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Abstracts 
 

In many epidemiological studies time to event data are grouped into strata (or clusters), such 

as, geographic region, districts, villages and so on. Consequently, cluster specific effects on 

survival times may cause an extra variation. Under such circumstance, it is substantive 

importance to draw inference on the nature and magnitude of these effects albeit the primary 

focus being on survival times. In model based analysis the aforesaid effect (called frailty) are 

usually accommodated by the use of frailty survival models. 

 

The objective of this thesis is to model the time to first malaria infection due to p. falcuiprum 

in children living near to the Gilgel Gibe dam using Cox proportional hazards and shared 

gamma frailty models with an attempt to compare these two modelling approaches. 

 

We apply the two modelling approaches to the analysis of malaria dataset. The dataset 

comprise time to first malaria infection of 2040 under 10 children observed during the period 

from July 2008 to June 2010.  

 

This study revealed that, Cox PH model estimates the risk of malaria infection for children 

residing in proximity to the dam is significantly lower than children’s living in distant from 

the dam. However, when we take the clustering of children within locality into account (using 

frailty model) there was no statistical significant difference in hazard of contracting malaria 

between the two groups, namely at risk and control. The likelihood ratio test of the 

heterogeneity parameter (theta) in all the fitted frailty models, however, showed that theta is 

significantly different from zero (P<0.000), indicating that there is a clear clustering of study 

subjects (children) with in their localities.  

 

In the future, it is better to see also the result by including a frailty term at least in a pair-

wise manner and also spatial distance of households, in the modelling of time-to-malaria. 
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1. Introduction 

1.1. Background of the study 

Globally, more than two billion people live in areas where they are at risk of contracting 

malaria (Breman, 2001). Annually about 300 to 500 million new cases of malaria, 

primarily due to P.falcipurm, are observed in the world with 90% in sub-Saharan Africa 

and these accounts for an estimated one million children‘s deaths (snow et al, 1999). In 

2001, the disease accounts for an estimated loss of 44.7 million disability adjusted life 

years (DALYs) with a DALY loss of > 87% occurring in the sub-Saharan Africa (WHO, 

2003); in 2002 the estimated malaria burden has increased to 46.5 million DALYs 

(WHO, 2004). An estimated 90% of this burden is related to environmental factors 

(WHO, 1977). Reliable analysis of these environmental risks to health is therefore 

fundamental for the prevention and control of the disease, for evidence-based guidance 

for health policy and planning. However, analysis of how changes in the environmental 

risk factors and the incidence and prevalence of malaria are related is sparse. 

The distribution of malaria is governed by a large number of factors relating to the 

parasite, the vector and the host. Many of these factors affect the interactions between 

parasite, vector and host in some way. Within this context, the development of water 

projects and their operation has a history of facilitating increased transmission of vector 

borne diseases (service, 1991). This risk factor comprises a number of different 

components that are related to the transmission dynamics of malaria, which collectively 

influence morbidity and mortality and hence the malaria burden. Various studies have 

been done to investigate malaria incidence and prevalence in dam sites compared to a 

distant site, however consistent result is not obtained yet. 

This study is intended to model the time-to-first malaria infection of children‘s living 

around Gilgel Gibe Hydroelectric Power Dam using survival modelling framework. 

Despite, survival models have a long history in the biostatistical and medical literature 

(Cox and Oakes 1984), there are very few literatures regarding the use of survival 

analysis in modelling the spread and incidence of malaria as compared to other statistical 

models, such as, General Liner Model (GLM) and Generalized Liner Mixed Effect Model 

(GLMM).  
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As opposed to modelling disease incidence and mortality, survival modelling provides a 

slightly different perspective with regard to the nature of the disease. It focus upon how 

many are expected to survive after a certain period of time, how fast is the rate of failure, 

and what derives shortened or prolonged survival; all of these may be influenced by 

several factors such as prevalence of the disease in the population, physiological 

characteristics of a person, environmental, socio-economic, access to health care facility 

etc. 

Survival analysis is a statistical method for data analysis where the outcome variable of 

interest is the time to the occurrence of an event (Klembaum, D. G., 1996). Hence, survival 

analysis is also referred to as "time-to-event analysis", which is applied in a number of 

applied fields, such as medicine, public health, social science, and engineering. In 

medical science, time to event can be time until recurrence in a cancer study, time to 

death, or time until infection. In the social sciences, interest can lie in analyzing time to 

events such as job changes, marriage, birth of children and so forth. The engineering 

sciences have also contributed to the development of survival analysis which is called 

failure time analysis since the main focus is in modelling the lifetimes of machines or 

electronic components (Lawless, J. F., 1982). The developments from these diverse fields 

have for the most part been consolidated into the field of survival analysis. Because these 

methods have been adapted by researchers in different fields, they also have several 

different names: event history analysis (sociology), failure time analysis (engineering), 

duration analysis or transition analysis (economics). These different names do not imply 

any real difference in techniques, although different disciplines may emphasize slightly 

different approaches. Survival analysis is the name that is most widely used and 

recognized (Lee, E. T., and Wang, J. W., 2003). 

The complexities provided by the presence of censored observations led to the 

development of a new field of statistical methodology. The methodological developments 

in survival analysis were largely achieved in the latter half of the 20th century. Although 

Bayesian methods in survival analysis (IBRAHIM, J. G. et al., 2001) are well developed 

and are becoming quite common for survival data, our application will focus on 

frequentist methods. There have been several textbooks written that address survival 

analysis from a frequentist perspective. These include Lawless, J. F. (1982), Cox and Oakes 

(1984), Fleming and Harrington (1991), and Klein and Moeschberger (1997). 
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One of the oldest and most straightforward non-parametric methods for analyzing 

survival data is to compute the life table, which was proposed by Berkson and Gage 

(1950) for studying cancer survival. One important development in non-parametric 

analysis methods was obtained by Kaplan and Meier (1958). While non-parametric 

methods work well for homogeneous samples, they do not determine whether or not 

certain variables are related to the survival times. This need leads to the application of 

regression methods for analyzing survival data. The standard multiple linear regression 

models are not well suited to survival data for several reasons. Firstly, survival times are 

rarely normally distributed. Secondly, censored data result in missing values for the 

dependent variable (survival time) (Klembaum, D. G. 1996).  

