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Abstract

Background: Diabetes mellitus is a metabolic disorder of multiple aetiology char-

acterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein

metabolism resulting from defects in insulin secretion, insulin action, or both. Fasting

blood sugar level is a quantity used to detect the diabetes status of patients. There were

several factors for the change in their fasting blood sugar level of adult diabetic patients.

Objectives: The main aim of this study is to investigate the fasting blood sugar level of

adult diabetic patient’s overtime who have been under follow up from 2004 to July 2006

in Jimma University specialized hospital.

Methods: This study used data obtained from a retrospective cohort follow up study from

adult diabetic patients who have been under follow up from 2004 to July 2006 in Jimma

University Specialized Hospital. All patients included in this study were those diabetic

patients whose age is 18 years and above and who have been followed at least two times.

This thesis deals with the regression analysis of repeated measurements taken at irregu-

lar and possibly subject-specific time points. Therefore, we proposed a Semi-parametric

Mixed-effects model (SPMM) using smoothing spline to investigate the evolution of FBS

overtime.

Result and Discussion: From 534 adult diabetic patients, 200(35.27%) were females

and 367(67.73%) were males. Twenty five percent were type I diabetic and seventy five

percent were type II diabetic patients. The mean age of patients at baseline was 45.16

years and that of the mean fasting blood sugar level(FBS) level of patients at baseline

was 204 mg/dl. In both linear mixed models and semi-parametric linear mixed models

FBS level declines over time, but the predictive ability of the SPMM model is increased.

The semi-parametric mixed model further suggested that the decline was non-parametric.

Follow up time (p-value=0.000) and weights (p-value=0.000) are the only significant fac-

tors for the change of fasting blood sugar level.

Conclusion and Recommendation: Semi-parametric mixed effect model with quadratic

time random effects fits the data appropriately to the continuous measurement of fasting

blood sugar level in mg/dL of adult diabetic patients.
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1 INTRODUCTION

1.1 Background

Diabetes mellitus is a metabolic disorder of multiple aetiology characterized by chronic hyper-

glycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects

in insulin secretion, insulin resistance, or both (WHO, 1999). The effects of diabetes mellitus

include long-term damage, dysfunction and failure of various organs. Diabetes mellitus may

present with characteristic symptoms such as thirst, polyuria, blurring of vision, and weight

loss. In its most severe forms, ketoacidosis or a non-ketotic hyperosmolar state may develop

and lead to stupor, coma and, in absence of effective treatment, death. Often symptoms are

not severe, or may be absent, and consequently hyperglycaemia sufficient to cause pathological

and functional changes may be present for a long time before the diagnosis is made. The long-

term effects of diabetes mellitus include progressive development of the specific complications

of retinopathy with potential blindness, nephropathy that may lead to renal failure, and/or

neuropathy with risk of foot ulcers, amputation, Charcot joints, and features of autonomic

dysfunction, including sexual dysfunction. People with diabetes are at increased risk of car-

diovascular, peripheral vascular and cerebrovascular disease. There are two types of diabetes:

these are Type I diabetes or Insulin Dependent Diabetes Mellitus (IDDM) and Type II diabetes

or Non-Insulin-Dependent Diabetes Mellitus (NIDDM).

Type 1 diabetes( IDDM) occur as a results of auto-immune beta-cell destruction in the pan-

creas, characterized by a total absence of insulin production. Type 2 diabetes is characterized

by high levels of blood sugar (glucose) resulting from defects in insulin production, insulin ac-

tion, or both. Over time, high blood glucose levels can lead to serious complications including

blindness, kidney failure, nerve damage, cardiovascular disease, heart disease and stroke and

even death.

Excess body weight or obesity is associated with insulin resistance (Hhans et al., 2006) and is

overwhelmingly associated with incidence of type 2 diabetes (Colditz G et al., 1990; Colditz G

et al.,1995; Perry IJ et al., 1995; Vanderpump MPJ et al., 1996; Wilson P et al., 2007 ). In ad-
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dition to obesity several lifestyle, environmental and demographic factors have been associated

with diabetes, the main ones being: physical activity, genetic causes, pregnancy, environmental

factors like what you eat and how active you are, combined with genetic causes affect risk of

developing diabetes.

Many people with type 2 diabetes have a family member with either type 2 diabetes or other

medical problems associated with diabetes, such as high cholesterol level, high blood pressure

or obesity. The lifetime risk of developing type 2 diabetes is 5 to 10 times higher in first-

degree relatives (sister, brother, son, daughter) of a person with diabetes compared with a

person with no family history of diabetes. The risk of developing type 2 diabetes is also greater

as we get older. A person is considered to be diabetic if he or she has fasting blood sugar

level of 126 mg/dL (7.0 mmol/L) or higher (http://www.uptodate.com/contents/diabetes-

mellitus-type-2-overview-beyond-the-basics). There are risk factors for the decrease or increase

of fasting blood sugar level of patients. These are overweight, family history, Age, type of

diabetes, blood pressure, sex and etc. These factors will also affect the disease progression

(http://www.who.int/diabetes/facts/en/ accessed on Dec 5, 2011). Therefore in this study,

the effect of these factors on the level of blood sugar of patients was investigated.

The global prevalence of Diabetes has been persistently rising for the last few decades and it

is being recognized as a world wide epidemic (Shaw and Sicree Zimmet, 2010). According to

predictions from the World Health Organization (WHO, 2013) developing countries bear the

highest share of the diabetes epidemic. Currently, more than 80% of people with diabetes live in

low- and middle income countries (WHO, 2013). In 2013, the global prevalence of diabetes was

estimated at 8.3%. Diabetes does not spare Africa. Although the current estimated prevalence

in Africa is relatively lower (3.8%), the region is expected to experience the highest increase in

its diabetes prevalence in the next two decades. The highest prevalence of diabetes in the Africa

Region is in the island of Runion (16.3%), followed by Seychelles (12.4%), Botswana (11.1%)

and Gabon (10.6%). Some of Africa’s most populous countries also have the highest number of

people with diabetes, with Nigeria having the largest number (3.0 million), followed by South

Africa (1.9 million), Ethiopia (1.4 million), and Kenya (769,000). The top six countries with
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the highest number of people with diabetes make up just over half of the total number in the

region (http://www.idf.org/diabetesatlas/5e/africa). Ethiopia, which is one of the developing

nations, is at a risk of increased diabetes incidence. In Ethiopia, the number of deaths at-

tributed to diabetes reached over 23,869.00 in 2012 (IDF, 2012, Diabetes atlas 5th edition).

In many scientific disciplines, studies that predict or forecast what will happen in the future

have contributed to our understanding of the world. The value of scientific studies that provide

models to inform strategies that can modify and possibly mitigate future events is of impor-

tance to society. In the field of epidemiology, prediction models are underrepresented and the

concept of risk prediction is overshadowed by the estimation of relative risk measures to clarify

etiological perspectives of disease. Etiological models use the same estimation procedures as

most predictive modeling (i.e., regression) in order to quantify the relative risk associated with

a particular exposure on an outcome. Though regression is often used for both purposes, the

way in which the model is constructed will differ due to the goals of the model (Laura Rosella

et al., 2009).

