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Abstract 

The choices of experimental design as well as of statistical analysis are of huge importance in 

field experiments. The efficiency of alpha lattice design and randomized complete block design 

(RCBD) were compared in maize trials conducted in 2010 at Bako Agricultural Research Centre 

(BARC), in Ethiopia on 45 treatments to assess the efficiency of each in minimizing 

experimental error, coefficient of variation and error mean square for yield variable. Bread wheat 

variety trials also conducted on 16 treatments to asses the performance of RCBD compared to 

CRD. Alpha designs are used for field trials because they provide better control on experimental 

variability among the experimental units under field conditions. The coefficient of variations 

(CV) compared to be 12.6 % for alpha lattice design and 14.6 % for RCBD respectively. The 

error mean squares calculated for these trials are 1.0418 for alpha lattice design and 1.4081 for 

randomized complete block design (RCBD) respectively. The relative efficiency of trials shows 

that alpha lattice design is more efficient than RCBD. The value of relative efficiency 1.35 

indicates that the use of alpha lattice design instead of randomized complete block design 

(RCBD) increased experimental precision by 35 percent. The gain is considerable in terms of 

efficiency attained by using alpha lattice design which favors wider use of these designs under 

field conditions. Based on the results we conclude that alpha lattice designs are more efficient 

than RCBD. In order to increase the precision of agricultural field experiments researchers are 

advised to use RCBD for small number of treatments, and alpha lattice designs for large number 

of treatments. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1. Background of the study 

The choices of experimental design as well as of statistical analysis are of huge importance in 

field experiments. These are necessary to obtain the best possible precision of the results. The 

random arrangements, randomized blocks and alpha lattice designs were reviewed and analyzed 

from the statistical perspective of error analysis. Precision is the ability of an experiment to 

detect a true treatment effect. It can be improved by increased replication, treatment selection, 

improved technique to reduce the variability among units treated alike, increasing the size of 

experimental units (within limits), the use of covariance, and the employment of a more efficient 

experimental design and method of analysis (Little and Hills, 1978). 

An alternative set of designs for single-factor experiments with a large number of treatments is 

incomplete block designs, of which one is the lattice design. As the name implies, each block in 

an incomplete block design does not contain all the treatments and reasonably small block size 

can be maintained even if the number of treatments is large. With smaller blocks, the 

homogeneity of experimental units in the same block is easier to maintain and a higher degree of 

precision can generally be expected (Gomez, 1984). 

 

Infact, experimentation plays a momentous role in the field of agriculture. A good experiment is 

the one which involves good planning, accurate data collection, proper data analysis and precise 

interpretation of the data. Experimental designs are basically divided into two categories: 

complete block designs and incomplete block designs. Complete block designs include 

completely randomized design (CRD), randomized complete block design (RCBD), Latin square 

design etc. Among these designs, RCBD is one of the most extensively used designs in 

agriculture. In RCBD blocks size should be homogeneous and each block must contain a 

complete set of treatments. It also reduces experimental error through proper blocking though 

blocking becomes ineffective when the block size increases and cannot be used for a large 

number of treatments. Therefore in such a situation, RCBD becomes less powerful in controlling 

experimental error due to soil heterogeneity in experimental site.  
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The RCB and other blocking designs assume spatial variability can be accounted for by blocking 

the experimental units in a linear fashion. This assumption is not met under field conditions 

when the RCB contains considerable within-block heterogeneity. Incomplete block design (IBD) 

and lattice designs account for spatial trends in the same fashion as the RCB, but also account for 

a portion of the spatial variability within blocks by reducing a complete block into smaller 

incomplete blocks. The alpha lattice is an example of a flexible incomplete block design that has 

been shown to account for spatial trends more efficiently than the RCB, especially, in trials with 

a large number of entries (Patterson and Hunter, 1983,  and Yau, 1997). However, unaccounted 

spatial variation may still persist within incomplete blocks (Yang et al. 2004). There are also 

examples of experimental designs that take spatial variability into account at the design stage by 

accounting for spatial autocorrelation (van Es and van Es, 1993). 

 

The same fashion, the response from field trials is subject to random variation. The two 

neighboring plots grown with the same variety and treated in the same way will always yield 

differently. This also applies to all other recordings made on a continuous scale. The size of the 

differences will depend on several circumstances such as the variability in the soil, variability in 

the applied fertilizer, historical events and uncertainty in the recording process. In other name, a 

recorded difference between two varieties may be due to either a true difference in the response 

of the two varieties or may be due to random variations. In order to help decide whether the 

difference is caused by the different varieties or by random variation it is necessary to apply 

some statistical methods to estimate the actual size of the random variation in the field and 

compare the measured difference with the size of the random variation. To do that in a good 

manner it is necessary to use properly designed trials and the correct way of analyzing the 

recorded data correctly. 

 

The randomized block, Latin square, and other complete block types of experiments are 

inefficient for large number of treatments, because of their failure to adequately minimize the 

effect of soil heterogeneity (Masood, et al. 2008). Generally, the greater the heterogeneity 

within blocks, the poorer the precision of variety effect estimates. Incomplete block designs are 

arranged in relatively small blocks that contain fewer varieties than the total number of varieties 

to be compared. Consequently, there is a gain in precision due to use of small blocks. As far as 
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the layout of the experiment is concerned the incomplete block designs are no more difficult than 

randomized blocks. Some extra planning is involved in drawing up and randomizing the 

experimental plan. Randomized complete block design (RCBD) is affordable when the block 

size is less than eight varieties/treatments. It is always useful to use incomplete block design 

when the number of varieties/treatments increases. Because of large number of treatments, the 

homogeneity among experimental units/plots within a large block cannot be maintained. As a 

result, estimate of experimental error is inflated and results are low in precision. The usual 

approach through local control by blocking is inefficient and a lot of research has recently been 

carried out which suggest new methods of local control in field experiments (Cullis and Gleeson, 

1987; 1991); (Kempton et.al, 1994).  

 

Alpha designs introduced by (Patterson and Williams, 1976) are now routinely used for statutory 

field trials in the United Kingdom (Patterson and Silvey, 1980) and are also widely used for 

breeding and varietals trials in Australia and elsewhere. They are more flexible than lattice 

designs and can accommodate any number of varieties. Additional improvement is possible 

through modeling field variability using spatial features of the field layout. It has been advocated 

by (Wu and Dutilleul, 1999) use of incomplete blocking is generally more effective in reducing 

the unexplained structured variation in comparison with complete blocking. 

 

In conclusion, the process of evaluating competing designs for an experiment depends on 

understanding the statistical methods that will be used to analyze the data resulting from the 

experiment. The purpose of the typical experiment is to test research hypotheses and/or estimate 

unknown parameters. The goal of experimental design is to increase the precision of estimates 

and the power of hypothesis tests. An examination of the statistical analysis provides a guide to 

the choice of design. It is most helpful to understand the statistical analysis before an experiment 

is conducted. In this walk-through the investigator discovers whether the experiment provides 

estimates of important parameters, the expected precision of parameter estimates, whether the 

research hypotheses are testable, and the power of the tests under the proposed design. These 

provide a basis for evaluating competing experimental designs.  
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1.2. Statement of the problem 

To obtain good precision of the results, the choices of experimental design as well as of 

statistical analyses play a crucial role in field experiments. The common experimental designs 

and treatment structures being used in Ethiopian agricultural research system are randomized 

complete block design, lattice design, alpha lattice design, factorial experiments, and split-plot 

treatment structure (Girma, 2002 and Mandefro, 2005). 

In Bako Agricultural Research Center (BARC), randomized complete block design and alpha 

lattice designs are commonly used for field experiments (Bayisa et al., 2008; Legese et al., 

1998). The aim of this study is to answer the question why these two statistical experimental 

designs are used and to assess the performance and efficiency of RCBD and alpha lattice design 

in BARC. The best strategy of increasing production of crops is by increasing productivity per 

unit area using improved production technology. On the other hand, reliable improved 

technologies can only be achieved if proper designing and modeling is done.  Basic questions of 

these studies are:   

 Is randomized complete block design or alpha lattice design improve the precision of 

agricultural field experiments through design and analysis? 

 How to assess efficiency factor for IBD and randomized block design? 

 Are treatment effects the same based on the selected design? 

 

1.3. Significance of the study 

Use of statistical methods have been at the heart of effective agricultural research for almost a 

century ,However, despite the development of powerful new research technologies in agriculture 

and biology, look set to remain at the heart of crop and field experimentation for the foreseeable 

future. The result of this study will help to identify the appropriate experimental designs for field 

experiments and will help to improve the precision of agricultural field experiments through 

design and analysis. Therefore, the outcome of the research will help agricultural researchers to 

conduct research with efficient use of limited research recourses and to determine optimum 

estimation methods for specific field crop trials. Moreover, the result helps researchers as a 

guideline for indicating possible sources of variation that might occur in research activities. In 

general, the application of this research result will be expected to be beneficial for different 
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bodies working in the area of agriculture and the result will be used as a basis for future study 

using IBD model in agricultural area. 

