapse of a cloud with radius R to occur, need either:

Mcloud > MJ =
3kTR

2GµmH

⇒ Jean′smass

ρcloud > ρJ =
3

4πM2

[
3kT

2GµmH

]3

⇒ Jean′sdensity

Gravitational potential energy is

Ω = −
∫
Gm(r)

r
dm = −(4πρ)2

3

∫ R

0

r4dr = −3GM2

5R
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Where m(r) = 4πr3

3
ρ dm = 4πr2ρdr ρ = 3M

4πR3

Kinetic energy is

U =
3

2
kT × M

µmH

The condition of the collapse

3GM2

5R
>

3kTM

µmH

Initially, large scale structure is collapsed. But, as the collapsing continue, the density

inside the cloud increases. MJ ∝ ρ
−1
2

0 with MJ ∝ ρ
−1
2

0 T
−3
2

As a cloud of interstellar gas collapses to form a star, approximately half of the

potential energy would be transformed to thermal energy and the other half would be

radiated in the form of electromagnetic radiation.The energy outflow in star forming

molecular cloud formation in radiation energy from the black body is given by

Eoutflow =
4π

c

∫
Bν(T )dν

Where Bν is

Bν(T ) =
2hν3

c2

1

exp hν
kT
− 1

dν

Eoutflow =
4π

c

∫
2hν3

c2

1

exp hν
kT
− 1

dν

Eoutflow =
4π

c

∫
2hν3

c2

1

exp hν
kT
− 1

dν

To integrate the function let x = hν
kT

and dx = h
kT
dν, dν = kT

h
dx Therefore the outflow

energy is

Eoutflow =
8πh

c3

∫ [
(
kT

h
)3kT

h

]
x3

expx− 1
dx

Eoutflow =
8πh

c3
(
kT

h
)4

∫
x3(expx− 1)−1dx
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The integral is ∫
x3(expx− 1)−1dx =

π4

15

Eoutflow =
8π

(ch)3
(kT )4.

π4

15
=

8π5k4T 4

15c3h3

The Stefan-Boltzmann constant is

σ =
2π5k4

15h3c2

and a = 4σ
c

The outflow energy due to radiation is

Eoutflow = aT 4 (3.3.10)

The thermal energy is given as 3
2
NkT .

The Virial Theorem For an Ideal Gas: The pressure of a gas is related to its internal

energy. The pressure of an ideal gas is given by

P = nkT =
ρkT

µmu

Where n = N
V

is the number of particles per unit volume, and µ is the mass of a

gas particle in atomic mass units. The kinetic energy per particle is ε
k

= 3
2
kT, and

the internal energy of an ideal monatomic gas is equal to the kinetic energy of its

particles. The internal energy per unit mass is then

u =
3

2

kT

µmu

=
3

2

P

ρ
(3.3.11)

∫
(
P

ρ
)dm =

2

3
udm =

2

3
E

int
(3.3.12)

Where Eint is the total internal energy of the star. The Virial theorem for an ideal

gas is therefore

Eint = −1

2
Egr (3.3.13)
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Also for equations of state other than an ideal gas a relation between pressure and

internal energy exists, which we can write generally as

u =
3

2

P

ρ
(3.3.14)

3.4 Application of the Virial Theorem

Virial Theorem (VT) be used to estimate conditions for cloud collapse:

1. If 2K > U ⇒ gas pressure (energy) will exceed gravitational potential energy and

expand.

2. If 2K < U ⇒ gravitational potential energy will exceed gas pressure and collapse.

The boundary between these two cases describes the critical condition for stability.

We know that

ρ =
Mc

Vc
=

3Mc

4πRc

Where Mc is the mass of the cloud and Rc radius of the cloud.

The radius of the cloud is

Rc =

[
3Mc

4πρ

] 1
3

The number of particles is N = Mc

µmH
The total energy of the cloud is

3MckT

µmH

− 3GM2
c

5

[
3Mc

4πρ

]−1
3

= 0

The Jeans mass is written as

MJ =

[
5kT

GµmH

] 3
2
[

3

4πρ

] 1
2

If Mc > MJ ⇒ the cloud will collapse.

MJ =

[
5k

GµmH

] 3
2
[

3

4π

] 1
2
[
T 3

ρ

] 1
2
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=

[
375k3

4πµ3G3m3
H

] 1
2
[
T 3

ρ

] 1
2

The radius of the cloud (Jeans radius) in terms of the mass density (ρ) and mass of

the cloud is

RJ =

[
375

4π

] 1
2
[

k

GµmH

] 3
2
[
T

ρ

] 3
2
[

3

4π

]

=

[
15

4π

] 3
2
[

k

GµmH

]
3
2

[
T

ρ

] 3
2

=

[
15k

4πµGmH

] 1
2
[
T

ρ

]
1
2

If Rc > RJ : stable.

