
 
JOINT MODELING OF LONGITUDINAL CD4 COUNT AND 

TIME-TO-DEATH OF HIV/TB CO-INFECTED PATIENTS: A 

CASE OF JIMMA UNIVERSITY SPECIALIZED HOSPITAL 

 
 

 

 
 

 
 

 

 

 

 

 

By:  

Aboma Temesgen 

 

 

A Thesis to be submitted to the School of Graduate Studies Jimma 

University Department of Statistics in the Partial Fulfillment of the 

Requirements for the Degree of Master of Science (MSc) in Biostatistics 

 

 

 

October, 2014 

Jimma, Ethiopia  



Joint modeling of longitudinal CD4 count and time-to-death of HIV/TB co-infected patients: a case of JUSH Page ii 

 

 

Joint modeling of longitudinal CD4 count and time-to-death of 

HIV/TB co-infected patients: a case of Jimma University 

Specialized Hospital 

 

 

 

 

MSc Thesis  

 

By: 

Aboma Temesgen  

 

 

Advisor:  Dr. Yehenew Getchew  

 

Co-advisor: Mr. Abdisa Gurmesa 

 

 

 

October, 2014 

Jimma, Ethiopia  

 



Joint modeling of longitudinal CD4 count and time-to-death of HIV/TB co-infected patients: a case of JUSH Page iii 

 

JIMMA UNIVERSITY  

SCHOOL OF GRADUATE STUDIES, DEPARTMENT OF STATISTICS 

As thesis research advisors, we herby certify that we have read the thesis prepared by 

Aboma Temesgen  under our guidance, which is entitled “Joint modeling of longitudinal 

CD4 count measurements and time-to-death of  HIV/TB co-infected patients: a case of 

Jimma University Specialized Hospital”, in its final form and have found that (1) its 

format, citations, and bibliographical style are consistent and acceptable and fulfill 

University and Department style requirements; (2) its illustrative materials including 

tables and figures are in place; and (3) the final manuscript is satisfactory to the graduate 

committee and is ready for submission to the University library. 

Dr. Yehenew Getachew                                  __________           ___________ 

Advisor                                                             Signature                         Date 

Mr. Abdissa Gurmessa  _                                _________           ____________ 

Co-advisor                                                        Signature                          Date 

As the members of the board of examiners of M.Sc thesis open defense examination, we 

certify that we have read and evaluated the thesis and examined the candidate. Hence, we 

recommend that the thesis be accepted as it fulfills the requirements for the degree of 

Master of Science in Biostatistics. 

 

_____________________           __________________                   _____________ 

Name of Chairman                              Signature                                         Date 

____________________            ___________________                 ______________ 

Name of Major Advisor                      Signature                                          Date 

___________________              ___________________                ______________ 

Name of Co-advisor                            Signature                                          Date 

_____________________           ___________________                _______________ 

Name of Internal Examiner                 Signature                                         Date 

______________________           _________________               ________________ 

Name of External Examiner              Signature                                           Date 



Joint modeling of longitudinal CD4 count and time-to-death of HIV/TB co-infected patients: a case of JUSH Page iv 

 

STATEMENT OF AUTHOR 

I declare that this thesis is a result of my genuine work and all sources of materials used, 

for writing it, have been duly acknowledged. I have submitted this thesis to Jimma 

University in the partial fulfillment for the degree of Master of Science in Biostatistics. 

The thesis can be deposited in the University library to be made available to borrowers 

for reference. I solemnly declare that I have not so far submitted this thesis to any other 

institution anywhere for that award of any academic degree, diploma or\ certificate.  

Brief quotations from this thesis are allowed without requiring special permission 

provided that an accurate acknowledgement of the source is made. Requisites for 

extended quotations for the reproduction of the thesis in whole or in part may be granted 

by the head of the department of statistics when in his or her judgment the proposed use 

of the material is for a scholarly interest. In all other instances, however, permission must 

be obtained from the author. 

 

Aboma Temesgen  

Date: ___________________ 

Signature: _______________ 

October, 2014 

Jimma, Ethiopia    

 

 

 

 

 

 

 



Joint modeling of longitudinal CD4 count and time-to-death of HIV/TB co-infected patients: a case of JUSH Page v 

 

ACKNOWLEDGEMENT 

First; I am very grateful to Dr. Yehenew Getachew, my thesis advisor and instructor for 

his invaluable comments and suggestions that contributed to the successful realization of 

the thesis. I also gratefully acknowledge my co-advisor Abdissa Gurmessa (M.Sc) for his 

continuous and passionate support by giving me constructive comments and suggestions 

which made me to concentrate on my thesis and my special thanks go to Belay Berlie 

(PhD scholar) who give me essential suggestions and future directions that really gives 

me a great motivations concerning the joint modeling. 

My stay in the university was also a great pleasure and I am highly indebted to all of the 

staff members of department of statistics. I also extend my great full thank to  Haromaya 

University for giving me the chance to attend the program as well as for all the financial 

support in two years of my stay in Jimma University. 

I am very much indebted to my friends and family members, especially to my sister 

Gizeshe Temesgen who highly contributed to my life by giving me motivations as well as 

for her   financial support starting from my childhood to today. Finally, I would to thank 

Jimma University specialized hospital for allowing me the data 

 

 

 

 

 

 

 

 

 

 

 

  



Joint modeling of longitudinal CD4 count and time-to-death of HIV/TB co-infected patients: a case of JUSH Page vi 

 

ABSTRACT  

Back ground: Tuberculosis (TB) and HIV have been closely linked since the emergence of 

AIDS; TB enhances HIV replication by accelerating the natural evolution of HIV infection 

which is the leading cause of sickness and death of peoples living with HIV/AIDS. Death is 

the serious problem that needs to be addressed so that maximum survival time can be 

obtained for the HIV/TB co-infection patients. Since the longitudinally measured CD4 

count measurement is correlated with survival time joint modeling are used to handle the 

associations between these two processes to obtain valid and efficient survival time. 

Objective: To indentify factors affecting change in CD4 count over time; risk factors for 

the survival time and associate change in CD4 count over time and time-to-death 

processes of HIV/TB co-infected patients.  

Methods: The study consists of 254 HIV/TB co-infected patients who were 18 years old 

or older and who were on ART follow up from first February 2009 to fist July 2014 in 

Jimma University Specialized Hospital, West Ethiopia. First, data were analyzed using 

longitudinal and survival models separately. Then, based on the separate models several 

joint models with different random effects and different shared parameters have been 

explored and compared using deviance information criteria score. 

Results: The median survival time was estimated 62.5 months. The linear mixed model 

showed functional status; weight and time effects have significant effect on the CD4 

count measurement process; Cox and  Weibull survival model showed  base line weight; 

baseline smoking; separated marital status group and base line functional status have 

significant effect on hazard function of the survival time whereas the joint model showed  

subject specific base line value; subject specific linear and quadratic slopes of CD4 count 

process significantly affects the survival time of co-infected patient at 5% significance 

levels. 

Conclusion: The longitudinally measured CD4 count measurement marker process is 

significantly associated with time to death and subject specific quadratic slope growth of 

CD4 count measurement; base line clinical stage IV and smoking is the high risk factors 

that lower the survival time of HIV/TB co-infected patients. 

Key words: survival analysis; longitudinal analysis; Cox PH; linear mixed model; joint 

modeling; HIV-TB 
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1. INTRODUCTION  

1.1. Back ground and relations ships between HIV and TB infections  

Tuberculosis is a bacterial disease caused by micro bacterium tuberculosis (tubercle bacilli) 

which is the leading cause of death among people infected with HIV. Whereas the transmission 

of TB occurs by airborne spread of infectious droplets when sharing common closed 

environment with TB infected individuals (WHO, 2006) 

 HIV, the Human Immunodeficiency Virus, is the etiological agent responsible for the acquired 

immunodeficiency syndrome (AIDS). There are multiple modes of HIV transmission including 

sexual intercourse, sharing needles with HIV-infected persons, or via HIV-contaminated blood 

transfusions. Infants may acquire HIV at delivery (birth) or through breast feeding if the mother 

is HIV positive. HIV severely weakens the immune system. Hence, it makes people highly 

vulnerable to invasions by a great number of infectious agents including mycobacterium, the 

etiological agent responsible for TB. There is a long latent period associated with HIV infection 

and the onset of HIV-related diseases including AIDS in adults. As HIV infection progresses, 

immunity declines and patients tend to become more susceptible to “common” or even rare 

infections (WHO, 2009).  

 Close to one third of the world’s population living with dormant or latent TB can develop active 

TB when their immune systems are compromised (be it through general poor health or through 

another infection, like HIV) active TB can develop and without treatment will most certainly be 

fatal.  HIV‐negative person with a latent TB infection has a 10% chance of progressing to active 

TB over his or her entire lifetime, whereas HIV‐positive person has a 10% chance of developing 

active TB each year (Stop TB, 2006). 

TB is the leading cause of death among HIV infected people; the WHO estimates that TB 

accounts for up to a third of AIDS deaths worldwide. When individuals are infected with TB, the 

likelihood of them becoming sick with the disease is increased many times if they are also HIV 

positive and people with latent TB are increasingly becoming infected with HIV and many more 

are developing active TB because HIV is weakening their immune system. People who are co-

infected with both HIV and latent TB have an up to 800 times greater risk of developing active 

TB disease and becoming infectious compared to people not infected with HIV (USAID, 2014). 
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1.2. Global burdens of HIV/TB co-infections 

Globally the number of TB patients who had been diagnosed with HIV status reached 2.1 million 

in 2010, equivalent to 34% of notified cases of TB. Of the 8.8 million incident cases globally an 

estimated 1.1 million (13%) were found to be co-infected with HIV (WHO, 2012). Overall, the 

African region accounted for a staggering 82% of all new TB cases co-infected with HIV. 

Among the TB patients 46 % of them are those living with HIV globally and 42% TB patients in 

the African region were living with HIV in 2010. Among the PLWHA enrolled in HIV care 

worldwide in 2010 the treatment success and death rates reported for HIV positive TB cases in 

2009 were 72% and 20% respectively(WHO,2012). 

In many societies HIV and TB treatments are common today and the use of drugs has altered the 

joint dynamics of TB and HIV. About one third of 39.5 million HIV-infected people worldwide 

are co-infected with TB (WHO, 2006) and up to 50 percent of individuals living with HIV are 

expected to develop TB. Many TB carriers who are infected with HIV are 30 to 50 times more 

likely to develop active TB than those without HIV (Sharma et al, 2005). The HIV epidemic has 

significantly impacted the dynamics of TB. In fact, one-third of the observed increases in active 

TB cases over the last five years can be attributed to the HIV epidemic. For individuals infected 

with HIV, the presence of other infections, including TB tends to increase the rate of HIV 

replication. This acceleration may result in higher levels of infection and rapid HIV progression 

to the AIDS stage (Sharma et al, 2005).  

Tuberculosis (TB) and HIV have been closely linked since the emergence of AIDS and TB is the 

most common infectious  disease affecting HIV-sero positive individuals and causing to their 

death(AIDSCAP, 2000; Raviglione et al., 2005). HIV infection has contributed to a significant 

increase incidence of TB worldwide by producing a progressive decline in cell-mediated 

immunity. HIV also alters the pathogenesis of TB, greatly increasing the risk of disease from TB 

in HIV co-infected individuals and leading to more frequent extra pulmonary involvement, 

atypical radiographic manifestations, and paucity bacillary disease, which can impede timely 

diagnosis. Although HIV related TB is both treatable and preventable, incidence continues to 

climb in developing nations wherein HIV infection and TB are endemic and resources are 

limited (AIDSCAP, 2000; Raviglione et al., 2002). 



Joint modeling of longitudinal CD4 count and time-to-death of HIV/TB co-infected patients: a case of JUSH Page 3 

 

1.3. Burdens of HIV/TB co-infections in Sub-Saharan Africa  

Sub-Saharan Africa has borne the burden of HIV/TB co-epidemic. Over the past 20 years, HIV 

has fuelled TB notification rates, which have increased 3- to 5-fold in many African countries. 

By 2007, the continent accounted for 79% of the global burden of HIV-associated TB (WHO, 

2009). Worst affected are those countries in the east and south of the continent where HIV 

prevalence rates are highest. In South Africa and Swaziland, approximately 1% of the population 

develops TB annually. Notification rates in some poor communities in South Africa have even 

increased to over 2% per year rates that are almost unprecedented in the era of short-course 

multi-drug chemotherapy (Lawn et al. (2006), Middelkoop et al. (2008)).  

HIV infection is now the most common predictor of TB incidence and the other way round, TB is a 

common infection in sub-Saharan Africa. Thus, these countries continue taking the leading position 

in HIV/TB morbidity and mortality rate, where the TB epidemic is primarily driven by HIV 

infection. Ethiopia is one among these countries most heavily affected by HIV and TB co-infection. 

The world health organization ranked Ethiopia as 7th among the 22 high burden countries with TB in 

estimated annual incidence of 379 cases and prevalence of 643 cases per 100,000 populations (WHO, 

2008) and the prevalence of HIV among TB patients is up to 41% (Demissie et al. 200,Yassin et al., 

2004). 

1.4. Burdens of HIV and TB co-infections in Ethiopia 

The incidence of TB in Ethiopia is estimated to be 379 per 100,000 populations for all cases and 

the prevalence 643 per 100,000 populations (WHO, 2008). According to data from the Ministry 

of Health, TB is the leading cause of morbidity, the third cause of hospital admission and the 

second cause of death in Ethiopia (FMOHE, 2009). Ethiopia is also one of the country worst 

affected by the HIV epidemic, with a total of 1.2 million people living with HIV in 2007 

(FMOHE, 2007). 

HIV infection is a major public health problem in Ethiopia. Prior to 1985, HIV prevalence was 

very low in the country, but has increased rapidly in the years following. The adult HIV 

prevalence in the country was 0% in 1984, 1.0% in 1989, and 3.2% in 1993. HIV infection has 

now spread throughout the country and AIDS cases have been reported from every region of the 

country. By 1997, the adult prevalence had increased to 7.4% and about 2.4 million HIV infected 
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adults live in Ethiopia today. In the urban areas, the HIV prevalence is much higher (21%) 

compared with the rural areas 4.5% (MOHE, 2006) 

In Ethiopia, the number of TB cases has also been rising rapidly (MOHE, 2005). The number of 

reported new cases has increased from 55,000 to 100,000 in the last ten years. TB is among the 

leading causes of morbidity, hospital admission and the first cause of hospital deaths (J. Lim et 

al., 2013) this increase in the number of tuberculosis cases is in part thought to be due to the 

rapid spread of the HIV infection. Except for very few hospital-based studies conducted in 

different parts of the country, there is no adequate information on the prevalence of TB/HIV co-

infection in the country. The aim of this study was to determine the prevalence of HIV infection 

in a representative sample of sputum positive tuberculosis patients in Addis Ababa. 

In Ethiopia routine data from 44 sites in the year 2005/6 showed 41% of TB patients were HIV 

positive. In addition, another routine data collected in 2006/07 estimates that 31% of TB patients 

are HIV positive (FMOHE, 2008). TB was the cause of 76 thousands deaths in Ethiopia, out of 

which 30% were among HIV positive patients. However, WHO recommends different 

collaborative activities for HIV/TB co-infections where one is initiation of antiretroviral therapy. 

Antiretroviral therapy (ART) is an essential treatment for HIV infection in order to reduce the 

risks of death and HIV-related morbidities, or in improvement of quality of PLWHIV (WHO, 

2009). 

1.5. Joint modeling approaches  

In recent years, the interest in longitudinal data analysis has grown rapidly through the 

development of new methods and the increase in computational power to aid and further develop 

this field of research. One such method is the joint modeling of longitudinal and survival data. 

It is commonly found in the collection of medical longitudinal data that both repeated measures 

and time-to-event data are collected. These processes are typically correlated, where both types 

of data are associated through unobserved random effects. Due to this association, joint models 

were developed to enable a more accurate method to model both processes simultaneously. 

When these processes are correlated, the use of independent models can cause biased estimates 

(Little,2002; Ratclie et al.,2004;Yi-Kuan Tseng ,2005), with joint models resulting in a reduction 

in the standard error of estimates. Thus, with more accurate parameter estimates, valid inferences 

concerning the effect of covariates on the longitudinal and survival processes can be obtained. 
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A common objective in longitudinal studies is to characterize the relationship between a 

longitudinal response process and a time-to-event. Considerable recent interest has focused on 

so-called joint models, where models for the event time distribution and longitudinal data are 

taken to depend on a common set of latent random effects. In the literature, precise statement of 

the underlying assumptions typically made for these models has been rare (Tsiatis and Davidian, 

2012). 

Longitudinal studies often produce two types of outcome, namely a set of longitudinal response 

measurements and the time-to-event of interest, such as death, development of a disease or 

dropout from the study. Two typical examples of this setting are HIV and cancer studies. In HIV 

studies patients who have been infected are monitored until they develop AIDS or die, and they 

are regularly measured for the condition of the immune system using markers such as the CD4 

lymphocyte count or the estimated viral load. Similarly in cancer studies the event outcome is the 

death or metastasis and patients also provide longitudinal measurements of antibody levels or of 

other markers of carcinogenesis, such as the PSA levels for prostate cancer. These two outcomes 

are often separately analyzed using a mixed effects model for the longitudinal outcome and a 

survival model for the event outcome. However, in mainly two settings a joint modeling 

approach is required. First, when interest is on the event outcome and we wish to account for the 

effect of the longitudinal outcome as a time-dependent covariate, traditional approaches for 

analyzing time-to-event data (such as the partial likelihood for the Cox proportional hazards 

models) are not applicable(Rizopoulos ,2010). 

Joint modeling enables the simultaneous study of a longitudinal marker and a correlated time-to-

event. Among them, the shared random-effect models that define a mixed model for the 

longitudinal marker and a survival model for the time-to-event including characteristics of the 

mixed model as covariates received the main interest. Indeed, they extend naturally the survival 

model with time-dependent covariates and offer a flexible framework to explore the link between 

a longitudinal biomarker and a risk of event (J.D. Tapsoba, 2009). 