1.4. Objectives  

1.4.1. General Objective  

 To assess the efficiency of randomized complete block design and alpha lattice designs 

in agricultural field experiments, using wheat and maize yield data from Bako 

Agricultural Research Center. 

1.4.2. Specific Objectives 

 To compare the performance of randomized complete block design and alpha lattice 

designs in Bako Agricultural Research Center. 

 To assess efficiency factor for IBD as compared to randomized block design. 

 To test the hypothesis about treatment effect based on the selected design.  
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 CHAPTER TWO 

2. LITERATURE REVIEW 

Field designs are based on concepts of replication, control of variation among plots and 

randomization, where replication allows valid estimation of error variance, control of plot 

variation reduces error variance and randomization allows unbiased estimates of means and 

variances (Hinkelman and Kempthorne, 2006; Mead, 1990). Assuming the scope of inference 

and plot size/shape issues have been considered, the main focus of experimental design will be 

how to arrange entries in the field to minimize the impact of error variance.  

 

The major reason for grouping plots into uniform blocks is to reduce plot-to-plot variation and to 

improve the precision of the experiment. Failure to adequately block a field experiment can 

result in unacceptably large error variance and/or biased estimates of genotype effects (Mead, 

1997). In fact, effective control of error variance usually requires relatively small blocks. Trials 

with a large number of entries set out in a complete block experiment where there is considerable 

variability among plots within a block will likely result in very poor, possibly unusable, 

information on genotypes. To control field variation, especially with a large number of entries, it 

is essential to make use of incomplete block designs.  

 

Parsad and Gupta (2000) showed that the simplest and most commonly used block design when 

the treatments are at several levels of a single factor by the agricultural researcher is a 

randomized complete block design (RCBD). 

 

Plant breeding trials are typically developed to give an unbiased evaluation of all test entries, and 

ideally to ensure equal variances of all paired differences. When incomplete block designs are 

used, achieving the equal variance criteria results in balanced incomplete block designs (BIBD). 

BIBDs require that all pairs of entries appear together in a block equally often (Mead, 1990; 

Giesbrecht and Gumpertz, 2004; Hinkelman and Kempthorne, 2006). Actually, balance is often 

possible in smaller trials, however in trial with a large number of entries, balance is normally not 

achievable, meaning that some differences between pairs of entries will be estimated more 

precisely than others. Yet in most plant breeding trials, this disparity in precision across 

treatment pairs is small and not a major problem, as long as the incomplete blocking is effective 
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(Mead, 1990). Another important concept in field trial design is resolvability. A field trial is 

resolvable if it is laid-out in complete replicate blocks, each replicate being split into a number of 

incomplete blocks. Resolvable designs are useful since the entries in the same incomplete block 

in one replicate are spread across incomplete blocks in another replicate. In addition, resolvable 

designs are often easier to manage since all entries are together in complete replicates.  

 

One category of resolvable incomplete block designs is the lattice designs originally proposed by 

(Yates, 1936). In truth, these designs require that the number of entries is a square of the block 

size and achieve balance if enough replicates are possible. If not, simple, triple, quadruple 

lattices are partially balanced designs with two, three or four replicates respectively and have 

been used extensively in plant breeding trials. However, due to the restriction on the number of 

genotypes that may be evaluated, there have been a number of proposed lattice type of designs, 

the most popular being the alpha designs developed by (Patterson and Williams, 1976); 

(Giesbrecht and Gumpertz, 2004). In fact, Alpha designs are resolvable incomplete block designs 

where the number of entries is a multiple of block size. Although these designs cannot achieve 

balance, they are used extensively in plant breeding primarily because they are quite flexible 

regarding the number of entries to be evaluated and the appropriate size of incomplete block and 

they allow for good error control. In addition, these designs can be simply adapted to situation 

where the number of entries is not an exact multiple of block size by omitting treatments from an 

alpha design with a larger number of treatments.  

 

Although it is well documented that incomplete block designs can greatly improve the efficiency 

of plant breeding field trials, recent work has suggested that allowing for block differences in 

two directions can further improve precision (Wright, 2002; Kempton et. al, 1994). Row-column 

designs ideally are constructed so entries are orthogonal to both rows and columns, such as with 

a Latin square design. If orthogonality is not possible in both directions, then hopefully it is 

achieved in one direction and balance (as in BIB) is obtained in the other direction. If 

orthogonality is not possible, then one attempts to achieve balance in both directions if possible. 

A lattice square is a special case of a randomized complete design where balance is not achieved 

in either direction, but that each pair of treatments appears together in at least one row or column 

(Hinkelman and Kempthorne, 2006). One approach useful in plant breeding is to start with an 



8 
 

alpha design arranged with rows as incomplete blocks and then rearrange the order of the entries 

in each row to balance as best as possible the entries across the columns. In this case, the alpha 

design is said to be Latinized (Williams, 1986).  

 

In the early stages of a plant breeding program, expected genetic gains may be increased by 

screening a large number of genotypes in contrast to having more precise comparisons of a fewer 

number of genotypes (Bos, 1983; Gauch and Zobel, 1996). This consideration will likely make it 

necessary to evaluate many entries where there may not be sufficient seed to replicate each. 

Federer proposed augmented designs where a set of check entries are replicated an equal number 

of times in a specified field design and an additional set of new or test entries are included in the 

experiment only once (Federer, 2002; 2005). Any type of block design can be used for the check 

treatments with the test entries being added or „augmented‟ to the blocks and the standard error 

for a difference between test entries or checks may simply computed. This approach provides a 

very efficient means of screening test entries and has a considerable amount of flexibility. For 

row-column designs, the experiment is „Latinized‟ so that entries do not occur more than once in 

a row or column. (Federer, 2002) proposed using this approach with augmented lattice squares 

while (Williams and John, 2003) used a Latinized α-α designs (α designs for both the rows and 

columns) to extend the idea of the augmented lattice squares using CycDesigN (Whitaker et. al, 

2001).  

 

Similar to augmented designs are unreplicated designs where field variation may be controlled 

using several different approaches. Traditional unreplicated designs control local variation using 

a single replicated check variety distributed often systematically across the field. The approach is 

flexible and simple to use in that genotypes need not be randomized, visual evaluation is possible 

and the test genotypes are adjusted using the mean yield of the neighboring checks. The 

problems with the approach are that results can strongly depend on which check is chosen, how 

the genotypes are adjusted and the frequency and location of the check plots. The frequency of 

check plots that maximizes genetic gain depends on the heritability and how effective the 

presence of more checks control field variation (Kempton and Gleeson, 1997). A number of 

methods are available for adjusting genotypes yields using check plots with most using 
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environmental indices or covariates over the field (Kempton, 1984; Besag and Kempton, 1986; 

Cullis et al, 1989; Hooks et. al., 2007).  

 

Multi-environment testing is a crucial step in the development of superior genotypes adapted to a 

wide range of environmental conditions. The design of efficient multi-environment testing 

programs to maximize information subject to available resources and practical limitations has 

been considered by a number of workers. Minimizing the variance of differences between 

genotypes, and using multi-environment variance components for a number of different crops, 

Talbot found that using 2 years at 12 sites with 2 replicates was reasonable for most crops, with 

more years increasing precision more than more locations (Talbot, 1984). When maximizing 

genetic improvement, similar results were found for corn single crosses (Sprague and Federer, 

1951). Generally, the results are based on the assumption of good field designs at each site and 

will hold with any type of design and with different designs at each site (Federer et. al, 2001). 

Patterson et. al, (1978) introduced a new class of cyclically generated lattice designs called alpha 

designs, which greatly extended the class of lattice block designs then currently available for 

variety trials. (Patterson & Hunter, 1983) later published a substantial examination of alpha 

lattice design efficiency based on an analysis of 240 cereal variety trials in the UK. They 

concluded that the designs improved cereal trial efficiency under UK conditions by about 42% 

relative to randomized block designs. Row-and-column designs can be particularly useful for 

trials with small plots and the efficiency of two dimensional alpha lattice type designs was 

investigated for small plot barley trials by Robinson et.al,1988) using 129 spring barley trials. 

Gains in efficiency similar to those reported by (Patterson & Hunter, 1983) were obtained and 

the two-dimension alpha designs were reported to be equally as useful as the one dimensional 

designs.  