The Cox proportional hazards (PH) model is now the most widely used for the analysis of 

survival data in the presence of covariates or prognostic factors. This is the most popular 

model for survival analysis because of its simplicity, and not being based on any 

assumptions about the survival distribution. The model assumes that the underlying 

hazard rate is a function of the independent covariates, but no assumptions are made 

about the nature or shape of the hazard function. In the last several years, the theoretical 

basis for the model has been solidified by connecting it to the study of counting processes 

and martingale theory, which was discussed in the books of Fleming and Harrington 

(1991) and of Andersen et al (1993). These developments have led to the introduction of 

several new extensions to the original model. However the Cox PH model may not be 

appropriate in many situations and other modifications such as stratified Cox model 

(Klembaum, D. G. 1996) or Cox model with time-dependent variables (Collett, D., 2003) can 

be used for the analysis of survival data. 

Implicitly, most of the statistical models and methods for time-to-event data (and here 

especially the Cox PH model) were developed under the assumption that the observations 

from subjects are statistically independent of each other. While this is sensible in many 

applications, it has become obvious that this assumption does not hold in other situations 

which are not common as originally thought. In many epidemiological studies time to 

event data are clustered and event times among members of the same cluster may not be 

independent. In this case, conventional survival analysis may yield consistent estimates of 

the marginal hazard if the marginal hazard is incorrectly modelled (Huster et al., 1989). 

However, variance estimates overestimate the true variance when the independent 
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variables vary within a nit, and underestimate when the independent variables are 

constant within a unit, leading to incorrect inferences.  

A commonly used and very general approach to the problem of modelling multivariate 

data is to specify independence among observed data items conditional on a set of 

unobserved or latent variables. A multivariate model for the observed data is then induced 

by averaging over assumed distribution for the latent variables. The dependence structure 

in the multivariate model arises when dependent latent variables enter into the conditional 

models for multiple observed data items, and the dependence parameters often may be 

interpreted as variance components. Frailty models for multivariate survival data are 

derived under a conditional independence assumption by specifying latent variables 

which act multiplicatively on the base line hazard (Wienke 2003). 

Extensive research has been devoted to the frailty issue in survival analysis and 

generalized linear model (GLIM). Recently, investigators have recognized that ignoring 

individual heterogeneity may lead to inaccurate conclusions. Models for heterogeneity 

have been proposed by Vaupel et al. (1979), who introduced frailty as an unobserved 

quantity in population mortality. Oakes (1989) proposed frailty models for bivariate 

survival times and introduced several possible frailty models. Flinn and Heckman (1982) 

also introduced heterogeneity into their model for analyzing individual event histories. 

They believed that improper modelling of heterogeneity will result in biased estimates 

since the covariates in the model fail to explain the true effect of the covariates on a 

response variable. Keyfitz and Littman (1979) showed that ignoring heterogeneity will 

lead to an incorrect calculation of the life expectancy from known death rates. A similar 

conclusion was reached by Vaupel et al. (1979) using a continuous mixture model in 

which an unobserved non-negative random frailty represents all individual differences in 

endowment for longevity. 
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1.2 Statement of the problem 

In the literature the use survival analysis in modelling malaria disease dynamics is not 

that much as compared to the general liner modelling framework, yet survival approaches 

has the capacity to incorporate many of the features of this approaches. Particularly, the 

traditional Cox PH model has the potential to deal with aspects such as non-normality, 

censoring as well as to investigate the effect of explanatory variables directly on survival 

time. 

The standard situation of the application of survival methods in most clinical researches 

projects assume a homogeneous population being studied. That is, all individuals sampled 

in to the study are subjects in principle under the same risk factor. The appropriate 

survival (and here especially the Cox PH) then assumes that the survival data of different 

individuals are independent of each other. While this is sensible in many applications, it 

has become obvious that this assumption does not hold in other situations which are not 

common as originally thought. In many epidemiological studies time-to-event data are 

clustered and event times among members of the same cluster may not be independent. 

Frailty modelling approach accounts for this problem by specifying independence among 

observed data items conditional on a set of unobserved or latent variables. Whereas, the 

Cox proportional hazards model has no such term and dependence of the event times is 

not accounted for. This lack of accountability can lead to biased estimates of both the 

regression coefficients and hazard rates and the magnitude of bias that will be committed 

depend on various factors. 

In this study, we used and compare for their efficiency, the Cox PH model (without 

taking in to account the clustering in the data) and its extension shared gamma frailty 

model to investigate the pattern of malaria incidence among children‘s living around 

Gilgel Gibe area using important covariates.   
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1.3 Objectives of the study 

1.3.1 General objective 

 The main objective of this study is to model time-to-first malaria infection of children 

living around Gilgel Gibe hydroelectric power dam using Cox PH and gamma shared 

frailty modelling approaches and then after to compare their performance. 

1.3.2 Specific objective 

 To investigate the pattern of malaria incidence among children‘s living around Gilgel 

gibe area while taking into and (not into) account the clustering of study subjects with 

in villages. 

 To identify important risk factors or covariates that are significantly associated with 

time to first malaria infection, and  

 To compare the two commonly used modelling approaches in survival analysis; 

namely Cox PH and gamma shared frailty models using malaria data set.  
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2. Literature review 

2.1 Global burden of malaria 

Globally, more than two billion people live in areas where they are at risk of contracting 

malaria (Breman, 2001). Annually about 300 to 500 million new cases of malaria, primarily 

due to P. falcipurm, are observed in the world with 90% in sub-Saharan Africa and these 

accounts for an estimated one million children‘s deaths (snow et al, 1999). In 2001, the 

disease accounts for an estimated loss of 44.7 million disability adjusted life years (DALYs) 

with a DALY loss of > 87% occurring in the sub-Saharan Africa (WHO, 2003); in 2002 the 

estimated malaria burden has increased to 46.5 million DALYs (WHO, 2004). An estimated 

90% of this burden is related to environmental factors (WHO, 1977). Reliable analysis of 

these environmental risks to health is therefore fundamental for the prevention and control of 

the disease, for evidence-based guidance for health policy and planning. However, analysis of 

how changes in the environmental risk factors and the incidence and prevalence of malaria 

are related is sparse. 