A popular approach in modeling survival time and longitudinal data measured with error consists 

in modeling simultaneously both the time-to-event data and the covariate process. This makes 

possible the exploitation of the information contained in both data in dealing with the 

measurement errors. Joint modeling often assumes a proportional hazards model for the survival 
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times and a linear mixed-effects model for the longitudinal data. Under this framework, different 

approaches have been proposed in the literature including some likelihood based methods with 

an assumption on the distribution of the random effects and that of the measurement errors 

(Wulfsohn M. et al,1997). 

Tsiatis et al. (1995) proposed a two-stage approach in which, based on an approximation to the 

hazard function for the event times, the usual partial likelihood for the Cox model can be used. In 

this approach the observed covariate history is estimated using empirical Bayees methodology, 

which requires fitting as many mixed effects models as there are event times in the data set.  

The approach that this study used to build a joint model is simultaneously modeling the 

longitudinal CD4 measurements and the time-to-death processes by linking those using shared 

random effects parameter model. In the proposed model, to characterize the longitudinal CD4 

measurements a linear mixed effects model that incorporates patient specific CD4 intercept and 

slopes is used for the longitudinal sub-model while  Cox PH  model is used to describe the time-

to-death survival data for the survival sub-model. Then, the two sub-models are linked through 

shared parameters (Wu, 2010), with different forms, since these random effects characterize the 

subject specific longitudinal process. Because, the standard maximum likelihood method 

involves integrating out the shared parameters from the log-likelihood function which is difficult 

when dealing with high dimensional variables (Xin et al, 2009), a Bayesian estimation procedure 

and a Markov chain Monte Carlo (MCMC)  algorithm  is used to fit the joint model. At last, the 

convergence of the Gibbs sampler is monitored by examining time series plots of the parameters 

over iteration. 

The thesis is organized as follows: The statement of problem and objectives of the study are 

presented next in this section. Section 2 describes some literatures related HIV/TB co-infection 

and different joint modeling approaches. In Section 3, the data and the detail methods of data 

analyses employed are explained. Then, basic results of the study are presented in Section 4 and 

discussed in Section 5. Finally, some concluding remarks and recommendations are provided in 

Section 6. 
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1.6. Statement of the problem   

Generally it is recommended that HIV infected patients start to take ART in order to reduce 

AIDS related mortality and morbidity, or to improve their quality of life. But, in most cases TB 

co-infection violates and disturbs this issue. Moreover, death during TB treatment and shortened 

life are recognized in HIV/TB co-infected patients. To overcome this problems of  HIV/TB co-

infection many well established methods exist for analyzing longitudinal and survival of HIV/TB 

co- infection data separately; including linear mixed effects models for longitudinal modeling 

part, and semi parametric or parametric models for survival modeling part. But their separate use 

may be inappropriate since the longitudinal measured CD4 count process is correlated with 

patient health status, hence the survival endpoint, as well as the possibility of study survival.  

Joint modeling of longitudinal and survival data, on the other hand, incorporate all information 

simultaneously and provide valid and efficient inferences. But, by separate modeling, the 

interrelationships of the two responses cannot be well investigated. For example, the CD4 cell 

counts are measured at different times for each co-infected patients, hence, the CD4 level 

changes from time to time for each patient and this change in CD4 level over time of the co-

infected patient related to the patient health status the separate modeling would not able to 

examine the effect of these differences of the longitudinal response on the survival outcome but 

joint modeling does. The main aim of this study was to associate survival time from co-infection 

to death and characteristics of the longitudinal CD4 count measurements trajectories such as 

patient-specific slopes or intercepts. In general, the study addresses the following major research 

questions: 

1. Which shared parameter association structure is an appropriate in the joint modeling of 

longitudinally measured CD4 count processes and time to death of HIV/TB co-infected patients 

to indentify how unobserved longitudinally measured CD4 count to survival time of HIV/TB co-

infected patient?  

2. Is the rate of change of CD4 measurements from one time to another is the risk factor for the 

survival times of co-infected patient?  

3. Which appropriate longitudinal and survival separate models is an appropriate for the joint 

modeling to associate longitudinal CD4 marker with survival time of co-infected patients? 

4. Which covariate is highly the risk factor for the survival of the HIV/ TB co-infected patients? 
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To answer these research questions and also to identify the different covariates related to survival 

of the co- infected patients, the main aim of the study was on modeling of the survival model; the 

longitudinal model finally joint modeling using shared parameters that associated the two 

processes properly. The focus was given for joint modeling of the longitudinally measured CD4 

count marker and time-to-death of HIV/TB co-infection patients’ in order to know the 

contribution of longitudinally measured CD4 counts on the survival time of the co-infected 

patient by giving focus on the two processes. 

1.7. Significance of the study 

The results of this study will be useful for the TB/ HIV co-infected patients by identifying the 

risk factors for their survival time. It also helps the health sectors as inputs to create awareness 

for the community on the risks for the survival of TB/ HIV co-infection. It also used an input for 

researchers who want to investigate on HIV/TB co-infection related areas by pointing directions 

to be addressed in the future. It also helps the clinicians to give consultancy and awareness for 

their co-infected patients depending on the identified risk factors   

1.8. Objectives 

General objective 

The main objective of the study was joint modeling of both the longitudinal CD4 measurements 

and time-to-death of HIV/TB co-infected patients using shared parameters. 

Specific objectives  

 Specifically the study addresses the following specific objectives: 

   explores an appropriate linear mixed model for the CD4 counts over time that predicts 

the evolution of CD4 since it is the marker for HIV/TB co-infection. 

 explore an appropriate survival model  which  appropriately predicts the survival time  

and relate the risk factors for the  HIV/ TB co-infected patients.  

 determines an appropriate association structure that appropriately associate between 

longitudinally measured CD4 count process and time-to-death of HIV and TB co-infected 

patients process for the joint modeling to know the association between the two processes  

 determine the risk factors associated with the survival of HIV/TB co-infected patients. 
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2. LITERATURE REVIEW  

2.1. General reviews on HIV/TB co-infections 

 USAID (2014) on its fact sheet publications noted that HIV/AIDS and TB co-infection present 

special challenges to the expansion and effectiveness of DOTS programs and the Stop TB 

Strategy. TB accounts for one-quarter of AIDS deaths worldwide and is one of the most common 

causes of morbidity in people living with HIV and AIDS (PLWHA). Currently, approximately 

34 million people are infected with HIV, and at least one-third of them are also infected with TB. 

The dual epidemics of TB and HIV are particularly pervasive in Africa, where HIV has been the 

most important contributing factor in the increasing incidence of TB over the last 10 years. In 

some countries in sub-Saharan Africa, up to 80 percent of individuals with active TB disease are 

also HIV-positive. The dual epidemics are also of growing concern in Asia, where two-thirds of 

TB-infected people live and where TB now accounts for 40 percent of AIDS deaths. 

Study conducted on Human immunodeficiency virus (HIV) infection in tuberculosis patients in 

Addis Ababa by Demissie et al.(2000) with  objective of to determine the prevalence of HIV 

infection in a representative sample of sputum-positive tuberculosis patients showed that of the 

236 blood samples collected, 107(45.3%) were HIV positive. Among the HIV positives, 66 

(61.7%) were male and 41(38.3%) females. The HIV-TB co-infection was highest in the age 

group 20-49 and the largest number of TB co-infection (75% of all such co-infection) was found 

in the 20-39 age groups. There was no significant difference between the HIV positive and 

negative TB patients concerning to other socio-demographic factors or presenting symptoms. 

Abera et al. (2006) conducted an ecological study on the association between HIV and TB in 

Oromia regional state, Ethiopia in 2006/7 with the main objective of assessment of association 

between infection with HIV and tuberculosis of the total of 40779 cases of TB including 12818 

smear positive pulmonary TB cases and 29,590 positive for HIV infection and found that the 

prevalence of HIV infection was significantly associated with the incidence of TB in Oromia 

region. The ecological association between different types of tuberculosis and prevalence of HIV 

across zones and towns in Oromia was estimated using the Spearman’s correlation. The study 

has also shown that similar associations were also seen between prevalence of HIV infection and 

the incidence of smear positive tuberculosis, smear negative tuberculosis and extra-pulmonary 

tuberculosis. 
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 Cross sectional study done by Deribew et al. (2010) on three Oromia regional state hospitals 

(Adama, Nekemte and Jimma), Ethiopia from February to April,2009 with the main objective of 

investigating the relationship between TB/HIV co-infection and common mental disorders 

(CMD) consisting of  155 TB/HIV co-infected and 465 non-co-infected HIV patients and  results 

of the study obtained by using logistic regression showed that TB/HIV co-infected patients had 

significantly (p value- 0.001) greater risk of CMD (63.7%) than the none co-infected patients 

(46.7%) [OR = 1.7, (95%CI: 1.0, 2.9)]. 

Mohammed et al. (2011) conducted a case control study in Jimma and Mettu Karl Hospitals 

where the two hospitals serve as referral and treatment centers for HIV and TB in south-west 

Ethiopia from January to March, 2009. The study population consisted of 162 cases and 647 

controls. Cases were adult people living with HIV/AIDS who developed active pulmonary 

tuberculosis and controls were people living with HIV/AIDS without active tuberculosis. The 

objective of the study is to identify the risk factors of active pulmonary TB among PLWHIV 

using multiple logistic regression models. The final multivariate model was obtained by a 

forward and backward variables selection procedure. Then, the result reveals that, after 

adjustment for potential confounders, an initial weight less than 18.5 kg [OR=4.1 ( 95% CI: 2.3, 

7.4), a CD4 lymphocyte count less than 200 cells/mm
3
 [OR=9.8(95% CI: 5.5, 17.5)],  WHO 

clinical stage IV (OR=4.3; 95% CI: 2.6, 6.8) and not taking antiretroviral treatment 

[OR=3.1(95%CI: 1.9,4.9)] were independently associated with the development of active 

tuberculosis in people living with HIV/AIDS. 

Unmatched case-control study was conducted from December 26, 2011, to February 29, 2012 

with 123 TB infected HIV positives cases, and 246 non-TB infected HIV positives control by 

Hatoluf Melkamu et al. (2013) with the main objective assessment of determinants of TB/HIV 

co-infection among adult HIV positives attending clinical care at two public health facilities in 

Nekemte, western Ethiopia. They found Being divorced/widowed AOR = 3.02, 95% CI (1.70, 

7.88), not attending formal education [AOR = 4.32 (95% CI:2.20, 14.15)], being underweight 

(BMI < 18.5 kg/m2) AOR = 3.87, 95% CI (2.18, 6.87), having history of diabetic mellitus [AOR 

= 3.63, (95% CI ;1.33,9.94], and being in advanced WHO HIV/AIDS clinical staging [AOR = 

2.29,( 95% CI :1.32, 3.98)], were determinant factors associated with TB/HIV co-infection. 

Having a separate kitchen [AOR = 0.48, (95% CI: 0.28, 0.81)] showed protective role. 
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observational, analytic, case-control and quantitative study by Obsa (2013) on his thesis of  risk 

factors associated with HIV co-infection in HIV/AIDS patients taking antiretroviral therapy 

(ART) in one of the public health facilities in Ethiopia with main objectives of assessment of risk 

factors associated with TB co-infection in HIV/AIDS patients taking antiretroviral therapy 

(ART) with  randomly selected 367 HIV and AIDS patients of whom 92 of them were TB co-

infected and found educational status, waste disposal system, monthly income, contact history 

with a patient of active tuberculosis or presence of a family member with active tuberculosis, 

drug adherence, knowledge on tuberculosis prevention and history of exposure to substance were 

factors independently associated with the occurrence of active tuberculosis among HIV and 

AIDS patients taking ART. The study also heighted the need for on-going educational, 

informational and other interventions to address the risk factors of tuberculosis in HIV and AIDS 

patients in order to decrease the rate of TB co-infection. 

Tadesse et al. (2013) conducted study on HIV co-infection among tuberculosis patients in Dabat, 

northwest Ethiopia with main objective to determine the prevalence of HIV co-infection among 

TB patients in Dabat district, northwest Ethiopia using records of 1086 pulmonary and extra 

pulmonary tuberculosis patients registered from 2009 to 2012 at two health centers in the district. 

The study found that the prevalence of HIV co-infection 97 (11.4%), the majority, 61 (62.9%) 

and 90 (92.8%) of them were females and belonged to socio-economically productive age group, 

respectively. About half, 48 (49.5%) were smear-negative pulmonary tuberculosis patients. The 

study also concluded call for an emergency reaction through strengthening the tuberculosis and 

HIV collaborative activities, decentralizing the diagnostic and treatment centers to reach the 

periphery, providing women and young-age targeted interventions, stepping up early diagnosis 

and treatment initiation, improving nutritional supplementation to boost immunity, and providing 

prophylaxis to prevent opportunistic infections. Performing culture tests for all HIV infected 

smear-negative pulmonary tuberculosis patients is also recommended. 

2.2. Literature on risk factors of survival of HIV/TB co-infected patients 

Tarekegn (2011) conducted retrospective study in which a total of 632 patients (316 in ART and 

pre- ART cohort) were followed for a median of 32.9 months in Pre-HAART and 35.4 

(IQR=23.6-36.5) months in HAART. The objective of the study was to identify factors that 

increase the risk of TB in PLWHIV. He used Cox proportional hazard analysis. The result of the 
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study indicated that WHO stage III or IV [HR=1.999 (95%CI: 1.025-3.896, P=0.042], being 

bedridden [HR=4.689, (95%CI: 1.715-12.819, P=0.003)], and having hemoglobin level less than 

10mg/dl [HR=2.497,(95%CI: 1.098-5.679, P=0.036)] were factors associated with increased risk 

of TB in PLWHIV. 

Catala et al. (2011) conducted a retrospective cohort study that included all HIV-infected TB 

patients reported in Barcelona between 1996 and 2006 with objective of estimating survival and 

to identify predictive factors and causes of death in a cohort of HIV infected TB patients in the 

era of HAART. based on the Kaplan-Meier estimator and Cox proportional hazards model by 

classifying  causes of death as using the international classification of diseases (ICD)-9 and ICD-

10, and classified as AIDS related or non-AIDS-related (that is, death because of other burden 

than AIDS). The results have shown that out of the 792 patients included, 341 (43.1%) died 

during the study period. Survival was worse among patients aged >30 years [HR 1.6, (95%CI 

1.1-2.1)], inner-city residents [HR 1.3, (95%CI:1.1-1.7)], injecting drug users [HR 1.4, (95%CI: 

1.1-1.8)], those with a non-cavitary radiological pattern [HR 1.5, (95%CI 1.0-2.2)], those with 

<200 CD4cells/mm
3
 [HR 1.8, 95%CI:1.2-2.7)] and those diagnosed with AIDS prior to their TB 

episode [HR= 1.85,( 95%CI 1.4-2.2)].  

Prospective cohort study conducted on effect of antiretroviral therapy on survival of HIV/TB-

infected patients in Ukraine by  Andreychyn et al.(2013) of  HIV patients who developed TB 

from January 2005 to December 2006 in a Zaporizhzhya AIDS center, and were tracked for 60 

months after start HAART using Cox proportional hazards models and identified patients with a 

CD4 cell count <100 cells/mm3 had a 5-fold higher risk of mortality [HR= 5, 2; (95% CI 1.4-19, 

4] and those with extra pulmonary tuberculosis 2-fold increased risk [HR =2.2, 95% CI: 1.8-3.2] 

of death for HIV/TB-infected patients in Ukraine. 

The retrospective study, reviewed the causes of death for 331 patients who died of TB-HIV co-

infection at Chiang Rai Prachanukroh Hospital from 2005 to 2008 by Kantipong et al. (2012) 

with main objective of causes of mortality among tuberculosis and HIV co-infected patients on 

causes of death for 331 patients using multivariate multinomial regression analysis. The study 

found that deaths in the first month (adjusted odds ratio [OR= 4.64, (95% CI: 2.49–8.63)], CD4 

count >= 200 cells/mm
3
 [OR =5.33, (95%CI: 1.05–26.10)], non-category TB treatment regimens 

[OR=5.23, 95%CI: 1.04–9.77)], and TB meningitis [OR=3.27, (95%CI:1.37–7.82)] were 
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significant predictors of confirmed TB deaths. Moreover, age over 45 years [OR=3, (95%CI 

1.32–6.84)] and admission as an inpatient were predictors of death caused by neither TB nor 

AIDS-related opportunistic infections [OR=3.08, (95%CI 1.39–6.80)]. Additional analysis 

showed that non-Thai patients [OR=0.35, (95%CI 0.12–0.99)], those with an unknown CD4 

count at TB diagnosis [OR=0.16,( 95%CI: 0.08–0.33)], and those without an HIV diagnosis 

before TB treatment [OR= 0.32, CI: 0.18–0.59)] were less able to access antiretroviral therapy. 

Retrospective cohort study was conducted between April, 2009 and January, 2012 by Sileshi et 

al. (2013) found despite the availability of free ART from health institutions in Northwest 

Ethiopia, mortality was high among TB-HIV co-infected patients, and strongly associated with 

the absence of ART during TB treatment. In addition cotrimoxazol prophylactic therapy 

remained important factor in reduction of mortality during TB treatment. The study also noted 

importance of early ART even at higher CD4 counts. 

Study conducted on TB treatment outcomes among TB-HIV co-infections in Karnataka, India by 

Shastri et al. (2013) found that of the 6,480 adult HIV and TB co-infections registered 2010–2011 

death rates among co-infected patients (15%) were twice as high as for TB patients under the 

program, though default and failure rates were lower and they concluded that co-infected patients 

already on ART demonstrated better TB outcomes in than those not on ART. Compared to those 

with TB only, co-infected patients had similar TB treatment success rates and lower rates of 

treatment default and failure. Integration of TB-HIV collaborative activities will strengthen our 

battle to control TB and HIV globally. 