 

 Gomez (1984) also described that pair comparison is the simplest and most commonly used 

comparison (planned and unplanned pair) in agricultural research. The two most commonly used 

test procedures for pair comparisons in agricultural research are the least significant difference 

(LSD) test which is suited for a planned pair comparison, and Duncan‟s multiple range test 

(DMRT) which is applicable to an unplanned pair comparison. The procedure for applying the 

DMRT is similar to that for the LSD test; DMRT involves the computation of numerical 
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boundaries that allow for the classification of the difference between any two treatments mean as 

significant or non-significant. However, unlike the LSD test in which only a single value is 

required for any pair comparison at a prescribed level of significance, the DMRT requires 

computation of a series of values, each corresponding to a specific set of pair comparisons. 
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CHAPTER THREE 

3. MATERIALS AND METHODS 

3.1. Study area  

The study area is found in western shoa zone of Oromia (western part of Ethiopia) which is 

located 250 km away from Addis Ababa and established at 1952 E.C. with approximate latitude: 

0906
0 

N, longitude: 3709
0 

E, altitude (m): 1650, temperature: 20.7
0 

C, rain fall: 1225mm, agro-

ecology: mid-land, major soil type: nito soil, land holding (ha): 2.75. At Bako national maize 

research project objectives of the research projects are: 1) to develop improved high yielding and 

disease resistance maize varieties. 2) to develop technologies for controlling major maize pest 

problems, and to improve maize production technologies.  

3.2. Data 

The yield data come from preliminary bread wheat pre regional variety trial around Gedo using 

RCBD and maize yield trials are conducted by using alpha lattice design layout at Bako 

Agricultural Research centre, West Shoa Zone, Ethiopia, 2010. The experiment on maize yield 

crop was laid out with 3 replications, 45 entries, 9 blocks consisting of five entries in each block, 

where as the experiment on bread wheat crop was laid out with 3 replications, 16 blocks. 

Computer software named R software used for statistical analysis of alpha lattice design as well 

as randomized complete block deign. 

3.2. Methodology 

3.3. Randomized Complete Block Design (RCBD) 

The experimental field is divided into blocks according to the number of replicates. Each Block 

is divided into a number of plots according to the number of treatments. The treatments are then 

assigned randomly to the plots. Each treatment occurs one time per block. A benefit of block 

designs over completely randomized designs is, that differences between blocks (e.g. due to soil 

quality) do not influence the estimates of treatment differences and can be separated from the 

experimental error when performing analysis of variance. One drawback of the CBD is that only 

soil differences in one direction can be modeled. Possible extensions of the block design for two 

directions are the Latin square, allowing for row and column effects. 
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A CBD is a good choice when there are no technical aspects that restrict the randomization. 

Simple block designs are mostly used for one-factorial trials but two or more factors are also 

possible. The layout of blocks on the field has to be chosen in such a way, that soil differences 

between blocks are maximized and within blocks are minimized. Homogeneity of conditions 

within blocks requires that the treatment number and therefore the dimension of the blocks have 

an upper limit. Depending on plot size and soil conditions block designs are recommended for 

trials up to 20 treatments. In block designs the assumption is usually made that there are no 

interactions between treatments and blocks. The primary purpose of blocking is to reduce 

experimental error by eliminating the contribution of known sources of variation among 

experimental units. This is done by grouping the experimental units into blocks such that 

variability within block is minimized and variability among blocks is maximized. At all stages 

during the experiment, the techniques applied within a block should be as uniform as possible, 

thus keeping experimental error within blocks as small as possible. Differences between blocks 

are permitted to be large, but are not of major concern in the analysis since the comparisons of 

treatments and the computation of experimental error is done within blocks. Blocking will be 

effective only if the error variance among units within blocks is smaller than the error variance 

over all units. After the experimental units have been blocked, treatments are then randomly 

assigned to the units within the blocks. The randomization process for a RCBD is applied 

separately and independently to each of the blocks. A separate randomization is used in each 

block and every treatment appears in every block precisely once. In complete block design, each 

block consists of one complete replication of the set of treatment. As planning and conducting 

an experiment with the RCBD requires extra effort relative to the CRD, a natural question of 

interest is how well the blocking has worked or how much has been saved by using an RCBD 

rather than a CRD with the same number of experimental units. The answer helps to justify the 

effectiveness of blocking in the experiment being conducted and is also useful for future studies 

using the same or similar experimental units. It is well recognized that the gain from using an 

RCBD instead of a CRD is a reduction in error variance, while the loss is a decrease in error 

degrees of freedom. Blocking stratifies experimental units into homogenous groups, and in field 

trials, plots are normally blocked according to their proximity to each other. Blocking will 

increase treatment precision only if plots are blocked according to one or more varying external 

factors. If an experimental area is homogenous, blocking may actually decrease the precision of 
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estimating treatment effects. This results from a larger means square error term in the ANOVA 

since error degrees of freedom are reduced without a comparable reduction in error sum of 

squares. In this situation, a completely randomized design (CRD) would more precisely estimate 

treatment effects than a RCBD (Karcher et al, 2003).  Randomized complete-block designs 

(RCBDs) group one complete replicate in each block.  They are useful when the number of lines 

in the trial is not large, so that there is less soil and drainage variability within than among 

blocks.  The variability among blocks is thus removed from the plot residuals.   For complete-

block designs, the plot residual term eij in the model is divided into a complete-block effect r 

(also called a replicate effect, since the replicates are synonymous with blocks in the RCBD) and 

a within-replicate plot residual e. Thus RCBDs remove effects of blocks from the plot residual, 

reducing the confounding of genotype with plot residual effects. In this study, the efficiency of 

designs are compared in two different research trials conducted at Bako Agricultural Research 

Centers to assess the efficiency of each in minimizing experimental error, coefficient of variation 

(CV) and error mean square for yield. The coefficient of variation (CV) affects the degree of 

precision with which the treatments are compared and is a good index of the reliability of the 

experiment. It is an expression of the overall experimental error as percentage of the overall 

mean; thus, the higher the CV value, the lower is the reliability of the experiment. 

 

3.4. Analysis Procedures 

3.4.1. Evaluation of data 

 3.4.1.1. Check for model assumptions 

Every statistical analysis of trial data needs some assumptions to be fulfilled, otherwise the 

conclusions may be false. Among these assumptions the most common (for analysis of variance) 

are: 

 normality of distribution, 

  additivity of treatment and block effects, 

  homogeneity of variances, 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

Normality:  All the tests used in analyses of variance and analyses of regression are based on 

normality assumption. Normality means that the distribution of observations is “bell shaped” for 
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all treatments under comparison. Mead et al. (1983) say “in most situations it is impossible to 

decide by examining the data whether the assumption of normality is reasonable and one has to 

rely on common sense in arguing whether the assumption is biologically likely”. So this 

assumption is rather difficult to be verified unless the sample size is very large. There are some 

tests for checking this assumption but all of them are rather weak (in the sense that they very 

rarely reject the null hypothesis) when sample sizes are small and even moderately large. So they 

can be applied only for large sample sizes (sample size tending to infinity). As in routine 

experimentation the number of replicates is small (usually smaller than 6) and the sample size for 

a particular treatment is of the same order, the use of such a test is not possible. Graphical 

presentation of data can provide a visual inspection for lack of normality. Luckily the tests used 

in the analysis of variance (as well as regression), namely the F-test and t-test, are resistant 

against moderate deviations from normality. A method that is often used to check normality is 

the Shapiro-Wilk test, which is recommended for sample sizes not larger than 50 (Shapiro and 

Wilk, 1965). 

 

Additivity:  In the analysis of variance of block trials (CBD or IBD) it is assumed that there is 

no interference between blocks and treatments. In practice this means, that differences between 

any two treatments are the same in all blocks in which they appear together and that possible 

fluctuations are caused solely by experimental error. This assumption is usually fulfilled if the 

differences between blocks are not very large. A simple test for non-additivity in a CBD design 

was proposed by Tukey (1949), known as “one degree of freedom for nonadditivity”. In this 

approach the sum of squares for error is subdivided into two parts. One is attributed to non-

additivity, the other to the residual. Then, using the usual Fisher F-test with one degree of 

freedom for the numerator, the hypothesis that there is lack of additivity is tested. In the case of 

multiplicative effects, a logarithmic transformation can improve the situation. 

  

                                                       

Homogeneity: The typical assumption in an analysis of variance is that the treatments do not 

influence the variance of experimental error, in other words that the variance is the same for all 

treatments. This assumption is likely to be fulfilled when levels of expression are similar for all 

treatments. When levels of expression (mean values) differ considerably between treatments, 
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normality and additivity as well as homogeneity of variances can be violated. This assumption 

can be verified using Bartlett‟s or the Cochran test. In both tests, the estimates of variances are 

calculated for all treatments and next the hypothesis of equal variances is tested against the 

alternative that some of them (at least one) are different. If the variances (standard deviations) 

are related to the level of expression (mean values) of the characteristic that is analyzed, a 

logarithmic (or square root) transformation can improve the situation. 