Longitudinal studies represent enormous advantages over cross-sectional studies in terms of

providing foundations for causal inference. There are several different approaches to the analy-

sis of longitudinal data. Generalized mixed-effects regression models are now quite widely used

for analysis of longitudinal data. These models can be applied to both normally distributed

continuous outcomes as well as categorical outcomes and other non-normally distributed out-

comes such as counts that have a Poisson distribution. Mixed-effects regression models are

quite robust to missing data and irregularly spaced measurement occasions and can easily han-

dle both time-invariant and time-varying covariates. As such, they are among the most general

of the methods for analysis of longitudinal data. The advantage is that missing data are ig-

norable if the missing responses can be explained either by covariates in the model or by the

available responses from a given subject. The disadvantage is that full-likelihood methods are

more computationally complex than qausi-likelihood methods, such as generalized estimating

equations (GEE) (Jie Shen, 2011).
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In many longitudinal studies, repeated measurements of the response variable are collected

at irregular and possibly subject-specific time points. Parametric regression methods for an-

alyzing such data have been well developed by Liard and Ware (1982) and Liard and Zeger

(1986) among others, summarized by Diggle, Liang, and Zeger (1994). Although these meth-

ods are highly useful, they require parametric specification for the conditional mean of the

response variable. However, this assumption is too restrictive and may not be fulfilled in many

studies. To avoid this, Moyeed and Diggle (1994) and Zeger and Diggle (1994 ) proposed a

semi-parametric model that relates the response at time t to the vector of covariates.

Semi-parametric regression is concerned with the flexible incorporation of non-linear functional

relationships in regression analyses. Semi-parametric mixed models (SPMMs; Diggle et al.,

2002; Zhang et al., 1998) are useful extensions to linear mixed models (Lard and Ware, 1982;

Verbeke and Molenberghs, 2000; Diggle et al., 2002) and provide a flexible framework for ana-

lyzing longitudinal data. An SPMM uses parametric fixed effects to represent covariate effects

that have a known parametric relationship with the response variable, unknown smooth func-

tion for covariates that have a complex non-linear relation with the response variable, and

modeling, the within-subject correlation using random effects and stochastic processes.

This research is motivated by the existence a longitudinal follow up study of diabetic patients

in Jimma university specialized Hospital, where patients fasting blood sugar level is routinely

measured along with many individual factors, such as, age, sex, participants’ physical charac-

teristics, bodyweight, systolic blood pressure, diastolic blood pressure etc. Notable features of

this data are the presence of unequal numbers of unevenly spaced and intermittently missing

observations for each individual. Zelalem et al., 2014 analyzed this data using liner mixed model

assuming a quadratic relationship between fasting blood sugar level and observation time and

their result indicated that on average the Fasting blood sugar level of adult diabetic patients

decreased over time quadratically and then gradually it becomes rebound and stable. How-

ever, modeling such complex nonlinear relationship with parametric function using higher order

polynomials is not ideal due to the known undesirable properties of higher order polynomial

models. Therefore, in this study we propose a data driven approach using SPMM to model the
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association of the fasting blood sugar level and covariates, and to investigate the evolution FBS

level over time in Diabetic patients followed in Jimma University specialized hospital during

September 2004 to June 2006. The methodology is designed to take advantage of the extra

information about the typical curve available with irregular observation times. The reminder of

this thesis is organized as follow; Section 1.2 describes about the problem statement, chapter 2

describes review of related literature, chapter 3 describes some general methods for longitudinal

data analysis, with emphasis on semi-parametric mixed-effect modeling , chapter four describes

the Result and discussion of the study and chapter five describes conclusion and recommenda-

tions.
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1.2 Problem Statement

Diabetes mellitus is one of the chronic diseases, which is a growing public health problem in

both developed and developing countries causing severe and costly complications, including

blindness, kidney and heart diseases, strokes, nerve damage and amputations. Uncontrolled

diabetes can complicate pregnancy, and birth defects are more common in babies born to women

with diabetes. In Ethiopia, the number of diabetic people has been increasing over the years

since it attained independence (Ethiopian Diabetic Association, 1993). For such longitudinally

collected data often parametric models such as a linear mixed model is used. This models are

known to be parsimonious and efficient when the models are correctly specified Using LMM

by imposing a parametric function to model the mean change of FBS level over time may be

too restrictive and more flexible modeling approach using non-parametric methods is needed.

Therefore we propose a semi-parametric mixed modeling approach to investigate the evolution

of FBS level over time by then the study aimed to be able to address the following research

questions:

• Do groups have a similar over all FBS profile over time?

• What is the average evolution of fasting blood sugar level of diabetic patients?

• What are the characteristics of the deviations of each patient from a typical curve? The

deviations are potentially useful in identifying subjects who are progressing more slowly

with the hope of finding factors associated with their longer life periods. The individual

curves can also be used in counseling about the disease progression.
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1.3 Objectives of the study

1.3.1 General objective

The general objective of this study is modeling FBS level of adult diabetic patients who

have been underfollow-up fro September 2004 to June 2006 in JUSH through the appli-

cation of Semi-arametric linear mixed effect model.

1.3.2 Specific objectives

– To explore the individual and average change of fasting blood sugar level among

adult diabetic patients using a data driven semi-parametric mixed model.

– To estimate the rate of change of FBS level of diabetic function and then to examine

for existence of a feature such as bumps and dips in regression curves.

– To fit an appropriate statistical model for the mean evolution of FBS level and

identify the potential factors among adult diabetic patients.
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1.4 Significance of the study

Diabetes mellitus is a multi system disorder. Its complications can involve any organ in

the body. Some of these complications include visual impairment, cardiovascular disease,

limb and brain damage, impotence, kidney failure, urinary tract and stroke. Because of

its chronic nature, the severity of its complications and the means required to control

them, diabetes is a costly disease, not only for the affected individual and his/her family,

but also for the health authorities. Death from diabetes or its complications leads to

loss of production, which is likely to be more costly to the government than the direct

health care costs. However, if proper interventions/ treatment is given, the disease can be

controlled and substantially reduce the risk of developing these complications and slow

their progression. It is therefore, hoped that the findings of this study would provide an

optimal method to handle diabetic cases, which will help the society and the government

at large to reduce on the strain and costs. And the study would be an extension of

existing models for accurate testing of the fasting blood sugar level and also open room

for further research from the mathematical concepts developed.

1.5 Scope of the study

This study was intended to compare and contrast the efficiency of the parameter estimate

of model fitted using linear mixed effect and semi-parametric linear mixed effect method,

because the data obtained for this study was a measurement of fasting blood sugar level

of adult diabetic patients in Jimma Specialized hospital who were under follow up from

2004 to June 2006. Patients were under follow up in irregular manner resulting unbal-

anced longitudinal data. Therefore this study also tried to specify the correct longitudinal

model to analyze the progression of the fasting blood sugar level of diabetic patients over

time.
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2 LITERATURE REVIEW

2.1 Risk factors of diabetes mellitus

Diabetes mellitus is a complex, chronic disease. It is a condition characterized by an ele-

vation of the level of glucose in the blood. Insulin, a hormone produced by the pancreas,

controls the blood glucose level by regulating the production and storage of glucose. All

people with diabetes mellitus can be categorized according to clinical stage, and this is

achievable in all circumstances. The stage of glycaemia may change over time depending

on the extent of the underlying disease processes. The disease process may be present

but may not have progressed far enough to cause hyperglycaemia. The aetiological clas-

sification reflects the fact that the defect or process which may lead to diabetes may be

identifiable at any stage in the development of diabetes - even at the stage of normogly-

caemia. Thus the presence of islet cell antibodies in a normoglycaemic individual makes

it likely that the person has the Type 1 autoimmune process (Kim M et al., 2006).

Glucose is a simple sugar, which is the body’s prime source of energy. The digestive pro-

cess turns the carbohydrates of a meal eaten into this glucose which is then distributed

throughout the body via the bloodstream, thus, ”blood sugar”. Insulin, the hormone se-

creted by the pancreas, is what maintains the proper levels of blood sugar. However, when

the pancreas fails to produce enough insulin to create a proper release of glycogen from

the liver to the bloodstream the result is high blood sugar, or diabetes mellitus. Subjects

with diabetes mellitus have blood glucose level of greater than or equal to 180mg/100ml

(10mmol/l) of blood (Olive D. Buhule et al.,2007).