A retrospective study conducted by Hailu (2012)  on thesis Survival and risk factors of HIV/TB 

co-infected patients under antiretroviral therapy in Ambo Hospital, Ethiopia with main objective 

of assessment of   the survival and risk factors of HIV/TB co-infected patients in Ambo hospital 

using the Kaplan-Meier method was used to estimate the survival time and Cox’s regression 

model to identify the covariates that have a statistical significant effect on the survival of 

HIV/TB co-infected patients and found that initial weight, TB site, WHO clinical stage, 

functional status and CD4 count are significant risk factors of survival of HIV/TB co-infected 

patients. Furthermore the patients with lower initial weight, lower CD4 count, WHO stage III 

and IV, being ambulatory and bedridden are associated with high risk factors.  
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Manda et al. (2013) on risk of death among HIV co-infected multidrug resistant tuberculosis 

patients, compared to mortality in the general population of South Africa with the methodology   

Poisson-based model adjusted for age, gender, year of diagnosis, TB history, and resistance to 

ethambutol, anti-TB inject able drugs and fluoroquinolones antibiotics for assessment of the 

excess mortality among HIV co-infected MDR-TB patients and excess hazard ratios (EHRs) 

were used to describe the effect of the predictors on net mortality, controlling for the general 

mortality in the South African population using available data from a cohort of 2079 MDR-TB 

patients enrolled in a standardized programmatic management of MDR-TB from 2000 to 2004 in 

South Africa. The study found of the death recorded on 1619 patients, of whom 367 (22.7%) had 

died within 2 years. Out of the 1413 patients that tested for HIV infection, 554 (39.2%) tested 

positive. Excess mortality was higher in HIV infected, compared to HIV uninfected, MDR-TB 

patients (adjusted excess hazard ratio, 5.6 [95% CI, 3.2-9.7]); in patients whose TB isolates’ 

resistance to ethambutol and kanamycin was unknown (3.7 [2.1-6.2]) and (4.87 [1.9, 13.3]), 

respectively) vs. known. There were no differences in excess mortality between age and gender 

of the patient, year of diagnosis and TB history. 

Zenner et al. (2013) on TB co-infection is associated with poor survival among HIV infected 

patients in England and Wales by examining deaths among a retrospective national cohort of 

adults (15 years +) diagnosed with HIV infection between 2000–2008 linked to the national TB 

databases and death records from the Office of National Statistics to mid-2010 by estimating 

hazard ratios (HR) using uni- and multi-variable Cox regression modeling to compare all-cause 

and AIDS-specific mortality by key demographic and clinical markers. They found  total of 

1,880 (4.3%) deaths observed among 44,050 HIV-diagnosed adults during 149,663 person-years 

of follow-up. 3,188 (7.2%) adults developed TB and HIV-TB cases accounted for 341 (18.1%) 

of all deaths of whom 270 (79.2%) were late presenters (CD4<200 cells/mm
3
 at HIV diagnosis). 

One year mortality after HIV diagnosis was 45% overall and greater among HIV-TB cases 

(54%) and those with low CD4 counts at diagnosis (69% for CD4<50 cells/mm
3
). TB co-

infection and a low CD4 count at HIV diagnosis significantly increased the hazard of all cause 

mortality. In the fully adjusted model, the highest HR was among adults with extra pulmonary 

TB and pulmonary TB cases with CD4 count <100 at diagnosis.  
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2.3. Reviews on joint modeling approaches  

Recently, joint modeling research has expanded very rapidly in Biostatistics and medical 

research. This type of models enables the simultaneous study of a longitudinal marker and a 

correlated time-to-event. Among them, the shared random effect models that define a mixed 

model for the longitudinal marker and a survival model for the time-to-event including 

characteristics of the mixed model as covariates received the main interest. Indeed, they extend 

naturally the survival model with time-dependent covariates and offer a flexible framework to 

explore the link between a longitudinal biomarker and a risk of event. 

Some subjects drop out of the study before occurrence of the terminal event of interest. One may 

then wish to evaluate the relationship between time to dropout and the internal covariate. The 

Cox model is a standard framework for that purpose. Jean-Franc et al. (2002) addressed this 

problem in situations where the value of the covariate at dropout is unobserved. They suggested 

joint model which combines a first-order Markov model for the longitudinally measured 

covariate with a time-dependent Cox model for the dropout process by likelihood estimation of 

their model and show how estimation can be carried out via the EM-algorithm. They state that 

the suggested joint model may have applications in the context of longitudinal data with non 

ignorable dropout. 

The accelerated failure time (AFT) model is an attractive alternative to the Cox model when the 

proportionality assumption fails to capture the relation between the survival time and 

longitudinal covariates. Several complications arise when the covariates are measured 

intermittently at different time points for different subjects, possibly with measurement errors, or 

measurements are not available after the failure time. Joint modeling of the failure time and 

longitudinal data offers a solution to such complications. Yi-kuan Tseng and others (2005) 

explored the joint modeling approach under the AFT assumption when covariates are assumed to 

follow a linear mixed effects model with measurement errors. Their procedure is based on 

maximizing the joint likelihood function where random effects are treated as missing data. They 

used Monte Carlo EM algorithm to estimate all the unknown parameters, including the unknown 

baseline hazard function and they considered case study of reproductive egg-laying data for 

female Mediterranean fruit flies and their relation to longevity demonstrate the effectiveness of 

the new procedure. 
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Ye, Lin and Taylor et al. (2008) used a penalized likelihood approach to joint modeling of 

longitudinal measurements and time-to-event data and they proposed to use an estimation 

procedure based on a penalized joint likelihood generated by Laplace approximation of a joint 

likelihood and by using a partial likelihood instead of the full likelihood for the event time data. 

The results of their simulation study showed that this penalized likelihood approach performs as 

well as the corresponding EM algorithm under a variety of scenarios, but only requires a fraction 

of the computational time. They also identified additional advantage of this approach which does 

not require estimation of the baseline hazard function and they applied the proposed procedure to 

a data set for evaluating the effect of the longitudinal biomarker PSA on the recurrence of 

prostate cancer. 

 Lee and Wang (2009)  proposed methods for joint modeling of survival time and longitudinal 

data assuming a mixed-effects model with subject-specific change points for the longitudinal 

covariates and the proportional hazards model for the survival times and they develop the 

conditional score and corrected score estimators, which do not require the distributional 

assumption on the random effects or the change points and also they Showed that the two 

functional methods are equivalent asymptotically. 

Kim and others (2011) propose to estimate all the parameters using the nonparametric maximum 

likelihood estimators (NPMLE) on their Joint Models of Longitudinal Data and Recurrent events 

with informative terminal event and they provide the simple and efficient EM algorithms to 

implement the proposed inference procedure. Asymptotic properties of the estimators are shown 

to be asymptotically normal and semi parametrically efficient. Finally, they evaluate the 

performance of the method through extensive simulation studies and a real-data application. 

Lisa et al. (2011) investigated the known association between hemoglobin fluctuations and the 

survival of dialysis patients and their joint model agrees that those patients with higher 

hemoglobin levels have a greater survival rate. They indentified the significance of the shared 

parameter that links the two processes, and the reduction in the standard error of the parameter 

estimates when compared to independent model estimates, indicates the need for a joint analysis 

of for data compared to the use of independent models. 

Mybery Sen and others (2013) on their briefly review of the shared random-effect model 

methodology and details of its implementation and evaluation through a real example from the 
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study of prostate cancer progression after a radiation therapy. In particular, different 

specifications of the dependency between the longitudinal biomarker, the prostate-specific 

antigen (PSA), and the risk of clinical recurrence are investigated to better understand the link 

between the PSA dynamics and the risk of clinical recurrence. They  built different joint models 

are compared in terms of goodness-of fit and adequacy to the joint model assumptions but also in 

terms of predictive accuracy using the expected prognostic cross-entropy. In-deed, in addition to 

better understand the link between the PSA dynamics and the risk of clinical recurrence, they 

used perspective in prostate cancer studies is to provide dynamic prognostic tools of clinical 

recurrence based on the biomarker history. 

Hyun J. Lim et al. (2013) demonstrated the use of joint modeling in analysis of an HIV dataset 

with CD4+ count measurements and survival time. In their joint modeling, they combined a 

linear Gaussian random effects sub-model for the repeated CD4+ count measurements and Cox 

or Weibull survival sub-model, linked through their shared dependence on the latent variable and 

they showed that the hazard rate of death depended on the longitudinal progression of CD4+ 

counts, i.e., a patient’s baseline CD4+ count and the rate of change in CD4+ counts significantly 

impact on his or her survival time. 

Rizopoulos(2014) presented the capabilities of the R package JMbayes for  fitting these models 

under a  Bayesian approach using Markon chain Monte Carlo algorithms. JMbayes can fit a wide 

range of joint models, including among others joint models for continuous and categorical 

longitudinal responses, and provides several options for modeling the association structure 

between the two outcomes. In addition, this package can be used to derive dynamic predictions 

for both outcomes, and offers several tools to validate these predictions in terms of 

discrimination and calibration. All these features are illustrated using a real data example on 

patients with primary biliary cirrhosis. In general joint analysis of longitudinal measurements 

and survival data has received much attention where longitudinally measured markers related to 

the survival status in recent years. 
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3. METHODOLOGY 

3.1. Study area 

The study was conducted at Jimma University Specialized Hospital which is located in  Jimma 

town is located in Oromia National Regional State, Jimma town is located at a distance 325 Km 

from Addis Ababa which is the center of the country or Ethiopia. Its astronomical location is 7º 

4’ north latitude and 36º 5’ east longitude. The town was founded in 1837 and one of the reform 

towns in the region and has a city administration, municipality and 13 Kebelles. According to the 

national population and housing census carried out in 2007, the population of the town was 

120,960. Out of this 60,824 (50%) were male and 60,136 (50%) were female. Regarding age 

distribution 37,055 (31%) were within the age group of 0-15 years, 80,083 (66%) 16-60 years, 

and 3,822 (3%) 61 years and above. The population growth rates at medium 3.75%, while 

household size in the town was calculated to be 4. (www.mwud.gov.et/web/jimma). 

3.2. Data source 

The data for the study was obtained from JUSH from HIV and TB outpatient Clinic, South West 

of Ethiopia. Both the longitudinal and survival data are extracted from the patient’s chart which 

contains epidemiological, laboratory and clinical information of all HIV/ TB after identification 

of patients who had the co-infection from ART follow-up. 

3.2.1. Study population 

All HIV/TB co-infected patients who are at an age of 18 years old and above placed under ART 

follow up any time in between first February 2009 to first July 2014 in JUSH are considered in 

the study. Among 856 total co-infected patients during the time period 254 patients who were 18 

years and older having at least one CD4 count measurement since the patients are from HIV and 

TB clinic after first February 2009 and before first
 
July 2014 were considered for the study.     

3.3. Variables of the study  

3.3.1. Response variables 

Two outcome variables are considered for the study was; the longitudinal measured continuous 

outcome variable which is a bio marker for the co-infected patient and the survival outcome 

variable. The longitudinal continuous outcome which is a bio marker variable was the number of 

CD4 cell counts per mm
3
 of blood which was measured within six months interval. 
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The survival outcome variable was the survival time (time-to-death) of the co-infected patients. 

Time-to-death of the patients was the time from date of co-infection to the death of the patients 

during the time period which was measured in days.  Patients who lost the follow; transferred to 

another Hospital before experience the event and the patients who are still on ART follow up to 

first
 
July 2014 is considered as the censoring. 

3.3.2. Covariates 

The independent covariates considered for the separate longitudinal and survival modeling as 

well for the joint modeling are listed in the following table: 

Table 1: List of independent covariates  

Variables Values of variables Type  

Age Years(baseline) Continuous  

Weight Kilogram(time vary) Continues  

Marital status Single, married, separated, windowed and 

divorced 

Categorical  

Residence Rural and urban Categorical  

Educational level Not educated, primary, secondary and tertiary Categorical  

Working time Par timer, working full time and un employed Categorical  

Use of alcohol use and do not use Categorical  

Smoking Smoker and non smoker Categorical  

Use of soft drug Use and do not use Categorical  

Type of tuberculosis Pulmonary TB and extra pulmonary TB Categorical  

WHO clinical stage Stage I,II,III and IV Categorical  

Functional status Working, ambulatory and bed ridden Categorical  

Religion Muslim, orthodox  and protestant Categorical  

Sex Female and male Categorical  

 

Notice that  WHO Clinical Stage which is classified into four; I, II, III and IV; where Stage I 

indicates asymptomatic disease, Stage II indicates mild disease, Stage III indicates advanced 

disease and Stage IV indicates severe disease. Hence disease severity increases from Stage I to 
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Stage IV. Functional Status of the patients is also categorical covariate with three categories: 

Working, Ambulatory and Bedridden. Working patients are those patients who can able to work 

day to day while ambulatory patients are those patients who can able to work some time but 

bedridden patients cannot able to work due to the disease.  Working time is also another 

categorical covariates with four categorical groups’ part time worker who works part time; full 

time worker; not working because of medical illness and unemployed who do not have work.  

3.4. Methods of data analysis 

In order to extract information from the given data the collected data was analyzed using 

different methods depending on the objective of study to give a certain conclusion about the 

collected data. The same was done in this study; both descriptive and inferential data analyses 

were considered to analyze the collected data. 

Descriptive data analysis: In order to describe the character of the HIV/TB co-infected 

patients the collected data was analyzed by using descriptive techniques that visualize the 

collected data in descriptive manner. 

Inferential data analysis: To infer about the population inferential statistics was employed. 

Among the inferential techniques different longitudinal; survival and joint modeling approach 

was considered for the study.  

3.4.1. Longitudinal data modeling 

Longitudinal responses may arise in two common situations; one is when the measurements 

taken from the same subject at different times and the other is when the measurements taken on 

related subjects (clusters). In both of these cases, the measurements are likely to be correlated. 

Therefore; longitudinal model considers two sources of variations which is known to be; within-

subject variation which is the variation in the measurements within each subject and between-

subject variation; which is the variation in the data between different subjects. 

Modeling within-subject variation allows studying changes over time, while modeling between-

subject variation allows understanding differences between subjects. 

 

3.4.1.1. Exploratory data analysis  

Data exploration is a very important tool to fit of appropriate models and to look at pattern of 

data over time. It show as much of the raw data as possible rather than summarized values, 
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highlight aggregate patterns of scientific interest. Some of the data explorations used for the 

study includes: individual profiles; for identification of within and between variability of CD4 

count measurement of the patients at different time points, the average evolution; for 

identification the mean structure of the CD4 count measurements over time and the variance 

evolution; for identification of the variance structure of CD4 count measurement taken at 

different time points. In all exploration graphical inspection can be used by connecting each 

value computed at each time point separately. Since the data was not balanced loess smoothing 

was used instead that give us visualization of data in order to choose fixed-effects effects and 

random effects for the linear mixed model.  

3.4.1.2. Linear mixed model (LMM)  

Linear mixed models (LMM) is statistical models for longitudinal or repeated-measures studies, 

in which subjects are measured repeatedly over time or under different conditions and 

measurements in which the residuals are normally distributed but may not be independent (have 

a correlations) this LMM is proposed by Laird and Ware (1982) on which their work was based 

on Harville (1977), included a unified approach using growth models and repeated-measures 

models for  the sequence of the longitudinal measurements yi1,yi2,…, yini for the i
th

 subject at 

times ti1 , ti2,...,tini  is modeled as: 
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Where; 

yi is ni x1 dimension of the response  

β is Px1   dimensional of vector of fixed effects 

bi is qx1 dimension of vector of random effects  

X(t) is nixp dimension combination of time varying and fixed matrix of covariates  

Zi(t) is a matrix of kxq covariates of random effects  

iε  is ni dimension of vector of within group errors which is normally distributed  

In the above model (1) µi(t) represent is the mean response (mean structure part) and U1i(t) = 

Zi(t)
T
bi  incorporates the random effects part which  is the true individual level CD4 trajectories 
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after they have been adjusted for the overall mean. Here, in mixed effects models, random effects 

bi is introduced for each subject to incorporate the correlation between the repeated 

measurements within subject. Since each subject shares the same random effects, the 

measurements within subject are correlated. Moreover the random effects facilitate subject 

specific inference. 

In general the above model (1) specifically incorporates both sources of variations: it uses 

random effects or subject effects to represent deviations of subject longitudinal trajectories from 

the population average. Thus, a mixed effects model allows subject specific inference, in 

addition to standard population average inference and the model was fitted in two stages in 

which the first stage involves the fitting of the appropriate fixed effect model which is developed 

using linear model and the second stage involves the selection of appropriate random effects 

parts for the selected fixed effects. 

3.4.1.2.1. Estimation of linear mixed model  

Estimation is more difficult in the mixed model than in the general linear model. This is because 

in mixed model estimation of random effects and covariance structure of the random error is 

necessary besides to the fixed effect. The maximum likelihood (ML) was considered for the 

estimation of the parameters of the model. The maximum likelihood estimation method finds the 

parameter estimates that are most likely to occur given the data. The parameter estimates are 

derived by maximizing the likelihood function, which is a mathematical expression that 

describes the joint probability of obtaining the data expressed as a function of the parameter 

estimates. 

Maximum likelihood estimation: the maximum likelihood (ML) method used to estimate 

D and Σ. let V be the variance of the response the maximum likelihood provides unbiased 

estimators under normal errors. The log-likelihood function for observed responses is given by: 

L(D, Σ) =   
 

 
log|Y|- 

 

 
(M)

T
Y

-1
 M – 

   

 
 log(2 )……………………………………………….(2) 

Where; M= Y –X(X
T
V

-1
X)

-1
X

T
V

-1
Y, and p is the rank of X estimating fixed effect (β ) and 

random effect (b ) parameters in the Mixed Model. Once getting estimates values of D and ε , 

which are denoted by D̂ and ε̂  hat respectively the  estimated values of random effect and fixed 
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was based on these two estimated values (Proust-Lima,2005).The computation of values 

parameters was based on  R-statistical soft ware version 3.1.0. 