 

3.4.1.2. Method of Diagnostic Testing  

 Having fitted a statistical model to the data, diagnostic tests are needed to assess the fit of the 

model. The simplest check for normality involves plotting the empirical quantiles of the residuals 

against the expected quantiles. This is known as the normal QQ-plot. Thus, QQ-plots are useful 

for diagnosing violations of the normality assumption. In this method, observed value and 

expected value are plotted on a graph. If the scatter plots deepest from a straight line, then the 

data are not normally distributed. One common test for checking the normality is Shapiro-Wilk 

test. This test works well even for a small sample size, so generally we just need to use this. The 

null hypothesis of Shapiro-Wilk test is that the samples are taken from a normal distribution. So, 

if the p value is less than 0.05, we reject the hypothesis, and thinks that the samples are not taken 

from a normal distribution. Kolmogorov-Smirnov test is appropriate for only large data. The p-

values that is larger than 0.05 indicate that values are normally distributed at the 5% level of 

significance. If the test is significant, the assumption of normality is violated. In this case, 

transforming the data will frequently correct the problem. When the normality assumption fails, 

and transformations don‟t seem to help, Friedman‟s test is a nonparametric alternative for the 

RCBD. 

 

3.4.1.3. Analysis of Variance (ANOVA) 

ANOVA is a technique for analyzing experimental data in which one or more response variables 

are measured under various conditions identified by one or more classification variables. The 

analysis of variance has proved useful in the statistical analysis of experiments in the estimation 

of components of variation, in the estimation of the variance of estimates of treatment 

comparisons, and in making tests of significance.  

The assumptions required for ANOVA are:  
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1) Normally distributed data (i.e., experimental errors are normally distributed).     

2) Independence of errors. Analysis of variance (ANOVA) is the main tool used for statistical 

interpretation of agricultural trial data. The analysis of variance is based on linear model of 

observation. For experiments performed in a randomized complete block design (RCBD), the 

linear model is of the form 

         yij = μ + ti + bj + eij   …………………………………………………(1)                                                                                       

Where yij denotes the value of observed trait for the i
th

 treatment (i=1, 2… t), received in the jth 

block (j=1,2,…, r) with a total number of observations n = rt; ti is the fixed effect of the i
th 

 

treatment, bj is the effect of the j
th

 block and eij is an experimental error associated with 

observation of the i
th

 treatment in the j
th

 block. Different assumptions can be made on the block 

effects bj. If the assumption is that bj is fixed, meaning that the only random term in (1) is eij, the 

model is called fixed. In that case all conclusions are confined to treatments and blocks used in 

the analyzed experiment. More common is to consider bj as the random component of model (1). 

In this case the model is called mixed. In the mixed model the blocks are treated as a random 

sample of an infinite set of all possible blocks and conclusions are not confined to the blocks 

actually used in experiments. The conclusions are “valid” in the population of blocks from which 

the blocks can be considered as a random sample. As we will see, the blocking factor is included 

in the study only as a way of explaining some of the variation in responses (Y) of the 

experimental units. As such, we are not interested in testing hypotheses about the blocking 

factor. 

Analysis of variance of trial data is based on a division of the sum of squares of total variability 

(SSc) into a component attributed to blocks (SSb) a component attributed to treatments (SSt) and 

to the error (SSe) according to the equality 

               
c b t eSS SS SS SS    ……………………………………… (2) 

Usually the main aim of the analysis of variance is to test the hypothesis, that there are no 

differences between treatments under comparison, namely the hypothesis  

               H0: τ1= τ 2 = …. = τ t   against H1: “H0 is not true” ………….…… (3).                                      

This hypothesis is always tested by application of a Fisher F-test of the form 

Now if H0 is true, then 
2

2 1
~t

t

SS 
 

      and since    2

12
~e

tr t r

SS 


  
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and sst and sse are independent, the ratio of these two Chi-Square statistics (divided by their 

respective degrees of freedom) yields 

2

1, 12

/ ( 1) / ( 1)
~

/ ( 1)/ ( 1)

t t t
t rt r t

e ee

t t
F

rt r trt r t

SS SS MS
SS MSSS




   

     
      

 

                

              F0 = MSt/ MSe    ……………………………………………..… (4) 

 

where mst and mse are the mean squares for treatment and error respectively. Usually the 

results of ANOVA are presented in an analysis of variance table as in table 3.1. 

 

Table 3.1. Analysis of variance for a randomized complete block design (CBD) 

Source of 

Variation 

Degree of 

Freedom (df) 

Sum of Square(SS) Mean Square (MS) * F value 

Block r-1 SSb MSb MSt/ MSe 

  Treatment  t-1 SSt MSt 

Error (t-1)(r-1) SSe  MSe 

Total tr-1 Total SS  

*The MS for each source of variation is obtained by dividing each SS by it corresponding df. 

If  F0 > 1, 1t rt r tF     , where 1, 1t rt r tF     is the critical value of the F distribution for (t-1) and 

(r-1)(t-1) degrees of freedom at a significance level, the hypothesis (3) is rejected, meaning that 

not all treatments are the same (some treatments differ from the others). If hypothesis (3) is 

rejected, the researcher is usually interested to identify which pairs of treatment are different. To 

answer this question usually the least significant difference (LSD) is calculated. If the researcher 

is interested in one particular comparison (that was chosen before establishing the experiment), 

the best way is to calculate the Fisher LSD, using formula 

        * eLSD t
n

MS …………………………………………………… (5) 

The number of degrees of freedom for t is always that of MSe.  The LSD is used only when the 

F-test indicates a significant difference exists. If the absolute value of the difference between 

treatment-means calculated is bigger than LSD, these two treatments are declared significantly 

different at a significance level. If many comparisons between treatments are planned, it is 
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recommended to use a method that minimizes the risk of erroneously declaring pairs significant. 

Turkey‟s least significance difference LSD
T
 which is applicable to such pair comparison.    

       
,

2
*

T e

t r n

MSqLSD


  …………………………….. ……………. (6) 

Where q
α

t, r is the critical value from studentised range distribution read at a significance level 

for t treatments involved in comparisons and r degrees of freedom (degrees of freedom for error 

in the ANOVA table). The rules of using LSD
T
 are the same as for LSD, but now all treatment 

comparisons can be made and still ensure that the risk of erroneous declaring any of these 

significant will be less than α. 

 

3.5. Incomplete block design (IBD) 

These design were introduced by Yates in order to eliminate heterogeneity to a greater extent 

than is possible randomized blocks and Latin squares when the number of treatments is large. 

The precision of the estimates of a treatment effect depends on the number of replications of the 

treatment – the larger the number of replications, the more is the precision. Similar is the case for 

the precision of estimate of the difference between to treatment effects. If a pair of treatment 

occurs together a large number of times in the design, the difference between these two treatment 

effects can be estimated with more precision. To ensure equal or nearly equal precision of 

comparisons of different pairs of treatment effects, the treatments are allocated to the 

experimental units in different blocks of equal sizes such that treatment occurs at most once in a 

block and it has an equal number of replications and each pair of treatments has the same or 

nearly the same number of replications. In trials with high treatment numbers, e.g. variety trials, 

complete blocks are too large to give a good control of the experimental error due to soil 

heterogeneity. In these cases designs with incomplete blocks are useful. Every block only 

contains a fraction of the total number of treatments and is therefore incomplete. Several 

incomplete blocks form one complete replication. One type of such designs is the lattice design. 

The blocks of an incomplete block design can be arranged in any way that is useful for 

controlling soil heterogeneity. With an IBD the arithmetic mean of a treatment is not the best 

estimator for the expected mean value. Treatment means have to be adjusted according to the 

linear model used for data analysis. 
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3.5.1. Alpha lattice design. 

More flexibility is reached with the new class of alpha designs or generalized lattices (Patterson 

& Williams 1976, Patterson et al. 1978). The following requirements have to be met: (1) The 

number of plots per block (k) has to be smaller or equal to the square root of the number of 

treatments (v). (2) The number of replicates has to be smaller or equal to the ratio v/k. (3) The 

number of treatments has to be a multiple of k. Where the number of treatments does not meet 

these conditions, a design for the next possible number is developed and the redundant 

treatments are discarded. When the number of genotypes per replicate is large, there is likely to 

be great soil heterogeneity even within the block.  This variability may be partly controlled by 

grouping plots within large replicates or complete blocks into much smaller incomplete blocks.   

The most commonly-used incomplete-block experimental designs are alpha-lattices for 

replicated trials. In brief, the partitioning of complete blocks into smaller, more homogeneous 

incomplete blocks permits more of the residual variation among plots to be removed from 

estimates of genotype means. Alpha-lattice designs are replicated designs that divide the 

replicate into incomplete blocks that contain a fraction of the total number of entries.  Genotypes 

are distributed among the blocks so that all pairs occur in the same incomplete-block in nearly 

equal frequency.  The design permits removal of incomplete-block effects from the plot residuals 

and maximizes the use of comparisons between genotypes in the same incomplete-block. How 

effective are alpha-lattice designs in increasing the precision of genotype means estimated from 

rain fed maize variety trials?  There are several ways to address this question.  One way is to 

compare a related statistic like the LSD for trials laid out as alpha-lattices, and analyzed both as 

alpha-lattices and RCBDs. A slightly more complicated situation appears in the case of 

incomplete block design (which includes the alpha designs). Because blocks and treatments are 

not orthogonal to each other (Which is in CBD), the division of the total sum of squares into 

parts attributed to blocks and a treatment is not unique. Usually the ANOVA table instead of 

single sum of squares for blocks (as in CBD), will mention two sums, the first attributed to 

complete replicates (superblocks), the second attributed to blocks (within superblocks) ignoring 

treatments. 

