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IN THE PRESENCE OF SUCTION/INJECTION
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Abstract: An unsteady double diffusive mixed convection boundary layer flow over a vertically
stretching sheet in the presence of suction/injection is investigated in this paper. The governing
partial differential equations are reduced by applying suitable transformations to a set of nonlinear
ordinary differential equations, which is solved by the Keller box method. The influence of vari-
ous flow parameters on the velocity, temperature, and species concentration profiles of the fluid is
studied. The effect of some problem parameters on the skin friction coefficient in the presence of
suction/injection is considered.
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INTRODUCTION

When the flow is driven by buoyancy forces due to temperature and concentration gradients simultaneously,
it is called a double diffusive mixed convection flow. One of the examples is the flow in an ocean, where heat and
salt concentrations exist with different gradients and diffuse at different rates. Such flows also occur in various
scientific and technological fields like astrophysics, biology, geology, chemical processes, etc. [1].

A laminar boundary layer flow of a fluid over a flat plate was first studied by Blasius [2], and this work was
extended by Sakiadis [3] for the case of a moving plate in a quiescent fluid. Cortell [4] examined the Blasius flat plate
flow problem in the presence of thermal radiation. Cortell [5] also extended his work to study the effect of thermal
radiation for a moving plate in a quiescent fluid under convective surface boundary conditions. A mixed convection
flow over a moving vertical plate due to the effect of thermal and mass diffusion was studied by Patil et al. [6]. They
solved the problem numerically using an implicit finite difference scheme in line with quasi-linearization. Aydin [7]
analyzed a steady laminar boundary layer flow over a porous flat plate with suction/injection imposed at the wall. A
variable thermal conductivity and heat transfer problem of a boundary layer flow past a stretching plate was studied
by Ahmad et al. [8]. A problem of a mixed convection boundary layer flow over a vertical plate with velocity and
temperature slip was investigated by Bhattacharyya et al. [9]. A magnetohydrodynamic (MHD) mixed convection
flow with the effects of the Ohmic heating and viscous dissipation was examined by Aydin [10]. Pop and Na [11]
analyzed a boundary layer flow over a permeable stretching sheet in the presence of a magnetic field. Further,
Bakar et al. [12] investigated a steady laminar flow over a stretching sheet with a convective boundary condition
and partial slip. Chiam [13] scrutinized the boundary layer flow and heat transfer in a fluid with a variable thermal
conductivity over a linearly stretching sheet. Heat transfer characteristics of a stretching surface with a variable
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temperature were studied analytically by Grubka and Bobba [14]. Recently, Ali et al. [15] studied the problem of
a steady laminar MHD mixed convection stagnation-point flow of an incompressible viscous fluid over a vertical
stretching sheet.

An unsteady free convection boundary layer flow over a moving vertical surface was studied by Kumari et
al. [16]. A similar case for a stretching vertical surface in a quiescent fluid was considered by Ishak et al. [17],
and that for a continuously moving vertical plate was studied by Anilkumar [18]. Convection for an impulsively
stretched permeable vertical surface in an unbounded quiescent fluid in the presence of a transverse magnetic field
was investigated by Kumari and Nath [19] by two methods, namely, analytically by the homotopy analysis method
and numerically by the Keller box method. An unsteady mixed convection boundary layer flow and heat transfer
due to a stretching vertical surface with variable fluid properties was presented by Ishak et al. [20]. Mahdy [21]
considered the same flow problem for nanofluids. Recently Vajravelu et al. [22] extended the work of Ishak et al.
[20] in the presence of thermal radiation, and most recently Mohamed [23] performed a similar work with a variable
viscosity and viscous dissipation. In all of these studies, some of the boundary layer flow problems were steady with
the species concentrations and fluid properties being assumed to be constant, and some were unsteady and involved
variable fluid properties, but the species concentration was not considered.

Thus, the present investigation is focused on an unsteady mixed convection boundary layer flow over a ver-
tically stretching sheet with variable fluid properties in the presence of suction/injection. The boundary layer
equations governed by the partial differential equations are transformed into a system of nonlinear ordinary differ-
ential equations, which are solved numerically by the Keller box method described in detail in [24, 25].