3.4.2. Survival data modeling  

Survival models seek to explain how the risk, or hazard, of an event occurring at a given time is 

affected by covariates of theoretical interest. In a single event analysis, the survival function is 

defined as the probability that the survival time is greater or equal to t which is given by: 
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dttftTPtS )()()(  for t 0 …………………………………………………………………(3) 

Where; f(t) is the probability density function of event time T for continues case and the integration 

value becomes summation when we have discrete time event. Whereas the hazard rate is the 

instantaneous risk of experiencing the event at a given time given that it has survived (i.e., not 

experienced the event) up to that time which is given by: 
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Or in other words hazard function is the probability that an individual will experience an event. 

Very often, time-to-event data will be grouped into strata (or clusters), such as clinical sites, 

geographic regions, time and so on. In this setting, a hierarchical modeling approach using 

stratum-specific frailties is often appropriate, that is a mixed model with random effects (the 

frailties) corresponding to a stratum’s overall health status. In general, survival techniques can be 

applied to a wider range of different situations, subject to the three necessary requirements as 

stated by Cox and Oaks (1984); firstly a well defined time origin must be determined, then a 

scale for measuring the progress of time must be defined, and finally the exact definition of 

failure must be clear. 

Basic definition of survival time modeling 

3.4.2.1. Non-parametric survival methods 

Preliminary analysis of the data using non-parametric methods provides insight into the shape of 

the survival function for each group and get an idea of whether or not the groups are 

proportional, i.e., if the estimated survival functions for two groups are approximately parallel 
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(do not cross). The Kaplan-Meier estimator is a nonparametric estimator of the survival function 

(Kaplan and Meier (1958)) which is not based on the actual observed event and censoring times, 

but rather on the order in which events occur. This principle of nonparametric estimation of the 

survival function is to assign probability to and only to uncensored failure times. Suppose there 

are n observations, t1, ..., tn , with corresponding censoring indicators, δ1 ,...,δn . Let the number 

of distinct event times be r ( r ≤ n ), with the ordered event times given by t(1) <, ... ,<t(r) and 

corresponding number of events d(1) ,...,d(r) . And also let  R( t(j)) denote the risk set at the event 

time  t(j) , i.e., the set of subjects that did not yet experience the event and were not yet censored 

before time t(j) and thus still at risk for the event at that time. Therefore, the Kaplan-Meier 

estimate of the survival function at time t is given by: 
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3.4.2.1.1. Log-rank test  

The estimated Kaplan- Meier survival curves shows the pattern of one survivorship function 

lying above another, this means the group defined by the upper estimated curve lived longer, or 

had a more favorable survival experience than the group defined by the lower estimated curve. 

But, the statistical question is whether the observed difference seen on the curve is significant. 

One way of which give an answer for such statistical question is long rank test which is the most 

widely used to test the significance difference between the estimated Kaplan-Meier survival 

curves where the its computed statistics is given by: 
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Where; 

m is the number of rank-ordered failure (death) times. 

n0i is the number of individuals at risk at observed survival time t(i) in group 0 

n1i is the number of individuals at risk at observed survival time  t(i) in group 1 

d0i is the number of observed deaths in group 0 

d1i is the number of observed deaths in group 1 
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ni is the total number of individuals or risk prior to time t(i) 

di is the total number of deaths at time (i ) 

The computed test statistics have a chi-square distribution  

3.4.2.2. Semi parametric survival model: Cox PH Model  

In survival analysis, to determine if the variation in subjects’ survival experience is partially 

explained by covariates or to find any possible relationship between survival times and important 

covariates, a popular approach is to model the hazard function rather than the mean of the 

survival times as in the classical regression models. That is, survival models are most often 

defined in terms of the hazard function. Since a hazard function may be complicated, a 

parametric assumption can be avoided and the hazard function allowed being nonparametric. 

Such survival models with no distributional assumption of the hazard function are termed as 

semi-parametric model which is proposed by Cox (1972). The widely used semi-parametric 

survival regression model is the Cox proportional hazards (PH) model in which the hazard at 

time t can be expressed as: 

)(t)exp(λ(t)λ T

0i γW ………………………………………………………………….. (6) 

Where; 

)(0 t  is the base line hazard function  

W is the matrix of base line covariates which affects the hazard function and  

γ is the vector of parameters for the covariates.  

If all of the covariates are zero the model (2) above become )()( 0 tti    because of this we call 

the term )(0 t  the baseline hazard function. In this model, no distributional assumption is made 

for the survival time; the only assumption is that the hazards ratio 
)(

)(

t

t

j

i




   does not change 

over time (i.e., proportional hazards) that is why this model is also known as semi-parametric 

model. 

The parameter of the Cox proportional hazard model refers to the hazard ratio of one group in 

comparison to the other groups for categorical covariates and change in hazard ratio with a unit 

change of the covariate for the continuous variables when other covariates are fixed.  The 
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elements of (covariates in survival model) W may or may not the same to that of longitudinal 

matrix covariates or X and the change in hazard ratio for the continuous covariate is given by: 
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= )exp( k which represents change (equivalently, 

exp( 1 )*100% percentage change) hazard function with unit change in covariate provided that 

other covariates remains fixed. For a categorical covariate W with l levels, the model contains 

(l−1) dummy variables defined as Zi  = 1 if W= i , and 0 otherwise for i = 1, 2,..., l −1. Let 1 …  

1l  denote the coefficients in front of the appropriate dummy variables. Then the ratio of the 

hazard of two subjects, one with W at level j and the other with W at level k ( j, k = 1,2,..., l −1), 

provided the values of all other covariates for these subjects are the same, the hazard ration 

between these two categories  is given by: 

)exp(
)exp(

)exp(

),(

),(
kj

k

j

k

i

zt

zt









  Which represents hazard functions for subjects at level j and at 

level k of the covariate ( j, k = 1,2,..., l −1), provided the other covariates have equal values. 

There are also some assumptions of the Cox proportional hazards model to be fulfills that is; The 

ratio of the hazard function for two individuals with different sets of covariates does not depend 

on time, time is measured on a continuous scale and censoring occurs randomly. 

3.4.2.3. Parametric survival models 

Parametric survival models are models requiring the specification of a probability distribution for 

the survival times and survival times needs to follow a certain parametric distribution.  

Parametric models assume that the survival data follow some probability distribution. The effect 

of covariates on survival time is through the conditional hazard function. The PH model of the 

parametric survival model is same to model (6) but in parametric PH model, the baseline hazard 

function )(0 t  is modeled parametrically which have a certain parametric distribution which 

represents the base line hazard function for parametric survival model when all covariates are 

zero and the influence of covariates are multiplicative through )exp( γW
T

.The proportional 

hazard for the different individuals for parametric model also is given by: 
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this is constant. If the proportional hazard is no 

longer valid an alternative method is survival regression modeling is accelerated failure time 

(AFT) model since model does not require the proportional hazard assumption. In AFT model 

we consider log scale of time which is given by: 

Log(T)= i

T γW ………………………………………………………………………….(3) 

Where; 

i ~F  and F is parametric error distribution and  is scale parameter. 

 Different distributional choices for i   lead to different models and the most common choice for 

the distribution of ξi is the Gumbel distribution which is an extreme value distribution. If i

follows the Gumbel distribution, the survival time Ti  follows a Weibull distribution. If i follows 

the Gumbel distribution and σ = 1, then it will be reduced to an Exponential model and another 

common choice for the distribution of i  is the standard normal distribution N(0,1). If i follows 

N(0,1), the survival time  Ti follows a log-normal distribution. The logistic distribution is also 

another possible choice if i  follows a logistic distribution, the survival time Ti follows a log-

logistic distribution and the hazard function of the AFT model is given by: 

)exp())exp(()/( 0 WγWγw
TTtt   ………………………………………. (7)  

We deal the effect of the covariates through )exp( Wγ
T  that is the time scale is changed by 

factor of )exp( Wγ
T . 

3.4.2.4. Estimation methods of survival models  

Semi parametric model parameter estimation method: In Cox proportional hazards 

model we can estimate the vector of parameters   without having any assumptions about the 

baseline hazard )(0 t . As a consequence, this model is more flexible and an estimate of the 

parameters can be obtained easily. Consider n independent individuals, the data that we need for 

the Cox proportional hazard model is represented by (Ti, δi, Wi) i= 1, 2,…,n, Where, ti = the 

survival time for the i
th

 individual 

δi = an indicator of censoring for the i
th

 individual given by 0 for censored and 1 for event 

Wi  =  a vector of covariates for individual i (w1,w2,…,wp) 

The full likelihood for right censored data can be constructed as 
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 L( )   =                 
   S(        ………………………………………………………(8)  

 Where; 

                        
     is the hazard function for individual i. 

S(        =         
          is the survival function for individual i. 

It follows that L( )=             
    δ  

           
                                                      

The full maximum likelihood estimator of   can be obtained by differentiating L( ) with respect 

to the components of   and the base line hazard. This implies that unless we explicitly specify 

the base line hazard, as in the case of parametric PH, we cannot obtain the maximum likelihood 

estimators for the full likelihood. To avoid the specification of the base line hazard, (Cox, 1972) 

proposed a partial likelihood approach that treats the baseline hazard as a nuisance parameter and 

removes it from the estimating equation. Instead of constructing a full likelihood, we consider 

the probability that an individual experiences an event at time ti given that an event occurred at 

that time. 

Partial likelihood: Let Ri denote the set of individuals at risk at time just prior to t(i) . Assume 

that for the present case there is only one failure at time ti  , i.e, no ties. The probability that 

individual i with covariates wi is the one who experience the event at time t(i) is given by: 

      

               

  and under the proportional hazards assumption on equation, the ratio  

           
    

                       

   shows the contribution to the partial likelihood at each event time t(i) by the 

individuals with covariate wi  in risk set Rt(i). where Rt(i)   is the overall subjects in the risk set at 

time t(i)  but by eliminating the base line hazards function, the above equation becomes 

          

                  

                                                                                                                  

Thus the partial likelihood is the product over all failure time t(i) for i = 1,2,…,m of the 

conditional probability to give partial likelihood  

Lp( )=  
          

                  

 
     …………………………………………………………………(9)                                                                                

The product is over the m distinct ordered survival times and wi  denote the value of the covariate 

for the subject with ordered survival time t(i) . The log partial likelihood function is  
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lp( )=                             
   

     ………………………………………………(10)                                                 

under this setting  the maximum partial likelihood estimator obtained  by differentiating the 

function with respect to  , setting the derivative equal to zero and solving for the unknown 

parameters. But the partial likelihood derived above is valid when there are no ties in the data 

set. In most real situations tied survival times are more likely to occur. To handle this fact, partial 

likelihood algorithms have been adopted to handle ties. There are different methods to estimate 

regression parameters when there are ties. The most popular and easy approaches are Breslow’s 

and Efron approximation, in this study the Breslow approximation which is the default value of 

ties handling in R-soft were used in case of ties. 

Estimation of parameters for parametric survival model: In parametric modeling, 

maximum likelihood estimation method commonly used estimation of parameters of the model. 

For parametric regression model the with base line hazard function and with vector of regression 

coefficient    including the intercept parameter suppose that the random variable and suppose 

that (ti,  , Wi) come from the parametric hazard rate regression with parametric distribution. The 

likely hood function that maximizes the parameter   is given by: 
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The likely hood function can be also constructed in terms of AFT perspective which is given by: 
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The estimation of parameters for the model was based on the full likelihood function in both 

cases and the required parameters was obtained by maximizing the full log likelihood function 

with  respect to the required parameter and R-soft ware version 3.1.0 were used for all 

computations.   

3.4.3. The joint modeling structure 

In joint modeling of longitudinal data and survival data, the main focus may be either the 

longitudinal model, or the survival model, or both models, depending on objectives of the study. 

When the main focus is on the one model, the other model is then secondary so its parameters 

may be viewed as nuisance parameters. In this case, one should focus on correct specification of 

the main model and simplify the secondary model to reduce the number of nuisance parameters 
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and avoid potential parameter non-identifiable (Lang Wu, 2009). If both models are of primary 

interest, we may reduce the number of other secondary parameters. The main aim of this study 

was also to associate longitudinal model process with survival model process with primary 

interest of both models using shared parameters association structure. The main goal was to 

understand the association between the two processes that is to understand the association 

between the survival time of HIV/TB co-infected patients and characteristics longitudinally 

measured CD4 count measurement process of the co-infected patients. In order to avoid potential 

bias in some cases, the longitudinal and survival models may be linked through shared 

parameters leading to so-called shared parameter models. 

3.4.3.1. The longitudinal sub-model specification 

The main goal, in this study, is to jointly model the longitudinal CD4 measurement process and 

time-to-death of HIV/TB co-infected patients, with a special attention to the effect of CD4 

measurements on the risk of death of co-infected patients. The longitudinal sub-model which is 

given by linear mixed model (1) is as follows: 
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Where;  

yi is observed responses 

 β is a p dimensional vector of fixed effects 

bi is a q dimensional vector of random effects 

X(t)  is a matrix of (size n *pi ) fixed effects possibly time-varying covariates 

Zi(t)  is a matrix of (size n* qi  ) random effects covariates and  iε  is an ni dimensional vector of 

within group errors with a Gaussian distribution 

)(tiμ is the mean response (mean structure part) and U1i (tij) incorporates the random effects part. 

3.4.3.2. The survival sub-model specification 

After specifying the longitudinal sub-model, the next aim is to associate the true and unobserved 

value of the longitudinal outcome (CD4 count measurement) at time t with the survival outcome 

via shared parameters. As shown before, both of the separate and joint models assume the 
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longitudinal sub-model has the form similar to the usual linear mixed effects model, while the 

survival model in the joint model includes a shared parameter association function U2i(t)  the 

event time model is based on an approximation to the hazard function, the usual partial 

likelihood for the Cox model which is proposed by Tsiatis et al. (1995)  which is given by: 

))(exp()()/( 20 ttt i

T
UγWw   …………………………………………………………… (13) 

Where; 

 )(0 t  is the base line hazards function  and this model(5) is differ from the  separate survival  

with inclusion of U2i(t) defines the nature association structure of the parameters between the 

two processes  and distributed as the multivariate function of shared parameters. The three 

association structure values of U2i(t)  proposed for this study were: 

I.  U2i(t) = )(tmiα  

II. U2i(t) = i

T
bα  

III. U2i(t) = ib

T
bβα ( ) 

Where; 

)(tmi denotes current underlying value of the longitudinally measured CD4 count marker 

processes at the same time point;  measures the strength of association vectors between two 

processes; bi is random effect parameters of the longitudinal part and    is fixed effect 

parameters corresponding to the random effects. The appropriate shared parameters association 

structure for the joint modeling that appropriately associate the longitudinally measured CD4 

count measurement process and time-to-death of HIV/TB co-infected patient was selected based 

on DIC score. 

3.4.4. Joint model estimation methods  

Given the random effects, the longitudinal process is assumed to be independent from the event 

time. Let 1Θ and 2Θ  be the vector of parameters defined in linear mixed model and survival 

model respectively. Using the assumption of independence between the longitudinal and the 

survival processes conditionally to the random effects their joint density function is given by: 

iiiTiY dfTfYff ηηηΘYηΘΘΘδTY 2i121 )(),,/,(),/(),/,,(  …………………………… (14) 

Where their joint log likely hood function is  given by: 
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Where; 

)( iT/Y is the survival hazard function  

S(T/Yi)= ))/(exp(
0


t

i duYu  is the survival function and fY and )( if  represents the density 

function for the longitudinal and shared parameters respectively  

The computation these likelihood inference based on the above joint likelihood can be highly 

intensive and the estimation of the parameters are based on Bayesian approach using Markov 

chain Monte Carlo (MCMC) algorithm with R-statistical software under JMpakage. 

3.4.4.1. Prior and posterior distributions 

Under Bayesian approach, model parameters are treated as random variables and assigns 

probability to each, which is the major difference to the likelihood approach. They assume prior 

distributions for the parameters. Bayesian estimation and inference is based on the posterior 

distribution which is the conditional distribution of unobserved quantities given the observed 

data and Bayee’s theorem is used to construct the posterior distribution. Let y be the observed 

data and θ a vector of unknown parameters. f (θ | y) is the posterior probability distribution of the 

parameter θ  under Bayesian approach is given by: 
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Where; 

)|( yθf  is is the posterior probability distribution of θ 

)|( θyf  is the likelihood function  

)(θf  is the prior probability distribution of θ 

The expression for the posterior distribution of the model parameters is derived under the 

assumptions that given the random effects, both the longitudinal and event time process are 

assumed independent, and the longitudinal responses of each subject are assumed independent. 

Formally we have, 
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Where; θ  denotes the full parameter vector, and f(.) denotes an appropriate probability density 

function. Under these assumptions the posterior distribution is analogous to: 
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Where; 

   ]),()(/)}({)(exp),|(  ijiijiijijiij ydabcbybyf θ  With ij (bi) and  denoting the 

natural and dispersion parameters in the exponential family, respectively, c(.),a(.) and d(.) are 

known functions specifying the member of the exponential family, and for the survival part. 
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In general to build the joint model from a Bayesian perspective, the prior distributions for all 

unknown parameters must be specified and then estimation and inference is conducted based on 

the posterior distribution of the parameters given the data. For this study, the standard prior 

distribution which was aided by Rizopoulos (2014) for the JMbayes package was considered. In 

particular, for the vector of fixed effects of the longitudinal sub model, for the regression 

parameters of the survival model, for the vector of spline coefficients for the baseline hazard 0h  , 

and for the association parameter independent univariate diffuse normal priors were assumed and 

for the covariance matrix of the random effects an inverse Wishart prior were assumed. 