Certain conditions or characteristics can increase a person’s risk for developing diabetes.

Some of these risk factors, such as Age, family history, having close relative (parent or sib-

ling) with diabetes, having certain racial/ethnic background and having had gestational

diabetes or a baby weighing more than nine pounds at birth. Other risk factors, such as

overweight or obesity, high blood pressure, low cholesterol, high triglyceride levels, and

lack of physical activity are also the risk factors. Obesity is the primary modifiable risk
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factors for diabetes (Chondra M.Lockwood et al., 2008).

Viswanathan et al. (1996) in their study found that nearly 75% of the NIDDM patients

have first degree family history of diabetes. The prevalence among offspring with one

diabetic parent to be 36%, which increased to 54% when there, was a positive family his-

tory of diabetes on the non diabetic parental side also. When both parents had diabetes,

the prevalence rate increased further 62% typical estimates of the heritability of type

II diabetes mellitus and related continuous traits (beta cell function, insulin sensitivity,

BMI) lie in the 30 to 60% range (Stumvoll et al., 2005).

Zelalem et al., (2014) used a data obtained from retrospective cohort follow up during

2004-2006 from adult diabetic patients in Jimma University Specialized Hospital, to study

the associated factors of FBS of adult diabetic patients and to fit an appropriate statistical

model. In this study all diabetic patients whose age 18 and above years were included in

the study. A LMM were fitted with quadratic time effects to assess whether good control of

fasting blood sugar level changed over time and it was found that fasting blood sugar level

of adult diabetic patients decreased over time quadratically. Follow up time (-9.47765,

se=1.79), follow up time square (0.2827, se=0.0611), weight (-1.66153, se=0.20217), DBP

(0.30078, se=0.1519), and time interaction with weight (0.05221, se=0.023935) was the

significant factors for the change in the FBS level. Since the data has a complex profile,

fitting using LMM may not be good specification of the model. Therefore this study is

motivated to model the data using a semi-parametric mixed model which allows fitting

time invariant covariates parametrically and time variant non-parametrically.

2.2 Public health burden of diabetes

Diabetes is the fastest growing chronic disease worldwide (Dawit Worku et al., 2010). It

is a progressive, unrelenting and challenging disease with serious complications which can

reduce both quality of life and life expectancy. For better surveillance, the full extent

of the individual and societal burden of diabetes has become apparent and it is a very

common, serious, and costly chronic disease. The worldwide burden of diabetes is likely
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to increase dramatically over the next several decades because of an increase in incidence

and improvements in detection (Aubert R et al., 1997; Harris MI, et al., 1996; Liebson

et al., 1997; Ford ES et al., 1999). Thus, diabetes is increasingly being viewed as both a

clinical and a public health challenge (Vinicor F et al., 1994).

Several factors underline the increasing diabetes burden worldwide, particularly a growing

incidence of type 2 diabetes, including increase in obesity (Ford ES et al., 1999; Bjorntorp

P et al., 1997) and inadequate physical activity, both of which are associated with greater

likelihood of developing diabetes (Liebson et al., 1997; www.cdc.gov/Diabetes/statistics);

the increasing prevalence of diabetes with age and the steady aging of populations world-

wide (Kelly DT et al., 1997).

Planning for health care and public health resources needed to address the significant

burden of diabetes (www.cdc.gov/Diabetes/statistics) as an important aspect of popu-

lation health management, which can be informed by robust prediction tools (Diabetes

Atlas, 5th Edition, 2012). This tool can aid policy makers, planners, and physicians by

providing reliable estimates of the upcoming diabetes epidemic. In addition, the effec-

tiveness of widespread prevention strategies can be improved by knowing which groups

to target and how extensive a strategy is needed to stabilize or reduce the number of new

cases (Diabetes Atlas 5th edition, 2012). In Ethiopia the burden of diabetes has becoming

increased from year to year and is becoming a public health problem (Ethiopian diabetic

association, 2012).

2.3 Statistical models for longitudinal data

2.3.1 Longitudinal Data

In many longitudinal studies, each individual may experience the same event repeatedly

at distinct time points during a relatively long follow-up time. These data may occur

frequently in a wide variety of setting, including epidemiology, clinical trials, and so on.

However, individuals often selectively miss their visits or return at non-scheduled points
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in time, as a result, the measurement times are irregular yielding a highly imbalanced

data structure. In addition, the frequency and timing of the visits may be informative

with respect to the longitudinal outcomes. The data obtained for this study was a type of

unbalanced longitudinal measurement and the goal of this study was to develop a general

methodology for analyzing data with these features. Due to their unbalanced nature,

many longitudinal data sets cannot be analyzed using multivariate regression techniques.

A natural alternative arises from observing that subject-specific longitudinal profiles can

often be well approximated by linear regression functions (Verbeke and Molenberghs,

2000). There are several different general approaches to the analysis of such longitudinal

data.

The standard GLM assumes that the observations are uncorrelated. Extensions have

been developed to allow for correlation between observations. The correlation must be

accounted for by analysis methods appropriate to the data. Possible consequences of an-

alyzing correlated data as if it were independent are: (i) incorrect inferences concerning

regression parameters due to underestimated standard errors; (ii) inefficient estimators,

that is more mean square error in regression parameter estimators than necessary. A

straightforward application of generalized linear models to longitudinal data is not ap-

propriate, due to the lack of independence among repeated measures obtained on the

same individual.

There is an approach for extending generalized linear models to longitudinal data that

leads to a class of regression models that are known as marginal models. In marginal

models the mean response at each occasion depends only on the covariates of interest,

and does not incorporate dependence on random effects or previous responses. This is

in contrast to generalized linear mixed models (GLMMs) where the mean response is

modeled not only as a function of covariates but is conditional also on random effects.

The most silent feature of marginal model is regression model, with appropriately speci-

fied link function, relating the mean response at each occasion to the covariates. For es-
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timation of the regression model parameters, marginal models do not necessarily require

distributional assumptions for the vector of longitudinal responses. When full distribu-

tional assumption for the vector of responses are avoided, the marginal model is said to be

semi-parametric, and this leads to a method of estimation know as generalized estimating

equation (GEEs) (Liang and Zeger, 1986) allow for the correlation between observations

without the use of an explicit probability model for the origin of the correlations, so there

is no explicit likelihood. They are suitable when the random effects and their variances

are of inherent interest, as they allow for the correlation without explaining its origin. The

focus is on estimating the average response over the population (”population-averaged”

effects) rather than the regression parameters that would enable prediction of the effect

of changing one or more components of covariates on a given individual.

2.3.2 Linear Mixed Model

Linear Mixed-effects Model (LMM) provides a flexible and powerful tool for the analysis

of longitudinal data. Mixed-effects model are quite robust to missing data and irregularly

spaced measurement occasions and can easily handle both time-invariant and time-varying

covariates. It has been a popular method to model the between-subject and within-subject

correlations, to handle both balanced and unbalanced scenarios, and allows the inclusion

of covariables. In mixed-effect models, response variable are assumed to be a function of

fixed effect, non-observable random effect, and error term. When both the fixed and the

random effects contribute linearly to the response, the model is called linear mixed-effects

model (Davidian, M. et al., 2011). These models are useful in a wide variety of disciplines

in the physical, biological and economic sciences. They are particularly useful in settings

where repeated measurements are made on the same statistical units, or where measure-

ments are made on clusters of related statistical units (Wondwosen et al., 2010). Linear

mixed-effects models rely on assumptions of multivariate normality, and likelihood-based

inferences for both the fixed and random effects are relatively straightforward (Davidian,

M. et al., 2011).
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A major limitation of these methods is that the relationship of the mean of a longitudi-

nal response to covariates is assumed fully parametric. Although such parametric mean

models enjoy simplicity, they have suffered from inflexibility in modeling complicated

relationships between the response and covariates in various longitudinal studies. There-

fore, in order to account this limitation, a semi-parametric mixed model were constructed

for longitudinal data, where flexible functional forms can be estimated from the data to

capture possibly complicated relationships between longitudinal outcomes and covariates.