 

The linear model of observations in alpha design is of the form 

yijk = μ + ti +r j + bjk + eijk  ……………………………………………………  (7) 



20 
 

Where yijk denotes the value of the observed trait for i
th

 treatment received in the k
th

 block with 

in j
th

 replicate (superblock), ti is the fixed effect of the i
th

 treatment (i = 1, 2… t); rj is the effect 

of the j
th

 replicate (superblock) (j = 1,2,…,r); bjk is the effect of the k
th

 incomplete block within 

the j
th

 replicate (k = 1,2,…s) and eijk is an experimental error associated with the observation of 

the i
th

 treatment in the k
th

 incomplete block within the jth complete replicate. There are n = rt 

observations in total. The whole experiment consists of rb incomplete blocks forming r complete 

replicates. The whole discussion concerning randomness of blocks in randomized complete 

block design also applies to incomplete blocks and complete replicates in alpha design. In 

accordance with the linear model of observations (7), the analysis of variance is usually 

presented in the form given in table 3. 2. 

 

Table 3.2. Analysis of variance for alpha lattice design 

Source of 

variation 

Degree of 

Freedom 

(DF) 

Sum of 

Square(SS) 

Mean Square (MS) * 

Replicates r-1 SSr MSr 

Block(with in replicates, 

ignoring treatments) 

rb-r SSb MSb 

Treatment (adjusted for block) t-1 SSt MSt 

Error rt-rb-t + 1 SSe MSe 

Total rt-1 Total SS  

       *The MS for each source of variation is obtained by dividing each SS by it corresponding df. 

The term “ignoring treatments” means that the sum of squares for blocks is not free of treatment 

effects. Instead of the sum of squares for treatments (as for CBD), the sum of squares for 

treatments adjusted for block effects appear. It means that this sum of squares is free from block 

effects. The hypothesis tested is the same as in CBD (see (3)) and it is verified in exactly the 

same manner using a Fisher F-test. The value of F0=MSt / MSe is now compared with the critical 

Fα, t-1, rt-rs-t+1 value with t-1 and rt-rs-t+1 degrees of freedom. Treatment means are now not just 

simple averages over replicates as in CBD but are “adjusted”. This adjustment is different for a 

fixed model of observation (in so-called intra-block analyses) and for a mixed model (in analyses 

with recovery of inter-block information). Additional difficulties arise when LSD is applied for 

treatment comparisons. Due to the lack of orthogonality, the variances of treatment comparisons 

(treatment contrasts) will often be different for different pairs of treatments. So in an extreme 

case for every pair of treatments specific LSD (Fisher or Turkey) should be applied. However for 



21 
 

moderate variations it may be acceptable to average the variance of treatment-comparisons and 

then use the average LSD value. But in this situation comparisons must be made with special 

caution. Usually the design is chosen so that the difference between the largest and the smallest 

variance of treatment comparisons is as small as possible. This means that balanced designs are 

preferable. 

 

3.6. Relative Efficiency 

The success of blocking is best measured by the relative efficiency of the RCBD as compared 

with that of the CRD. In general, the relative efficiency is a positive number that can be 

interpreted as the ratio by which the sample size of the CRD would have to be in order to achieve 

the same efficiency as that of the RCBD. The quality of an incomplete block design is judged by 

the harmonic mean of efficiency factor, which is the ratio of the average variance with which a 

complete block design would estimate treatment differences and the average variance with which 

the incomplete block design would estimate these differences, if the error mean square were the 

same in both cases. The value of harmonic mean efficiency factor is always greater than zero and 

less than 1. The difference simply measures the confounding between treatments caused by using 

incomplete block design. However, when laying out the trial in the field, we should try to 

achieve maximum homogeneity possible within each incomplete block depending on soil 

conditions, fertility gradients, moisture, slope, e.t.c. 

To judge whether the incomplete block arrangements was more effective than the complete 

block design, we have to wait for the experiment to be completed and compare the corresponding 

experimental errors. The relative efficiency of a lattice design is defined as the ratio between the 

average variance of the differences between treatments (ignoring the use of incomplete block and 

assuming that the replicates were complete blocks), and the average variance of the differences 

between treatments in the incomplete block design (including recovery of inter-block 

information). The relative efficiency is analogues to the difference of the harmonic mean of 

efficiency factor, but the former uses observed estimates of the experimental error. If blocking 

has succefully removed variation (i.e. if the reduction in the error mean square compensates for 

the effect of confounding caused by incomplete blocks), then the relative efficiency will be 

greater than 1. 



22 
 

 The most widely used measure of relative efficiency is the relative precision defined as follows: 

               

100CRD

RCBD

RE XMSe
MSe

 …………………………………………………… (8)           

                

If the blocking was not helpful, then the relative efficiency equals 1. The larger the relative 

efficiency is, the more efficient the blocking was at reducing the error variance.  

The relative efficiency (RE.) of an alpha lattice design compared with a RCBD is estimated 

(Masood et al., 2008) as the mean square error from each analysis will be used to estimate the 

relative efficiency of an alpha lattice design compared with a RCBD according to the following 

equation: 

                

100RCBD

alphalatticedesign

RE XMSe
MSe

  …………………………………………. (9) 

An estimated relative efficiency less than 1 indicates that a RCBD is a more efficient design, 

while value nearly equal to 1 suggests that the two designs yield similar results. Value greater 

than 1 suggests that alpha lattice design is more efficient design than RCBD. In this study, the 

efficiency of alpha lattice design and randomized complete block design (RCBD) will be 

compared in this research trials conducted in Bako Agricultural Research Centre, west shoa 

zone, Ethiopia to assess the efficiency of each in minimizing experimental error, coefficient of 

variation and error mean square for yield. 

3.7. Analysis of Incomplete Block Design 

We shall now derive the intrablock analysis for the general incomplete block design.  Suppose 

we have t treatments replicated r1, r2. . . rt times, respectively, and b blocks with k1, k2, . . . , kb 

units, respectively. We then have 

                     1 1

t b

i j
i j

nkr
 

    

Where n is the total number of observations. Following the derivation of a linear model for 

observations from a randomized complete block design (RCBD), using the assumption of 

additivity in the broad sense, an appropriate linear model for observations from an incomplete 

block design is 
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                        i j ijlijl
y e       …………………………………………………..….  (10) 

(i = 1, 2. . . t; j = 1, 2, . . . ,b; l= 0, 1, . . . , 
ijn  ), where

i  is the effect of the ith treatment, βj the 

effect of the jth block, and 
ijle  the error associated with the observation 

ijl
y . As usual, the 

ijle contain both experimental and observational (sampling) error,, 

                        ijl ijl ijle     

With ijl  representing experimental error and 
ijl  representing observational error. Also, based 

on previous derivations, we can treat the ijle  as i.i.d. random variables with mean zero and 

variance 
2 2 2

e       . Note that because
ijn , the elements of the incidence matrix N, may 

be zero, not all treatments occur in each block which is, of course, the definition of an 

incomplete block design. 

Model (10) can also be written in matrix notation as 

                      y J X X e       ………………………………………………….. (11) 

Where J  is a column vector consisting of n unity elements, X  is the observation-block 

incidence matrix 

 

                       

1

2

.

.

.

k

k

kb

J

J

X

J



 
 
 
 

  
 
 
 
  
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with kjJ  denoting a column vector of kj unity elements (j = 1, 2, . . . , b) and Xτ = (x1, x2, . . . xt ) 

is the observation-treatment incidence matrix, where xi is a column vector with ri unity elements 

and (n − ri ) zero elements such that i i iX X r   and 0i iX X   for i≠i‟ (i,i‟ = 1, 2, . . . , t). 