3.4.4.2. Markov chain Monte Carlo (MCMC) algorithm  

When we often have very large size of number of unknown parameters to be estimated then the 

denominator involves integration over the size of dimensional parameter space which becomes 

intractable for large values of dimension of parameter spaces say more than 100 dimensions.  In 

such cases Markov Chain Monte Carlo (MCMC) algorithm is a numerical method for evaluating 

such complex integrals via Monte Carlo simulation from a Markov chain that is constructed so 

that its stationary distribution is the posterior. The MCMC algorithm combines   Monte Carlo 

integration and Markov Chain sampling; Monte Carlo integration is a numerical integration 
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method which simplifies a continuous distribution by taking discrete samples. If discrete random 

samples of size m from a certain density took and label      …,    , then the values       are 

selected based on the probability density, f (θ ) , such that more samples are made where f (θ ) is 

relatively high. 

Drawing samples directly from the target density f (θ ) is not always achievable because it may 

have a complex, or even unknown, form. Markov chains provide a method of drawing samples 

from target densities (regardless of their complexity). The method simplifies the sampling by 

breaking it into conditional steps. Using these conditional steps, a chain of samples (    ...     ) 

will build up after specifying a starting value    . The Gibbs sampler is one way of generating 

Markov Chain. It splits the parameters into a number of components and then updates each one 

in turn (Rajeeval, 2006). 

3.4.5. Model selection  

Different model selection criteria was  considered to select an appropriate separate model as well 

the joint model among the different fitted models to come up with an appropriate model that 

appropriately represent the outcome variable.   

 Likelihood ratio tests: The likelihood ratio test was used to test for an adequacy of the new 

fitted model is nested in the previous model which is given by: 

   
                            Where; )1(ˆlog( L and ))2(ˆlog( L represents the log likely 

hood of previously fitted model and the new fitted model and is approximately distributed as    

(Li meng,1992). 

Akaike’s information criterion (AIC): To select an appropriate separate linear model for the 

linear mixed modeling of longitudinal part; linear mixed model and survival model among 

different fitted models their  AIC values was considered and the model with minimum AIC value 

is considered as an appropriate model among the fitted separate models.  

For the survival separate model the AIC value is given by: 

                                        Where k is the number of covariates in the model 

and c is the number of model-specific ancillary parameters. The addition of 2(k +c+1) can be 

thought of as a penalty if non predictive parameters are added to the model (Akaike,1974).  
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Where the AIC value for the longitudinal model is given by:  

AIC = -2 log Lik + 2npar; npar denotes the number of parameters in the model. 

Deviance information criteria (DIC): For the joint model selection to have an appropriate 

shared parameter structure that associates the two processes the DIC was considered. The 

recently, provided simple and intuitively appealing extension of the AIC criterion called the 

deviance information criterion, or DIC (by Spiegelhalter et al. 2002), is based on the posterior 

distribution of the deviance statistic as, 

                                                                                     …………………………(18) 

Where f (y|θ) is the likelihood function for the observed data vector y given the parameter vector 

θ, and h(y) is some standardizing function of the data alone (which thus has no impact on model 

selection). In this approach, the fit of a model is summarized by the posterior expectation of the 

deviance,      y|     , while the complexity of a model is captured by the effective number 

of parameters, pD. Where pD is given by: 

      y|           y|                                                        …………………….(19) 

That is the expected deviance minus the deviance evaluated at the posterior expectations. The 

DIC is then defined analogously to the AIC as the expected deviance plus the effective number 

of parameters, i.e. 

                                                                                               ……………………………… (20) 

Since small values of    indicate good fit while small values of    indicate a parsimonious 

model, small values of the sum (DIC) indicate preferred model. As with AIC and other penalized 

likelihood criteria, DIC is not intended for identification of the ‘correct’ model, but merely as a 

method of comparing a collection of alternative formulations (all of which may be incorrect). 

The attractive aspect of DIC is that it may be readily calculated during an MCMC run by 

monitoring both θ and D(θ), and at the end of the run simply taking the sample mean of the 

simulated values of D, minus the plug-in estimate of the deviance using the sample means of the 

simulated values of θ.  

3.4.6. Model checking and diagnosis  

The model diagnostic for model checking is an essential part of the modeling process to check 

whether the fitted model is correct or not. Different commonly used model checking was 



Joint modeling of longitudinal CD4 count and time-to-death of HIV/TB co-infected patients: a case of JUSH Page 36 

 

considered to evaluate whether the fitted model is adequate or not for the separate as well for the 

joint model.  

3.4.6.1. Model diagnosis for longitudinal separate model  

Before making inferences about a fitted linear mixed model, we will have to check whether the 

underlying distributional assumptions about the distributional assumption of within group error 

and the random effect appear valid for the data. To check whether it is valid or not the diagnostic 

is plot of residual with fitted value will be used for the both assumption checks. 

3.4.6.2. Model diagnosis for the survival separate model  

Cox-Snell residuals: The residual which is proposed by Cox and Snell (1968) is the most 

widely used in the analysis of survival data is the Cox-Snell residual. The Cox-Snell residual for 

the i
th 

individual,          , is given by Properties and features of residuals, when survival 

outcome are modeled, have been extensively studied in the literatures. The Cox -Snell residuals 

are commonly used for a direct assessment of excess events (i.e., to reveal subjects that are 

poorly fit by the model), and for evaluating whether the appropriate functional form for a 

covariate is used in the model. The cox-snell residual is given by: 

)ˆexp()(ˆ
0 γw

T

iii tr  ……………………………………………………………............ (21) 

Where; )(ˆ
0 it  is Breslow estimator of the baseline cumulative hazard function at ti and the 

residuals in right censored data constituting a censored sample of the unit exponential 

distribution; If the residuals ri do not follow a straight line, we know that the survival times do 

not have a baseline hazard function which is exponential we can say that the model is not good 

fit data.  

Martingale residuals: Martingale residual is also used to diagnosis whether the functional 

form of the covariate is correct or not for the fitted model. For the i
th 
individual where i=1,2,…,n 

the martingale residual is given by: 
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Where; )(ˆ it is the fitted cumulative hazard function of the survival model and by plotting the 

martingale residuals of covariate, we can verify for the best linearity structure of the covariates in 

the model (Collett, 2003).  
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Schoenfeld residuals: The Schoenfeld residuals is used to test for covariates used in PH 

model whether satisfy the proportional hazard assumption or not. From the partial likelihood, we 

know that the parameter     are estimated from: 

    
 
               =0……………………………………………………………………(23) 

With             = 
          

       
   

        
          

 and the schoenfeld residual is defined as 

  
 =             ) Here we plot   

  versus ranks of the survival times and view whether there 

is a time trend on the plot (Schoenfeld, 1982). 

3.4.6.3. Diagnosis for the joint model  

Diagnosis for the Convergence of MCMC samples: Making inferences using Markov chain 

samples is based on the assumption that the sample densities for the unknown parameters are 

good estimates of the target densities. Assessing chain convergence is therefore a key part of any 

analysis that uses Markov Chains. A simple (informal) method of assessing chain convergence is 

to look at the history of iterations using a time series plot. If the chains show a reasonable degree 

of randomness between iterations, it signifies that the Markov chain has found an area of high 

likelihood and is integrating over the target density and hence indicating that it has converged 

(MK Cowles, 1996). 
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4. ANALYSIS AND RESULTS  

4.1. Data description   

The data consists of 254 co-infected patients who were 18 years old or older and who were on 

ART follow up between first February 2009 and first July 2014 in JUSH. All HIV/TB co-

infected patients who were below 18 years and those patients who started ART before first 

February 2009 or after first July 2014 are excluded for the analysis. 

As mentioned in Section 3.3.1., the two response variables were considered for the study; 

longitudinal and survival responses. The survival end point  is the death of HIV/TB co -infected 

patients during first February  2009 to first July 2014 and those patients who missed the follow 

up; transferred to another hospital between the specified time period and who are still on ART 

follow up on first July 2014 were considered as censoring values. Time-to-death HIV/TB co-

infected patients in days were obtained subtracting date of co-infection from date of occurrence 

of event interest (death) where as for the censoring time was obtained by subtracting from the 

last visit of the co-infected patients.  

Among the total co-infected patients during the time period thus 83(32.67%) were died due to 

HIV/TB co-infection where as 171(67.33%) were censored co-infected patients. The estimated 

average age of died co-infected patients were 32.72 years with standard deviation value of 9.44 

years while the estimated average age of censored patients were 31.98 years with standard 

deviation of 8.54 years.  

The demographic information and some basic base line covariate from the co-infected patients 

were also reported on table 2 below. As observed from the table below by the categorical group 

of the covariates out of total of 254 co-infected patients 139(54.80%) of them were males and 

47(56.60%) death were also occurred in male groups in comparison with female co-infected 

patient groups. More than half 147(57.90%) of the co-infected patients belongs to orthodox 

religious groups were 18(6.70%) belongs to protestant religious groups of the total deaths 

occurred in these categories large number 49(59.00%) of deaths were occurred in orthodox 

religious groups were 4(4.8%) of deaths occurred in protestant religious groups when we made 

descriptive comparison between religious groups. When we look at the educational level 

category of the co-infected patient’s larger number 109(42.90 %) were attended their primary 

education while only 17(6.70%) attended their tertiary educations.  
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Table 2: Frequencies and percentages for the baseline categorical covariates together with the 

status of co-infected patients 

 Variables  

  

Categories 

 

Total n (%)  Status of the observation   

Censored observations 

n(%) 

Observed events 

n(%) 

Religion 

  

  

Muslim 89(35.30) 59(34.90) 30(36.10) 

Orthodox 147(57.90) 98(57.40) 49(59.00) 

Protestant 18(6.70) 14(7.70) 4 (4.80) 

Education 

  

  

  

Not educated 58(22.60) 37(21.30) 21(25.30) 

Primary 109(42.90) 77(45.00) 32(38.60) 

Secondary 70(27.80) 45(26.70) 25(30.10) 

Tertiary 17(6.70) 12(7.10) 5(6.00) 

Marital status  

  

  

  

  

Divorced 21(8.30) 13(7.70) 8(9.60) 

Married 112(44.00) 81(47.30) 31(37.30) 

Separated 26(10.30) 10(5.90) 16(19.30) 

Single 74(29.00) 49(28.40) 25(30.10) 

Windowed 21(8.30) 18(10.70) 3(3.60) 

Residence 

  

Rural 37(14.30) 26(14.80) 11(13.30) 

Urban 217(85.70) 145(85.20) 72(86.70) 

Soft drugs use 

  

NO 120(47.20) 93(54.40) 27(32.50) 

YES 134(52.80) 78(45.60) 56(67.50) 

Smoking  

  

NO 192(75.80) 140(82.20) 52(62.70) 

YES 62(24.20) 31(17.80) 31(37.30) 

Use of alcohol 

  

NO 157(61.90) 116(68.00) 41(49.40) 

YES 97(38.10) 55(32.00) 42(50.60) 

Working time 

  

  

  

Not working 18(7.10) 13(7.70) 5(6.00) 

Part timer 8(3.20) 5(3.00) 3(3.60) 

Unemployed 17(63.50) 105(61.50) 56(67.50) 

Working full time 67(26.20) 48(27.80) 19(22.90) 

Functional status  

  

  

Ambulatory 126(49.60) 78(45.60) 48(57.80) 

Bed ridden 25(9.90) 10(5.90) 15(18.10) 

Working 103(40.50) 83(48.50) 20(24.10) 

Type of TB  

  

Extra 

Pulmonary 

122(48.00) 83(48.50) 39(47.00) 

Pulmonary 132(52.00) 88(51.50) 44(53.00) 

WHO Clinical stage 

  

  

  

Stage I 8(3.20) 7(4.10) 1(1.20) 

Stage II 23(8.70) 19(10.70) 4(4.80) 

Stage III 124(48.80) 85(49.70) 39(47.00) 

Stage IV 

 

99(39.30) 60(35.50) 

 

39(47.00) 

 

Sex 

  

Female 115(45.20) 79(46.20) 36(43.40) 

Male 139(54.80) 92(53.80) 47(56.60) 
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Among the total deaths occurred in educational level category 32(38.60 %) deaths occurred in 

primary education level category groups while smaller number of deaths 5(6.00%) occurred in 

tertiary educational level group. 

Among the total by marital status category 112(44.00%) of the co-infected patients were married 

while smaller number 21(8.30%) of the co-infected patients belong windowed marital status 

groups of the total deaths occurred in these groups 31(37.30 %) and 3(3.60 %) of the deaths 

occurred in married and windowed marital status groups in comparison with other marital status 

groups respectively which represents the larger and smaller percentages according to the marital 

status category. More of these co-infected patients 217(85.70 %) came from the urban and large 

number 37(86.70 %) of deaths also occurred in this group in comparison with rural areas of the 

town. Of the total co-infected patients only 62(24.20 %) were smokers and of the total death 

occurred in smoking status category 31(37.30 %) of the deaths occurred in smoker category 

group when we made descriptive comparison with none smoker group. Of the total co-infected 

patients by their base clinical stages 8(3.20 %) were at clinical stage I, 23(8.70 %) were at 

clinical stage II, 124(48.80 %) were at clinical stage III and the rest 99(39.30%) were at clinical 

Stage IV whereas of the total deaths occurred in clinical stage categories 39(47.00%) deaths 

were occurred in both clinical stage III and IV at base line time in comparison with remaining 

baseline clinical stages. There were 103(40.50%) patients who were able to work; 126(49.60%) 

were ambulatory and 25(9.90 %) were bedridden in the functional status categories; of the total 

patients deaths in these categories 48(57.80 %) of the deaths were occurred in patient group who 

was ambulatory at the base line during the co-infection time.  

The longitudinal response was the number of CD4 cells counts per mm
3
 of blood which were 

measured approximately every 6 months from date of co- infection at the base line time to end of 

the study period. Since the CD4 is the count measurement we transformed to continuous 

measurement by using square root transformation to be analyzed as the continues response and 

the normality of the transformed value was checked by using box plot of figure 5 on annexes 

part.  

Without considering the censoring status of the HIV/TB co-infected patients the average number 

of square root of CD4 count measurement with their standard deviation at each time point was 

reported on the table 3 below. As it can be observed from table 3  the mean square root of CD4 
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count measurement is (11.91) at base line; it have  an increasing value from baseline up  to 30 

months and it has declining value after 30 months. When we look at the standard deviation of the 

mean value of square root of CD4 count measurement between baseline times up to 36 months 

there was no much variation between square root of CD4 count measurement and after 36 

months the standard deviation values have decreasing value. 

Table 3: Mean of square CD4 count measurement with its standard deviation at each time points 

with respective of the sample sizes. 

Time points in month 0 6 12 18 24 30 36 42 48 

Sample size 254 156 134 105 65 43 23 9 3 

Mean square root of CD4 11.91 16.10 18.09 19.42 19.39 19.84 18.88 16.78 14.82 

Standard deviation 5.37 5.31 4.85 5.00 5.15 5.50 5.29 3.65 1.18 

With considering the censoring status of co-infected patients the mean and standard deviation 

square root of CD4 count measurement and the weight of censored and died co-infected patients 

at each time points were given as follows on table 4 below. 

Table 4: Mean of square root of CD4 count measurement and weight with their standard 

deviation at each time points for died and censored co-infected patients. 

  

For censored observation 

  

  

For the observed events 

   

Time 

points(in 

month) 

Square root of CD4 Weight Square root of 

CD4 

Weight 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Stand 

deviation 

0 12.57 5.21 49.58 10.96 10.62 5.42 45.93 9.59 

6 16.45 5.05 53.52 11.45 14.29 6.26 50.69 7.71 

12 18.27 4.85 55.65 10.02 17.58 4.66 51.56 6.96 

18 19.62 5.04 56.54 10.24 18.24 4.98 50.67 7.55 

24 19.45 5.33 58.32 11.19 18.91 3.22 46.63 3.46 

30 20.63 5.61 59.31 10.99 19.79 5.24 49.38 7.07 

36 18.69 5.60 57.35 8.92 20.18 2.71 51.67 4.73 

42 17.15 3.34 60.13 11.96 19.82 2.98 46.53 5.32 

48 14.82 1.18 64.33 13.61 - - - - 

As reported on table 4 above in all time points the square root mean of CD4 count measurement 

of censored co-infected patients from base line time to 30 months is larger than that of died co-

infected patients where as there was no big difference in standard deviation of square root of 
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CD4 count measurement in censored co-infected patients from base line time up to 36 months in 

comparison with died co-infected patients. When we look at the mean weight in all time points 

the mean weight of censored co-infected patients have larger weight than died co-infected 

patients where as the variation in weight of died co-infected patients was lower than that of 

censored co-infected patients. 

4.2. Results using separate models 

We initially analyzed data separately using both longitudinal and survival models described in 

Section 3.4.1 and 3.4.2. This is important for the fully specification of the mean response of the 

model and determine the random effects and fixed effects to be included in the longitudinal sub-

model, and to indentify the covariates that have a contribution for the hazard of an event in the 

survival sub-model  to provide initial values for the joint analysis. 

4.2.1. Separate analysis of the longitudinal data 

In any data analysis, before directly going to the analysis first the data exploration were 

employed for the longitudinally measured CD4 count measurement of HIV/TB co-infected 

patients. 

4.2.1.1. Exploring individual profile and the mean structure 

Data exploration is a very important tool to fit of appropriate models and to look at pattern of 

data over time. It show as much of the raw data as possible rather than summarized values, 

highlight aggregate patterns of scientific interest. 