2.3.3 Semi-parametric Mixed Model

As we have seen, semi-parametric regression models based on penalized splines can be

couched in the mixed model framework, allowing for mixed model estimation and for

inferential and computational tools to be used. This synergy is similar in spirit to the

mixed model approach to analyzing longitudinal data that commenced (Laird and Ware,

1982). Most of the work that has been undertaken to model longitudinal data has been

parametric, in the sense that the effects of continuous covariates have been modeled

linearly or by using some parametric nonlinear model (Davidian et al.,2011). An alter-

native to nonlinear mixed modeling is to incorporate smoothing methods. The mixed

model representation of penalized splines allows for a seamless fusion between parametric

mixed models and smoothing, which we call semi-parametric mixed models. Extension of

smoothing spline to longitudinal data requires explicitly accounting for the within-subject

correlation in constructing the penalized likelihood function. Zhang et al., (1998) adopted

a penalized likelihood approach based on smoothing splines, which is computationally ef-

ficient and can be conveniently implemented using standard software. In this study we

apply a semi-parametric mixed effect model to model fasting blood sugar level of adult

diabetic patients overtime.
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3 METHODOLOGY

3.1 Data description and Study design

This study used the data obtained from retrospective cohort follow up study design of

fasting blood sugar level of adult diabetic patients who have been under follow up from

2004 to June 2006 in Jimma University specialized hospital. Jimma University Special-

ized hospital (JUSH) is located in south west of Ethiopia in Jimma Town. JUSH serves

as a teaching and referral hospital for the Jimma area community and, adjacent zones

and regions of southwest Ethiopia.

3.2 Study Population and period

All patients aged 18 and above years, under follow up during the period 2004 to June 2006

and have at least two FBS level measurement were eligible to be included in the study

leading to a total of 534 study subjects. During follow up subjects come to the center

at irregular time (one, two three or more months gap) and during their visit their FBS

level is measured and recorded in the individual follow up card along with important

characteristics such as, weight of patient, blood pressure (systolic and diastolic), their

type of diabetes (type I diabetes mellitus or type II diabetes mellitus), etc.

3.3 Variables

3.3.1 Dependent variables

The response variable of interest in this study is the repeated Fasting blood sugar level

measurement in mg/dL at each patient visit.
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3.3.2 Independent variables

The independent variable which are expected to be associated with FBS level and consid-

ered to be investigated in this study include Age, Time of FBS measurement, Sex, blood

pressure (Systolic, diastolic), type of diabetes (type I and type II), family history and

weight. Detailed information about this is given in Table 1.

Table 1: Description of study variables with its classification

Variable name Variable Description Code
1. Gender Gender of Patients which is a time-

invariant variable
0=female, 1=male

2. Age Age of patients which is time-invariant
variable

3. DT Diabetic types 0= type I (IDDM), 1= Type II
(NIDDM)

4. Famhist Family history of patients 0=family has no diabetes, 1=
family has diabetes

5. SBP Systolic blood pressure (time-varying
covariates)

MmHg

6. DBP Diastolic blood pressure (time-varying
covariates)

MmHg

7. Bodyweight Body Weight of patients (time-varying
covariates

Kg

8. Time Observation time (time-varying covari-
ates)

month
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3.4 Method of data analysis

3.4.1 Exploratory Data Analysis

In this study we have used various mean structure and random effect structure explo-

ration techniques to choose the appropriate fixed effect structure in the proposed mixed

model and to decide which parameters in the model, if any, should have a random-effect

component included to account for between-group variation. We will examine OLS resid-

uals and information criteria statistics to select the appropriate covariance structure for

the random effect and correlation structure for the random noise.

3.4.2 Linear Mixed-Effects Models

Mixed-effects models include both fixed effects and random effects, where random effects

are usually introduced to model correlation within a cluster and/or spatial correlations.

They provide flexible tools to model both the mean and the covariance structures simul-

taneously. A general linear mixed-effects (LME) model assumes that

Y = Xβ+Zb+ ε (3.1)

where Y is an n-vector of observations on the response variable, X and Z are design

matrices for fixed and random effects, respectively, β is a q1-vector of unknown fixed

effects, b is a q2-vector of unobservable random effects, and ε is an n-vector of random

errors. It is assumed that b∼ N(0,D) and ε ∼ N(0,Λ) with b indepenent of ε. The

mean structure is modeled by the fixed effects, and the covariance structure is modeled

by the random effects and random errors.

17



3.4.3 Semi-parametric linear mixed-effect models

Many statistical models rely on the assumption that the effects of continuous predictors

are linear. However, the linearity assumption may be too simple to represent the effects

of some risk factors correctly. More specifically, if the linearity assumption is incorrect for

a given risk factor, the parametric estimate may underestimate its effect over some range

of values or overestimate the effect over some other range, or both. In the last decade, a

number of flexible nonparametric extensions of the conventional linear model have been

proposed in the statistical literature (Green and Silverman 1995, Eubank 1999). These

nonparametric regression methods eliminate the restrictive linearity assumption and thus

allow greater flexibility in modeling the data so that the estimated effects of continuous

predictors may follow an arbitrary continuous smooth function. Accordingly the risk of

bias is greatly reduced as the estimates depend more on empirical data and less on a priori

assumptions. Semi-parametric mixed models (SPMMs; Diggle et al., 2002; Zhang et al.,

1998) are useful extensions to linear mixed models (Lard and Ware, 1982; Verbeke and

Molenberghs, 2000; Diggle et al., 2002) and provide a flexible framework for analyzing

longitudinal data. Many authors have studied semi-parametric models for longitudinal

data (e.g., Wang, 1998; Diggle et al., 2002; Ruppert et al., 2003).

A Semi-parametric mixed model uses parametric fixed effects to represent covariate effects

and a smooth function to model the time effect, modeling the within-subject correlation

using random effects and stochastic processes. Zhang et al., (1998) adopted a penalized

likelihood approach based on smoothing splines, which is computationally efficient and

can be conveniently implemented using standard software. In this study we have used the

Zeger and Diggle (1994) model to a more general class of models termed semi-parametric

mixed models. This class of models assumes that the mean of the outcome variable is

an arbitrary smooth function of time and parametric functions of the covariates, where

the non-parametric function of time is estimated using smoothing spline methods, which

allows us to make inference on this nonparametric function as part of the overall inference

procedure.
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Let Yij denote the fasting blood sugar level of patients measured at month time tij on

patients i(i=1,2,. . . ,nj). A penalized smoothing spline model, with a subject-specific ran-

dom intercept Ui based on a truncated line basis function can be written as:

Yij = f(tij) + εij (3.2)

with f(tij) a smooth function and error εij, i = 1, . . . ,nj iid N(0,σ2
ε ). The smooth func-

tion f(tij) can be found as result of minimization of the residual sum of squares plus a

roughness penalty,

∑n
i=1(yij−f(tij))

2+λ
∫
(f (p)(t))2dt (3.3)

where Yij denote the fasting blood sugar level of patients measured at month time tij on

patients i(i=1,2,. . . ,nj). f
(p) is the pth derivative of the function f(t). The result curve

fitted to the data is a piecewise polynomial of degree 2p-1. The smoothing parameter

governs the trade-off between smoothness and goodness of fit. This parameter is often

unknown in practice and needs to be estimated from the data. A classical data-driven

approach to selecting the smoothing parameter is cross-validation, which leaves out one

subject’s entire data at a time. However, this approach is often computationally intensive

and the subsequent inference is difficult. There are different types of basis functions to

represent the smooth function, among them Linear truncated spline basis function is used

to represent f(t).