If Rc < RJ : unstable and collapse.
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Result and Discussion

A star is forming when the inflow energy due to gravity (gravitational potential

energy) is greater than the outflow of energy (thermal energy and radiate away). In

the outflow also there is a particle (matter) and energy. The gravitational potential

energy is EGRA > EKE. Also more inflow of number of particles and less outflow

of number of particles in star forming. By the Virial theorem expression states that

equilibrium occurs when, 2KE+PE = 0, then if PE > 2KE the cloud will collapse

or star is forming and if PE < 2KE the cloud will expand star is not forming. The

outflow of energy is in the form of thermal energy and radiation energy.

The total energy of a star is the sum of its gravitational potential energy, its internal

energy and its kinetic energy Ekin (due to bulk motions of gas inside the star, not the

thermal motions of the gas particles):

Etot = Egr + Eint + Ekin (4.0.1)

The star is bound as long as its total energy is negative. For a star in hydrostatic

equilibrium we can set Ekin = 0. Furthermore for a star in hydrostatic equilibrium

the Virial theorem holds, so the Etot

Etot = Eint + Egr
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The bulk velocity of a gas flow makes a transition between supersonic and subsonic

values. The sound waves in plasmas provided by a steady adiabatic, spherical. The

gas velocity will, in general be close to the free-fall velocity vff and therefore highly

supersonic near to the surface of the accreting star. The gas must make a transition to

a subsonic ’settling’ flow, in which the gas very small near the stellar surface. The gas

velocity v, the surface of the star is pushing into the gas at a supersonic speed ∼= vff .

From the energy equation for the gas is the perturbations adiabatic, or isothermal.

For small perturbations,

P = P ′ = K(ρ+ ρ′) (4.0.2)

where K = constant, with γ = 5
3

(adiabatic) or γ = 1 (isothermal). Linearizing the

continuity equation and the Euler equation and using the fact that ∇P0 = f, we get

∂ρ′

∂t
+ ρ0∇.v’ = 0 (4.0.3)

∂v’

∂t
+

1

ρ0

∇P = 0 (4.0.4)

From equation (4.1.1) P is purely a function of ρ, so ∇P ′ = (dP
dρ

)0∇ρ′ to first order,

where the subscript zero implies that the derivative is to evaluated for the equilibrium

solution, i.e. (dP
dρ

)0 = dP0

dρ0
. Thus, equation (4.1.3) becomes, from equations (4.0.4)

and (4.0.2) by operating with ∇. and ∂
∂t

respectively and then subtracting, gives

∂

∂t~

[
∂ρ′

∂t
+ ρ0∇.v’

]
= ∇.

[
∂v’

∂t
+

1

ρ0

c2
s∇ρ′

]
(4.0.5)

∂2ρ′

∂t2
+ c2

s∇2ρ′ (4.0.6)

c2s =

[
dP

dρ

]
0

(4.0.7)

Equation (4.0.5) will be recognized as the wave equation, with the wave speed cs.

The small perturbations about HE propagate through the gas as sound waves with
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speed cs. From equations (4.0.1), (4.0.7) the sound speed cs can have two values

adiabatic : cads =

[
5P

3ρ

] 1
2

=

[
5kT

3µmH

] 1
2

∝ ρ
1
3 (4.0.8)

isothermal : cisos =

[
P

ρ

] 1
2

=

[
kT

µmH

] 1
2

(4.0.9)

In star-forming molecular cloud formation, there is more inflow energy due to gravity

(gravitational potential energy/stored energy) and there is less outflow of energy

due to electromagnetic radiation by photons and neutrinos. The cool gas by the

energy convective transport is sinking down/inflow and the hot gas by the radiative

energy transport rising up/outflow for star-forming molecular cloud formation. In

star-forming molecular cloud formation gravity is the dominant parameter to contract

the cloud and the outward pressure is expanding, but in star-forming molecular cloud

formation is neglect. The other parameters are the temperature, density, and pressure

decreasing in star-forming molecular cloud formation.
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Summary and Conclusion

A star is an object that radiates energy from an internal source and bound by its own

gravity in which most of the substances that make up our world are formed in it. Its

formation is a complex process that involves a number of diverse physical phenomena.