The individual profile plot of figure 1 below indicates within and between subjects variability 

square root of CD4 count measurement of HIV/TB co-infected patients where as the loess 

smoothing technique suggest the linear and quadratic growth effect  in the mean structure of 

square root CD4 count measurement over time. 
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Figure1: Individual profile plot with loess smoothing technique 

Exploring the Mean Structure: To understand the possible relationships among the CD4 means 

over time, a plot of a line connecting the average values computed at each time point is shown 

below on Figure 2 The mean structure plot suggests that the mean of the square root CD4 

profiles have a non linear growth over time which looks quadratic relationship over time. Since 

the data is not balanced loess smoothing technique is an appropriate to suggest the mean 

structure also since it local weighted least square (loess) smoothing curve of the individual 

profile plot also suggests the linear and quadratic effect mean structure; therefore both the linear 

and quadratic time effects was included as fixed-effects in the model. 
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Figure 2: The mean of square root of CD4 count measurement evolution structure over time  

4.2.1.2. Linear mixed effects models results 

From the individual profile and mean structure exploratory analysis, both linear and quadratic age 

effects seem to be useful in modeling the random effects. Therefore as described under methodology 

the linear mixed model was built within two stages in which the first stage involves fitting linear 

regression model which only considers between subjects variability and selection of an 

appropriate fixed effect for the outcome variable based on the likelihood ratio test and AIC 

values of the fitted candidate linear models. Therefore let Yij is the measured square root of CD4 

count measurement measured for the co-infected patients at time tij ,i=1,2,…,N, j=1,2,…,ni the 

selected an appropriate linear model among different fitted candidate model using model 

selection criteria  was specified as: 
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where; 

Yi =(Yi1,Yi2,…,Yini) and ),0(~ ii N   

The model (7) specified above only accounts the observed variability between subjects and the 

covariates of the model was selected from table 1 of methodology parts based on model 

information criteria of the fitted models that appropriately explain the square root of CD4 count 

measurements by accounting only the between variability of the co-infected patients.  

The summary of  fitted model (7)  reported on table 5 below showed that clinical stages; use of 

alcohols; bed ridden functional status and quadratic time effect  have negative effects where as 

linear time effect and working functional status have positive effects on square root of CD4 

count measurement at 5% significance level. When look at the interaction effect of covariates 

with linear time effect clinical stage IV have positive effect where weight and working functional 

status have negative effects on the CD4 count measurement of HIV/TB co-infected patients. The 

interaction effects of weight and working functional status with quadratic time effects have 

positive effects on square root of CD4 count measurement at 5% significance level where the 

remaining covariates interacting with linear time and quadratic time have no significant effect on 

square root of CD4 count measurement HIV/TB co-infected patients case of JUSH at 5% 

significance level since their 95% confidence intervals of these covariates includes zero. The 

estimated intercept value indicates that the mean base line CD4 count measurement was 12.68 

cells per mm
3
 without effects of other covariates further more CD4 count measurement was 

differ by WHO clinical stages; functional status and use of alcohol when only the between 

subject variation is considered.   

The constant variance and normality assumption diagnosis  of the fitted linear model was 

checked by using residual versus fitted value and quantile-quantile plots figure 6 and 7 on the 

annexes of the error terms respectively and the plots  showed with exception of some outliers 

there was no problems of the assumptions. 
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Table 5: Linear model selected for the fixed effects with 95% confidence interval of the 

estimated coefficients  

Covariates   Estimated coeff )ˆ(   95 % CIs 

Intercept  12.6819 [9.6794,15.6844]*
 

Time  1.1305 [0.6482,1.6128]*
 

Clinical stage       

Stage III -1.6036 [-3.1251,-0.0820]*
 

Stage IV -1.5755 [-3.1409,-0.0101]*
 

Alcohol user  -0.9127 [-1.9703,-0.0009]*
 

Functional status        

Bedridden  -2.9229 [-4.9498,-0.8961]* 

Working  2.6039 [1.3759,3.8318]* 

Weight 0.0079 [-0.0452,0.0609] 

Time^2 -0.0303 [-0.0459,-0.0146]* 

Time*stage III 0.0776 [-0.0143,0.1696] 

Time*stage IV 0.1573 [0.0604,0.2541]* 

Time*alcohol user 0.0152 [-0.0591,0.0895] 

Time:Bed ridden -0.2259 [-0.6801,0.2282]* 

Time:Working -0.2336 [-0.4185,-0.0487]* 

Time*Weight -0.0094 [-0.0175,-0.0012]* 

Weight:Time^2 0.0003 [0.00003,0.0005]* 

Bed ridden:Time^2 0.0034 [-0.0125,0.0194]* 

Working:Time^2 0.0055 [0.00004,0.0111]* 

̂ =4.933 

 

AIC=4795.4070 

  

*Indicates the significance of covariates at 5% level of significance  

The linear mixed model is the sum the selected fitted fixed effects and the random effects; it 

accounts both within and between subject sources of variations. To have an appropriate linear 

mixed model the selected fixed effects were fitted with different random effects starting with 

only random intercept up to random intercept; linear and quadratic slopes. Indeed; the final 

appropriate linear mixed model was selected based on  the AIC and BIC of the fitted  models and 

the linear mixed model with minimum information criteria is considered as an appropriate one 
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according to the AIC and BIC model selection criteria. The specified linear mixed model to be 

fitted is given as: 

ijiji

T

ij t εUβXy  )(1 , βX
T is the fixed effect estimated in linear model above where as  

ijiijiiiji TimebTimebbtU 2

2101 **)(  .Here, U1i(tij) includes the random effects for intercept, 

linear and quadratic time slopes, where bi=(b0i,b1i,b2i)
T
~N(0,D) they allows different subjects to 

have different baseline CD4 counts, different linear and quadratic time trends for CD4 counts 

during the ART follow up periods. The summaries of   fitted different LMM by considering 

different random effects were reported on the table 6 below.  

 Table 6: AIC and BIC value of the fitted linear mixed effects model by considering different 

random effects  

Random effects  AIC BIC 

Random intercept 4593.5800 4686.6115 

Random linear slope 4790.3252 4883.3560 

Random intercept and linear slope 4579.8185 4682.1531 

Random quadratic slope only 4855.5364 4948.5673 

Random intercept and quadratic slope 4596.1601 4698.4950 

Random linear and quadratic slopes 4738.0072 4840.3416 

Random intercept; linear and quadratic slope 4545.2743 4661.5631 

As reported  on table 6 above to  have an appropriate linear mixed model for the longitudinal 

model the selected fixed effect model or the selected linear model was fitted with different 

random effects as observed from table 6 seven linear mixed models were fitted with different 

random effects starting from random intercept to random intercept; linear and quadratic time 

slopes. Of the seven fitted LMM the model fitted with random linear and quadratic slope only 

have larger AIC and BIC values and we consider these LMM as worst models when compared to 

the remaining LMM models but when we add intercept to these random effects there is an 

improvement of the model since the adding of subject specific intercept to the random linear and 

quadratic time effect slopes there was an improvement of the LMM since there was the reduction 

of AIC and BIC values. Finally we reach on an appropriate LMM which have minimum AIC and 

BIC values that is 4545.2743 and 4661.5631 respectively which was obtained by fitting the 

selected fixed effects with adding subject specific intercept; linear and quadratic slopes of time 
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random effects. After the appropriate random effect was selected for   LMM an appropriate 

covariates was selected among the selected fixed effects of the fitted linear model for the 

optimality of the linear mixed model. The final fitted an appropriate linear mixed model for the 

longitudinal separate model was reported on the table 7 below. 

As we can easily observe on reported table 7 after accounting within subject variability of co-

infected patients for the CD4 count measurements at different time points; at base line the CD4 

count measurement of working functional status groups were 2.633 greater and bedridden 

functional status groups were 3.174 lower CD4 count measurements in comparison with 

ambulatory functional status groups. The estimated coefficient weight 0.063204454 shows that 

positive effect of weight on CD4 count measurement which indicates  with unit change in weight 

of HIV/TB co-infected patients increases their mean square root of CD4 count measurement by 

0.063204454 holding other covariates constant. When we look at the mean evolution of CD4 

count measurements co-infected patients ; working functional status interacting with linear time 

effect have negative effect were as interacting with quadratic effect have positive significant 

effect at 5%  level significance on square root CD4 count measurement of co-infected patients.  

When we look at the time effect on the reported table linear time effect have positive effect were 

as quadratic time effect have negative effect on CD4 count measurements furthermore the mean 

square root of CD4 count measurement at base line was 8.64 without  the effects of covariates. 

The two within and between subject variations assumptions of the linear mixed model were 

checked by using the graphical plots of figure 8 and 9 on annexes for between subject variation 

assumption and figure 10 and 11 on annexes for the within subject variation assumption and the 

plots showed with exception of some outlying values there was no problems of the assumptions 

and the fitted model is good fit the data.  
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Table 7: The final selected linear mixed model estimated parameter with their 95% confidence 

interval  

*Indicates the significance of covariate at 5% level of significance 

4.2.2. Separate survival data analysis  

4.2.2.1. Kaplan-Meier survival function estimates  

The Kaplan-Meier estimator is applied to estimate the survival curves for categorical covariates. 

The Kaplan Meir estimated median value that the half of the patients experience the event was 

62.5 months. The Kaplan Meir was also used to estimate the survival probability for the category 

of the covariates and the estimated survival probability curve of some selected categorical 

covariates; is displayed on figure 3 and 4 as follow: 

Fixed effects  Estimated coeff )ˆ(   95% CIs 

Intercept 8.6409 [6.5098,10.7719]* 

Time  0.6368 [0.5272,0.7465]* 

Functional status   

Bed ridden  -3.1745 [-5.3001,-1.0489]* 

Working  2.6337 [1.3308,3.9366]* 

Alcohol user  -0.7797 [-1.9352,0.3759] 

Weight 0.0632 [0.0212,0.1052]* 

Time^2 -0.0121 [-0.0148,-0.0095]* 

Time: Bed ridden  -0.1068 [-0.4668,0.2532] 

Time: Working  -0.2597 [-0.4089,-0.1104]* 

Bed ridden: Time^2 0.00467 [-0.0057,0.0150] 

Working: Time^2 0.0059 [0.0023,0.0095]* 

Random effects        

0

ˆ
b   4.2594 [3.7849,4.79343] 

1

ˆ
b   0.3404 [0.2746,0.422] 

2

ˆ
b   0.0064 [0.0048,0.0086] 

 Between subject error     

̂   2.6271 [2.4421,2.8261] 

 AIC = 4497.6390 
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Figure 3: Estimated Kaplan-Meier survival curve for marital status and functional Status 

As can be observed from the plot the left hand figure shows that survival curve by functional 

status of co-infected patients. Those patients who are working at the base line have higher 

survival time than co-infected patients those who were either ambulatory or bed ridden at base 

line time whereas who were bedridden at the base line have lower survival probability than those 

who were either ambulatory or working at base line time. 

The right hand side of the plot of figure 3 above indicates the survival probability curve by 

marital status indicating that except for windowed marital status group married co-infected 

patients have higher survival probability curve than divorced; separated and single marital status 

groups where as with exception of sometime points for divorced individuals co-infected patients 

who were belongs to separated marital status group have lower survival probability curve than 

the remaining marital status groups. 
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Figure 4: Estimated Kaplan-Meier survival curve use of alcohol; WHO clinical stage; use of drug 

and smoking status of co-infected patients. 

As shown the plots of figure 4 above the upper left corner plot the survival probability curve of 

co-infected patients who did not use alcohol have higher probability curve than alcohol users up 

to time period between 2500 days and 200 days. The upper right corner plot shows co-infected 

patients who were at clinical stage IV at base line have lower survival probability curve than the 

remaining clinical stage groups. The bottom left corner plot indicated the co-infected patients 

who did not use soft drugs specially chat have higher probability curve than the soft drug users 

up to time of near 2500 days. The bottom right plot also showed non smokers have higher 

survival probability curve than smoker co infected patients at base line. 

To test the significance difference of the plotted curves by different covariates the log rang tested 

were employed and the result of log rank test was reported as follows on table 8 below. 
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Table 8: Log rank tests of survival curve differences for categorical covariates 

 Covariates  Chi-square DF Pr>chi-square 

Sex 0.2000 1 0.6750 

Functional status  37.5000 2 7.08E-09 

Type of TB 0.1000 1 0.7150 

WHO clinical stage  10.4000 3 0.0153 

Religion  0.3000 2 0.8530 

Educational level 2.3000 3 0.5120 

Marital status  14.3000 4 0.0063 

Residence 0.0050 1 0.8450 

Drug 9.8000 1 0.0017 

Smoke 10.7000 1 0.0011 

Alcohol 8.9000 1 0.0028 

Working time 0.7000 3 0.8710 

As indicated on log rank test of each covariate on table 8 above there was a significance 

difference in survival probability curve by functional status; WHO clinical stage; marital status; 

use of drug; smoking status and use of alcohol groups  co-infected patients since the computed P-

value of log rank test statistics for these covariates were less than 5% significance level where as 

there was no significance difference in survival probability curve by sex; type of TB; religion; 

educational level ;residence and working  time groups of co-infected patients since the p-value of 

the computed log rank test statistics for these covariate groups were greater than 5% significance 

level. 

4.2.2.2. Survival models and variable selection for the model  

To determine the variables to be included in the survival model, an automatic variable selection 

method stepAIC in R were used. Regardless of the survival time distributions, among all 

covariates used for the study and smoking status; base line weight; functional status; type of TB; 

WHO clinical stage and marital status were extracted to be included in the model. 

In order to select the appropriate survival time model among the most commonly used 

parametric models; the Weibull, Exponential, Log logistic and Lognormal models and semi-

parametric (Cox PH ) model the AIC values  and graphical methods  figure 13 of the annexes 
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were used to make compare among the parametric survival model that is the function of 

estimated  Kaplan Meir probability plot versus the function of time plot meaning log of KM 

versus time plot for exponential; log(-log(KM)) versus log time plot for Weibull; log(KM/(1-

KM)) versus log of time for log logistic and qnorm(1-KM) versus log time plot for the log 

normal distributions for the linearity structure; to identify the parametric model that 

appropriately represent the linearity structure for the survival time and  we have identified among 

the four parametric distributions the Weibull parametric model since the plotted figure of log(-

log(KM)) versus log time looks linear fit than  for the remaining parametric distribution plots. 

We also made comparison among the fitted survival models using AIC values of the models 

which was reported on the table 9 below to have an appropriate model for the separate survival 

model.   

Table 9: AIC and log likelihood values for the fitted null and full survival models  

  

Survival model 

Null model  

  

Full model  

  

 Log likelihood  AIC  log likelihood AIC 

Cox PH  -408.9211 817.8418 372.5981 769.1962 

Weibull -723.3663 1450.7310 -685.6893 1398.3770 

Log normal  -724.5754 1451.1492 -686.1967 1400.3925 

Exponential  -728.0028 1458.0045 -686.2761 1399.5534 

Log-logistic  -723.8480 1450.8961 -686.4150 1400.8301 

As reported on the table 9 above, since the models are not nested, it is not possible to compare 

the models using log-likelihood values. When the AIC values were used to make comparison 

among the parametric survival models; among the fitted parametric survival models using AIC 

values for the full model among the parametric survival models their AIC values looks near to 

each other and the Weibull survival model have minimum AIC values in comparison with the 

remaining parametric survival models which also confirms the graphical methods of comparison 

since the graphical  method also suggested Weibull parametric models on average looks linear fit 

than the remaining parametric models. Therefore; we prefer the Weibull parametric survival 

model among the parametric survival models.  
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To have Weibull model as final an appropriate survival model we should have to also compare 

with that of semi parametric model whether it  is better fit than the semi parametric model or not. 

Making comparison using AIC values of parametric model with that of semi parametric survival 

model is not enough since the parametric survival model was based on the full likelihood 

function where as the semi parametric survival model was based on the partial likelihood 

functions when we look the estimated survival probability curve at base line of the figure 14 of 

annexes part with both models the estimated probability curves by the two methods looking over 

lapping at some time points and the estimated probability curve by the Weibull was larger at 

some time points. Even if it is not perfectly correct to make comparison of semi parametric with 

the parametric model using their AIC values of when the AIC values the Weibull survival model 

looks worse than the Cox PH model since its AIC value1399.3770 was very bigger than that of 

Cox PH AIC model value 769.1962. Indeed; since the AIC value of Cox PH model was quite 

very smaller than of the Weibull parametric survival estimates and the estimated survival 

probability curve also looks the Cox PH estimates the survival probability than that of the 

Weibull parametric model. Therefore; we prefer Cox PH model than Weibull parametric survival 

model to model the separate survival time of HIV/TB co-infected patients in the study area. 

4.2.2.3. Cox and Weibull PH survival model results 

After preferred the Cox PH model to fit the separate survival model of HIV/TB co-infected 

patients the estimated parameters for the Cox and Weibull PH model is presented on table 10 

below. Because none of the covariates are time-varying, the specified proportional hazard model 

was: 

)2.4........().........sin

exp()()/(

111098

76544332210

gleseparatedmarriedsmoking

workingbedriddenweightTBtypestagestagestagetXt









Where; )(0 t was the baseline hazard which was unspecified and treated as nuisance parametric 

for the Cox PH model where as it was modeled parametrically for the Weibull PH the modeled 

base line hazard for the Weibull PH was given by 0926.0

0 9074.0*0014.0)(  tt  and this 

represents the estimated base line hazard for the Weibull PH of HIV/TB co-infected patients. 

Where the estimated parameters of the Weibull PH was obtained from the accelerated failure 

time model of the Weibull using the relation between the accelerated failure time model and 

proportional hazard model which is given by: 
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ˆ

exp(ˆ 0
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
  ,

scale

1
ˆ   and 

scale

AFTγ
γ

ˆ
ˆ  where their standard error of the estimated 

parameters was obtained by using delta methods for the construction of the 95% confidence 

interval which was obtained by )ˆ(96.1ˆ γγ se for the coefficients of the covariates. As reported 

on table 10 below; it is easily observed that smoking; base line weight; functional status and 

marital status have a significant effect on the hazard function where as the base line clinical stage 

status have no significant effect on hazard function at 5% significance level. As observe from the 

estimated parameters for both model there was no big difference between estimated values by the 

two models.  