The discovery of an interactive effect between HIV infection and malaria morbidity 

(Whitworth et al. 2000; Chandramohan and Greenwood 1998; Verhoef et al. 1999) 

exacerbates the potential for devastating health consequences in populations with large 

numbers of individuals who are co-infected. In resource-poor countries in Africa, malaria 

prevention and treatment consume large proportions of health budgets, and since it poses a 

threat to indigenous populations as well as visitors, it acts as a deterrent to tourism and 

foreign investment in these countries. Malaria therefore not only affects the health status of 

Africa‘s population, but also has far-reaching economic consequences inhibiting economic 

development (Wernsdorfer and Wernsdorfer 1988). The impact of malaria on the region has 

been recognized by the convening of the first African summit of heads of state on malaria in 

Abuja, Nigeria in April 2000. A report to the summit meeting calls, amongst other things, for 

more research on trends in incidence and prevalence, epidemic outbreaks and clinical 

epidemiology (Sachs 2000). A better understanding of the distribution of malaria has been 

identified as an important tool in its control (Snow et al. 1996). 
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2.2 Biology of malaria 

2.2.1 Transmission of malaria 

Malaria is caused by the parasite of genus Plasmodium. The four species of Plasmodium are 

P. falciparum, P.malariae, P.ovale and P.vivax. In Africa the predominant species of the 

disease causing-parasite is P. falciparum. Infection of the human host occurs when a person 

is bitten by a female Anopheles mosquito which has previously become infected. The 

parasite, called sporozoite at this stage of its cycle, enters the human body via the saliva of 

the mosquito which is injected into the blood. The parasites multiply in the liver, and re-

invade the blood via red blood cells as merozoites. These develop into a stage known as the 

trophozoite, which is the one visible in blood films, and subsequently divide by the process of 

schizogony to produce further merozoites, which invade non-infected blood-cells. Some of 

the merozoites develop into new trophozoites whilst others develop into male micro- or 

female macrogametocytes. Uninfected Anopheles mosquitoes become infected if they feed on 

a person with mature gametocytes in their peripheral blood. In the mosquitos the 

microgametozytes exflagellate into gametes before fertilising the macrogametocytes, thereby 

forming zygotes. The zygote changes into an ookinete and then into an oocyst, which is 

found in the mid-gut wall of the mosquito. Large numbers of sporozoites are formed within 

the oocyst. The sporozoites leave the oocyst to invade the mosquito.s salivary glands, from 

where they can infect another human host when the mosquito takes a blood meal. The 

incubation period of the parasite in the vector takes 13 days to complete at 24û C. for 

P.falciparum. The vector will only become infective if it survives this sporogonic cycle 

(Gilles and Warrell 1993, chapter 2). 

Malaria as a disease is therefore closely bound to conditions which favor the survival of the 

anopheles mosquito and the life cycle of the parasite. These conditions are predominantly 

determined by climatic factors, by vegetation coverage and by the vector‘s access to water 

surfaces for breeding requirements (Molineaux, 1988; Gillies and De Meillon, 1968; 

Ghebreyesus, 1999). In the absence of any human intervention these conditions are 

predominantly determined by climatic and environmental factors. 

The most important vectors of malaria in Africa are members of the An. Gambiae complex 

and An. funestus. Identification of the distribution of particular species is important since 

malaria vector control measures may have to take account of behavioural differences between 

species to be effective (Coetzee et al. 2000; Gillies and De Meillon 1968). For example, 

indoor biting and indoor resting habits (endophagy and endophily respectively), make 
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mosquitoes more susceptible to control by residual insecticide on interior walls of houses, 

and to other insecticide treated materials such as bednets. 

Five species of the An. gambiae complex are vectors of malaria. The two species which are 

the most efficient vectors of malaria parasites, An. gambiae sensu strict and An. arabiensis, 

are also the most widely distributed throughout most of sub- Saharan Africa. They often 

occur together, but An. arabiensis predominates in drier areas, whilst An gambiae 

predominates in more humid areas. An gambiae generally has a higher vectorial capacity than 

any of the other species, in part due to it being highly anthropophilic. It is also mainly 

endophagic and endophilic, making it amenable to control by indoor house-spraying of 

residual insecticide, at least in areas of moderate transmission intensity. An. arabiensis, on 

the other hand, is partly zoophagic and mainly exophagic and exophilic. It is generally 

considered a less efficient vector of malaria than An gambiae, but it is nevertheless the 

principal malaria vector in many areas (White 1974). A. bwambae is found only in the 

Semliki forest area in Uganda. It is partially endophagic and partially endophilic. The two 

saltwater species of the An. gambiae complex are An. melas and An. merus which are found 

in West Africa and in East Africa respectively. An. merus is exophilic and mainly zoophagic, 

whereas An. melas displays a more mixed resting and biting behaviour. An. funestus of the An 

funestus group, the other major vector of malaria in many parts of tropical and sub-tropical 

Africa (Armah et al. 1997; Gillies and De Meillon, 1968) bites humans; it is exophagic and 

endophilic. Since it breeds mainly in permanent water bodies, it is associated with all-year as 

opposed to seasonal malaria transmission (Sharp et al. 2000). 

2.2.2 Clinical manifestations 

Clinical malaria manifests itself in its mild form as a febrile illness associated with other non-

specific symptoms (Bruce-Chwatt 1980, ch.3). The first clinical signs will only appear after 

the incubation period, which varies between nine and fourteen days for falciparum malaria. 

Clinical diagnosis is usually confirmed by a blood test, involving microscopic evidence of 

parasites in the blood, or by rapid diagnostic kit (Craig and Sharp 1997). However, in 

endemic countries infected individuals are often asymptomatic, so that parasitological 

evidence does not necessarily prove that the symptoms are due to malaria in a particular 

patient (Bruce-Chwatt 1980, pp. 35-51; Snow et al. 1997). 

Severe life threatening malaria is usually due to P.falciparum malaria. In non-endemic areas 

cerebral malaria is the sequel that often sets in after the initial general symptoms. In such 
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areas death due to malaria in both children and adults is usually due to cerebral malaria. In 

highly endemic areas severe malaria affects mainly young children and women during 

pregnancy. In such areas infants may enjoy a period of inherited immunity of up to 6 months. 

As this declines, clinical attacks become more severe, and often take the form of severe 

anaemia which is responsible for most deaths due to malaria in these areas. Depending on the 

intensity of exposure to the parasite, these children develop relative tolerance to malaria 

infection in their first few years of life. As a result of this older children and adults usually 

exhibit mild, non life-threatening clinical symptoms, if any. 

2.3 Factors that affect malaria transmission 

The distribution of malaria is governed by a large number of factors relating to the parasite, 

the vector and the host. Many of these factors affect the interactions between parasite, vector 

and host in some way. Within this context, the development of water projects and their 

operation has a history of facilitating increased transmission of vector borne diseases 

(service, 1991). This risk factor comprises a number of different components that are related 

to the transmission dynamics of malaria, which collectively influence morbidity and mortality 

and hence the malaria burden. The underlying reason is that, through the generation of new 

water bodies, new mosquito larval and adult habitats are created. The hydrological system 

and probably to a lesser degree, the atmospheric system might also be altered. Consequently 

this will have an effect on the development of malaria vector species and plasmodia, their 

survival rates and longevity, and most likely will result in increased mosquito densities. 

Without accompanying vector control strategies this is likely to result in a higher risk of 

disease transmission. Factors such as economic benefit from the water resource development 

project, personal protective measures, health seeking behavior and acquired immunity must 

also be taken in to account, as this factors might counterbalance negative impacts (Jennifer K. 

et al, 2005).  