The normal equations (NE) for μ, τi, and βj are then 

                         
1

ˆ ˆˆ
t b

i i j
j

i j

n Gkr  


     

                        
1

ˆ ˆˆ
b

i i ii ij
j

j
nr r T  



   …………………………… …………… (12) 

                          

                        
1

ˆ ˆˆ
t

jj ij i j
ji

k n k B  


    

 

Where 

                        
i ijl

jl

yT  = i
th

 treatment total 

                       
j ijl

il

yB  = j
th

 block total 

                        
i j

i j

G T B   = overall total 
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     







       
    

       
           

  ……………..………..…. (13)                                                                    

 

which, using the properties of J,Xτ ,Xβ, can be written as 

                            

ˆ

ˆ

ˆ'

n n b

t

b

J J J R J K G

RJ R N T

KJ N K B

 





      
    

    
    
    

…………………………………..(14) 

where 

                      R‟ = diag (ri )               t × t 
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                      K‟ = diag (kj)               b × b 

                      N‟ = (nij)                      t × b (the incidence matrix) 

                      T‟ = (T1, T2. . . Tt ) 

                      B‟ = (B1,B2, . . . ,Bb) 

                      Τ‟= (τ1, τ2, . . . , τt ) 

                      Β‟ = (β1, β2, . . . , βb) 

and the J‟s are column vectors of unity elements with dimensions indicated by 

the subscripts. From the third set of equations in (14) we obtain 

                     
1ˆˆ ˆ( ' )

b
B NJ k  


     ………………………………………..………. (15) 

Substituting (15) into the second set of (14), which can also be expressed 

as ˆˆ ˆ
bNJ N R T      (since  b tNJ RJ ), leads to the reduced normal 

equations (RNE) for τ 

                      1 1
ˆ( )R N N T N Bk k

 
   ………………………………………….………. (16) 

Standard notation for (1.7) is 

                        ˆC Q    …………………………………………………………..….…(17) 

Where 

                        
1

'C R N Nk


  ……………………………………….…………..…….(18) 

                       
1

Q T N Bk


   ……………………………………………..………..(19) 

 the (i, i) element of C being we note that the matrix C of (18) is determined entirely by the 

specific design, that is, by the incidence matrix N. It is, therefore, referred to as the C matrix 

(sometimes also as the information matrix) of that design. The C matrix is symmetric, and the 

elements in any row or any column of C add to zero, that is, 0CJ   which implies that r(C) = 

rank(C) ≤ t − 1. Therefore, C does not have an inverse and hence (17) cannot be solved uniquely. 

Instead we write a solution to (17) as 

                         ˆ c Q  ………………………………………………………………(20) 

Where c
is a generalized inverse for C. If we write C = (c1, c2. . . ct ), where ci is the ith column 

of C, then the set of linear functions 
'

ic where, i = 1, 2, . . . , t which span the totality of 

estimable functions of the treatment effects, has dimensionality r(C).  
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Let 'c   be an estimable function and ˆ'c  its estimator, with ̂  from (20). Then                               

                    ˆ' 'E c E c c Q   

                 = ' ( )c c E Q
 

                 = 'c c c
 

For 'c  to be an unbiased estimator for ˆ'c   for any  ,we then must have 

                  ' 'c c c c   ……………………………………………………………………(21) 

Since 0CJ  ,it follows from (21) that ' 0C J  .Hence, only treatment contrasts are estimable .If 

r(C) = t1, then all treatment contrasts are estimable. In particular, all differences 
'i i  (i≠i‟) 

are estimable, there being t-1 linearly independent estimable functions of this type.   

Then the design is called a connected design. In what follows we shall assume that the design is 

connected; that is, r(C) = t − 1. This means that C has t − 1 nonzero (positive) eigen-values and 

one zero eigenvalue.  

 

                                           From      

1 1

1 1

. .
0 0

. .

. .

1 1

c

   
   
   
   

    
   
   
      
   

 

It follows then that  1,1,...,1  is an eigenvector corresponding to the zero eigenvalue. If we 

denote the nonzero eigenvalues of C by d1, d2,. . . dt−1 and the corresponding eigenvectors by 

1 2 1, ,..., te e e  with 1i ie e   (i = 1, 2, . . . , t − 1) and 0i ie e 
   (i ≠ i), then we can write C in 

its spectral decomposition as 

                                        

1

1

t

i i i

i

c d e e




  ………………………………………………….(22) 

or with 0
td   and  

1
1,1,....,1

t
t

e   alternatively as 
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1

t

i i i

i

c d e e


   ……………………………………………..……(23)           

We note that 1i te e   and 0i te e  for i = 1, 2. . . t − 1. 

We now return to (17) and consider a solution to these equations of the form given by (20). This 

method is based on the following theorem, which is essentially due to Shah (1959). 

We have further 

                         
1 2ˆvar( ' ) ' ec c c c   ..………………………………………………… (24) 

It follows from general principles that the two forms of analysis of variance are as given in. We 

shall henceforth refer the block -after- treatment ANOVA model. 

                       y = μJ + Xτ τ + Xββ + e 

 

 

3.8. Efficiency factor of an incomplete block design 

We can compare different error control designs with each other by using the notion of relative 

efficiency. In this case, we compare two error control designs after we have performed the 

experiment using a particular error control design. For example, after we have used an RCBD we 

might ask: How would we have done with a corresponding CRD? In other cases, however, we 

may want to compare error control designs before we begin an experiment. In particular, we may 

want to compare an incomplete block design (IBD) with either a CRD or an RCBD, or we may 

want to compare competing IBDs with each other. For this purpose we shall use a quantity that is 

referred to as the efficiency factor of the IBD. It compares, apart from the residual variance, 2

e , 

the average variance of simple treatment comparisons for the two competing designs. 

Based on (Hinkelmann and Kempthorne, 2005) average variance for treatment comparisons for 

an IBD is given by 

                      
'

'.var( )ˆ ˆ
i i

i iav  


 ………………………………………………………(25) 

for a connected IBD. Suppose now that all the block sizes are equal to k. Then we have 
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1

'c R NN
k

    …………………………………………………………… (26) 

and we know that C has one zero root, dt = 0 say, with associated normalized eigenvector 

1
( )

t
J

t
e  . Let the other roots be d1, d2. . . dt−1 with associated 

Orthonormal eigenvectors e 1, e2, . . . et−1. Then 

                           i i ie c d e   (i = 1, 2 . . . t − 1) 

and from 

                            i i ie c d e   

it follows that  

                           

1
1i i

i

e e Q
d

   

And  

                         
2

1 1' '

1 1
ˆvar( )i e

i i

e e Ce
d d

    ……………………………………..(27) 

Using the fact that
1

( )
t

J
t

e  , that e 1, e2, . . . , e t−1 are mutually perpendicular 

and perpendicular to e 1, and that  

                             
1

t

i i

i

e e I


   

We have with  1 2, ,..., tz z z z   

                         

2

1 12
2

1 1 1

1
'( ) '( )

1

( )
t t t

t t i i i

i i i

t
Z I e e Z Z e e Z z

i it
i

e z z
 

  

    



     
 

 

                           =  
2

1

t

i
iz z



 ……………………………………….…………. (28) 

It is also to verify that 

                           
2 2

' 1

1 2

( 1) 1

t

i i i
i it t t

z z z z
 


 

   ………………….…. (29) 
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Taking ˆi i iz    substituting into (29) using (28) and then taking expectation and using (27) 

yields for (25). 

                         

1
2

11

2
' 1

.var( )ˆ ˆ
t

e
ii

i i t
av  








  ………….………………………..... (30) 

Where av.var stands for average variance for connected IBD. 

3.8.1. Definition of Efficiency Factor 

It is natural in attempting to evaluate the efficiency of an IBD to compare it with a CRD since 

this is always a possible competing design. For a CRD with ri replications for treatment i, the 

average variance of treatment differences is  

                          
2 2

( ) ( )'
'

1 1 2
.

'.var( )ˆ ˆ e CRD e CRDi i
i ii i h

av
i i r r r

av    


 
   

 
  

Where 
hr  is the harmonic mean of the ri, that is, 

                          

1 1 1

ih ir t r
   

We shall digress here for a moment and show that the best CRD is the one 

with all ri = r, and that is the design with which we shall compare the IBD. For 

this and later derivations we need the “old” result that the harmonic mean of a 

set of positive numbers is not greater than the arithmetic mean. Depending on this idea, 

let the set of numbers be {Xi, i = 1, 2 ,. . . ,m}. Consider the quadratic 

                               

2

1

( )
1m

i

q i

i

x
x

 



 

  
 

 

 Clearly q(β) ≥ 0 for all β. The minimizing value of β is obtained by using least 

squares which gives the NE 

                                
1

i i

m
x

  
 

The minimum sum of squares is 

                                 0
i

i

mx   
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Hence 

                                

2

0
1i

i

i i

m
x

x

 


 

Or 

                                 
1 1 1

1
i

i i i
m m

x
x

  
     

   

Or 

                                 1

h

x

x
  

with equality if and only if xi = x for all i. This result implies that the best CRD will have ri = r 

and r = n/t where n is the total numbers of EUs. This can happen, of course, only if n/t is an 

integer. If n/t is not an integer so that n = pt + q (0 < q < t), then the best CRD will have q 

treatments replicated p + 1 times. Consider now the case of an IBD with b blocks of size k and ri 

replications for the i
th

 treatment. Then the total number of EUs is n = bk = ri . Suppose also that n 

= rt, so that an equireplicate CRD is possible. The average variance for such a design is 

2

( )
2

e CRD

r


, where as the average variance for the IBD is 

2

( )
2

e CRD

c


 where, as shown in (30), c is 

the harmonic mean of the positive eigenvalues of R − (1/k) NN (Kempthorne, 1956). It is natural 

to write c = rE, so that with 
2

( )e CRD =
2

( )e IBD  we have 

                 
2 /'

2 /
'

.var( )

.var( )
CRD ri i E

rE
i i IBD

av

av
 

 
 





 
  ……………………………….. (31) 

The quantity E thus defined is called the efficiency factor of the IBD. It is clearly a numerical 

property of the treatment-block configuration only and hence a characteristic of a given IBD. We 

add the following remarks: 

1. The same definition of E in (31) could have been obtained by using the average variance                   
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for an RCBD with b = r blocks instead of the average variance for an equireplicate CRD 

assuming that 
2

( )e RCBD = 
2

( )e IBD  

2. Although E is a useful quantity to compare designs, it does not, of course, give the full story. 

It compares average variances only under the assumption of equality of residual variances, 

whereas we typically expect 
2

( )e IBD  < 
2

( )e CRD ) and 
2

( )e IBD  
 <  

2

( )e RCBD  

3. The efficiency factor pertains only to the intrablock analysis and ignores the interblock               

information. 