1. MATHEMATICAL FORMULATION

Let us consider an unsteady mixed convection flow of an incompressible viscous fluid past over a semi-
infinite vertically stretching porous sheet. The problem is solved in a Cartesian coordinate system, where the
x axis is measured along the sheet in the upward direction and the y axis is measured in the direction normal to
the stretching sheet (Fig. 1). At the time t < 0, the fluid and heat and mass fluxes are assumed to be steady.
The stretching sheet velocity Uw(x, t), its temperature Tw(x, t), and species concentration Cw(x, t) at each time
instant t are assumed to be linear functions of x. All thermophysical properties of the sheet and the ambient fluid
are assumed to be constant, except for the variable thermal conductivity. The fluid considered here is a medium
absorbing and emitting radiation, but not a scattering medium. The boundary layer equations under the Boussinesq
approximation have the form
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Fig. 1. Physical model and coordinate system.
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and the boundary conditions are

y = 0: u = Uw, v = vw(t), T = Tw, C = Cw,

y →∞: u→ 0, T → T∞, C → C∞.

Here u and v are the velocity components in the x and y directions, K(T ) = K∞(1 + ε(T − T∞)/∆T ) is the
variable thermal conductivity [13], ∆T = Tw−T∞, Tw is the surface temperature, ε is a small parameter, K∞ is the
thermal conductivity of the fluid far away from the sheet, ν is the kinematic viscosity, βT and βC are the volumetric
coefficients of thermal and concentration expansion, respectively, ρ is the fluid density, cp is the specific heat, qr is
the radiative heat flux, and D is the mass diffusivity.

The last two terms in Eq. (2) are due to the buoyancy force. The plus and minus signs refer to the buoyancy-
assisting and buoyancy-opposing flow situations, respectively.

Following [13, 20, 22], we define

Uw(x, t) =
ax

1− ct
, Tw(x, t) = T∞ +

bx

(1− ct)2
, Cw(x, t) = C∞ +

mx

(1− ct)2

(a, b, c, and m are constants). Using the Rosseland approximation [26], we can write the radiative heat flux as

qr = −4σ∗

3k∗
∂T 4

∂y
, (5)

where σ∗ and k∗ are the Stefan–Boltzmann constant and the mean absorption coefficient, respectively. The temper-
ature difference within the flow region, namely, the term T 4 is assumed to be a linear function of temperature. The
linear approximation for temperature is obtained by expanding T 4 into a Taylor series at infinity and neglecting
higher-order terms:

T 4 ' 4T 3
∞T − 3T 4

∞. (6)

With the use of the definition of K(T ) and in view of Eqs. (5) and (6), Eq. (3) is reduced to
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The following similarity transformations are introduced:
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.

Here ψ(x, y, t) is the stream function (u = ∂ψ/∂y and v = −∂ψ/∂x), Gr and Gr∗ are the Grashof numbers due
to temperature and concentration, respectively, L is the sheet length, λ and λ1 are the buoyancy forces due to
temperature and concentration gradients, respectively, Uw is the stretching sheet velocity, and α∞ is the thermal
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diffusivity. Using the above-described transformations and the definition of K(T ), we convert Eqs. (2), (7), and (4)
to the coupled nonlinear ordinary differential equations

f ′′′ + ff ′′ − f ′2 −M(f ′ + ηf ′′/2) + λ(G+NH) = 0,

((1 + εG+Nr)G′)′ − Pr (f ′G−G′f)−MPr (2G+ ηG′/2) = 0, (8)

H ′′ − Sc (f ′H −H ′f)−MSc (2H + ηH ′/2) = 0

with the boundary conditions

η →∞: f(0) = s, f ′(0) = 1, G(0) = 1, H(0) = 1, f ′ → 0, G→ 0, H → 0, (9)

where the prime denotes differentiation with respect to η, M = c/a is the unsteady parameter, Nr =
16σ∗T∞/(3K∞k∗) is the radiation parameter, s = −v0/

√
(1− ct)/(νa) is the suction/injection parameter (s < 0,

s > 0, and s = 0 correspond to injection, suction, and impermeability, respectively), and N = λ1/λ is the ratio
of buoyancy forces (N = 0 indicates that there is no buoyancy force effect due to mass diffusion and N = ∞
corresponds to the absence of the buoyancy effect due to thermal diffusion).