Let K1, . . . ,Kd−p be a set of distinct numbers inside the range of the ti’s, and let

t+ = max(0, t). A random coefficient linear regression spline model for f(t) is

f(tij) = β0+β1t+
∑K
k=1 uk(t−Kk)+ (3.4)

where u = [u1, . . . , uk]
T N(0,σ2

uI) is independent of ε = [ε1, ε2, . . . , εn]T , set of

functions such as (t − Kk)+ is called a linear spline basis and the values of Kk are

referred as a knots. When σ2
u = 0, f(t) is linear, but for σ2

u > 0, the truncated lines

(t −Kk)+ flexibility allow for nonlinearities in f . More smoothness could be attained

19



using p global polynomial terms t1, . . . , t and p− d truncated polynomials (t−Kk)
p
+,

k=1,2,,d-p

f(tij)=β0+β1t+β2t
2+β3t

3+. . .+βpt
p+

∑d−p
k=1 uk(t−Kk)

p
+ (3.5)

we can combine equations (3.2) and (3.5) in one model,

Y=Xβ+Zu+ε (3.6)

where

X=



1 t1 t21 . . . tp1

1 t2 t22 . . . tp2
...

...
...

. . .
...

1 tn t2n . . . tpn


, Z =


(t1 −K1)

p
+ . . . (t1 −Kd−p)

p
+

...
. . .

...

(tn −K1)
p
+ . . . (tn −Kd−p)

p
+

 (3.7)

where

cov

 u
ε

 =


σ2
uI 0 0

0 σ2
uI 0

0 0 σ2
εI



Here σ2
u measures the between-subject variation, σ2

ε measures the within-subject variation,

and σu controls the amount smoothing done to estimate f . Equation (3.6) is nothing but a

normal linear mixed model and, for any given σuand σε, the estimated best linear unbiased

predictor (EBLUP) of y,

f̂ = Xβ̂ + Zû (3.8)

Unbiased refers here to the property that the average value of the estimate is equal to the

average value of the quantity being estimated, that is E(f ′) = E(f). Equation (3.8) can be

rewritten (McCulloh and Searle 2001) as

f̂ = C(CTC+λ2D)CTy (3.9)
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Where C=
[
X Z

]
,D = diag

(
0p+1, Ik

)
and λp = σε/σu for the pth degree of pe-

nalized spline(p=2 in the case of the quadratic spline model).

A generalized semi-parametric mixed model can be written as

Y=Xβ+Zu+Zb+ε (3.10)

Where β is a vector of regression coefficients that models the effects of covariates X, the ran-

dom effect bi follows a normal distribution. Two sets of random effects bi and Ui are assumed

to be independent. The subject-specific random intercept accounts for the correlated nature

of the observations. The truncated line basis is simple in formulation and performs adequately

in many circumstances and is therefore a sensible choice. The matrix Z contains the elements

of the truncated line basis , as well as columns of ones for random subjects. Further we can

combine bi and Ui in to as b = (b1, b2, . . . , bK, U1, U2, . . . , Un)′. Their covariance function

is given below.

cov

 u

b

 =

 σ2
uI 0

0 σ2
bI

 (3.11)

The estimators of the regression coefficients and the truncated s-spline estimator of the non-

parametric function are obtained using maximum penalized likelihood. The random effects are

estimated using the conditional mean given the data. Fitting penalized splines by the linear

mixed model approach has some appealing advantages, such as the automatic determination

of the smoothing parameter, a unified framework for inference and ease to extend the models.

In what follows, we proceed along these lines by formulating a series of hypothetical semi-

parametric mixed models.
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3.4.4 Estimation and Inference

For simplicity, the estimation and inference procedures for the semi-parametric linear mixed

model (3.9) is presented here. We assume that the covariance matrices D and λ depend on an

unknown vector of covariance parameter τ . The marginal distribution of y is

y∼ N(η(β, f), σ2W−1), where W−1 = ZDZT + Λ and η(β, f) = Xβ+γ(f) for fixed

τ ,β and f are estimated by minimizing penalized weighted least squares

(y-η(β, f))TW (y − η(β, f)) + λ
∑K
k=1 θ

−1
k ||fk||2.

Inference for the parametric components in β can be based on the result of cov(β̂) =

(XTV −1X)−1 , where V is replaced by V̂ ,in which the variance components inV are re-

placed by their REML estimates. Under Ho the asymptotic distributional assumption theory

for penalized spline mixed model is reasonable. The hypothesis tests about the overall effect

and linearity of nonparametric component can be achieved by testing.

Ho : σ2
u = 0 versus H1 : σ2

u > 0 and for that overall effect of density reduces to

Ho : β = σ2
u = 0 versus H1 : β 6= 0 or σ2

u > 0

3.4.5 First order derivative test and estimation via penalized splines

For first order derivative estimation via penalized splines, it is recommended that higher degree

polynomial basis functions to be used to insure that the resulting derivative estimates are

smooth. We will start by describing first order derivative estimation, for which a quadratic

spline are the simplest basis leading to continuous fits.

Let f̂ be a quadratic penalized spline fit:

ˆf(x) = β̂0 + β̂1x+ β̂2x
2 +

∑K
k=1 ûk(x−Kk)

2

This is a piecewise quadratic function that can be differentiated over each piece to obtain the

piecewise linear estimates of f̂ :

ˆf ′(x) = β̂1 + 2β̂2x+
∑K
k=1 2ûk(x−Kk)

Operationally, a derivative estimate at location x can be obtained from the quadratic fit coef-

ficients
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β̂ =
[
β̂0 β̂1 β̂2

]T
and û =

[
û1 . . . ûk

]T
by setting

X ′x =
[

0 1 2x

]
andZ′x =

[
2(x−Kk), for1 ≤ k ≤ K

]
then f̂ ′(x)=X ′xβ̂ + Z′xû

Also var(f̂ ′(x)− f ′(x))∼= C′xCov

 β̃

ũ− u

C′xT =σ2
εC
′
x

(
CT
xC + σ2

ε

σ2
u
D)−1C′x

T

Where C′x=
[

X′x Z′x

]
and D=diag

(
0, 0, 0, 1, · · · , 1

)

3.5 Model diagnosis

For model diagnosis, we assessed normality (the QQ-plot and the histogram of residuals),

Homogeneity (the residual versus predictor plot, and residuals versus fitted values plot, also

called the linear predictor plot for the Gaussian distribution with identity link), and model fit(

fitted values versus observed values plot).

3.6 Software

Data were analyzed by using R version 3.0.3, 3.1.0, and 3.1.1 Statistical Software. The GAMM

package was used. The Full r-code used for this analysis can be found from ANNEX II.