4. Each IBD will have associated with it an efficiency factor E. In order to compare two   

competing IBDs with the same n and with efficiency factors E1 and E2, respectively, we 

would typically choose the one with the higher E value. 

 

3.8.2. Upper Bound for the Efficiency Factor 

Using again the fact that the harmonic mean of positive numbers is not greater 

than the arithmetic mean, we have 

                                  
1

1

1
1 '

t

i
i

t c trace R NN
k

d




 
    

 
  

 
2

1

1t

i ij
i ijk

nr


    

 
21
ij

ij

n
k

n   ………………………………………….. (32) 

The largest value of the right-hand side of (32) is obtained for the smallest value of
2

ij
ij

n .  Since 

ijn is one of the numbers 0, 1, 2. . . K, the minimum value of 
2

ij
ij

n  will be achieved when n of 

the 
ijn  ‟s are 1 and the remaining are zero. Since the 

2

ij
ij

n =  
ijn  and

iijj n r , it follows 

from (16) that 

                            
1 1

1
i i

i i

k
t c tr

k k
r r


      
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Or, since C=rE    
   1 / 1

/

k t t k
E

r r

 
  

But since tr n tr  , we have finally 

                            
 

 

1

1

k t
E

t k





 ……………………………………………….…. (33) 

Since for an IBD k t , we can write further 

                           
 

 

1
1

1

k t
E

t k


 


 …………………….………………..…………(34) 

The upper bound given in (34) will be achieved for the incomplete block design. Sharper upper 

bounds for certain classes of IBDs are given by Jacroux (1984) and Paterson (1983). 
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CHAPTER FOUR 

4. RESULTS AND DISCUSSION 

4.1 The common assumption for all data sets 

4.1.1. Testing for Normality assumption 

The QQ-plots of residuals in (figure 4.1) and (figure 4.2) and the formal test (Shapiro Wilks test) 

shows that the data conforms to the hypothetical normality assumptions. The fact that the plot is 

scattered around the straight line and does not show considerable pattern indicates that the 

distribution of the error term and the response variable is normal (linearity of the error term is 

fulfilled). 

Diagnosis for the assumption of normality for bread wheat data. 

Figure 4.1  
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Diagnosis for the assumption of normality for maize data. 

Figure 4.2 

 

 One common test for checking the normality is Shapiro-Wilk test. This test works well even for 

a small sample size, so generally we just need to use this. The null hypothesis of Shapiro-Wilk 

test is that the samples are taken from a normal distribution. So, if the p value is less than 0.05, 

we reject the hypothesis, and thinks that the samples are not taken from a normal distribution. 

From (table 4.1) below for bread wheat data set and maize data set p-value = 0.4631 and p-value 

= 0.8039 respectively. In both cases, the p values are statistically insignificant and we can still 

assume the normality. From the results of model checking, normality assumption is satisfied and 

the original data is appropriate and can be used in statistical analysis and inference without 

transformation of the response variable. 
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Table 4.1: Tests for normality of alpha lattice design and RCBD. 

Type of Design Shapiro-Wilk Test 

W-statistic p-value 

Alpha lattice 0.9936 0.8039 

RCBD 0.9771 0.4631 

 

4.1.2. Constant Variance Assumption 

Once again there are graphical and formal tests for checking the constant variance assumption. 

The hypothesis of interest is H0: 
2

1 = 2

2 = …. = 2

t  versus HA: 2 2

i j   for at least one pair i≠j: 

One procedure for testing the above hypothesis is Bartlett‟s test. Bartlett‟s test is too sensitive 

deviations from normality. So, it should not be used if the normality assumption is not satisfied. 

The two types of designs statistically not significant this implies that the homogeneity 

assumption satisfied (table 4.2).  

Table 4.2: Bartlett test of homogeneity of variances for alpha lattice design and RCBD. 

Type of 

Design 

Bartlett test 

Bartlett's K-squared p-value 

Alpha lattice 25.4445 0.4939 

RCBD 0.2982 0.8615 

 

4.1.3. Additivity test  

The initial assumption we made when considering the model 

          yij = μ + ti + bj + eij                                                                     

 is that the model is additive. A formal test of nonadditivity is Tukey's one degree of freedom test 

for nonadditivity. To perform this test, one starts out by fitting the interactive model. It has a p 

value of 0.5077 for RCBD for wheat data set and 0.3178 for alpha lattice design for maize data 

set. Thus we have no evidence to declare nonadditivity. 

Table 4.3 : Tukey's one DF test for additivity for alpha lattice design and RCBD. 

Type of Design Tukey's one df test 

F p-value 

Alpha lattice 4.7628 0.3178 

RCBD 0.4498 0.5077 
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4.2. Analysis of Randomized Complete Block Design 

As can be seen in (table 4.4), the bread wheat variety is significant (p < 0.05) while block effects 

is not significant (p > 0.05) in bread wheat pre regional variety trial. The relative efficiency for 

the rest of the bread wheat pre regional variety trial is nearest to one the RCBD is almost as 

efficient as the CRD. Thus, for this bread wheat pre regional variety trial, blocking seems to be 

insignificant and unnecessary. 

 

Table 4.4:   ANOVA of RCBD for bread wheat wariety in 2010 of data set 

Source of variation Df Sum Sq Mean Sq F value Pr(>F)     RE     

block.unadj   2 2459773 1229886 1.1823 0.3204528     1.01 

trt.adj      15 67202516 4480168 4.3068 0.0003285  

Residuals 30 31207400 1040247   

 

From (table 4.5) below, the relative efficiency was 101.1% for bread wheat data set implying that 

the use of RCBD almost similar to CRD. The significance of blocking within replication (group) 

in RCBD for bread wheat data set indicates that blocking was ineffective (p > 0.05) in reducing 

experimental error .The coefficient of variation (CV) in both RCBD and CRD was similar and 

the relative efficiency for bread wheat was nearest to one. The RCBD was almost as efficient as 

the CRD. Thus, for bread wheat blocking seems to be insignificant and unnecessary. 

  

Table 4.5: Efficiency of RCB design as compared to CRD in 2010 season for bread wheat 

variety trial. 

Design CV MSE P value for block 

RCBD 12.6 % 1040247 0.3204528 

CRD 21.7% 1052099  

Relative Efficiency                   1.011 
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4.3. Analysis of Alpha lattice Design 

 

The interesting feature of the design is the blocks within replication sum of squares are highly 

significant and therefore, formation of blocks within replications has been fruitful. Thus the 

formation of incomplete blocks with in replications has been very effective and the error mean 

square is quite small. The treatment effects are also highly significant (table 4.6). 

Table 4.6: Analysis of variance for alpha lattice design 

Source of variation Df Sum Sq Mean Sq F value Pr(>F)     

Replicates 2 25.175 12.5873 12.0828 0.00 

Block(with in replicates, 

ignoring treatments) 

24 57.238   2.3849   2.3849   0.00   

Treatment (adjusted for block) 44 258.614   5.8776   5.8776   0 .00  

Error 64 66.673   1.0418                       1.0418                        

             

The relative efficiency was 135.16% for maize data set (table 4.7) implying that the use of alpha 

lattice design increased experimental precision by 35.16% compared to RCBD. The coefficient 

of variation (CV) and mean square error (MSE) of alpha lattice design (12.6 and 1.0418) were 

comparatively low as compared to RCBD (14.6 and 1.4081).  

 

Table 4.7: Efficiency of Alpha lattice design as compared to RCBD in 2010 Season. 

Design CV MSE P value for blocks 

Alpha lattice design 12.6 % 1.0418 0.004509 

RCBD 14.6 % 1.4081 0.0002922 

Relative Efficiency                          1.351603 

 

From the (table 4.8) below, the degrees of freedom of the error in RCBD are (t-1) (r-1), in the 

alpha design, there is an effect of error that is the block in each repetition, its degrees of freedom 

for the error is r(s-1). Then, a way to approximate the efficiency factor is relating these degrees 

of freedom.  E = df (RCBD) / (df (RCBD) + r(s-1)) 

                     E = (45-1)(3-1) / ((45-1)(3-1) + 3 (9-1)) = 0.7857 

If blocks are complete, it is not necessary to indicate the blocks within each repetition and then 

the efficiency factor would be equal to 1. When more treatments are on every block, the 
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efficiency factor tends to 1. The efficiency is calculated only with the estimate of error. An alpha 

design in the efficiency only uses the parameters of the dimension of the design and not the 

source of error. In complete block the efficiency factor is 100% and alpha designs are less than 

100%. There could be an approximation of the efficiency upon using the variance of the error. It 

is assumed that each repetition of the alpha design is a block regarding the alpha design used. 