Various studies have been done to investigate malaria incidence and prevalence in dam sites 

compared a distant site, however consistent result is not obtained yet. For example, in India, 

an over four-fold increase in annual parasite incidence among children were recorded in 

villages closer to the Bargi dam (head end) compared to more distant villages (tail end) 

(Singh et al., 1999; Singh and Mishra, 2000). Similarly, in Tigray in northern Ethiopia, 

numerous small dams and irrigation systems were put in place at altitude above 1800 m with 

the broad aim of reducing dependence on rain fed agriculture, improving overall food 

production. Comparative appraisal of a series of cross-sectional malaria surveys among 
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children carried out in close proximity to these newly constructed small dams and in villages 

farther away, revealed a seven-fold increase in malaria risk for those residing near dams 

(Ghebreyesus et al., 1999). 

However, it was also found that dam areas displayed a lower malaria transmission compared 

with distant setting when integrated vector management or other control interventions have 

been applied. For example, in Uttaranchal, India, a study, which compared the parasitological 

indices in dam area to forest or plain areas, recorded a prevalence and annual parasite 

incidence of zero in dam area. Better economic status, insecticide spraying and more 

awareness towards health maintenance were described to be the main factors accounting for 

the lack of malaria transmission at the dam area (Shukla et al., 2001). In addition, in Thailand 

no increase of malaria incidence was observed near the Nong Wai dam and Ubol Ratana dam 

(Bunnag et al., 1979; Harinasuta et al., 1970). 

Increasing rainfall and vegetation density generally have a favourable impact on malaria 

transmission through the provision of breeding sites and habitat for the vector. However, the 

differing breeding habits of different species of Anopheles complicate the relationship 

between rainfall and malaria transmission. Flooding, for example, may flush out larvae pools 

and lead to a temporary reduction in vector populations. Forest vegetation may inhibit An. 

gambiae because of the lack of sunlight. Nevertheless, insufficient annual rainfall, or 

seasonal rainfall, constitutes a distinct limitation to malaria transmission in areas where 

temperature is not a limiting factor. Rainfall of about 80mm per month for at least five 

months of the year has been identified as a minimum requirement for stable transmission to 

occur (Craig et al. 1999). 

The relationship between the pattern of age-specific malaria morbidity and malaria 

transmission intensity has been well documented (Molineaux, 1988; Snow et al. 1997; Snow 

and Marsh, 1998b). In areas of high transmission intensity this generally shows that the 

incidence of clinical attacks peaks in early childhood and then declines rapidly with 

increasing age due to the acquisition of clinical immunity in such populations. In areas of 

moderate transmission intensity the age of peak transmission occurs at a later age, whereas in 

populations exposed to very low levels of transmission or to epidemic malaria, the risk of 

infection remains constant across all ages. This has been shown to be the case for both mild 

as well as severe clinical malaria (Snow and Marsh, 1998b).  
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3. Malaria data set and its study setup 

The data set used for this study was generated by one of the VLIR IUC-JU project entitled 

―Malaria incidence and transmission among childern near Gilgel Gibe Hydroelectric Power 

Dam‖ with the principal investagtor (Mr. Delenasaw Yewhalaw). The study was undertaken 

with the over all aim of determining malaria incidence and patterns of its transmission among 

childerns living close to the newely constructed Gilgel Gibe hydroeletric dam. 

3.1. Study area and study population 

The study area is found in Jimma Zone,Southwestern part of Ethiopia, which is located  55 

Km away from Jimma town, with an approximate latitude of 7
0
 48‘ to 7

0
 50‘ North and 

longitude 37
0
 17‘ to 37

0
 20‘ East. The area extends over 1,607 Km

2
, with an altitude of about 

1760 m.a.s.l. At an altitude of more than 1,600 m, malaria epidemics are frequent, and 

clinical immunity to malaria is low in the population. 26The study area is administratively 

structured into 4 districts (locally known as woreda) and 17 villages (locally known as 

kebele). All children who are less than 10 years of age and lived for at least 6-months in study 

area constitute the study population. 

3.2. Study subjects  

Inclusion criteria of children in the study were as follows: All children who are less than 10 

years of age and continuous residence for at least 6-months in study area household since 

July 8, 2008, and intention to remain in the study area for the duration of study follow-up.  

At the very early stage of the study, each household in the study area was visited and 

numbered and a baseline survey was conducted with the aim of collecting relevant 

information on individual and household characteristics. After having all the necessary 

information from the baseline survey, all villages surrounding the dam within a 10km radius 

were classified into two groups mainly based on maximum flaying ablity mosquto.  

 at risk vllages:- villages within 3 km distance from the dam 

  control villages:- villages which are 5 to 10 km away from the dam  

From these two groups of villages, 8-pairs of villages were selected and paired based on 

various comparability factors, including similarity on ,eco-topography/altitude, population 

size, socio-economic activity, cropping area,  health facility, with out major impounded water 

around them, etc.  With such selection procedures, a total sample size of 2080 (130 under ten 

children/village * 8 villages * 2) study subjects were identified and included.  
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3.3. Data collection  

3.3.1. Follow-up 

 After  recruitinged a total of 2,080 under 10 children for the study, The Parasitological study 

was carried out longitudinally by trained health workers and the incidence of new malaria 

cases was continuously  recorded through passive surveillance and an active case detection 

system based on house-to-house visits at fortnightly interval in the already identified at risk 

and control villages during July, 2008 to june,2010 along with demographic variables. Due to 

many factors, in the course of 2-years, about 40 children were lost to follow-up and the final 

data set used for analysis consists of 2040 children of which 548 became infected.  

3.3.2.Household survey 

At the very early stage of the study, a baseline survey was conducted with the aim of 

collecting relevant information on individual and household characteristics. During the 

baseline survey, each household in the study area was visited and numbered; Information on 

demographic, environmental characteristics of the households, age, sex, number of children 

(under 10) in each household, use of bed nets, whether the house is human dwelling, mixed 

dwelling or there is cattle shelter nearby were collected; knowledge, attitude and practice 

related to malaria were collected from parents or guardians of children; Each house was also 

assessed and recorded in terms of its structure/design, accessibility and proximity to health 

facilities. Using a hand-held global postioning system (GPS), the geographic coordnates of 

all households were also measured and mapped (see fig 3.1). Continious varible ware created 

to define the distance of each household to the dam.  

