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In order to fulfil the millennium development goals and to ensure environmental sustainability in Ethiopia,
ecological indicator systems can support river managers to analyse the status of watercourses and to select
critical restoration actions. In order to use macroinvertebrates as river water quality monitoring and
assessment tools, Ethiopia needs data from reference as well as disturbed conditions of surface water
ecosystems. Macroinvertebrates, structural and physical–chemical data were in this context collected in the
Gilgel Gibe river basin in South-Western Ethiopia during the period 2005–2008. In the next stage, ecological
metrics were compared for their assessment relevance. In the present paper, classification trees and support
vector machines were used to induce models describing the relation between the river characteristics and
the ecological conditions of these streams. Greedy stepwise and genetic search algorithms improved the
performance and easy interpretation of these models by making a selection of the variables that were used as
input of these models. The developed models allowed to identify the major variables affecting river quality.
These tools can support river managers in their decision-making regarding the status of rivers and potential
restoration options, for example by providing rules concerning critical values of major river characteristics at
which certain actions should be undertaken.
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1. Introduction

In recent years, predictive models have been applied in numerous
ecological studies to assess, monitor and manage natural resources by
considering the presence or absence of indicator organisms in a given
habitat (Goethals et al., 2002; D'heygere et al., 2003, 2006; Dedecker
et al., 2005; Dakou et al., 2007). Predictive modelling is one of the
most important steps in the development of a standard habitat
assessment protocol (Parsons et al., 2004). Classification trees (CT)
and support vector machines (SVM) are two examples of predictive
modelling techniques that can be used in this context.

Due to their transparency and flexibility, classification trees are
recently gaining popularity. Classification trees are attractive since
they are fairly straightforward to construct and their transparency
allows for easy integration into an environmental decision support
system. In environmental applications, classification trees have been
used to predict biological indicators (Edwards et al., 2006). Dzeroski
et al. (1997) were among the first to describe applications of
classification trees in river community analysis. Since then, they
have also been applied to predict macroinvertebrate presence
(D'heygere et al., 2003; Dakou et al., 2007). Such predictions may
.

provide a good indication of the impact of different anthropogenic
disturbances on river conditions (Ghetti and Ravera, 1993; Rosenberg
and Resh, 1993; Hall and Holmes, 2003; D'heygere et al., 2006; Dakou
et al., 2007; Goethals et al., 2007).

SVM are a new generation of learning algorithms that implement
Platt's sequential minimal optimisation (SMO) algorithm for training
a support vector classifier (Keerthi et al., 2001). They deal with many
predictors and they also avoid the assumption of linear relationships
(Akkermans et al., 2005). SVM are a group of supervised machine
learning methods that can be applied for classification or regression
algorithms. They replace all missing values and transform nominal
attributes into binary ones (Witten and Frank, 2000). Due to this
reason, SVM are claimed to have a goodmodel performance compared
to other techniques. For example, Akkermans et al. (2005) compared
the predictive performance of SVM and logistic regressions to predict
macro-fauna community types from environmental variables and
SVM were found to be the best predictor. This made SVM an
interesting modelling tool (Vapnik, 1995; Burges, 1998; Keerthi
et al., 2001) because of the very good performance in different fields of
application (Dibike et al., 2001; Keerthi et al., 2001).

Irrelevant attributes in a dataset are known to reduce model
performance and reliability (Hall and Holmes, 2003) and if there are
too many attributes, they are costly and are not manageable (Dom
et al., 1989). Greedy stepwise and genetic algorithms are some of the
known search algorithms to select input attributes (Gevrey et al.,
2003; Gabriels et al., 2007). The greedy stepwise or hill-climbing

mailto:Koen.Lock@UGent.be
http://dx.doi.org/10.1016/j.ecoinf.2009.12.004
http://www.sciencedirect.com/science/journal/15749541


148 A. Ambelu et al. / Ecological Informatics 5 (2010) 147–152
attribute selection approach considers both adding and removing
features at each decision point, which allows to retract an earlier
decision without keeping explicit track of the search path (Blum and
Langley, 1997). After features are generated, one can select the best or
simply, the first feature that improves accuracy over the current set
(Blum and Langley, 1997; Boros et al., 2003). Greedy algorithms have
been used to select the appropriate attributes and also to remove
variables (Butterworth et al., 2004). Genetic algorithms are general
purpose search algorithms inspired by Charles Darwin's principle of
‘survival of the fittest’ to solve complex optimisation problems
(Holland, 1975; Goldberg, 1989; Vose, 1999). They got popular for
the optimisation of predictive models, specifically in the field of river
ecology (D'heygere et al., 2006; Goethals et al., 2007).