The physical quantities of interest from the engineering point of view are the local skin friction coefficient

Cf = 2τw/(ρu2
w), (10)

the local Nusselt number

Nux = xqw/(k∞(Tw − T∞)), (11)

and the local Sherwood number

Shx = xqm/(D(Cw − C∞)). (12)

(τw = µ∂u/∂y|y=0 is the surface shear stress, qw = −k∞ ∂T/∂y|y=0 is the wall heat flux, qm = −k∞ ∂T/∂y|y=0 is
the mass flux, and µ is the dynamic viscosity).

With the use of the similarity variables, Eqs. (10)–(12) are written as

Cf

√
Rex/2 = f ′′(0), Nux /

√
Rex = −G′(0), Shx /

√
Rex = −H ′(0),

where Rex = Uwx/ν is the local Reynolds number.

2. METHOD OF THE SOLUTION

The system of nonlinear ordinary differential equations (8) with the boundary condition (9) was solved
numerically by the Keller box method [24, 25], which is implemented in the Matlab software package. The Keller
box method is an implicit finite difference method that can be used to solve differential equations.

Introducing new variables u(x, η), v(x, η), p(x, η), and q(x, η) with

f ′ = u, u′ = v, G′ = p, H ′ = q,

we can write Eqs. (8) as

v′ + fv − u2 −M(u+ ηv/2) + λ(G+NH) = 0,

(1 +Nr + εG)p′ + εp2 − Pr (uG− pf)−MPr (2G+ ηp/2) = 0,

q′ − Sc(uH − qf)−MSc (2H + ηq/2) = 0.

We now consider the net rectangle in the plane (x, η):

x0 = 0, xn = xn−1 + kn, n = 1, 2, . . . , N,

η0 = 0, ηj = ηj−1 + hj , j = 1, 2, . . . , J

(kn is the x-spacing and hj is the η-spacing between the nodes). We start writing the finite difference equations for
the node (xn, ηj−1/2) by using the central differences:
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j − Sc (uj−1/2Hj−1/2 − qj−1/2fj−1/2)−MSc (2Hj−1/2 + ηjqj−1/2/2) = 0.

Here uj−1/2 = (uj + uj−1)/2, etc. Equations (13) are nonlinear algebraic equations and, therefore, have to be
linearized before the factorization scheme can be used. Let us write the Newton iterative scheme. For the (i+ 1)th
iteration, we have

f i+1
j = f i

j + δf i
j , (14)

where f is an arbitrary dependent variable. By substituting expressions (14) into Eqs. (13) and dropping the
quadratic and higher-order terms in δf i+1

j , we obtain a tridiagonal system of algebraic equations

δfj − δfj−1 − hj(δuj + δuj−1)/2 = (r1)j−1/2,

δuj − δuj−1 − hj(δvj + δvj−1)/2 = (r2)j−1/2,

δGj − δGj−1 − hj(δpj + δpj−1)/2 = (r3)j−1/2,
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where

(a1)j = 1 + hj(fj + fj−1)/4−Mhjηj/4, (a2)j = −1 + hj(fj + fj−1)/4−Mhjηj/4,

(a3)j = (a4)j , (a4)j = hj(vj + vj−1)/4, (a5)j = (a6)j ,

(a6)j = −hj(uj + uj−1)/2−Mhj/2, (a7)j = (a8)j , (a8)j = λhj/2,

(a9)j = (a10)j , (a10)j = Nλhj/2,
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(c7)j = (c8)j = Schj(qj + qj−1)/4,

(r1)j = fj−1 − fj + hj(uj + uj−1)/2, (r2)j = uj−1 − uj + hj(vj + vj−1)/2,

(r3)j = Gj−1 −Gj + hj(pj + pj−1)/2, (r4)j = Hj−1 −Hj + hj(qj + qj−1)/2,

(r5)j = vj−1 − vj − hj(fj + fj−1)(vj + vj−1)/4 + hj(uj + uj−1)2/4 +Mhj(uj + uj−1)/2

+Mhjηj(vj + vj−1)/4− λhj(Gj +Gj−1)/2− λNhj(Hj +Hj−1)/2,
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+MSchj(Hj +Hj−1) +MSchjηj(qj + qj−1)/4.