3.4. Outcome 

In this study, the primary outcome is the time from the start of the study (from July 8, 2008) 

to the time of first malaria infection due to P. falciparum in children or to the end of study (to 

June 4, 2010). An episode of P. falciparum malaria was defined as temperature greater than 

37.50
0
C, with confirmed P.falciparum asexual stages by microscopy. The individual survival 

times for first p. falcuiparum malaria infection outcome are therefore the actual time in days 

from the start of the study to the date of his first p. falcuiparum malaria infection. Censoring 

was caused by death, dropout or end of the study. 
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4. Basic topics in survival analysis 
In general, survival techniques can be applied to a wider range of different situations, subject 

to the three necessary requirements as stated by Cox and oaks (1984); firstly a well defined 

time origin must be determined, then a scale for measuring the progress of time must be 

defined, and finally the exact definition of failure must be clear. 

4.1 Survival functions 

For most statistical application it is usual to describe models for probability distribution in 

terms of either the probability density function f(x) or the distribution function F(x). For 

survival analysis it is usually more appropriate to work with other functions which 

characterize the probability distribution. Let T be a positive random variable from a 

homogeneous population, representing the time until the relevant event occurs. In order to 

characterize the distribution of T one of the most often used functions is survivor function. 

The survivor function, S (t), is defined for both discrete and continuous distribution as the 

probability that an individual survivors beyond time t i.e. 

                 ( ) ( ) 0 (4.1)S t p T t t  

Here 0<S(t)<1 since s(0) =1 and  

For continuous random variable T, the density function, this is unconditional probability of 

the events occurring at time t, f(t), is given by  

                                                                                 

Where the cumulative distribution function ; So that . Note that 

f(t)dt  may thought of as the ―approximate ‖ probability that the event will occur at time t and 

that f(t) is a non negative function with the area under f(t) being equal to one. 

Many types of survival curves can be shown but the important point to note is that they all 

have the same basic properties. They are monotone, non increasing function equal to one at 

zero and zero as the time approaches infinity, their rate of decline, of course, varies according 

the risk of experiencing the event at time t but it is difficult to determine the essence of a 

failure pattern by simply looking at survival curve. A basic quantity fundamental in survival 

( ) 1 ( )F t S t ( ) ( )
t

S t f u du
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Under the null hypothesis, the probability of experiencing an event at t (j) does not depend on 

the group, i.e., the probability of experiencing an event  at t(j) is  . So that the expected 

number of deaths in group one is   

The test statistic is given by the difference between the total observed and expected number 

of deaths in group one  

                               

                                                    (4.18)

 

Since d1j has the hypergeometric distribution, the variance of d1j is given by 

                        

                                           (4.19)

 

So that the variance of UL is  

Under the null hypothesis, statistic (4.18) has an approximate normal distribution with zero 

mean and variance VL. This then follows  

There are several alternatives to the log-rank test to test the equality of survival curves, for 

example, the Wilcoxon test (Gehan, E. A., 1965). These tests may be defined in general as 

follow 

                                                                      (4.20) 

Where wj are weights whose values depend on the specific test 

The Wilcoxon test uses weights equal to risk size at t(j), wj = rj .This gives less weight to 

longest survival times Early failures receive more weight than later failures. The Wilcoxon 

test places more emphasis on the information at the beginning of the survival curve where the 

number at risk is large. This type of weighting may be used to assess whether the effect of 
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possible to estimate the effect parameter(s) without any consideration of the hazard function. 

The proportional hazards assumption refers to the fact that the hazard functions are 

multiplicatively related. That is, their ratio is assumed constant over survival time. In other 

words, the Cox proportional hazards model assumes that changes in the hazard of any subject 

over time will always be proportional to changes in the hazard of any other subject and to 

changes in the underlying hazard over time. 

The beauty of the Cox approach is that this vagueness creates no problems for estimation. 

Even though the baseline hazard is not specified, we can still get a good estimate for 

regression coefficients, β, hazard ratio, and adjusted hazard curves. 

From the representation in equation (4.21) one can notice a couple of features. First, if 

 then the hazard function for the jth individual is the baseline hazard function. It's the 

hazard function in the absence of covariates or when all of the coefficients of the covariates 

are assumed to be zero. Second, if we divide both sides by h0(t), we get equation (4.22) which 

shows where the term proportional comes from. Since for each individual, is 

constant across time, equation (4.22) shows that at every value of t, the j
th

 individual's log 

hazard function is constant proportion of the baseline hazard. Very loosely speaking, this 

implies that each individual's hazard function is ―parallel‖ to the h0(t). 

                                                     (4.22)

 

This is called a semi parametric model because a parametric form is assumed only for the 

covariate effect and the baseline hazard rate is treated non-parametrically. 

If we look at two individuals with covariate values Z and , the ratio of their hazard rates is 

=                      (4.23) 

which is a constant with respect to time. So, the hazard rates are proportional. The quantity 

given in equation (4.23) is called the relative risk (hazard ratio) of an individual with risk 

factor Z having the event as compared to an individual with risk factor Z
*
 

j 0

0 0

h(t, ) h (t)exp( )
exp( )

h (t) h (t)

j
j

β Ζ β Z
β Z

0 k k p

k*
k 1

p

k 1 *

p

k 1

0 k k

h exp ( )
h(t/ )

exp ( )
h(t/ )

h exp

(t)

(t) ( )*

k k-

β Z
Z

Z Z
Z

β Z



26 
 

The Cox proportional hazards model can equally be regarded as linear model, as a linear 

combination of the covariates for the logarithm transformation of the hazard ratio given by: 

  

Where  =  is the values of the vector of explanatory variables for a particular 

individual and  is a vector of coefficients. 

Again the cumulative hazard function is given by: ; The corresponding 

survival functions are related as . 

4.5.1 Fitting Cox PH model  

Fitting the Cox proportional hazards model, we wish to estimate h0(t) and β. One approach is 

to attempt to maximize the likelihood function for the observed data simultaneously with 

respect to h0 (t) and β. A more popular approach is proposed by Cox (1972) in which a 

partial likelihood function that does not depend on h0 (t) is obtained for β. Partial likelihood is 

a technique developed to make inference about the regression parameters in the presence of 

nuisance parameters (h0 (t) in the Cox PH model 

Let t1; t2, . . ., tn be the observed survival time for n individuals. Let the ordered event 

experiencing time of r individuals be t(1) < t(2) < ,. . .,  < t(r) and let R(t(j)) be the risk set just 

before t(j) and rj for its size. So that R(t(j)) is the group of individuals who are alive and 

uncensored at a time just prior to t(j). The conditional probability that the i
th

 individual 

experiences the event at t(j) given that one individual from the risk set on R(t(j)) dies at t(j) is  

P(individual i experiences the event at t(j ) one event from the risk set R(t(j)) at t(j)) 

0

h(t, )
                log

h (t)

Z β Z

1 2 p(z ,  z , ...,  z )

t

1 2 p( , ,  ....,  )β
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4.5.3 Cox proportional hazards model diagnostics 

After a model has been fitted, the adequacy of the fitted model needs to be assessed. The 

model checking procedures below are based on residuals. In linear regression methods, 

residuals are defined as the difference between the observed and predicted values of the 

dependent variable. However, when censored observations are present and partial likelihood 

function is used in the Cox PH model, the usual concept of residual is not applicable. A 

number of residuals have been proposed for use in connection with the Cox PH model. We 

will describe three major residuals in the Cox model: the Cox-Snell residual, the deviance 

residual, and the Schoenfeld residual.  