Although the central process in star formation is the gravitational collapse of a dense,

cold molecular clouds cores in interstellar medium (ISM), turbulence and magnetic

field are also the most important physical processes that determine a star formations

in which turbulence plays a dual role, both creating over densities to initiate grav-

itational contraction or collapse, and countering the effects of gravity in these over

dense regions (e.g.,McKee1 and Ostriker2007), while magnetic fields play a role in

the final stage of star formation, both in mediating gas accretion and in launching

the bipolar jets that typically announce the birth of a new star. Broadly the problem

of star formation can be divided in to two categories. Microphysics deals with how

individual stars (or binaries) form, the dynamical evolution of them (their proper-

ties which is determined by the properties of the medium out of which they form)

etc. Macrophysics deals with the formation of systems of stars, ranging from clusters

to galaxies, and the processes that determine the distributions of physical conditions
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within star forming region (ISM) etc. The basic theory of stellar structure is spherical

symmetry, so that all variables depend on only one variable, the distance (r) from the

center of the star. On spherical shells of radius r, all physical variables (temperature,

density, pressure, and chemical composition)are uniform. The principle variables of

stellar structure are pressure(P), temperature(T), density(ρ), luminosity through a

shell at r L(r) and mass interior to r (Mr). Energy is transported by photons carry

energy away from the star’s center (radiation), cells of hot gas move up and cool gas

sink down (convection), and collisions between electrons can move energy outwards

(conduction).If the gravitational and pressure forces are seriously out of balance, the

star contracts or expands significantly in a time td.
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Significance of the Study

On one hand, it serves to get MSc. degree in physics where then, in turn, serve as

educator and researcher at educational and research institutes. On the other hand,

it means that, the project contributes science professionals who are going to educate,

involve in science research and produce researchers where the current attention given

by Ethiopian national educational science policy has envisaged. Globally, the result

of the project will contribute scientific work to researchers and educators as references

for the development of the science.
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Appendix A

Further ellaboration on BTEs

A.1 The zeroth moment of BTE

Using the vector identity

~v · ~∇f = ~∇ · (f~v)− f ~∇ · ~v (A.1.1)

In the momentum space, the position coordinates and the momentum (velocity) co-

ordinates are independent so that ~∇ · ~v = 0. Then,∫ +∞

−∞
~v · ~∇fd~v =

∫ +∞

−∞

~∇ · (f~v)d~v −
∫ +∞

−∞
f(~∇ · ~v)d~v

=

∫ +∞

−∞

~∇ · (f~v)d~v (A.1.2)

Since in the momentum space, the position coordinates and the momentum (velocity)

coordinates are independent then, eq. A.1.2 is given by∫ +∞

−∞
~v · ~∇fd~v = ~∇ ·

∫ +∞

−∞
~vfd~v QED (A.1.3)
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A.2 The first moment of BTE

A.2.1
∫ +∞
−∞ ~v∂f∂td~v as in eq. 2.5.12∫ +∞

−∞
~vfd~v =

∫ +∞

−∞
fd~v

(∫ +∞
−∞ ~vfd~v∫ +∞
−∞ fd~v

)
(A.2.1)

The first factor of the right hand side of eq. A.2.1 is obviously the number density n

as defined earlier. While the second factor (in the bracket) is the mean velocity ~u.

Then, ∫ +∞

−∞
~v
∂f

∂t
d~v =

∂(n~u)

∂t

Or

∫ +∞

−∞
~v
∂f

∂t
d~v = n

∂~u

∂t
+ ~u

∂n

∂t
(A.2.2)

By the continuity equation eq. 2.5.10

∂n

∂t
= −∇.(n~u) +

∫ +∞

−∞
Sd~v

= −(~u.~∇n+ ~∇n.~u) +

∫ +∞

−∞
Sd~v (A.2.3)

Now using eqs. A.2.2 & A.2.3 we get the relation given by (as required)∫ +∞

−∞
~v
∂f

∂t
d~v = n

∂~u

∂t
− (~u.~∇n+ ~∇n.~u)~u+

∫ +∞

−∞
~uSd~v (A.2.4)

From the continuity equation

∂n

∂t
+∇.(n~u) =

∫ +∞

−∞
Sd~v (A.2.5)

Then equations (2.3.18)and (2.3.19) we get

∂

∂t
(n~u) = ~u

∂n

∂t
+ n

∂~u

∂t
− (~u.∇n+ n∇.~u)~u+

∫ +∞

−∞
~uSd~v (A.2.6)

Using equations (2.3.17) and (2.3.20)

∂

∂t
(n~u) = n

∂~u

∂t
− (~u.~∇n+ ~∇n.~u)~u+

∫ +∞

−∞
~uSd~v (A.2.7)
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n
∂~u

∂t
− (~u.~∇n + ~∇n.~u)~u+

∫ +∞

−∞
~v(~∇.(~vf)d~v + n

~∇Φ

m
=

∫ +∞

−∞
S(~v − ~u)d~v (A.2.8)