River management can cause a complex decision-making process
because it has to consider the natural physical system of the river
catchment, the socioeconomic system that relies upon the water
resources of a given river basin, the administrative body responsible
for river management etc. These complex decision processes could be
simplified by developing different decision support systems (Welp,
2001). Predictivemodels for macroinvertebrate taxa ormetrics that are
sensitive to specific river basin problems could be useful decision
support tools. CT and SVM are some of the modelling methods that can
be used to predict macroinvertebrate compositions in river systems.
From such models, relevant parameters that should be considered by
river managers during river restoration activities could be derived. The
present paper aimed to predict the macroinvertebrate metrics best
reflecting the ecological water quality in South-Western Ethiopia using
SVM and CT.
Fig. 1. Location of the sampling sites in th
2. Materials and methods

2.1. Study area

The Gilgel Gibe watershed is located in south-western Ethiopia
(latitude 7°25′–7°55′ North and longitude 36°30′–37°22′ East), while
the altitude ranged from 1096 to 3259 m. The area is mainly used for
agricultural and other anthropogenic activities. Almost the whole
watershed is exposed to different activities like grazing, ploughing,
sand dredging, vegetation clearance and municipal waste discharge.
In general, most watercourses are exposed to point and non-point
pollution sources. However, there were some stream segments which
are still covered with a natural vegetation and remote from direct
human activity. The location of the sampling sites in the Gilgel Gibe
watershed in Ethiopia is illustrated in Fig. 1.
2.2. Data collection

Macroinvertebrates and environmental data were collected at 42
sampling sites in streams of the Gilgel Gibe watershed from January
2005 till September 2008. Depending on the sampling site, one to
seven samples were taken. During the whole campaign, 162 samples
were collected with the kick sampling method as described by
Gabriels et al. (2009) using a D-frame net having a mesh size of
300 µm diameter. During 5 min, samples were collected from each
habitat within a 10 m stretch. Macroinvertebrates were then sorted
alive onsite and preserved in 70% ethanol for identification.
e Gilgel Gibe watershed in Ethiopia.
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To assess the river habitat status of the sampling reach, a surveywas
undertaken with the intention of identifying those physical features of
the river that have direct or indirect influence on themacroinvertebrate
community. The habitat of each sampling reachwas characterized using
the USEPA rapid physical habitat classification format (Barbour et al.,
1999). Habitat scores of the sampling sites were used to classify the site
as poor (b60), marginal (60–99), suboptimal (100–159) and optimal
(160–200). Using Statistica (Statsoft®), a multivariate discriminant
analysis was performed based on the log transformed physical–
chemical variables and using a forward stepwise selection method
together with canonical analysis. The discriminant analysis allowed to
check the appropriateness of the application of theUSEPA rapidphysical
habitat classification format in the studied watershed.

Physical–chemical parameters like temperature and conductivity
(Knick Portamess® 911 conductivitymeter), pH (Knick Portamess® 911
pH meter), oxygen saturation (Knick Portamess® 911 oxygen probe)
and turbidity (portable Wagtech® turbidity meter) were measured
onsite at each sampling location. Five day biochemical oxygen demand
(BOD5), nitrate-nitrogen (described as nitrate), ammonium-nitrogen
(described as ammonium) and orthophosphate (described as phos-
phate)weremeasured in the laboratory according to standardmethods
(APHA, AWWA, WPCF, 1995). The distance between the sampling site
and the source was measured using GIS and altitude was measured
using the Global Positioning System (Magellan®, SporTrak Pro). In total,
22 different river characteristics were recorded (Table 1).

2.3. Metric classification

As it is difficult to have a general model for all macroinvertebrates,
the use of metrics that best suit the regional application is mandatory
Table 1
Input variables used for the model development together with the average, standard
deviation, minimum and maximum values.

Input variables Unit Average St.
dev.