4.5.3.1 Cox-Snell residuals  
The Cox-Snell residual is given by Cox and Snell (Cox, D. R., and Snell, E. J.,1968). The Cox-

Snell residual for the i
th 

individual with observed survival time ti is defined as 

                 

                          (4.29)

 

Where is an estimate of the is Breslow's baseline cumulative hazard function at time 

ti; which is given by 

                                                               (4.30) 

Let Y = H(T) be the transformation of T based on the cumulative hazard function. Then the 

survival function for Y is: 

                                                          (4.31) 

was derived by Kalbfleisch and Prentice (1973). This residual is motivated by the following 

result: Let T have continuous survival distribution S(t) with the cumulative hazard H(t) = -

log(S(t)). Thus, ST(t) = exp(-H(t)). 

Thus, regardless of the distribution of T, the new variable Y = H(T) has an exponential 

distribution with unit mean. If the model was well fitted, the value would have similar 
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4.5.4.1 Stratified Cox model 
One method that we can use is the stratified Cox model, which strati.es on the predictors not 

satisfying the PH assumption. The data are stratified into subgroups and the model is applied 

for each stratum. The model is given by  

                                                     (4.34)  

where g represents the stratum. 

Note that the hazards are non-proportional because the baseline hazards may be different 

between strata. The coefficients β are assumed to be the same for each stratum g. The partial 

likelihood function is simply the product of the partial likelihoods in each stratum. A 

drawback of this approach is that we cannot identify the effect of this stratified predictor. 

This technique is most useful when the covariate with non-proportionality is categorical and 

not of direct interest. 

 

4.5.4.2 Cox regression model with time -dependent variables  
Until now we have assumed that the values of all covariates did not change over the period of 

observation. However, the values of covariates may change over time t. Such a covariate is 

called a time-dependent covariate. The second method to consider is to model non 

proportionality by time-dependent covariates. The violation of PH assumptions is equivalent 

to interactions between covariates and time. That is, the PH model assumes that the effect of 

each covariate is the same at all points in time. If the effect of a variable varies with time, the 

PH assumption is violated for that variable. To model a time-dependent effect, one can create 

a time-dependent covariate Z(t), ; where  g(t) is a function of t such as t; log 

t or Heaviside functions, etc. The choice of time-dependent covariates may be based on 

theoretical considerations and strong clinical evidence. 

The Cox regression with both time independent predictors Zi and time-dependent covariates 

Zj(t) can be written 

                                             (4.35) 

ig go
h (t) = h (t) exp( )igβ Z
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The hazard ratio at time t for the two individuals with different covariates Z and Z* is given 

by 

                                            (4.36) 

Note that, in this hazard ratio formula, the coefficient is not time-dependent. , represents 

overall effect of Zj(t) considering all times at which this variable has been measured in this 

study. But the hazard ratio depends on time t. This means that the hazards of event at time t is 

no longer proportional, and the model is no longer a PH model. 

In addition to considering time-dependent variable for analyzing a time-independent variable 

not satisfying the PH assumption, there are variables that are inherently defined as time-

dependent variables. One of the earliest applications of the use of time-dependent covariates 

is in the report by Crowley and Hu (1977) on the Stanford Heart Transplant study.  

 

4.6 Shared Frailty Models  

The notation of frailty provides a covenant way to introduce random effect, association and 

unobserved heterogeneity into models for survival data. In its simplest form, a frailty is an 

unobserved random proportionality factor that modifies the hazard function of an individual, 

or of related individuals (Wienke, 2003). In essence, the frailty concept goes back to work of 

Greenwood and Yule (1920) on ―accident proneness‖. The term frailty was introduced by 

Vaupel et al (1979) in univariate survival models and the model was substantially promoted 

by its application to multivariate survival data in seminal paper by Clayton (1978) (without 

using the notation ―frailty‖) on chronic disease incidence in families. 

Frailty models are extensions of the proportional hazards model which is best known as the 

Cox model (Cox, 1972), the most popular model in survival analysis. Normally, in most 

clinical application, survival analysis implicitly assumes a homogeneous population of 

individuals to be studied. This means that all individuals sampled into that study are subject 

in principle under the same risk (e.g., risk of death, risk of disease recurrence). In many 

applications, the study population cannot be assumed to be homogeneous but must be 

considered as a heterogeneous sample, i.e, a mixture of individuals with different hazards.  

For example, in many cases it is impossible to measure all relevant covariates related to the 

p1 p2
* *
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A commonly used and very general approach to the problem of modelling multivariate data is 

to specify independence among observed data items conditional on a set of unobserved or 

latent variables. A multivariate model for the observed data is then induced by averaging over 

assumed distribution for the latent variables. The dependence structure in the multivariate 

model arises when dependent latent variables enter into the conditional models for multiple 

observed data items, and the dependence parameters often may be interpreted as variance 

components. Frailty models for multivariate survival data are derived under a conditional 

independence assumption by specifying latent variables which act multiplicatively on the 

base line hazard (Wienke 2003). 

Extensive research has been devoted to the frailty issue in survival analysis and generalized 

linear model (GLIM). Recently, investigators have recognized that ignoring individual 

heterogeneity may lead to inaccurate conclusions. Models for heterogeneity have been 

proposed by Vaupel et al. (1979), who introduced frailty as an unobserved quantity in 

population mortality. Oakes (1989) proposed frailty models for bivariate survival times and 

introduced several possible frailty models. Flinn and Heckman (1982) also introduced 

heterogeneity into their model for analyzing individual event histories. They believed that 

improper modelling of heterogeneity will result in biased estimates since the covariates in the 

model fail to explain the true effect of the covariates on a response variable. Keyfitz and 

Littman (1979) showed that ignoring heterogeneity will lead to an incorrect calculation of the 

life expectancy from known death rates. A similar conclusion was reached by Vaupel et al. 

(1979) using a continuous mixture model in which an unobserved non-negative random 

frailty represents all individual differences in endowment for longevity. 
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From the above it is clear that the joint survivor function for one group is the Laplace 

transform of the frailty density function  with parameter . In principle, 

any distribution on the positive numbers can be applied as a frailty distribution. In this thesis 

we will consider only the gamma distribution. For other distribution see Hougaard (2000), 

and ohman and Eberly (2001). 