Table 4.8: Efficiency factor alpha lattice design as compared to RCBD in 2010 Season. 

 design Efficiency factor 

RCBD        1 

Alpha Lattice  0.7857 

 

Means with the same letter are not significantly different. As we observed from the following 

(table 4.9) below, treatments 6, 4,11,2,16,7,12,1 and 5 were the same, not significantly different. 

Mostly for bread wheat variety trial, treatments 6 and 4 are important to use since, their means 

were higher than the others. 

Table 4.9: Comparison of treatments of bread wheat variety trial. 

Groups Treatments means 

a 6 6066.567 

a 4 5897.867 

a 11 5861.333 

a 2 5837.733  

a 16 5814.533 

a 7 5452.8 

a 12 5213.6 

a 1 5005.167 

a 5 4758.067 

ab 3 4607.3 

ab 9 4532.533 

ab 15 4219.6 
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ab 14 4013  

ab 8 3529.233 

ab 10 3091.3 

b 13 1602.6 

 

To sum up the results of the analysis of the presented maize data set, it should be noted that 

among all used varieties, the most promising is variety 33. Its estimated mean yield 11.71 tone 

per hectare (t/ha) is the highest among all tested varieties (table 4.10). This means that it is 

particularly necessarily to use it for environments with high yielding conditions and also better 

than the other varieties. 

 

Table 4.10: Comparison of treatments maize data set 

Groups Treatments means 

a              33       11.71333  

ab         38       11.13  

abc        30       10.33  

abcd       41       10.11667 

abcde      14       9.996667 

bcdef      31       9.66 

bcdef       37       9.636667 

bcdefg                   45       9.523333 

bcdefgh             42       9.413333  

cdefghi                   5        9.126667 

cdefghij              18       8.966667 

 cdefghij          32        8.85  

cdefghij             21       8.75  
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 cdefghij                8        8.746667 

cdefghij              39       8.566667 

cdefghij            4         8.41 

defghij              13       8.396667 

defghij                24       8.306667  

defghij              6        8.243333  

efghijk           9         8.12 

efghijk             10       8.076667  

fghijkl             43       8.003333 

fghijkl          2         8  

fghijklm       11       7.94 

fghijklm        1         7.826667 

fghijklm             20       7.826667 

 fghijklm        26        7.74  

ghijklm             12       7.653333 

ghijklm           15       7.653333  

ghijklm               27       7.616667  

hijklm              36       7.573333 

hijklm               3        7.496667 

ijklm             19       7.483333 

ijklm        44       7.4 

ijklm        35       7.31  

ijklmn       28       7.243333 

jklmn       23       7.13 
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jklmn      40       7.093333 

jklmn           17       7.056667 

klmno                 16       6.26 

klmno                25       6.196667 

lmno              29       6.08 

 mno                  34       6.053333 

 no                  22        5.323333 

o               7        5.056667 

 

 

4.4. Discussion 

Alpha-design is a class of resolvable design for almost any practical number of entries (Patterson 

& Williams 1976; Patterson et al. 1978; Paterson et al. 1988). Alpha-lattice has been shown to 

be more efficient than RCBD in field trials conducted in the UK (Patterson & Hunter 1983) and 

Poland (Pilarczyk 1991), and appears to have the potential to replace RCBD in many regional 

and international trials. This study also is in line with the idea. Hence, an alpha design cannot be 

less efficient than a RCBD. This study was conducted to compare the relative efficiency of two 

statistical experimental designs based on mean square errors. For this purpose, maize datasets 

were analyzed with alpha lattice design and randomized complete block design (RCBD). The 

results of the maize dataset show that 35.16% precision increased with alpha Lattice design over 

RCBD. Coefficient of variation of alpha lattice design is 12.6 % while that of RCBD is 14.6 %, 

which proves the efficiency of alpha lattice design.  

Masood et.al (2006 & 2008) compared efficiency of alpha lattice design. The results indicated 

that alpha lattice design improved the efficiency 8-9 and 14 percent as compared to RCBD in 

these studies. YAU, (1997) reported the use of alpha lattice design in international yield trials of 

different crops and found average efficiency 18 % higher than the RCBD. The value of relative 

efficiency greater than one for maize data set show that alpha lattice design was clearly more 

efficient than RCBD (table 4.7). Relative efficiency indicates that the use of alpha lattice design 

instead of RCBD increased experimental precision by 35 percent in maize data set. Therefore, 
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results from the alpha lattice design analysis indicate that the coefficient of variation (CV) and 

the mean square error (MSE) of maize variety trial was calculated for Bako Agriculture Research 

Center.  The coefficient of variation and error mean squares of the randomized complete block 

design was greater than that of lattice design. This indicates that, alpha lattice design was more 

efficient than RCBD (table 4.7). Due to technical or cultural practices, the blocking effect was 

low (not significant) in certain trials and the technical problem results from wrong block 

orientation and direction which render blocking ineffective (Girma, 2005). For bread wheat 

variety trial data set used in this study, block effects were insignificant. This can be due to technical 

issues such as orientation and direction of blocking.  

 

The best alpha lattice designs obtained from the algorithm of (Patterson, 1983) come with in 

0.8% of the lower upper bounds of the efficiency factor and 99.9% of the lowest upper bound. In 

practice this is likely to make the design acceptable. From (table 4.8) the upper bound of the 

efficiency factor for alpha lattice design was 78.5% which supports the above idea. 

From the alpha lattice design, the interesting feature of the design is the blocks within replication 

sum of squares are highly significant and therefore, formation of blocks within replications has 

been fruitful. Thus the formation of incomplete blocks with in replications has been very 

effective and the error mean square is quite small. The treatment effects are also highly 

significant (table 4.6). 

The residual variance of RCBD was less than the residual variance of CRD in 2010 season 

from the ANOVA of RCBD on bread wheat variety trial (table 4.5). This shows that RCBD is 

more efficient than the CRD in increasing the precision of the bread wheat variety 

experiments. The residual variances of alpha lattice design for maize data sets were smaller 

than the residual variances of RCBD. The variation among block within replication were 

greater than the variation among block of RCBD. This shows that alpha lattice design was 

more efficient than RCBD. 
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CHAPTER FIVE 

5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

The results of this study focused on identification of the more efficient experimental design for 

field experiments. We conclude the findings of this study as follow. For regional maize variety 

trial, alpha lattice design was more efficient than RCBD to increase the precision of the field 

experiments. Under land heterogeneity and in a situation where a large number of entries are 

tested, the chance that families of IBD are more appropriate in quite high and researches are 

encouraged to use one of these designs under such conditions. In conclusion that RCBD and 

alpha lattice design were the more efficient designs than the CRD for agricultural field 

experiments. Thus, researches must be caution in using CRD in field experiments. 

 This study show that alpha lattice design provided smaller standard errors of differences, 

coefficients of variation and error mean squares as compared to RCBD providing efficiency in 

comparing different entries. Therefore, this design should be employed while conducting field 

research trials on different crops in field experiment when number of varieties in the experiments 

is large. There is also need to extend experimentation to more research stations for wider 

applicability of these designs for these crops and for some other crops too. For plant breeding 

and selection trials alpha lattice design should be used in such a way that they form a resolvable 

incomplete block design so that the results could be analyzed through RCBD for comparison to 

check the required gains in efficiency. 

To control variability in field experiments, it is suggested that an experiment with a RCB design 

could be replaced with an alpha lattice design when the number of varieties in the experiment is 

large. The use of alpha lattice design allows the adjustment of treatment means for block effects. 

This in turn brings benefit from the small incomplete blocks which help varietal comparisons 

under more homogenous conditions. The alpha lattice design also provides effective control 

within replicate variability. The results presented here make a case of using alpha lattice design 

which enhances the chances of detecting varietal differences to a great extent. 
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5.2. Recommendations 

 Since the alpha lattice design have greater efficiency than RCBD to increases the 

precision of agricultural field experiments, alpha lattice design is better to use than 

RCBD based on available land resource and size of experiments. 

 Since the arbitrary selection of an experimental design can result in dramatically different 

treatment conclusions, agronomist is advised to use the procedure of design selection that 

have been used in this study. Thus, first, use the relative efficiency to check performance 

of the designs; second, use upper bounds of the efficiency factor for IBD which makes 

the design acceptable. 

 For bread wheat variety trial data set used in this study, block effects were insignificant. 

This can be due to technical issues such as orientation and direction of blocking. So, we 

recommend that further studies should be done in this area. 
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