Linearizing the boundary conditions, we obtain

δf0 = s, δu0 = 1, δG0 = 1, δH0 = 1, δuJ = 0, δGJ = 0, δHJ = 0.

Hence, the linearized system can be written in the matrix form as

Aδ = r, (15)

where

A =



[A1] [C1]
[B2] [A2] [C2]

· · ·
· · ·

· · ·
[BJ−1] [AJ−1] [CJ−1]

[BJ ] [AJ ]


, δ =



δ1
δ2
·
·
·

δJ−1

δJ


, r =



r1
r2
·
·
·

rJ−1

rJ


.

The elements of the matrix A are

[A1] =



0 0 0 1 0 0 0
−d1 0 0 0 −d1 0 0
0 −d1 0 0 0 −d1 0
0 0 −d1 0 0 0 −d1

a2 0 0 a3 a1 0 0
0 b2 0 b7 0 b1 0
0 0 c2 c7 0 0 c1


, dj =

1
2
hj ,
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[Aj ] =



−dj 0 0 1 0 0 0
−1 0 0 0 −dj 0 0
0 −1 0 0 0 −dj 0
0 0 −1 0 0 0 −dj

(a6)j (a8)j (a10)j (a3)j (a1)j 0 0
(b6)j (b4)j 0 (b7)j 0 (b1)j 0
(c4)j 0 (c6)j (c7)j 0 0 (c1)j


, 2 6 j 6 J,

[Bj ] =



0 0 0 −1 0 0 0
0 0 0 0 −dj 0 0
0 0 0 0 0 −dj 0
0 0 0 0 0 0 −dj

0 0 0 (a4)j (a2)j 0 0
0 0 0 (b8)j 0 (b2)j 0
0 0 0 (c8)j 0 0 (c2)j


, 2 6 j 6 J,

[Cj ] =



−dj 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

(a5)j (a7)j (a9)j 0 0 0 0
(b5)j (b3)j 0 0 0 0 0
(c3)j 0 (c5)j 0 0 0 0


, 1 6 j 6 J − 1,

δ1 =



δv0
δp0

δq0
δf1
δv1
δp1

δq1


, δj =



δuj−1

δGj−1

δHj−1

δfj

δvj

δpj

δqj


, 2 6 j 6 J, rj =



(r1)j−1/2

(r2)j−1/2

(r3)j−1/2

(r4)j−1/2

(r5)j−1/2

(r6)j−1/2

(r7)j−1/2


, 1 6 j 6 J.

To solve Eq. (15), we assume that the matrix A is non-singular and it can be factored into

A = LU, (16)

where

L =


[α1]
[β2] [α2]

· · ·
[αJ−1]
[β2] [αJ ]

 , U =


[I] [Γ1]

[I] [Γ2]
· · ·

[I] [ΓJ−1]
[I]

 ,
[I] is the unit matrix of order 7 × 7, and [αi] and [Γi] are 7 × 7 matrices whose elements are determined from the
following equations:

[α1] = [A1], [A1][Γ1] = [C1], [αj ] = [Aj ]− [Bj ][Γj−1], j = 2, 3, 4, . . . , J.

Substitution of Eq. (16) into Eq. (15) yields

LUδ = r. (17)

If we define

Uδ = W,
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Table 1. Values of −G′(0) obtained by different researchers

M λ Pr Data [14] Data [15] Data [20] Data [22] Present
data

0 0 0.72 0.8086 0.8058 0.8086 0.808 636 0.808 637
0 0 1.00 1.0000 0.9610 1.0000 1.000 000 1.000 000
0 0 3.00 1.9237 1.9144 1.9237 1.923 687 1.923 691
0 0 10.00 3.7207 3.7006 3.7207 3.720 788 3.720 791
0 0 100.00 12.2940 — 12.2941 12.300 390 12.300 395
1 0 1.00 — — 1.6820 1.681 921 1.680 799
1 1 1.00 — — 1.7039 1.703 910 1.702 720
1 1 1.00 — — 1.0873 1.087 206 1.087 279
0 2 1.00 — — 1.4230 1.422 980 1.142 341
0 3 1.00 — — 1.1853 1.185 197 1.185 293

Eq. (17) becomes

LW = r, (18)

where W = [W1,W2,W3,W4,W5,W6,W7]t; Wj are the 7× 1 column matrices. The elements of W can be found by
solving Eq. (18):

[α1][W1] = [r1], [αj ][Wj ] = [rj ]− [βj ][Wj−1], j = 2, 3, 4, . . . , J.