Gamma distributions have been used for many years to generate mixtures in exponential and 

Poisson models. From a computational point of view, gamma models fit very well into 

survival models, because it is easy to derive the formulas for any number of events. This is 

due to simplicity of the derivatives of the Laplace transform. This is also the reason why this 

distribution has been applied in most of the applications published until now.  

 

The probability density function (pdf) of gamma distribution as 

                                                              (4.41) 

With the shape parameter and the scale parameter. Furthermore we have 

                               

And  

                                                                                             (4.42) 

In frailty modeling the typical choice of the parameters of the gamma distribution is . 

Using  as notation for the variance of U, we have . This 

distribution with parameter is called one parameter gamma distribution with 

variance parameter . The density and Laplace transform of gamma distribution are 

respectively as follows. 

                                                                              (4.43) 

                       

0

2var( ) /U
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From equation 3.39 it is easily seen that the marginal hazard is  

                                                                       (4.44) 

 

4.6.2 Penalized partial likelihood for shared gamma frailty models 

The addition of frailties in the Cox model leads to unobserved entities in the model which 

also prevail in the partial likelihood. It is however assumed that these frailties come from a 

gamma density with mean equal to 1 and unknown heterogeneity parameter . Therefore, a 

penalty is added to the partial likelihood that decreases with the distance of the frailty from 

one, the mean of the frailty density. 

The penalty term on the log scale in the case of the gamma density is given by  

                                                                                                (3.45) 

The penalized partial likelihood for the frailty model is then given (McGilchrist, 1993) by 

               (4.46)  

For fixed values of the heterogeneity parameter , maximization of the penalized partial 

likelihood criterion leads to the same parameter estimates for the fixed effects  and the 

frailties zi as the EM-algorithm (Therneau et al., 2003). For a particular value of , estimates 

for the fixed effects, frailties and baseline hazards can thus be obtained by maximizing the 

panelized partial likelihood. 

To make clear that we keep  fixed in , we write ; we further use 

to denote the values of that maximize, for the given value of ,

. We now consider the profile partial likelihood as a function of 

. However, the estimate of  obtained from the EM-algorithm cannot be obtained by 

maximizing the profile penalized partial likelihood. 
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Table 5.1: Baseline characteristics in 2040 children    

Variables  Mean (SD); count (%) 

Distance 2.53( 2.03) 

age_start 4.95( 2.05) 

Distance group  

Less than 3 km 1,497(73.38) 

Greater than or equal to 3 km  543(26.62) 

Age_group  

<3 years 533(26.13) 

4-7 years 1,272(62.35) 

>=8 years 235(11.52) 

Sex  

Female 981(48.09) 

Male 1,059(51.91) 

House structure  

Not corrugated 1,616(79.22) 

Corrugated 424(20.78) 

 

 

Table 5.2 log-rank test  

Distance group Events 

Observed 

Events 

Expected 

Total 

< 3 km 368 407.16 1497 

>= 3 km 180 140.84 543 

Total 548 548 2040 

 chi2(1) 14.68  

 Pr>chi2 0.0001  
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Fig 5.1 Graph of the survival function of two groups for malaria dataset 

 

The observed number of infection is 365 out of 1497 and 180 out of 543 in the at risk groups 

and control groups respectively. While the expected number of infection under the null 

hypothesis (the survival pattern of the two groups are the same) are 407.16 and 140.84 in the 

at risk groups and control groups respectively. The log rank test rejects the null hypothesis of 

equality of survival function with p-value<0.000 (chi-square statistic with 1 df 14.16). The 

results are consistent with what we saw from the graphical analysis. 

5.2. Cox proportional model 

The non-parametric methods that we used previously do not control for covariates and it 

requires categorical predictors. In order to determine demographic, climatic and 

environmental covariates which are associated with the observed time to first p.falcuiprum 

malaria infection we first use the Cox regression model.   
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We use univariate analysis to check all the risk factors before proceeding to more 

complicated models. We use a univariate Cox proportional hazards regression for every 

potential risk factor. The likelihood ratio test is considered in each univariate Cox PH model. 

Variables are identified as significant using a 0.1 significance level in the univariate model. 

We then fit the full multivariate Cox PH model including all the potential risk factors. In 

univariate (Table 5.3) and the full multivariate proportional hazards models (Table 5.4), 

distance group show a statistically significant association with time to first malaria infection. 

But other characteristics such as age at the start of follow up, age group, sex, house structure 

are not statistically significant, suggesting that these variables are not associated with the time 

to malaria infection due to P.falcuiprum. The uncategorized distance from the dam was 

significant in the univarite analysis but it become insignificant in the multivariable model.  

Table 5.3 univariate Cox proportional hazards model 

Covariates HR Coef( ) Std. Err. P-value 95% CI of  

Age group      

4-7 years 1.170 0.157 0.102 0.125 (-0.044,0.358) 

>=8 years 1.033 0.033 0.156 0.831 (-0.273,0.339) 

age_start 1.021 0.021 0.021 0.312 (-0.020,0.061) 

Sex (male) 0.951 0.951 0.081 0.555 (0.804,1.124) 

House structure      

(corrugated) 0.967 -0.032 0.106 0.764 (-0.240,0.177) 

Distance 1.059 0.057 0.019 0.004 (0.018,0.096) 

Distance group 

(>=3km) 

1.414 0.347 0.090 0.000 (0.168,0.525) 

 

Table 5.4. Multivariable Cox proportional hazards model 

Covariates HR Coef. Std. Err. P-value 95% CI  

Distance group(>=3km) 1.62 0.4849807 0.1815605 0.008 (0.129,0.840) 

Sex(male) 0.95 -0.0560615 0.0855021 0.512 (-0.224,0.112) 

age_group      

4-7 years 1.05 0.0476934 0.1261727 0.705 (-0.200,0.295) 

>=8 years 0.82 -0.1929674 0.2202469 0.381 (-0.625,0.239) 

House structure 

(Corrugated) 

0.95 -0.048984 0.1064283 0.645 (-0.258,0.159) 

Distance 0.96 -0.0339305 0.0402978 0.400 (-0.113,0.045) 

Tvc      

Age at start 1.00 0.0001428 0.0000893 0.110 (-0.0000,0.0003) 

Note: variables in tvc equation interacted with _t 
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As expected from non-parametric test, distance group is statistically significant also in a 

multivariate Cox PH model. The hazard ratio for time to first malaria infection is 1.62 in 

control group compared with at risk group. 

 After a Cox PH model is fitted, the adequacy of this model, including the PH assumption and 

the goodness of fit, needs to be assessed. We used  plot to check the 

PH assumption for all the categorical variables.  