3.7 Ethical consideration

The data for the analysis obtained was from Jimma university specialized hospital, and an

ethical clearance for the study was provided by Research Ethics Review Board of Jimma Uni-

versity and the department of statistics wrote an official co-operation letter to Jimma university

specialized hospital. Careful recruitment and training for data collectors from each patient’s

card was undertake.
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4 RESULT AND DISCUSSION

4.1 Explorattory data analysis

4.1.1 Patients Baseline Characteristics

A total of 558 patients who start follow up from September 2004 till end of June 2006, with a

minimum of two and maximum of thirty five measurements per individual which results a total

of 4405 measurements were included for this study. Among these patients 192(35.96%) were

females and 342 (64.04%) of them were males (Table 4.1). The minimum and the maximum

age of patients were 18 and 93 years. Their fasting blood sugar level with other important

variables was routinely recorded from patient’s identity card. The average fasting blood sugar

level of the patients is 164.8899 mg/dL.

Table 2: Distribution of diabetes status of adult diabetic patients at baseline, Jimma University
Specialized Hospital, from 2004 to June 2006

Characteristics Type I diabetes
n(%)

Type II diabetes
n(%)

p-value

Gender Male 87(16.29%) 255(47.75%)
0.9935

Female 48(8.99%) 144(26.97%
Family His-
tory

Family has no
diabetes

37 (6.93%) 380(71.16%)
< 2.2e−16

Family has di-
abetes

98(18.35%) 19(3.56%)

Age 34.5355 (11.896.9)* 48.64033 (13.77569)* 2.2e-16
Weight 58.91393(11.17389)* 63.91077(13.73605)* 2.2e-16
FBS 171.7(102.4946)* 162.8(80.73385)* 0.01137
SBP 117.6(115.3, 120)** 122.7(121, 124.5)** 7.66e−04

DBP 77.2 (75.5, 78.95)** 78.71 (77.7,79.73)** < 2.2e−16
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4.1.2 Exploring the mean structure using loess smoothing

Figure 4.1 shows that FBS level trajectories by patients using loess smoothing and it can be

seen from that in general, the FBS level declines over time, especially in the early months, but

with tremendous heterogeneity. From the plot we can guess that there is a linear or quadratic

time effects on FBS level of the diabetic patients.

Figure 1: Overall profile plots of FBS level of diabetic patients over time (month) using loess
smoothing

4.2 Mixed model building

4.2.1 Parametric Linear mixed models of changes in FBS over time

First a linear mixed effect model was fitted with a quadratic time effects, since the mean evolu-

tion declines quadratically with time. In a simple repeated measure linear mixed effects model,

time in month was significantly associated with FBS. FBS level declined by 4.82 percentage

points per month (P-value< 0.001). From table 6 in ANNEX I LMM of FBS with quadratic

time effect, the fixed effects with small p-values (P-value<0.05) show that the fixed effects are

significant. When all the covariates with time interaction was added to the model, except time

25



with weight interaction, the other interactions were not significant, but the predictive ability of

the model improved significantly (likelihood ratio test statistics= 100.4122, df=24, p<0.001)

suggesting that the only significant covariates term should be retained in the model (Table

7, ANNEX I). Of the covariates that were tested in this mode, only weight, time and weight

with time interaction was statistically significant. Finally, after removing the non-significant

covariates, a model with weight with time interaction were fitted. The final fitted linear mixed

effect model framework was given below.

FBSij = β0i + β1iweight+ β2itimeij + β3itime
2
ij + β4iweightij ∗ timeij +

b0i+b1itimeij+b2itime
2
ij+εij (4.1)

In this linear model, weight and time had a negative coefficients (the negative implies that FBS

is declining with time), but only square time effect and weight with time interaction has a

positive coefficient. Thus, FBS tended to fall with time, but there was significant heterogeneity

among the individual in the rate of change in FBS. The summary statistics for the selected

model is displayed in table 3.

Table 3: Parameter estimates of linear mixed model with quadratic time effect

Fixed Effects Value Std.Error Deg.fred t-value p-value
Intercept 303.00504 13.090723 3866 23.146548 0.0000

weight -1.96306 0.208243 3866 -9.426738 0.0000
time -6.09087 1.126493 3866 -5.406930 0.0000

time2 0.16130 0.026024 3866 6.197941 0.0000
weight:time 0.02871 0.016142 3866 1.778418 0.0754

Random Effects
Variance Covariance

Intercept 57.7367563
time 6.7166296

time2 0.2407067
residual 68.6562477

AIC BIC loglik
50748.23 50824.9 -25362.12
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4.2.2 Semi-parametric mixed model of changes in FBS level over time

Linear mixed model assumes that the relationship between FBS and other covariates was linear.

However, this assumption is not without question. To explore this possible non-linearity of the

relationship between FBS and time and other covariate, we applied a linear truncated spline

method. A semi-parametric linear mixed model is an extension of a linear mixed model by the

use of smooth function terms instead of linear terms for covariates. Here, smooth function terms

were used for time (month). Building on the results of the LME analyses, we used these variables

significant in LME modeling as predictors. For model diagnostics, we assessed i: normality

(the Q-Q plot and the histogram of residuals), ii: Homogeneity (residuals vs predictors plot,

residuals vs fitted value plot also called the linear predictor plot for the Gaussian distribution

with identity link), iii: A model fit (fitted values vs observed values plots). In order to show the

significance of adding random component to model these correlated data, a linear regression

and linear mixed model has been fitted and compared based on their AIC values and it was

found that adding a random term with quadratic time effect is appropriate.

4.2.2.1. GAMM Model 1: (Null Model; Predictors: Smoothing time)

The nonlinear model (GAMM) produced results qualitatively similar to the linear model. The

first GAMM model included only the smoothing spline terms. We did not want to assume that

the relationship between FBS and time was linear, and therefore we modeled this relationship

using a linear truncated s-spline model with 20 knots. The SPMM framework is given below:

FBSij = β0i+β1itimeij+β2itime
2+

∑K
k=1 uk(timeij −Kk)

2
+ + b0i + b1itimeij + b2itime

2
ij + εij (4.2)

This model includes quadratic time effects in month and suggested that the relationship between

FBS and time was non-parametric. From ANNEX I Table 8, the effective degrees of freedom

(edf) of the smoothed term for the time in month was 8.385, where edf of 1.0 would denote

linearity, and values above that non-linearity; the larger the edf, the more non-linearity. The

p-value for the smoothed term was less than 0.0001 (F=20.88), indicating that the FBS declined

over time. The R-squared of the model was 0.0302. A plot of the relationship between FBS
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and smoothed time is shown in Figure 2 (a). In this graph, the y-axis is the contribution of the

smoother to the fitted values for FBS. Visually one can appreciate that FBS declines with time:

the graph with 95% confidence bands shows that the fitted values for FBS are greater than zero

in months 1, 2 and 3 and less than zero for months 5 to 35. The plot for the predicted value of

fitted model is shown in figure 2 (b), which shows that the predicted value also decreases with

time.

Figure 2: Smoothing and predicted plot for null model.
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4.2.2.2. GAMM model 2: (Adding time-invariant covariates on Null Model. Pre-

dictors: Age, sex, DT, Famhist, Smoothing time)

For the second GAMM model, we study the effect of time invariant-covariates with smoothing

time on change of FBS. The semi-parametric mixed model framework is given below:

FBSij=β0i + β1itimeij + β2itime
2 +

∑K
k=1 uk(timeij −Kk)

2
+ + β4iagei + β5iDT +

β6ifamhist+β7isex+b0i+b1itimeij+b2itime
2
ij+εij (4.3)

where FBSt is the fasting blood sugar level of patient at time t (month),β0t is the intercept,

t is the observation time in month, DT is the Diabetic type , famhist is the Family history of

diabetic status, Sex is the sex of patient and εt is the independently normally distributed noise.

The amount of smoothing for smoother can be determined with the AIC or with an automatic

selection tool like the cross-validation. From ANNEX 1 Table 9, SPMM of FBS with truncated

S-spline with 20 knots, the variable DT, sex, famhist and Age are not significant (p-value 0.05).