A.2.2
∫ +∞
−∞ (~̇v · ~∇vf )d~v as in eq. 2.5.12

Using the vector algebra

(~∇vf)~v = ~∇v(f~v)− f(~∇v~v)

= ~∇v(f~v)− f I (A.2.9)

where I is the identity matrix, the third integral of the left hand side of eq. 2.5.11 is∫ +∞

−∞
(~̇v · ~∇vf)d~v =

∫ +∞

−∞
~̇v · ~∇v(f~v)d~v −

∫ +∞

−∞
~̇v · fd~v (A.2.10)

Note that ~̇v = − ~∇Φ
m

. And morever ~v and the postion coordinates are independent

orthogonal phase space coordinates so that eq. A.2.10 can be recast as∫ +∞

−∞
(~̇v · ~∇vf)d~v = −

~∇Φ

m
·
∫ +∞

−∞

~∇v(f~v)d~v +
~∇Φ

m
·
∫ +∞

−∞
fd~v (A.2.11)

For a bound system, the first integral of the right hand side of eq. A.2.11 must vanish.

Then using the relation

n =

∫ +∞

−∞
fd~v

in eq, A.2.11 we obtain the desired equation given as∫ +∞

−∞
(~̇v · ~∇vf)d~v = n

~∇Φ

m
QED (A.2.12)

A.3 BTE and the Virial Theorem

Recall the BTE given as in eq. 2.5.20

∂~u

∂t
+ (~u.∇)~u = −∇Φ− 1

ρ
∇P (A.3.1)
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The left hand side of this equation is just the total average acceleration of the system

d~u

dt
=

∂~u

∂t
+
∑
i

∂~u

∂xi
~̇xi (A.3.2)

=
∂~u

∂t
+ (~u.∇)~u

The spatial first moment of(taking the dot product with ~r) eq.A.3.1 after some rear-

rangements is ∫
v

ρ~r · d~u
dt
dV +

∫
v

ρ~r · ∇ΦdV +

∫
v

~r.∇pdV = 0 (A.3.3)

By vectors product property we have

d

dt
(~r.~u) = ~r · d~u

dt
+
d~r

dt
· ~u

= ~r · d~u
dt

+ u2 (A.3.4)

The left hand side of equation A.3.4 is

d

dt
(~r · ~u) =

1

2

d2r2

dt2
(A.3.5)

Using eqs. A.3.4 & A.3.5 the first integral of the left hand side of equation A.3.3 is∫
v

ρ~r · d~u
dt

=
1

2

d2

dt2

∫
v

r2ρdV − u2

∫
v

ρdV (A.3.6)

By now we have two well defined quantities, the moment of inertia I and the kinetic

energy T respectively given by

I =

∫
v

r2ρdV (A.3.7)

T =
1

2

∫
v

ρu2dV (A.3.8)

Then plugging eqs. A.3.7 A.3.8, eq. A.3.6 can be recast as∫
v

ρ~r · d~u
dt

=
1

2

d2I

dt2
− 2T (A.3.9)
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Using vector product property the third integral of the left hand side of equation

A.3.3 is expanded to give∫
v

(~r · ~∇)pdV =

∫
v

~∇ · (rp)dV −
∫
v

p( ~∇ · ~r)dV (A.3.10)

Noting ∇ · ~r = 3 and using Gauss divergence theorem, eq. A.3.10 becomes∫
v

(~r · ~∇)pdV =

∮
over all surface

ps~r · n̂dA− 3

∫
v

pdV (A.3.11)

where n̂ is unit normal to the surface while ps is the pressure at the surface.

In the MB distribution the pressure is p = nkT . So using eq. 2.2.6 the internal energy

density of the Maxwellian gas is

ε =
3

2
p (A.3.12)

On the other hand the surface integral of eq. A.3.11 over all space vanishes, otherwise

it diverges. Then eq. A.3.10 will be recast as∫
v

(~r · ~∇)pdV = −2

∫
V

εdV = −2U (A.3.13)

where U is the total internal energy of the system. The second left hand term of eq.

A.3.3 due to the work of Clausis, Lagrange and Jacob is considered as the negative

of the total potential energy Ω of the system.∫
ρ~r · ∇ΦdV = −Ω (A.3.14)

Finally the non-averged spatial first moment of BTE by eqs. A.3.3, A.3.9, A.3.13 &

A.3.14 is

2T + 2U + Ω =
1

2

d2I

dt2
(A.3.15)

While the averaged spatial first moment of BTE reduces to

2 < T > +2 < U > +Ω >= 0 QED (A.3.16)
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