We assess goodness of fit using a plot of the Cox-Snell residuals against the cumulative 

hazard of Cox-Snell residuals (Figure 5.2). If the Cox regression model fits the data, these 

residuals should have a standard censored exponential distribution with hazard ratio 1. We 

can verify the model‘s fit by calculating—based, for example, on the Kaplan–Meier 

estimated survivor function or the Nelson–Aalen estimator—an empirical estimate of the 

cumulative hazard function, using the Cox–Snell residuals as the time variable and the data‘s 

original censoring variable. If the model fits the data, the plot of the cumulative hazard versus 

cs should approximate a straight line with slope 1. Comparing the jagged line with the 

reference 45
o
 line, we observe that the Cox model does not fit these data too badly. Because 

we use estimates , deviations from the 45
0
 line in the in the right-hand tail of the 

distribution of the  above plots could be due in part to uncertainty about these estimates, since 

in this area the baseline hazard is more variable because of the reduced effective sample 

caused by prior failures and censoring.  

The plot of deviance residual against the linear predictor shows that the deviance residuals 

seem not to be symmetrically distributed about zero. There are very high or very low 

deviance residuals which a signal for the presence of outliers (Figure 5.3). we used 

Likelihood displacement values to measure each subject‘s influence on the coefficient vector 

as a whole (fig 5.4). Likelihood displacement values measure influence by approximating 

what happens to the model log likelihood (more precisely, twice the log likelihood) when you 

omit subject i. The figure shows some subjects are influential. 

 

 

 

 

log( log( ))survival
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Fig 5.2 Cox-Snell residuals plot Cox PH model 

 

Fig 5.3 deviance residual plot Cox PH model 
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Fig 5.4 log-likelihood displacement plot for Cox PH mode 

 

 

5.3. Shared gamma frailty modelling 

In our data set children are clustered within a locality. It is recognized that individuals in the 

same community are more similar than the individuals in different communities because they 

shared similar (possibly unmeasured) environmental exposures. In Cox proportional hazard 

rate analysis, it is assumed that any differences in failure rates among individuals are picked 

up by the covariate structure which typically is assumed to act multiplicatively on a baseline 

hazard 

Thus, a further extension the Cox model should be considered by taking in to account the 

hierarchical (clustered) structure of the data, ie., the nesting of children with in localities. This 

clustering can be taken in to account by adding a random effect as extra term. The locality is 

taken to be a random effect rather than a fixed effect because the individual locality is not of 

interest by itself; interest is rather in the heterogeneity between localities. Furthermore, 

introducing many fixed effects in a model might lead to convergence problems, especially if 

there is little variation in the covariates between localities (McGilchrist and Aisbett, 1991). 
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The relevant information for a child j (j= 1, . . . . ., ni) from locality i (i= 1, . . . ., s) is 

contained in a vector 

                                    

With  the time to first p.falciprum malaria infection or censoring, the censoring indicator 

is the vector of fixed effect covariates and  is vector of time varying covariates. 

We fit a shared gamma frailty model for this dataset. For child j, j= 1, 2, . . ., ni, from cluster 

(locality) i, i= 1, . . ., s, defined as  

                                    

Where  is the conditional hazards function for the j
th

 child from the i
th

 locality 

(conditional on ui). the ui‘s are the actual values of a sample from a one parameter gamma 

distribution with mean equal to one and variance equal to  .  The parameter  provides 

information on the variability (heterogeneity) in the population of clusters (locality). 

The result of the Univariate and multivariable shared gamma frailty model and is given in 

table 5.5 and 5.6 respectively. From the out we can see that all tests of the likelihood-ratio 

test of, ,for all Univariate models is significant (p-value < 0.000), meaning that the 

correlation within localities cannot be ignored. 

Unlike the Cox PH model in the Univariate shared gamma frailty model all covariates 

become statistically insignificant. The Cox PH model estimates the effect of distance and 

distance group on the log hazard of infection to be 0.057 (se: 0.019 and p-value: 0.004) and 0.347 

(se: 0.090 and p-value: <0.000) respectively. whereas the shared gamma frailty model estimates the 

effect of distance and distance group on the log hazard of infection conditional on theta to be 

-0.009 (se: 0.048 and p-value: 0.848 ) and 0.204(se: 0.181and p-value:0.258) respectively. For both 

covariates the shared gamma frailty model estimates larger standard error for the coefficients as 

compared to the Cox PH model. Also, in the shared gamma frailty model the sign of the regression 

coefficient of distance is negative while it was positive in the Cox PH model. 

Similarly, in the multivariate shared gamma frailty model the effect of all covariates on the 

log hazard became in significant except age at the start is significant at 10% significance 

level but not at 5%. The heterogeneity parameter  is estimated to be 0.2818(se: 0.112) and the 

ijt ij

( )ijX t

'

0( ) ( ) exp( )ij i ijh t h t u X









53 
 

 

Fig5.7 log-likelihood displacement plot for shared gamma frailty model  

 

5.4 Comparison of Cox PH versus shared gamma frailty model  

Table 5.7 gives the log-likelihood, AIC (akaki information criteria) and BIC (Bayesian 

information criteria) values of the two models. From the table we can see that the shared 

gamma frailty model has both a minimum AIC and BIC value, indicating that this model fit 

the data better than the Cox PH model which did not take in to account the clustering.  

Table 5.7 comparison of Cox ph and frailty model 

Model Log-likelihood 

(null) 

Log-likelihood 

(model) 

df AIC BIC 

Cox PH -4095.401 -4085.069 7 8184.138 8223.483 

Frailty  . -4036.831 7 8087.662 8127.007 
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In both of the two models , other characteristics such as age at the start of follow up, age 

group, sex, house structure are not statistically significant, suggesting that these variables are 

not associated with the time to malaria infection due to P.falcuiprum. 

Comparison of the two modelling approaches using different statistical techniques suggests 

that the shared gamma frailty model is better than the Cox PH model. This sis based on the 

significant result of the clustering parameter (theta). 

6.2 Future lines of work 

In this study we only considered modelling of time to first malaria using shared gamma 

frailty term at village level. That is, all study subjects (children) living in the same village 

shares the same frailty term. However, we feel that better result could have been obtained, if 

we include a frailty term at least in a pair wise fashion. i.e. In line with the epidemiology of 

malaria, spatial distance of households will have much more impact in the transmission of 

this disease. In other words, very close households will have higher chance of getting malaria 

(off course if there is a diseased person in one of the household) than those oriented far part. 

Hence, if in the future, if one includes this spatial distance in the modelling of time-to-

malaria, a better result could be obtained using frailty modelling approaches. 
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