4.2.2.3. GAMM model 3 :( Adding time-variant covariates on Model 2 predictors:

Weight, smooth time)

A stepwise variable selection method was applied here to select the significant time-dependent

covariates. From ANNEX I, Table 10, and Table 11, SBP and DBP with weight interactions

were not significant (p-value 0.05). After removing all insignificant covariates and interaction

term step by step, a SPMM model with quadratic time effect and smoothing time effect was

fitted and compared with parametric linear mixed model. The semi-parametric mixed model

framework is given below:

FBSij=β1iweightij+β2iweightij∗timeij+β3itimeijβ4itime
2
ij+

∑K
k=1 uk(timeij −Kk)

2
+ +

b0i+b1itimeij+b2itime
2
ij+εij (4.4)

where FBSt is the fasting blood sugar level of patient at time t (month), t is the observation

time in month, and εij is the independently normally distributed noise. After removing all the

insignificant variables and interaction terms step by step, finally model 3 was fitted and the

summary statistics for the parametric estimate and non-parametric estimate is given in table 4.

From the Table 4. we can see that weight with time interaction and square of time in months
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are not significant.

Table 4: Summary table of comparing semi-parametric and parametric estimate of the linear
mixed effects model with quadratic time effects

Semi-Parametric estimate Parametric estimate
Fixed
effects

Value std.error p-
value

Fixed
effects

value std.error p-value

Xweight -1.8406 0.1990 0.0000 Intercept 298.90953 13.384395 0.000
Xtime 27.4824 6.1481 0.0000 time -5.75162 1.134390 0.000
xtime2 0.4171 0.4050 0.3031 time2 0.16307 0.025791 0.000
Xweight:time 0.0175 0.0147 0.2327 weight -1.89121 0.212619 0.000
Xs(time)Fx1 -3065.1153 600.2950 0.0000 time:weight 0.02231 0.016280 0.1706
variance covariance variance covariance
Random
effects

Std.Dev Random
effects

Std.Dev

Intercept 41.524695 Intercept 57.8614734
time 0.0016846 time 6.6557840
time2 8.5882e-05 time2 0.2340871
residual 72.502262 residual 68.7270782

Variance of smooth terms
s(time) 14.03372
hline Approximate significance of smooth terms

edf F p-
value

s(time) 6.985 91.65 <
2e−16

***
AIC BIC loglik
50634.55
50724.0
-25303.27

4.2.3 First order derivative test of the smooth function

As mentioned earlier, the primary objective of this study is to estimate the average change of

FBS level over time, to compare their profile over time as well as their rate of change as a

function of time. The proposed linear truncated S-spline model (equation 4.4) was fitted with a

roughness penalty on the second order derivative m=2 to obtain a smooth first order derivative.

Figure 3 shows the smoothing spline for FBS level where solid line is a group specific mean

smoothing spline and the dotted points show the fitted value vs time profiles. The FBS level

decreases markedly in the first 3 to 4 months and becomes more or less stable (does not shows
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a moderate change in FBS level). A 95% confidence bands is also plotted around the average

line. Figure 4, shows the plot of Predictive value for selected model and first order derivative

of the fitted model. The interesting features of this plot are to look at its slope and how it

changes with time, in our mind, we note where the slope is positive, where it is negative and

where it is essentially zero. It appears that f ′ is small and negative for early months, meaning

that patients were able to decrease or control their fasting blood sugar level up to month 5.

But eventually f ′ reaches a plateau, suggesting that patients do not experience much (if any)

rise in FBS level. There is some suggestion in the data that f ′ has an alternative sign of slope

after month 5, meaning that patients do actually may not follow their follow-up time correctly

or most patients would not come for treatment after some month due to some unknown reason.
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Figure 3: Plot of fitted values vs Observation time in month with a 95% confidence bands

4.3 Model Diagnostics

Graphical diagnostics for the model are shown in Figure 5. The QQ-plot and the histogram

of residuals show some non-normality. Although a transformation on FBS could be applied

to alleviate this problem, the disadvantage of a transformation is that it changes the type of

relationship between response and explanatory variable. Residuals versus predictor plot and

residuals versus fitted values plot show that variance is approximately constant. Model fit (fit-

ted values versus observed values plot) shows that some positive linear relationships.
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Figure 4: a) Predicted values for FBS from GAMM by time. b) First order derivative plot of
the smooth function with confidence bands.

4.4 Comparing Semi-parametric mixed model with parametric mixed

model

For the GAMM model 3 (equation 4.4), and LME model (equation 4.1), Table 5 compares the

model fitted with linear mixed effect method and model fitted using semi-parametric mixed

effect method by AIC, BIC, log(likelihood), and adjusted R-square. The model fitted using a

semi-parametric mixed effect approach is the best optimal model by AIC and BIC.

Table 5: Model comparison by AIC, BIC and log likelihood method
Model AIC BIC log likelihood
LME 50757.67 50834.433 -25366.83
SPMM 50634.55 50724.01 -25303.27
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Figure 5: : Model validation graphs for the GAMM model 3

4.5 Discussion

This study was focused on modeling fasting blood sugar level of adult diabetic patients us-

ing longitudinally measured data to examine the effect of different covariates on fasting blood

sugar level. Modeling FBS is important because it would tell us about the disease progress of

the adult diabetic patients. Therefore, in this study we have applied a semi-parametric linear

mixed effect model to model the change in the expected value of FBS level over time, because

the data are continuous and correlated.

A SPMMs (Diggle, et al., 2002) are a useful extension to linear mixed model (Liard and

Ware,1982) and provide a flexible framework for analyzing such a continuous and correlated lon-

gitudinally collected data. In SPMM, it is of practical interest to model some covariates whose

effects are well understood parametrically while, other covariates effects non-parametrically.

In this study we have fitted a SPMM, because it uses parametric fixed effects to represent a

covariate effects and a smooth function to model the time effects. We mainly discusses the

smoothing spline method to estimate the non-parametric function of time. a key advantage of
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using smoothing spline method for a Gaussian data is that smoothing spline have a close con-

nection with linear mixed. A challenge in estimating such semi-parametric mixed effect model

is that some parameters are finite dimensional while other parameters are infinite dimensional.

Due to this reason, statistical inference in such semi-parametric mixed model was approached

with caution.

Since the FBS level data are correlated, continuous and unbalanced in nature, different types of

exploratory analysis was used to visualize the evolution of fasting blood sugar level over time.

From the individual profile plot Fasting blood sugar level have a complex profile over time,

more specifically, on average the Fasting blood sugar level of adult diabetic patients decreased

over time and then gradually it becomes rebound and stable with tremendous heterogeneity

between subjects and within subjects. Patients were tried to control their fasting blood sugar

level for the first few months and then the FBS level becomes inside the 95% confidence bands.

From the semi-parametric mixed model, weight and time are the only significant factors for the

change in the fasting blood sugar level. Weight has a negative significant effect on the fasting

blood sugar level.

In this study the other covariates (age, sex, SBP, DBP, family history of diabetes) did not have

significant effect on the change of fasting blood sugar level of adult diabetic patients.

There were several limitations in this study. In order to compare and contrast the finding of

this study we could not be able to find a similar research conducted. And also we could not ad-

just for potentially important patient level covariates including Depression, income, drug type

used for treatment, residence, Dietary habit, physical exercise and other important covariates

, because these variables were not recorded on patients identity card.
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5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This study focused on longitudinal data analysis of fasting blood sugar level of adult diabetic

patients in Jimma University specialized hospital using an application of semi-parametric mixed

model method. From the individual profile plot, the variability at baseline was higher during

the follow up time and Fasting blood sugar level of adult diabetic patients has a complex profile

plot.