Once the elements of W are found, we can find the solution of Eq. (18) using the recurrent relations

[δJ ] = [WJ ], [δj ] = [Wj ]− [Γj ][δj+1], 1 6 j 6 j − 1.

The calculations are repeated until the convergence criterion |δvi
0| 6 ε1 (ε1 is a small positive number prescribed)

is satisfied.

3. RESULTS AND DISCUSSION

The computation were performed for different values of the Prandtl number Pr , Schmidt number Sc, buoy-
ancy force parameter due to the temperature gradient λ, unsteady parameter M , variable thermal conductiv-
ity parameter ε, radiation parameter Nr, buoyancy force ratio parameter N , and suction/injection parameter s.
The surface heat transfer rate −G′(0) obtained in the present study by the above-described algorithm is in good
agreement with the values obtained in [14, 15, 20, 22] (Table 1).

Figure 2a shows the velocity distributions f ′ over the spatial coordinate η for different values of the param-
eter λ in the cases of injection (s < 0), impermeability (s = 0), and suction (s > 0) for steady and unsteady flows.
As we observe from Fig. 2a, an increase in the buoyancy force parameter λ leads to an increase in the fluid velocity.
A velocity overshoot is observed near the surface; then the velocity decreases and tends to zero as η →∞. The fluid
velocity is higher in the case of injection than that in the case of suction. Furthermore, the fluid velocity is greater
in the steady case than that in the unsteady flow.

Figure 2b shows the temperature distributions over the spatial coordinate η for the same values of the problem
parameters as in Fig. 2a. It is seen that an increase in the buoyancy force parameter λ results in a decrease in
the fluid temperature in all cases (injection, impermeability, and suction). The thermal boundary layer is thicker
in the case of injection than that in the case of suction. The temperature in the steady case is higher than that in
the unsteady flow.

An increase in the buoyancy force ratio parameter N leads to an increase in the fluid velocity in all of
the circumstances: injection, impermeability, and suction (Fig. 3). The fluid velocity is higher in the steady case
than that in the unsteady case. In the assisting flow (N > 0), the solution of the momentum equation exists for
large values of N ; however, in the opposing flow (N < 0), the solution exists for small values of N .

Figure 4 shows the temperature distributions over the spatial coordinate η for different values of the param-
eter ε for the steady and unsteady flows in the cases of injection, impermeability, and suction. It is seen that there
is a minor increase in the fluid temperature with increasing ε in all three cases. The fluid temperature in the steady
case is again greater than that in the unsteady case.
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Fig. 2. Velocity (a) and temperature (b) profiles versus the spatial coordinate η for
N = ε = Nr = 0.2, Pr = 0.7, and different values of λ, s, and M : the solid and dashed
curves refer to M = 1 and M = 0, respectively; λ = 0.5 (1–3) and 5 (1 ′–3 ′); s = −1 (1 and 1 ′), 0
(2 and 2 ′), and 1 (3 and 3 ′).

Table 2. Skin friction coefficient f ′′(0), heat transfer rate −G′(0), and mass transfer rate −H′(0)

on the sheet surface for s = 0, ε = 0.1, and Nr = 0.1

λ N Pr Sc M f ′′(0) −G′(0) −H′(0)