Minimum Maximum

Altitude m 1737 87 1625 2488
Stream order 2.4 1.1 1.0 4.0
Riparian vegetation status Score

(0–20)
7 6 0 20

Distance from source km 32 36 2 154
Sinuosity score

(0–20)
14 4 7 20

Velocity m/s 0.50 0.36 0.01 1.80
Discharge m3/s 2.01 2.21 0.001 12.32
Average water depth m 0.60 0.41 0.01 2.00
Wetted width m 9 9 1 43
Water temperature °C 20.5 2.5 15.2 28.5
Ambient temperature °C 24 3 16 32
Embeddedness Score

(0–20)
12 6 0 19

Riverbank status Score
(0–20)

12 7 1 26

Turbidity FTUa 80 135 0 1000
pH 7.3 0.5 5.3 8.5
Conductivity µS/cm 113 54 40 450
Dissolved oxygen mg/l 6.4 1.5 1 9.3
Oxygen saturation % 85 23 7 132
BOD mg/l 3.5 4.6 0.5 26.0
Ammonium mg/l 0.80 0.65 0.01 2.60
Nitrate mg/l 1.50 1.08 0.01 4.80
Phosphate mg/l 0.45 0.50 0.00 2.17
% Ephemeroptera, Plecoptera
and Trichoptera

Four class (poor, fair,
good and high)

% scrapers Four class (poor, fair,
good and high)

Biological Monitoring
Working Party score

Four class (poor, fair,
good and high)

Taxa richness Four class (poor, fair,
good and high)

a Formazine turbidity unit.
(Wagner et al., 2006). Among many macroinvertebrate metrics, the %
organisms belonging to Ephemeroptera, Plecoptera and Trichoptera
(% EPT), the % organisms being scrapers, the Biological Monitoring
Working Party score (BMWP) and taxa richness (TR) were chosen
because these metrics are easy to apply and are therefore suitable for
developing countries (Resh, 2007) and because they best reflected the
ecological water quality (Ambelu, 2009). Four classes were distin-
guished for each macroinvertebrate metric (Table 2, Fig. 2).

2.4. Model training and validation

SVM and CT models were developed using Weka Platt's sequential
minimal optimisation (SMO) and the J48 algorithm (Witten and Frank,
2000), respectively. For the training and validation of SVM and CT
models, 10-fold cross-validation was used to get a reliable estimate of
the error of each model (Kohavi, 1995; Witten and Frank, 2000; Dakou
et al., 2007). This procedure is helpful to avoid overfitting of themodels
(Bishop1995). To evaluate theperformance of eachmethod, percentage
of correctly classified instances (% CCI) and kappa statistics (K) were
used (Witten and Frank, 2000; Goethals et al., 2007).

2.5. Attribute selection and optimisation

Selection of the appropriate variables in a dataset is important
because it enhancesmodel performance (Goethals et al., 2007). In this
study, optimisation of the SVM and CTmodels were made by applying
greedy and genetic algorithms. Initially, models were run using all 22
input variables. Subsequently, variables were selected by greedy
stepwise and genetic algorithms for the four selected macroinverte-
brate metrics. Wrapper subset evaluator using SMO and J48 as a base
learning algorithm were used. The wrapper subset evaluator
evaluates variables by using accuracy estimates provided by the
actual target learning algorithm (Hall and Holmes, 2003). During
model building, default settings were used of the Weka software
package in Java (Witten and Frank, 2000). After randomization, each
model was run five times for each macroinvertebrate metric in order
to check the consistency and reproducibility of the model. The
predictive performance of each technique for the four macroinverte-
brate metrics was calculated from the output of 10-fold cross-
validation. The Kruskal–Wallis tests were applied to assess whether
there were differences in performance between the different model
optimisation techniques.

3. Results

Multivariate discriminant canonical analysis based on the physical–
chemical variables showed that the four habitat groups were distinctly
clustered (Fig. 3). The rapid habitat assessment protocol thus proved to
be an appropriate tool in the context of this study. The cumulative
proportion of the first and the second canonical roots represented 86%
and 96% of all eigenvalues, respectively. The canonical R values of the
first and second rootswere respectively 0.94 and 0.70,which indicates a
good representation of the underlying resemblance, and these two roots
significantly discriminated between the four habitat categories
(pb0.00001).
Table 2
Division in four classes of the used macroinvertebrate metrics: % organisms belonging
to Ephemeroptera, Plecoptera and Trichoptera (EPT), % organisms being scrapers,
Biological Monitoring Working Party score (BMWP) and taxa richness (TR).