Semi-parametric mixed model with quadratic time random effect with Autoregressive process of

order 1 correlation structure fits well to the data. There was statistically significance difference

among adult patients FBS level with respect to time and weight but age, DT, famhist, and sex

had no significant effect on FBS level. From the first order derivative plot, patients were tried

to lower or manage their fasting blood sugar level up to month 5, after that they were not able

to manage the FBS level.

The parameters estimates of the LME and SPMM are different with different the standard

errors. This shows that fitting the data using semi-parametric mixed model approach was the

right choice.
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5.2 Recommendation

Since baseline weight and follow up time are the significant factors that cause for the changes

in fasting blood sugar level of adult diabetic patients, a patient must do an exercise in order to

control their body weight change and follow their treatment according to the schedule ordered

by the doctor. Further Health workers must give awareness for the patients in order to lower

their fasting blood sugar level.

In this study, some of the important variables like drug type, level of education, dietary habits,

the type of exercise that patients practice and their residence were not included in to the study,

further studies has to be conducted in order to know the factors which are highly significant

factors for the change in their fasting blood sugar level.

At national level further study has to be conducted by governmental or non-governmental or-

ganization in order to lower the prevalence of diabetic mellitus in the country.

In this study we have applied a semi-parametric regression method for the analysis of longitu-

dinal data However, theoretical properties of smoothing splines are only available for Gaussian

data. Even for Gaussian data, theoretical properties of the REML estimator of the smoothing

parameter and the joint maximum penalized log-likelihood estimators of regression coefficients

and the non-parametric function in semi-parametric models are not well understood. Therefore,

studying the theoretical side for non-parametric and semi-parametric regression method is de-

sired, including convergence of an iterative algorithm, and consistency, efficiency and robustness

for model parameter and spline estimator.
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Appendix

Annex I: Tables

Table 6: LMM of FBS with quadratic time effect

Fixed Effects Value Std.Error DF t-value p-value
Intercept 183.26731 3.375740 3866 54.28952 0.0000

time -4.82118 0.607602 3866 -7.93477 0.0000
time2 0.17895 0.025994 3866 6.88417 0.0000

Random Effects
Variance Covariance

Intercept 62.1577722
time 7.0286500

time2 0.2428374
residual 69.1773930

AIC BIC loglik
50848.65 50912.54 -25414.32
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Table 7: LMM of FBS with quadratic time effect when all covariates are included

Fixed Effects Value Std.Error DF t-value p-value
(Intercept) 303.48072 20.975054 3857 14.468650 0.0000

age 0.39557 0.222586 3857 1.777140 0.0756
time -4.84430 1.964228 3857 -2.466264 0.0137

sex -3.24162 5.984220 530 -0.541694 0.5883
DT -11.19119 10.401324 530 -1.075939 0.2824

famhist -12.21103 10.174176 530 -1.200199 0.2306
weight -1.88200 0.222675 3857 -8.451752 0.0000

SBP -0.34123 0.139545 3857 -2.445304 0.0145
DBP 0.40295 0.215407 3857 1.870640 0.0615

time2 0.16168 0.025959 3857 6.228409 0.0000
age:time -0.02222 0.017678 3857 -1.256820 0.2089
time:sex -0.29027 0.473005 3857 -0.613672 0.5395
time:DT 0.03475 1.202816 3857 0.028893 0.9770

time:famhist -0.04611 1.197413 3857 -0.038509 0.9693
time:weight 0.02655 0.017893 3857 1.483723 0.1380

time:SBP 0.01960 0.012221 3857 1.603580 0.1089
time:DBP -0.03034 0.020148 3857 -1.506032 0.1321

Random Effects
Variance Covariance

Intercept 57.997822
time 6.703831

time2 0.234987
residual 68.719672

AIC BIC loglik
50776.24 50929.51 -25364.12

Table 8: SPMM of FBS with quadratic time effect when smoothing time in month is included

Fixed Effects Value Std.Error DF t-value p-value
X(Intercept) 165.45085 2.34957 3869 70.41751 0.0000

X(time) -11.36977 41.25850 3869 -0.275557 0.7829

Random Effects
Variance Covariance

Intercept 56.84406
time 2.581283

time2 0.000247899
residual 69.84482

Approximate significance of smooth terms
edf F p-value

s(time) 8.386 20.98 < 2e− 16
***

AIC BIC loglik
50794.64 50858.54 -25387.32
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Table 9: SPMM of FBS with quadratic time effect when time-independent covariate and
smoothing time in month is included

Fixed Effects Value Std.Error DF t-value p-value
Xage -0.081 0.1789 3867 -0.453555 0.6502
XDT -17.283 9.0194 531 -1.916198 0.0559
Xsex -8.961 4.9010 531 -1.828412 0.0680

Xfamhist 15.317 -8.8340 531 -1.733840 0.0835
Xtime 18.352 -1.8274 3867 -10.042721 0.0000

Xtime2 2.841 0.1513 3867 18.774764 0.0000
Xs(time2)Fx1 -7240.235 358.4224 3867 -20.200285 0.0000

Random Effects
Variance Covariance

Intercept 56.81558
time 2.591051

time2 0.0000091034
residual 69.57985

Approximate significance of smooth terms
edf F p-value

s(time) 9.127 51.52 < 2e− 16
***

AIC BIC loglik
50796.77 50892.6 -253883.38
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Table 10: SPMM of FBS with quadratic time effect when time-invariant covariate with time
interaction and smoothing time in month was included

Fixed Effects Value Std.Error DF t-value p-value
Xage 0.030 0.2304 3863 0.129133 0.8973
XDT -14.201 10.8056 531 -1.314247 0.1893
Xsex -7.619 6.2985 531 -1.209617 0.2270

Xfamhist -12.562 10.5707 531 -1.188343 0.2352
Xtime -16.883 2.2242 3863 -7.590662 0.0000

Xtime:age -0.013 0.0175 3863 -0.748560 0.4542
Xtime:DT -0.828 1.2075 3863 -0.685839 0.4929
Xtime:sex -0.156 0.4840 3863 -0.321981 0.7475

Xtime:famhist -0.763 1.2004 3863 -0.635925 0.5249
Xtime2 2.769

0.1626
3863 17.028223 0.0000

Xs(time2)Fx1 -7015.518 402.9918 3863 -17.408586 0.0000

Random Effects
Variance Covariance

Intercept 57.01418
time 2.648456

time2 0.00009545323
residual 69.57126

Approximate significance of smooth terms
edf F p-value

s(time) 9.128 35.83 < 2e−16

***
AIC BIC loglik

50806.27 50927.64 -25384.13
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Table 11: SPMM of FBS with quadratic time effect when time-varying covariate with time
interaction and smoothing time in month was included.

Fixed Effects Value Std.Error DF t-value p-value
XSBP -0.111 0.0802 3865 -1.380823 0.1674
Xtime -19.188 2.0497 3865 -9.361306 0.0000

Xweight -1.839 0.2155 3865 -8.534296 0.0000
Xtime2 3.635 0.1739 3865 20.902568 0.0000

Xtime:weight 0.028 0.0164 3865 1.718602 0.0858
Xs(time2)Fx1 -9756.019 455.2741 3865 -21.428889 0.0000

Random Effects
Variance Covariance

Intercept 53.298396334
time 2.360792105

time2 0.001688503
residual 69.182483305

Approximate significance of smooth terms
edf F p-value

s(time) 9.143 53.05 < 2e−16

***
AIC BIC loglik

50727.57 50817.02 -25349.79
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