0.1 1.00 0.7 0.23 0 −0.858 408 0.768 940 0.406 118
0.1 1.00 1.0 0.23 0 −0.865 023 0.953 517 0.403 615
0.1 1.00 7.0 0.23 0 −0.890 728 2.844 145 0.398 804
0.1 1.00 0.7 0.23 0 −1.235 140 1.290 678 0.773 027
0.1 1.00 1.0 0.23 1 −1.238 657 1.557 566 0.772 696
0.1 1.00 7.0 0.23 1 −1.255 358 4.276 605 0.771 587
0.1 −0.01 7.0 0.23 1 −0.729 728 0.784 582 0.410 264
0.1 0 0.7 0.23 0 −0.726 130 0.785 696 0.411 591
0.5 1.00 0.7 0.23 0 −0.414 382 0.852 052 0.475 624
0.5 10.00 0.7 0.23 0 0.059 986 0.015 111 0.010 195
0.5 −0.01 0.7 0.23 0 −1.136 448 1.296 389 0.777 035
0.5 0 0.7 0.23 1 −1.134 162 1.296 559 0.777 170
0.5 1.00 0.7 0.23 1 −0.910 271 1.312 644 0.789 867
0.5 10.00 0.7 0.23 1 0.860 174 1.416 167 0.867 530
0.5 10.00 0.7 0.23 1 −0.562 480 0.824 953 0.451 661
0.5 0.50 0.7 0.94 0 −0.620 637 0.800 854 1.047 223
0.5 0.50 0.7 2.56 0 −0.651 321 0.793 737 1.832 906
0.5 0.50 0.7 10.00 0 −0.676 175 0.793 609 3.772 886
0.5 0.50 0.7 0.23 0 −1.021 099 1.304 807 0.783 711
0.5 0.50 0.7 0.94 1 −1.053 660 1.301 129 1.646 042
0.5 0.50 0.7 2.56 1 −1.075 946 1.299 083 2.771 281
0.5 0.50 0.7 10.00 1 −1.099 863 1.297 477 5.572 851

Figure 5 shows the temperature distributions over the spatial coordinate η for different values of the radiation
parameter Nr. The figure tells us that the fluid temperature increases in all three cases (injection, impermeability,
and suction) as the radiation parameter increases. In a similar way, as we discussed above, the steady state
temperature is higher than that in the unsteady case.

Figure 6 shows the skin friction coefficient as a function of the parameter λ for different values of M . It
is seen that the skin friction coefficient increases with decreasing M and increasing λ. It is also evident from the
figure that the skin friction coefficient is higher in the case of injection than that in the case of suction. The values
of the skin friction coefficient f ′′(0), heat transfer rate −G′(0), and mass transfer rate −H ′(0) in the impermeable
case are listed in Table 2 for different values of the problem parameters. It is observed from Table 2 that the skin
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Fig. 3. Velocity profiles versus the spatial coordinate η for λ = ε = Nr = 0.5 and different values
of N , s, and M : N = 0.5 (1–3) and 5 (1 ′–3 ′); other notations the same as in Fig. 2.

Fig. 4. Temperature profiles versus the spatial coordinate η for λ = N = Nr = 0.5, Pr = 1, and
different values of ε, s, and M : ε = 0.25 (1–3) and 1 (1 ′–3 ′); other notations the same as in Fig. 2.
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Fig. 5. Temperature profiles versus the spatial coordinate η for λ = N = ε = 0.5, Pr = 0.7,
and different values of Nr, s, and M : Nr = 0.5 (1–3) and 5 (1 ′–3 ′); other notations the same as
in Fig. 2.

Fig. 6. Skin friction coefficients versus the parameter λ for N = Nr = 0.2, Pr = 0.7, Sc = 0.23,
ε = 0.1, and different values of s and M : s = −1 (solid curves), 0 (dashed curves), and 1 (dot-and-
dashed curves); M = 0 (1, 1 ′, and 1 ′′), 0.25 (2, 2 ′, and 2 ′′), 0.5 (3, 3 ′, and 3 ′′), 0.75 (4, 4′, and 4 ′′),
and 1 (5, 5′, and 5 ′′).
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friction coefficient decreases with increasing buoyancy force ratio parameter N , the heat transfer rate increases with
increasing Prandtl number, and the mass transfer rate increases with increasing Schmidt number.

CONCLUSIONS

The problem of an unsteady double diffusive mixed convection boundary layer flow of a viscous incompressible
fluid flowing over a vertically stretching sheet is solved by the Keller box method. The problem is considered with
allowance for thermal radiation in situations with suction, impermeability, and injection.

In both steady and unsteady cases, we found that the fluid temperature increases with increasing radiation
parameter Nr and decreases with increasing buoyancy force parameter λ. In the case of injection, the fluid velocity
is higher than that in the case of suction. The fluid temperature increases with increasing thermal conductivity
parameter ε. The skin friction coefficient increases with decreasing M and increasing buoyancy force parameter λ.
The skin friction coefficient is greater in the case of injection than that in the case of suction.
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