Table 10: The estimated parameters for Cox and Weibull PH models with their 95% confidence 

intervals 

 Covariates  Cox PH  Weibull PH 

Estimated values  95 % CIs Estimated 

value  

95 % CIs 

 Clinical stages     

stage II 0.3042 [-1.9743,2.5827] 0.3261 [-1.9013,2.5534] 

stage III 1.0891 [-0.931847,3.1099] 0.9759 [-1.0370,2.9889] 

Stage IV 1.7188 [-0.3434,3.7811] 1.6337 [-0.4284,3.6959] 

Pulmonary TB 0.5713 [-0.0845,1.2271] 0.5849 [-0.0829,1.2530] 

weight -0.0411 [-0.0662, -0.0160]* -0.0423 [-0.0671,-0.0174]* 

Functional status      

Bed ridden 0.6804 [0.0319,1.3289]* 0.7090 [0.06459,1.3534]* 

working  -0.9296 [-1.4898,-0.3694]* -0.9660 [-1.5375,-0.3945]* 

smoker 0.7792 [0.2617,1.2966]* 0.8061 [0.2722,1.3399]* 

Marital status      

married 0.1360 [-0.7131,0.9852] 0.1016 [-0.7480,0.9512] 

separated  0.9842 [0.0889,1.8795]* 0.9495 [0.0471,1.8520]* 

single  -0.1930 [-1.0432,0.6571] -0.2684 [-1.1134,0.5766] 

windowed  -1.1145 [-2.5252,0.2961] -1.2265 [-2.6389,0.1859] 

Lambda    0.0014 [0.00012, 0.015] 

Alpha  -  0.9074  

*Indicates the significance of the covariates at 5% level of significance. 

As observed from table above the base line weight, working functional status groups in 

comparison with ambulatory functional status groups have negative effect at 5% significant level 

that is they reduce hazard function of survival time where as bed ridden functional status in 

comparison with ambulatory; smokers groups in comparison with none smoker groups and 
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separate marital status groups in comparison with divorced marital status groups  have positive 

effect on survival hazard function that is these groups are more likely to die from co-infection 

than their comparative groups during the co-infection period. The estimated shape parameter for 

the Weibull =0.9074 which is less than one shows that the death rate from co-infection was 

decreasing over time.  

The goodness of fit was tested by using Cox-Snell residual versus cumulative hazard function 

plot of figure on 15 on annexes and the plot showed the beginning the fit looks strait and cuts 

approximately at 45
0
 when we go to up the fitted looks not strait as that of begging but there is 

no much severity about the goodness of the fitted Cox PH model. For the linearity structure 

diagnosis the martingale residual plots figure 16 on the annexes showed there was no alarming 

linearity problem of the fitted covariates and the proportional hazard assumptions were also 

tested using the Schoenfield residual plots of figure 17 and 18 annexes part showed there was no 

failure of the PH assumption for the fitted covariates since there was no systematic departure of 

the residuals on the plots. In addition to the Schoenfield residual for the  PH assumption 

numerical test are also employed and annexed on table 14  and  the result showed none of the 

covariates are non significant at 5% significance level which supports no failure in the PH 

assumptions of the covariates used in the Cox PH model. 

 4.3. Results using joint models 

Several joint models using different shared parameter association structure with different 

combinations of the random effect processes were explored. In all cases, the results are based on 

single MCMC sampling chains of 75,000 iterations each, following a 35,000 iteration “burn-in” 

period. The appropriate association structure was selected based on DIC values of the joint 

models which were reported on table 11 below.  

As reported on table 11 pD and DIC scores for twenty one joint models with different random 

effects and different shared parameter association structure U1i(tij)  and U2i(t) respectively was 

described as follows. It  can be easily  observed that the joint models I-III were those fitted with 

random intercept only excluding random linear and quadratic slopes of the longitudinal sub 

model with shared parameter structure for the survival sub model  of current value of 

longitudinal trajectories; the sum of fixed corresponds to random intercept and random intercept  

and random intercept only of these three joint models the joint model fitted with sharing random 
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intercept only have minimum values of pD score 285.3474 and DIC scores  7237.1170 when 

compared to the remaining two models and we consider this model an appropriately  fit the data 

when the longitudinal sub model was fitted with random intercept only.  

Table 11: Joint model Selection for a variety of candidate joint models when the linear mixed 

model and the selected Cox PH model used for the survival sub-model modeled jointly using 

different shared parameter structures. 

Model )(1 iji tU  )(2 tU i  PD DIC 

 Random intercept only       

I 
ib0   )(tmi  286.1910 7243.8840 

II 
ib0        285.3474 7237.1170 

III 
ib0    (   +  ) 286.1823 7238.7310 

 Random intercept and linear slope      

IV    +         )(tmi  527.0579 7669.0230 

V    +            +      523.4795 7653.3280 

VI    +         (   +  )+  (  +   ) 525.6622 7667.8695 

 Random linear slope      

VII          )(tmi  741.5371 9998.8562 

VIII              718.3055 9821.5132 

IX          (  +   ) 740.2094 9995.5371 

 Random quadratic slope      

X       
    )(tmi   280.6913  7898.5682 

XI       
         273.4905 7779.8073 

XII       
        +   ) 276.3944 7892.6497 

 Random intercept and quadratic slope      

XIII    +      
    )(tmi  501.7567 9596.7041 

XIV    +      
       +      503.4964 9262.5980 

XV    +      
    (  +   )+  (  +   ) 458.74191 9797.7322 

Random linear and quadratic slope      

XVI       +      
    )(tmi  566.1641 10247.2421 

XVII       +      
       +  +    500.9278 9585.0610 

XVIII       +      
    (  +   )+  (  +   ) 501.7567 9596.7046 

 Random intercept; linear and 

quadratic slope  
     

XIX    +       +      
    )(tmi  282.1523 6437.9382 

XX    +       +      
       +      +      268.0893 6333.7416 

XXI    +       +      
    (   +  )+   (  +   )+  (  +   ) 271.6129 6347.1127 
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When the linear random slope was added to the random intercept for the longitudinal sub model 

and fitted with different shared parameter association structure for the joint modeling there was 

no improvement of the joint models for all association structures of models IV-VI since none of 

the joint models have lower DIC values than the models fitted with random intercept for the 

longitudinal sub model. When we excluded the random intercept allows only linear random slope 

of  the longitudinal part and fitted with the three  different shared parameter association 

structures in models  VII-IX  in all the three models there was no improvement of models since 

the DIC scores of these three models is larger than models I-III and IV-VI but when we made 

comparison among these three joint models the joint model sharing  random linear slope 

association structure have a minimum DIC score 9821.5132 was appropriate fit than the 

remaining two joint models.  

Of the joint models fitted  with the random quadratic slope by excluding the random intercept 

and linear slope  for the longitudinal sub model  for models X-XII here also the joint model 

sharing the random quadratic slope only for the survival part was  an appropriate fit than the 

remaining two joint models since its DIC score 7779.8073 was smaller.  When we look at these 

joint models for the improvement of the model by including random intercepts and random 

slopes separately to the quadratic random effect of the longitudinal sub model or model XIII-XV 

and model XVII-XVIII with the three different shared parameter association structures for the 

survival sub model there was no improvement of the joint model since all of their DIC score 

values were larger than the remaining joint models.  

Furthermore; we made comparison between model with linear  and quadratic random slopes or 

model  XVIII and XIV  with that of with random intercept and quadratic random slope or models 

XVI and XVII  which shares current value of CD4 count trajectories with same time period and 

random effect parts respectively  to the survival sub-model  inclusion of random intercept rather 

than random linear slope to the quadratic random effect for the longitudinal sub-model for the 

joint modeling looks appropriate fit data since they have smaller DIC values where as for models 

sharing random and fixed effects corresponding to the random effects of the longitudinal sub 

model the joint model fitted with linear and quadratic slopes model XVIII was appropriate fit 

than the model fitted with random intercept and quadratic slope model XV  since model XVIII 

have lower DIC score than model XV.  
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Finally when we look at final fitted joint model groups which was fitted with random intercept; 

linear and quadratic slopes for the longitudinal sub model associated   different shared parameter 

association structure for the survival sub model XIX-XXI there was an improvement of the joint 

model since the DIC score of all models of these group was smaller than all the joint models 

discussed before. When we made comparison among these  joint model groups using their DIC 

score the model XX which was fitted which associates the two processes using shared random 

effect parameters association structure since the DIC score 6333.7416 of this model is less the 

remaining all joint models; we considered this model as an appropriate joint model that 

appropriately relates the longitudinally measured square root of CD4 count measurement process 

with time to death process of HIV/TB co-infected patients.  

Table 12:  The appropriate estimated joint model of the longitudinal measured CD4 process and 

Time-to- death process of HIV/TB co-infected patients 

Longitudinal sub-model  Survival sub-model  

Fixed effects  Coeff )ˆ(β  95% CIs Covariates  Coeff )ˆ(γ   95%CIs 

      Clinical Stage   

Intercept 8.2361 [5.5629,10.3488]* Stage II 11.4028 [-1.1811,4.9870] 

Time 0.2876 [0.0796,0.5359]* Stage III 1.8983 [-0.6012,5.6984] 

Functional status       Stage IV 2.7416 [0.4152,6.4328]* 

Bed ridden -3.3381 [-5.4612,-1.3134]* Pulmonary TB 0.4056 [-0.5891,1.3052] 

Working 2.6762 [1.3518,3.9612]* Weight -0.0646 [-0.1120,-0.029)* 

Alcohol user -0.6433 [-1.8466,0.5919] Functional status   

Bed ridden  1.1505 [-0.2126,2.4391] 

Weight 0.0729 [0.027,0.1312]* Working -1.3272 [-2.6340,0.0231] 

Time^2 -0.0092 [-0.0126,-0.0059]* Smoker  1.3081 [0.3391,2.1127]* 

Time:Bed ridden -0.1620 [-0.6343,0.3379] Marital status        

Time:Working -0.1402 [-0.5543,0.1716] Married  -0.1798 [-1.5011,1.1710] 

Bed 

ridden:Time^2 

0.0018 [-0.0112,0.0159] Separated  1.0548 [-0.2371,2.4592] 

Working:Time^2 0.0064 [0.002,0.0108]* Single  -0.5006 [-1.9231,0.8192] 

Random effects        Windowed  -2.3774 [-5.1561,-0.097]* 

Var )ˆ( 0b  19.1012 [15.1472,23.7416] Association 

parameters  

      

Var )ˆ( 1b  33.5455 [25.4856, 41.6053]     -0.0585 [-0.061,-0.0566]* 

Var )ˆ( 2b  1.4388 [1.1504,1.7994]     -1.798 [-1.825,-1.7561]* 

̂  2.4041 [2.1914,2.6335]     0.2788 [0.2114,0.332]* 

*Indicates significance of the covariates at 5% level of significance  
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As observed from the appropriate selected joint model which has a minimum DIC score values 

than the remaining joint models. The longitudinal sub-model specification was the same to that 

of the selected linear mixed model where as the survival sub-model specification incorporates 

the association parameters to the selected Cox PH survival model.  

As we can easily observe from the reported table 12 the estimated joint model parameter of the 

posterior estimates of the regression coefficientsβ and γ together with their 95% credible 

intervals all of the estimated β values which was significant in the classical separate longitudinal 

part were here also have significant effects on the CD4 count measurements process of HIV/TB 

co-infected patients at 5% level of significance. But when we look at the estimated significances 

of γ parameters at 5% significance level WHO clinical stage IV ,weight and smoking have 

significant effect on the hazard function of time-to-death of co-infected patient when we look at 

the classical separate survival model covariate in relation with survival sub-model of the joint 

modeling  the none significance of clinical stages in  separate survival analysis have significant 

effect on hazard function of time to death since clinical stage IV have positive effect significance 

on the hazard function.  

When we look at the estimated posterior mean of association parameters which associates 

longitudinally measured CD4 cells count measurements process to time-to-death of co-infected 

patients using shared random effect parameters the three association parameters that associates 

random intercept; random linear slope and random quadratic slope with  to death of HIV/TB co-

infected patients all of the three association parameters have significant effect on hazard of time-

to-death since their 95% credible intervals excludes zero. The estimate of the association 

parameter due to the random intercept and random linear slope of CD4 count measurement     = 

-0.0585 and    = -1.798 which was negative means that subject specific base line and linear slope 

of individual CD4 count measurement marker was negatively associated with the hazard of 

death; while the estimated values of the association parameter due to random quadratic slope     

= 0.2788 which was positive shows that the subject specific quadratic slope was positively 

associated with hazard function of survival time to death meaning that it increases the risk of 

death.  

The estimated posterior values of survival sub-model together with the hazard ratio was reported 

table 13 below; as can be observed from the summary result of table 13 clinical stage IV and 
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smoking have positive impact on the survival hazard function and the computed hazard ration 

15.5118 for clinical stage IV meaning the hazard rate of co-infected patient group of clinical 

stage IV group was 15.51 times than that of co-infected patient clinical stage I group at base line.  

Table 13:  Posterior estimated parameter values and hazard ratio estimates with their 95% 

credible intervals of the survival sub-model of the selected joint model 

Base line Covariates  Survival estimates  

  

HR estimates  

  

 

Coeff )ˆ(γ   95% CIs  

 

HR 95% CIs 

     
clinical stages              

Stage II 1.4028 [-1.1807,4.9895] 4.0665 [0.3071,146.8630] 

Stage III 1.8983 [-0.6002,5.6984] 6.6745 [0.5487,298.3896] 

Stage IV 2.7416 [0.4153,6.4328]* 15.5118 [1.5144,621.9129]* 

Pulmonary TB 0.4056 [-0.5893,1.3048] 1.5002 [0.5547,3.6869] 

weight -0.0646 [-0.112,-0.0285]* 0.9374 [0.8943,0.9719]* 

functional status              

Bed ridden  1.1505 [-0.2123,2.4392] 3.1598 [0.8087,11.4638] 

Working  -1.3272 [-2.6341,0.0229] 0.2652 [0.0718,1.0232] 

Smoker  1.3081 [0.3391,2.1127]* 3.6991 [1.4035,8.2705]* 

marital status              

Married  -0.1798 [-1.5013,1.1710] 0.8354 [0.2228,3.2252] 

Separated  1.0548 [-0.2374,2.4590] 2.8714 [0.7887,11.6931] 

Single  -0.5006 [-1.9231,0.8197] 0.6062 [0.1461,2.2698] 

Windowed  -2.3774 [-5.1558,-0.097]* 0.0928 [0.0057,0.9075]* 

association 

parameters  

            

o̂  -0.0585 [-0.061,-0.0566]* 0.9432 [0.9417,0.9449]* 

1̂  -1.7981 [-1.8249,-1.759]* 0.1656 [0.1612,0.1722]* 

2̂  0.2788 [0.2114,0.3332]* 1.321543 [1.2354,1.3954]* 

*Indicates significance of covariates at 5% level significance 

 The hazard ratio of smoker group 1.3081 shows the risk of death in smoker co-infected group 

was 30.81% higher than that of the none smoker co-infected patient group while the hazard ratio 

for the windowed marital status group 0.0928 shows that the hazard rate for the windowed 
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marital status group in comparison with divorced marital status group or the risk of death in 

windowed marital status group was 90.721% lower than that of divorced marital status group of 

co-infected patient. 

The estimated associated parameter     = -0.0585 shows the patient specific base line CD4 count 

measurement  reduce the hazard rate by 0.9432 meaning that the co-infected patient with lower 

base line CD4 count measurement more likely to die than the co-infected patients with higher 

CD4 count measurement which shows the unit increment in base line reduces the risk of death by 

0.9432 holding the effect of other covariates constant;   = -1.798  shows the patient specific 

slope reduce the hazard rate by 0.16563 meaning that with steeper increase in linear 

longitudinally measured  CD4 count trajectories growth  are less likely to die to die than the co-

infected patient with steeper decrease  in linear longitudinally measured CD4 count trajectories  

where as the    =0.2788 which associated the patient specific quadratic slope increases the 

hazard rate by 1.321543 for HIV/TB co-infected patient in the study area.  

Finally; the diagnosis for the convergence of MCMC was also made using time series plots of 

figure 19 and 20 on annexes for the estimated parameters and the plots did not show any 

alarming convergence problems.  
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5. DISCUSSION  

In this study, several statical modeling starting from classical linear modeling up to Bayesian 

approach of joint modeling of longitudinal CD4 measurements process and time-to-death of 

HIV/TB co-infected patients was presented. The joint modeling was base on Rizopoulos(2014) 

and  Rizopoulos and others(2013) approaches. Recently joint models are utilized in follow-up 

studies where interest is in associating a longitudinal response with an event time outcome 

mainly when one is interested in measuring the strength of the association between the hazard of 

an event and a time-varying covariate, when we should pay special attention to the attributes of 

the covariate process. In particular, when this is an endogenous time-varying covariate Kalbeisch 

and Prentice (2002), standard methods, such as the time dependent Cox model Therneau and 

Grambsch (2000), are not optimal for measuring this association.  

For instance, biomarkers or other parameters measured on patients during follow-up and the 

important feature of such covariates is that their existence and/or future path is directly related to 

the event status. By postulating a model for the joint distribution of the covariate and event 

processes we explicitly acknowledge this link, and hence we obtain a more accurate estimate for 

their association. 

Consequently, the joint model proposed in this study relates the longitudinal CD4 measurements 

marker to time-to-death of HIV/TB co-infection in the study area and considers different shared 

parameter association structure for the survival sub-model simultaneously. Since joint model 

building usually starts from separate models for each component, initially each data are analyzed 

separately. The separate analysis used to specify the mean response of the model; random effects 

to be included in the longitudinal model and appropriate base line covariates for the separate 

survival model that was provided for the joint models.  

In the separate analysis of the longitudinal data, first since the CD4 count measurements is a 

discrete (count data) it needs transformation to be continuous therefore; the square root 

transformation was used and its normality of was checked using box plots. After a square root 

transformation of the CD4 counts, the mean response of the longitudinal square root CD4 counts 

is determined using loess smoothing techniques suggests being linear and quadratic in time 

effects.  
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After transformation the data were analyzed using linear model to determine an appropriate fixed 

effect model for the linear mixed model and the resulted of linear model showed WHO clinical 

stages; use of alcohol; functional status; linear and quadratic time effects; weight and the 

interaction of linear and quadratic time effects with functional statuses have significant effects on 

CD4 count measurement of co-infected patients at 5% significant level.    