Poor Fair Good High

% EPT b10 10–40 N40–60 N60
% scrapers b6 6–20 N20–40 N40
BMWP b30 30–50 51–100 N100
TR b7 7–12 13–25 N25



Fig. 2. Box (standard error) and whisker (95% confidence interval) plot of the predicted macroinvertebrate metrics (% organisms belonging to Ephemeroptera, Plecoptera and
Trichoptera (EPT), % organisms being scrapers, Biological Monitoring Working Party score (BMWP) and taxa richness (TR)) for the four recognized habitat quality classes.
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The performance of SVM and CT models was compared in three
ways: (1) between SVM and TC models, (2) before and after the
application of optimisation methods and (3) between the different
macroinvertebrate metrics. Before optimisation, using all the input
variables, both SVM and CT models performed less good than after
variable selection (Table 3). However, when the two techniques were
compared, SVM showed significantly better performance over CT
(pb0.001). Significant model improvements (pb0.05) were also
observed with both techniques after the application of greedy and
genetic search algorithms in terms of both % CCI and K. After
Fig. 3. Scatter plot of canonical discriminant analysis basedon the environmental variables
used for modelling, with indication of the four distinguished habitat categories.
optimisation, performance of SVM and CT models were still different,
but significant differences were no longer observed (pN0.05). Among
the fourmacroinvertebratemetrics, % scraperswaspoorlypredictedand
its kappa statistics were less than 0.4 while for the other metrics, it was
higher than 0.4 (Table 3).

The performance of the six modelling methods (SVM and CT, both
without optimisation, with greedy stepwise and with genetic
algorithms) were compared by looking at the model performance
indicators (CCI and K) of the four metrics together (Table 3). Without
the application of optimisation techniques, the SVM performed better
than the CT. After greedy stepwise optimisation, SVM again showed
superior performance over CT, however, after application of genetic
algorithms, SVM and CT showed a similar performance in terms of K.
SVM showed smaller standard deviations for % CCI and K in
comparison with CT (Table 3), indicating that SVM gave more stable
results. When both optimisation methods were compared, the greedy
stepwise search algorithm performed better for SVM, while for CT, the
genetic search algorithm resulted in better predictive models. The
application of search algorithms made CT more transparent because
limiting the number of input variables resulted in a reduction of the
size of the induced trees. In the CT model for % EPT, for example, both
greedy and genetic algorithms reduced the size of the tree from 55 to
21 and the number of leaves from 28 to 11.

The Kruskal–Wallis rank test revealed that there was a significant
model performance difference between models made with optimisa-
tion and without optimisation techniques. The two search algorithms
selected the most important variables predicting the macroinverte-
brate metrics. Structural variables of the river, such as embeddedness,
riverbank status and the presence of riparian vegetation, as well as
physical–chemical parameters, such as pH and water temperature,
were selected by both methods (Table 4). In general, the number of
attributes retained by genetic search algorithms was relatively higher
than by greedy stepwise algorithms.



Table 3
Average (n=5) model performance for the used metrics (% organisms belonging to Ephemeroptera, Plecoptera and Trichoptera (EPT), % organisms being scrapers, Biological
Monitoring Working Party score (BMWP) and taxa richness (TR)) for the support vector machines and classification trees; No = no optimisation method applied, Gr = greedy
stepwise and Gen = genetic algorithm. The mean value indicates the average performance for the four metrics (standard deviation between brackets).

Support vector machines Classification trees

No Gr Gen No Gr Gen

% CCI K % CCI K % CCI K % CCI K % CCI K % CCI K

% EPT 56 0.39 59 0.43 57 0.40 50 0.31 59 0.43 60 0.44
% scrapers 48 0.27 54 0.36 54 0.36 42 0.22 47 0.26 51 0.32
BMWP 57 0.39 61 0.43 61 0.44 53 0.35 60 0.44 64 0.50
TR 58 0.37 65 0.48 63 0.46 51 0.30 60 0.40 59 0.42
Mean 55 0.36 60 0.43 59 0.42 49 0.30 57 0.38 59 0.42

(4.6) (0.057) (4.6) (0.049) (4.0) (0.044) (4.8) (0.054) (6.4) (0.083) (5.4) (0.075)

151A. Ambelu et al. / Ecological Informatics 5 (2010) 147–152
4. Discussion

The composition of the benthic macroinvertebrate communities
usually provides useful insights in the ecological quality of surface
waters, as these organisms are sensitive to disturbance. Predicting the
composition of macroinvertebrate communities in rivers is not an easy
task, because of the number of species that can be modelled and due to
the complexity of biotic and abiotic variables that influence their
distribution. However, predictingmacroinvertebratemetrics like % EPT,
% scrapers, BMWP and taxa richness, which are metrics that are known
to be well correlated with the ecological water quality, can result in
comprehensive models which are helpful for decision support systems.