After determination of the appropriate linear model with appropriate covariates using the AIC 

values of the models and log likelihood ratio tests for the fixed effects; the data was analyzed 

with linear mixed model which allows within and between subject sources of variation. To select 

an appropriate random effects; the selected fixed effects was fitted with different random effects 

starting from the random intercept to random intercept; linear and quadratic slopes and compared 

using AIC values of the fitted linear mixed model.  

Among the seven fitted linear mixed models with different random effects the linear mixed 

model fitted with random intercept; linear and quadratic slopes which has a minimum AIC value 

in comparison with six remaining linear mixed models was considered as an appropriated linear 

mixed model. To improve this selected linear mixed model an appropriate covariates among the 

fixed effects of the fitted linear model was selected using AIC values since some of the 

covariates becomes none significant after accounting within subjects variation by the linear 

mixed model this is because of the classical linear model only considers the between subject 

variation.  

The final selected linear mixed model also showed functional status; linear and quadratic time 

effects, weight and the interaction of working functional status with linear and quadratic time 

effects have significant effects on CD4 count measurements co-infected patients and the 

goodness of fit these model was also checked using the residual plot diagnosis tests the within 

and between variation assumption was satisfied and the selected linear mixed model for the 

longitudinal sub-model was good fit the data. 

Turning to the separate survival analysis, the variables to be included in the survival model are 

determined using an automatic variable selection method using R for the semi parametric and 

parametric survival models. Then, of the all candidate covariates considered, WHO clinical 

stage; type of tuberculosis; base line weight; functional status; smoking status and marital status 

were extracted to be included in the survival models.  
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The parametric models; Weibull, Exponential, Loglogistic and Lognormal were compared using 

graphically and AIC values of the fitted models to select an appropriate parametric survival 

model. Then, the Weibull parametric which has minimum AIC values and looks good linear fit 

than the remaining parametric survival models was selected as an appropriate parametric survival 

model.  

To have an appropriate among the selected parametric survival model (Weibull) and Cox PH 

both models were compared by the estimated base line probability curve plots as well as using 

the AIC values of the models was considered since the estimated probability by the Cox PH 

looks an appropriate estimates as well as the AIC values of Cox PH was very smaller than AIC 

values of Weibull parametric survival model therefore; we considered Cox PH as the final 

appropriate separate survival model of HIV/TB co-infected patients in the study area.  

After the selecting the final separate survival model to be Cox PH is used in survival sub-model 

in the joint modeling. The separate survival models were fitted with both  Cox and Weibull PH  

and both of the models showed that bed ridden functional status; smoking and separate marital 

status groups have positive effects on hazard function meaning that co-infected patients belongs 

to these groups have lower survival time than their base line category groups (ambulatory 

functional status, none smoker and divorced marital status groups respectively); Hailu (2012) 

and Tarekegn (2011) using Cox PH also found bed ridden functional status is the higher risk 

factor to HIV/TB co-infected patients where as working functional status group and base line 

weight have negative effects on survival hazard functions; Mohammed et al (2011)  and  Hailu 

(2012)  found base line weight as the risk factor for the survival of   HIV/TB co-infected patients 

this study also showed base line weight and working functional status in comparison with 

ambulatory functional status have direct relation with the survival time since they have negative 

effect on the hazard ratio of survival time of co-infected patients in the study area.  

The proportional hazard assumption; the goodness of fit and the linearity structure were also 

checked using scheonfeld; cox snell  and mertingle residual plots respectively for the adequacy 

of the fitted Cox PH survival model and they showed no problems of the fitted Cox PH model 

and the selected Cox PH model fit the survival time appropriately.  

After the separate analyses using the separate longitudinal and survival model for the 

identification of an appropriate sub-model to be included in the joint modeling to have an 
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appropriate shared parameter association structure three association structures that relates 

longitudinal measured CD4 count markers with Cox PH model of time-to-death of HIV/TB co-

infected patients were considered. Of these three candidate association structures first type of 

shared parameter structure  associates the current underlying value of the longitudinally 

measured CD4 count marker at the same time point to the survival sub-model; the second type 

which associates the random effects and fixed effects corresponding to random effects of 

longitudinal sub-model to survival sub-model and the third associates only the random effect ( 

subject specific) parameters of the longitudinal sub-model to the survival time for the joint 

modeling were considered.  

Hence; the main aim was to associate the longitudinal measured CD4 count measurement marker 

of HIV/TB co-infected patients to their survival time we considered different random effects for 

the longitudinal sub-model for the three different shared parameter association structures that 

associated the longitudinal CD4 count process to the selected an appropriated Cox PH to have 

the appropriate shared parameter that relates the two processes to have an appropriate joint 

model based on DIC score.   

Of the several fitted joint models; we considered the joint model which was fitted with random 

slope; linear and quadratic slopes for the longitudinal sharing only the random effects for the 

survival sub model as an appropriate joint model since this model have minimum DIC score than 

the remaining joint models. This final selected joint model relates the time-to-death with the base 

line subject specific CD4 count measurement and subject specific linear and quadratic slopes of 

CD4 count measurements marker of HIV/TB co-infected patient in the study area.  

As described earlier; the model is factorized as two sub-models; marginal longitudinal model for 

longitudinal CD4 count measurements and a conditional (given the longitudinal data) survival 

model for the risk of death from HIV/TB co-infection for joint models are estimated under 

Bayesian framework using  a single chain of 75,000 MCMC iterations from which we discarded 

the first 35,000 samples as burn-in; finally trace time series plots were used for the convergence 

diagnosis of MCMC samples and the plots did not show any alarming indications of convergence 

failure. 

The impact of CD4 cell count on survival rate has been assessed by several studies indicating 

that the depletion of CD4 cell count is associated with high risk of death D Zenner, S Conti, Z 
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Yin, et al. (2013), Catala et al. (2011) and Hailu (2012) found lower CD4 count measurement is 

the risk factor the survival of HIV/TB co-infected patients this study also found lower base line 

CD4 count measurement; steeper decrease in linear growth of CD4 and steeper increase in 

quadratic growth of CD4 count measurement of HIV/TB co-infected patients is the high risk 

factor for the survival of HIV/TB co-infected patients. Mohammed et al. (2011);Tarekegn(2011) 

and Hailu(2012) found WHO clinical stage categories were the risk factors for survival HIV/TB 

co-infected patients the joint model of this study also showed WHO clinical stage IV significant 

effect on hazard function and the hazard rate is higher in this clinical stage category when 

compared to WHO clinical stage I co-infected patient groups at base line. 
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6. CONCLUSION AND RECOMMENDATION  

6.1. Conclusion  

In this study, the classical methods of the estimated linear model showed at base line clinical 

stage III and stage IV; use alcohol and bed ridden functional status groups of co-infected patient 

groups have lower CD4 count measurement when compared to clinical stage I and stage II; who 

do not use alcohol and ambulatory co-infected patient groups respectively; where as the working 

functional status co-infected patient group have greater CD4 count measurement compared to the 

ambulatory functional status groups but the longitudinally measured weight have positive effect 

on CD4 count measurement. Additionally  the linear model showed linear time have positive 

effect where as it negative effect when interacting with weight and functional status and the 

quadratic time effect have negative effect where as it have positive effect when interacting with 

weight and factional status of co-infected patients.  

The separate estimated linear mixed model which accounts the within and between subject 

variation   improves the classical linear model and functional status and its interaction with time 

effect which have significant effect without considering between subject variation in the linear 

model are excluded from the linear mixed model since they do not have significant effect at 5% 

level of significant. Linear and quadratic time effect; weight and functional status groups with 

time effect interaction were identified covariates by the linear mixed model that affect the CD4 

measurement of HIV/TB co-infected patients at 5% level of significance.  

The Cox and Weibull PH separate survival model indentified weight and working functional 

status group were the indentified covariates for the survival model that have negative effect on 

hazard function of survival time; where as bed ridden functional status group; use of smoking 

and separate marital status groups in comparison with ambulatory functional status group; none 

smoker and divorced marital status groups respectively  have positive effects on hazard function 

of survival time that lowers the survival time of  HIV/TB co-infected patients at 5% level of 

significance in the study area. 

The estimated joint model with the Bayesian approach showed that the shared random effect 

parameters are appropriate for the joint modeling for longitudinally measured CD4 count and 

with time-to-death processes of HIV/TB co-infected patients in the study area. The estimated 
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model further  showed that the patient specific base line CD4 count and patients’ specific 

(random) linear slope of CD count were negatively associated with hazard function where as the 

patient specific quadratic slope CD4 count was positively associated with hazard function of 

HIV/TB co-infected patients have significant effects at 5%  level of significance. 

6.2. Recommendations  

The base line of CD4 count measurement has positively associated with survival time. However; 

being bed ridden lowers the base line CD4 count measurement so that the co-infected patient 

should be care full when they are in the bed ridden functional status during co-infection period. 

Since the risk of death is higher in smoker groups; being in IV WHO clinical stage and separated 

marital status groups the concerned bodies or the co-infected patient should be cautious when in 

this category during HIV/TB co-infection period.  

The slope of quadratic time effect of the CD4 count measurement is also another risk factor 

which has positive effect on hazard function meaning that it lower the survival time of HIV/TB 

co-infected patient therefore the co-infected patients take care of when the quadratic growth 

slope of CD4 count measurement is higher. 

Since the longitudinally measured CD4 count measurement process is related to time-to-death 

process of HIV/TB co-infected patients joint modeling is an appropriate setting to relate the 

patient specific longitudinal measured CD4 count marker process to the time-to-death which the 

separate modeling could not handle. 

HIV/TB co-infection is the most serious problem that lowers the survival time of co-infected 

patients. Therefore, the governmental and nongovernmental organization should also give 

attentions by giving consultancy services on the above identified risks factors on the survival 

time of co-infected patients. Moreover, academician who wants to study further on HIV/TB co-

infections is better to see TB as recurrent event, mainly because of even TB can be cured in HIV 

infected patients and again it re infected the patients when the CD4 counts becomes lower than 

expected this is due to CD4 count process might be not the same during co-infection period and 

when TB is cured in HIV infected patients. 
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8. ANNEXES 

 

Figure 5: CD4 count measurement versus time quartile-quartile plot for the original and square 

root transformed data for the normality check  

 

Figure 6: Residual versus fitted values of the estimated linear model for constant variance of 

residuals  
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Figure 7: Quartile-quartile plot of the residual for the normality check of error term for the fitted 

linear model  

 

Figure 8: Residual versus fitted values of within group error term of linear mixed model  



Joint modeling of longitudinal CD4 count and time-to-death of HIV/TB co-infected patients: a case of JUSH Page 80 

 

 

Figure 9: Quantile-quantile plots for the normality within group error of the fitted linear mixed 

model  

 

 

Figure 10: Residual versus fitted values for the random effects of the fitted linear mixed model  
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Figure 11: Standardized quantile-quantile plots for the normality of random effects of the linear 

mixed model where MC denotes used to represent time during analysis in the R-code  

 

 

Figure 12: Estimated Kaplan-Meir survival probability plot versus time plots  
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Figure 13: Function of Kaplan Meir probability estimate versus function time plots used for the 

identification of appropriate linearity structure to fit the survival time models   

 

 

Figure 14: Cox versus Weibull estimated survival probability curve with the base line hazard  
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Figure 15: Cox snell residual plot for goodness of the fitted Cox PH survival model  

 

Figure 16: Martingale residual plots of the covariates used in Cox PH model to test the linearity 

structures  
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Figure 17: Schoenfield residual plots of the covariates plot for Cox PH assumption tests  

 

 

 

 

 

 

 

 

 

Figure 18: Schoenfield residual plots for the Cox PH assumption test 
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Figure 19: Longitudinal sub-model MCMC samples convergence diagnosis plots  
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Figure 20: Survival sub-model MCMC samples convergence diagnosis plots  
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Table 14: Test for Cox PH assumption numerically    

covariates  rho chisq p 

clinical stage        

stage II 0.1343 1.5455 0.2138 

stage III 0.1289 1.4719 0.22505 

Stage IV 0.0234 0.0459 0.83033 

Functional status        

Bed ridden 0.0644 0.4047 0.5247 

Working 0.2464 1.9947 0.2543 

marital status        

married  -0.1026 0.924 0.33642 

separated  0.0315 0.0877 0.76717 

single  0.0377 0.1245 0.72418 

windowed  -0.2029 0.8961 0.484 

weight  -0.1283 1.5888 0.2075 

pulmonary TB  -0.2895 1.8007 0.311 

Smoker  0.0769 0.6537 0.41879 

GLOBAL NA 25.5084 0.01259 
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Table 15: The mean and variance for square root of CD4 cells count measurement at each time 

points for some selected categorical covariates 

  

 Time points in months 

0 6 12 18 24 30 36 42 48 

  

Mean 

A 11.10 15.73 17.81 19.56 19.88 19.08 18.05 15.26 15.38 

B 7.95 10.71 13.82 13.42 10.54 13.64 15.30 NA NA 

  W 13.93 17.22 18.58 19.75 19.07 20.99 19.74 17.21 13.71 

  

Variance  

  

A 27.85 23.32 21.65 21.32 20.79 19.56 7.23 7.98 0.93 

B 15.15 32.51 30.04 16.80 NA NA NA NA NA 

W 25.02 27.11 24.19 27.18 32.54 41.15 44.19 15.49 NA 

           
WHO clinical stages                    

           

  

  

Mean 

  

1 12.91 16.02 19.06 19.01 12.07 16.22 15.71 10.77 13.71 

2 15.25 17.43 18.29 19.97 19.64 19.51 19.54 17.46 15.38 

3 11.52 15.52 18.01 18.80 19.35 19.21 17.95 15.82 13.71 

4 11.55 16.38 17.98 20.03 19.99 22.28 20.97 21.82 15.38 

  

  

Variance  

  

1 29.51 30.99 28.78 61.59 170.73 151.54 315.11 NA NA 

2 27.28 17.38 16.20 13.58 11.81 24.36 0.22 NA 0.93 

3 21.24 32.87 27.31 22.05 24.61 17.25 6.18 3.72 NA 

4 36.40 25.93 22.38 30.17 26.91 33.71 29.67 0.00 0.93 

           
Use of alcohol 

  

                  

          
Mean 

  

NO 12.21 16.81 18.66 19.54 20.18 19.94 18.62 17.13 14.20 

YES 11.44 14.72 17.01 19.16 17.45 19.63 19.30 16.06 16.06 

  

Variance  

NO 28.82 24.75 23.40 26.34 29.80 34.29 38.94 19.94 0.49 

YES 28.82 32.52 22.49 22.95 14.16 23.76 13.50 2.39 NA 

Smoking status  

  

                  

          
  

Mean 

NO 12.14 16.53 18.43 19.67 19.78 19.70 18.55 16.72 14.20 

YES 11.23 14.72 16.55 18.43 16.91 20.48 19.82 17.26 16.06 

  

Variance  

NO 28.87 24.25 23.68 25.57 28.19 32.76 32.04 15.22 0.49 

YES 28.60 39.30 20.83 22.83 10.26 21.74 19.40 NA NA 

*Note that  

Functional status                 WHO Clinical stages       

A= ambulatory                 1= stage I           

 B= bed ridden                  2= stage II             

  W=working                     3= stage III 

                                          4=stage IV  
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Table 16: Univariate Cox PH analysis results  

 Base line  

covariates  

 

Survival estimates 

 

 

Hazard ratio estimates 

 

Estimated Standard error 95% CIs Estimated 95% CIs 

sex male  0.09584 0.22293 (-0.3411,0.532769) 1.101 (0.711,1.704) 

age  0.005716 0.012229 (-0.01825,0.029685) 1.006 (0.9819,1.03) 

CD4 -0.00256 0.000904 (-0.00433,-0.00079)* 0.9974 (0.9957,0.9992)* 

weight  -0.02853 0.009763 (-0.04766,-0.0094)* 0.9719 (0.9535,0.9906)* 

alcohol user 0.6749 0.2204 (0.242935,1.10693)* 1.964 (1.275,3.025)* 

smoker 0.7226 0.2264 (0.278838,1.16629)* 2.06 (1.322,3.21)* 

drug 0.7268 0.237 (0.262288,1.19130)* 2.068 (1.3,3.291)* 

pulmonary TB 0.03201 0.22 (-0.39919,0.463209) 1.033 (0.6709,1.589) 

urban resident 0.09793 0.32443 (-0.53794,0.733796) 1.103 (0.5839,2.083) 

Educational level       

primary -0.4488 0.2809 (-0.99935,0.101725) 0.6384 (0.3681,1.107) 

secondary  -0.273 0.2941 (-0.84946,0.303524) 0.7611 (0.4276,1.355) 

tertiary  -0.1024 0.4977 (-1.07797,0.873098) 0.9026 (0.3403,2.394) 

Marital status       

married -0.4566 0.3983 (-1.23727,0.324119) 0.6334 (0.2902,1.383) 

separated 0.5781 0.4266 (-0.25794,1.414128) 1.7826 (0.7726,4.113) 

single -0.3156 0.4097 (-1.11863,0.487372) 0.7293 (0.3267,1.628) 

windowed -0.955 0.6779 (-2.28363,0.373688) 0.3848 (0.1019,1.453) 

Working time       

part time -0.00448 0.7319 (-1.43897,1.430021) 0.9955 (0.2372,4.179) 

unemployed 0.213069 0.470336 (-0.70877,1.134911) 1.2375 (0.4922,3.111) 

full time 0.04322 0.507084 (-0.95065,1.037087) 1.0442 (0.3865,2.821) 

Functional status       

Bed ridden  1.0091 0.3015 (0.418187,1.59995)* 2.743 (1.5192,4.9528)* 

Working  -0.9643 0.2709 (-1.49521,-0.43349)* 0.3812 (0.2242,0.6482)* 

WHO clinical stage      

Stage II 0.4967 1.1267 (-1.71163,2.704958) 1.643 (0.1806,14.95) 

Stage III 1.4581 1.0174 (-0.53586,3.452111) 4.298 (0.5852,31.57) 

Stage IV  1.7976 1.0173 (-0.19625,3.791376) 6.035 (0.8218,44.32) 

*Indicates significance of the covariates at 5% level significance   

 