In the present study, the prediction of these macroinvertebrate
metrics by SVM and CT resulted in reliable models. Before optimisa-
tion, SVM performed better than CT models. This was probably due to
the robustness of SVM over CT: SVM are less affected by missing data
and multiple collinearity (Witten and Frank, 2000). The performance
of CT was somewhat lower (below 51% CCI and K=0.32) and in
addition, CT were complex and therefore difficult to interpret. In most
data mining techniques, such as artificial neural networks and CT, the
model performance can be compromised by collinearity and noisy
datasets (D'heygere et al., 2006; Goethals et al., 2007). The quality of
models developed by data mining techniques can also be compro-
Table 4
Selected variables (marked X) by greedy (Gr) and genetic (Gen) algorithms applied for sup
metrics: % organisms belonging to Ephemeroptera, Plecoptera and Trichoptera (EPT), % or
richness (TR).

% EPT % scrapers

SVM CT SVM CT

Gr Gen Gr Gen Gr Gen Gr

Altitude X X X
Stream order
Riparian vegetation X X X X
Distance from source X
Sinuosity X X X
Velocity X X
Discharge X X
Water depth X
Wetted width
Water temperature X X
Ambient temperature
Embeddedness X X X X X X
Riverbank status X X
Turbidity X
pH X X X
Conductivity X
Dissolved oxygen
Oxygen saturation X X
BOD
Ammonium X
Nitrate X X X X
Phosphate X X
mised if the dataset contains too much irrelevant or unreliable
information (Hall and Holmes, 2003). After the application of greedy
stepwise or genetic search algorithms, models always showed better
performance. Models performed best when CT were combined with
genetic algorithms and SVM with greedy stepwise algorithms. In the
CT models, greedy search algorithm were probably trapped by local
noise data so global maxima were not reached (Vafaie and Imam,
1994). The application of the two algorithms not only helped to
optimize themodels, but alsomade them easier to interpret. Although
the performance of SVM was generally slightly better, CT are more
easily applied by non-specialists, which is a great advantage,
especially in developing countries.

It should be kept in mind that the variables selected for the model
development are not necessarily the only ones that are important.
Variables that are not selected can be poor predictors, but another
possibility is that they are correlated with another variable or with a
combination of other variables. Variable selection during model
development thus indicates whether a variable is important, but it is
not decisive on its own. In fact, principal component analysis
indicated that nutrient concentrations, such as ammonium, phos-
phate and nitrate, were strongly correlated and also parameters like
riparian vegetation cover, quality of the riverbank and embeddedness
were strongly related (Ambelu, 2009).
port vector machines (SVM) and classification trees (CT) for the prediction of the four
ganisms being scrapers, Biological Monitoring Working Party score (BMWP) and taxa

BMWP TR

SVM CT SVM CT

Gen Gr Gen Gr Gen Gr Gen Gr Gen

X X X X
X X X X X

X X X X

X X

X X X X X
X X X X

X
X X X X X

X X X X X X X
X X

X X X X

X
X X

X X

X
X



152 A. Ambelu et al. / Ecological Informatics 5 (2010) 147–152
Dzeroski et al. (1997) modelled the biological classification of
British rivers based on biological data, the influence of physical and
chemical parameters on selected bioindicator organisms in Slovenian
rivers and the biological classification of Slovenian rivers based on
physical and chemical parameters as well as bioindicator data.
Blockeel et al. (1999) made simultaneous predictions of multiple
physical–chemical properties of the water from its biological
properties using a single decision tree and also predictions of past
physical–chemical properties of the river water from its current
biological properties, while Dzeroski et al. (2000) predicted physical–
chemical variables on the basis of biological data, taxa that occurred in
many trees were considered as useful indicator taxa. These studies
therefore use the opposite approach as was conducted in the present
study, but with the same objective. D'heygere et al. (2003, 2006)
predicted the presence of several macroinvertebrate taxa in Flanders
based on a selection of environmental variables, while Dakou et al.
(2007) induced decision trees to predict the habitat suitability of six
macroinvertebrate taxa in the river Axios (Northern Greece).
Although these latter models were able to predict the occurrence of
a single species, they are less suitable to judge the general ecological
water quality. It can thus be concluded that machine learning
techniques such as CT and SVM can be used in various ways to assist
in water quality management.

5. Conclusions

In the present study, SVM and CT with and without optimisation
methods were used to induce models predicting macroinvertebrate
metrics. The knowledge obtained in this way could be helpful for river
management and restoration purposes. Based on the developed
models, it can be concluded that acting on the restoration of the
riparian vegetation and minimisation of nutrient input and organic
waste discharges would considerably improve the ecological quality
in the Gilgel Gibe watershed in Ethiopia.
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