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   Abstract 

 

Nowadays, quite a lot of methodology has been developed for the analysis of longitudinal studies, 

stemming from clinical trials, epidemiology, and other studies in humans. For example, hierarchical 

models are becoming ever more frequently. Such hierarchical models are standard in the analysis of 

longitudinal data, too to account for the correlation steaming from the repeated measures nature.  

This study will be dedicated to model models for longitudinal continuous, firmly rooted in hierarchical 

models such as the linear mixed model. One finds, coupled with methodological development, also the 

availability of standard software tools, including SAS, Stata, SPlus, R, etc. The Bayesian 

implementation of the models will also be explored using the freely available software WinBugs. The 

two approaches will then be applied on data set from the Jimma Infants longitudinal growth study. 

The result demonstrated that the ML estimates of the random-effects standard deviations are smaller 

than the corresponding REML estimates which is different result from the Bayesian. The estimated 

within group residual standard deviations are identical. In general, the fixed-effects estimates 

obtained using ML, REML and Bayesian techniques are almost similar. The mean evolution of the 

upper arm circumference of infant for boys and girls is not different.  For infants given 

supplementary food and without supplementary food their mean evolution is not different.  

The linear mixed effect model estimate of the fixed effect obtained using likelihood and 

Bayesian techniques are almost similar but with different random effect standard deviations.  
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                                                  CHAPTER ONE 

1. INTRODUCTION 

1.1. Background of the study 

Many longitudinal studies are designed to investigate changes over time in a 

characteristic which is measured repeatedly for each study participant. Multiple 

measurements are obtained from each individual under investigation at different times 

and possibly under changing experimental conditions, and there is considerable variation 

among individuals in the number and timing of observation (liard and Ware, 1982). 

 

Statistics have often analyzed data of this form using some variant of a two stage model 

(harville, 1977). In this formulation the probability distribution for the multiple 

measurements have the same form for each individual, but the parameters of that 

distribution vary over individuals. The distribution of this parameters, or „random 

effects‟, in the population constitute the second stage of the model 

     

Such two-stage models have several desirable features. There is no requirement for 

balance in the data. They allow explicit modeling and analysis of between- and within-

individual variation. Often the individual parameters have natural interpretation which is 

relevant to the goals of the study. 

   

In this study infant considered to children between ages of one month to twelve month 

(under one year) on Jimma infants survival differential longitudinal growth study to 

establish risk factors affecting infant survival that contributes most to Childs early 

survival. 
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An infant or baby is the very young offspring of humans. A newborn is an infant who is 

within hours, days, or up to a few weeks from birth. In medical contexts, newborn or 

neonate (from Latin, neonatus, newborn) refers to an infant in the first 28 days of life 

(from birth up to 4 weeks after birth, less than a month old). The term "newborn" 

includes premature infants, post mature infants and full term newborns. The term infant is 

derived from the Latin word infans, meaning "unable to speak" or "speechless." It is 

typically applied to children between the ages of 1 month and 12 months; however, 

definitions vary between birth and three years of age. "Infant" is also a legal term 

referring to any child under the age of legal adulthood. 
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                    1.2 Statement of the problem 

This study is on Jimma Infant Differential Longitudinal Growth to establish risk factors 

affecting infant growth that contribute most to the child's early survival by applying 

linear mixed effects modelto the upper AC of infants longitudinal continuous data. This 

longitudinal study is designed to investigate changes over time in a characteristic which 

is measured repeatedly for each study participant. Repeated measurements are obtained 

from each individual at different times to see if there is considerable variation among 

individuals in the number and timing of observation. And this study tries to answer, 

 

 The basic Linear mixed effects model provides an adequate model for many 

different types of grouped data observed in particular , however  there are many 

applications involving grouped data for which the within-group errors are 

hetroscedastic (i.e have unequal variances) or are correlated or are both 

hetroscedastic and correlated. And also, can we extend the basic Linear mixed 

effects model to allow for hetroscedastic, correlated within-group errors? 

 Does the mean evolution of upper arm circumference of infant changes over time? 

 Does the mean evolution of upper arm circumference of infants differ for gender 

as well as supplementary food behavior? 

 Linear mixed effects model is based on thinking about individual behavior first.  

How is the change in the population represented? 
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                              1.3 Significance of the study 

There are many factors that affect the growth of infants and this study designed to 

investigate factors that lead infants, to early survival by considering upper arm 

circumference of infants as a growth indicator for child‟s less than one year. The data are 

of repeated measurements, taken from child‟s starting from birth until the age of one year 

within two month interval. Hence this study opts to model arm circumference as a 

function some covariates like gender, age, etc. both the likelihood and Bayesian 

methodology are employed. It is expected that this study will be very useful in indicating 

the possible covariates for arm circumference. Further, it would helpful for further 

research in a difference or similar setting. 
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 1.4. Objective of the study  

   1.4.1 General objective 

The general objectives of this study was modeling evolution of upper arm circumference 

of infant‟s longitudinal study using linear mixed effects model to establish risk factors 

affecting infant early survival. 

   

   1.4.2 Specific objectives 

 

 To present the linear mixed effects model for a longitudinal Gaussian data and to 

apply on the evolution of upper arm circumference of infant‟s. 

 

 To explore and apply the Bayesian implementation of the Linear mixed effects 

models. 

 

 To compare the Likelihood and Bayesian techniques as alternative approaches for 

a Gaussian longitudinal response. 
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CHAPTER TWO 

 

2.  LITRETURE REVIEW 

There are many factors affecting the growth of infants. The Jimma Infant Survival 

Differential Longitudinal Growth Study is an Ethiopian study, set up to establish risk 

factors affecting infant survival and to investigate socio-economic, maternal, and infant-

rearing factors that contribute most to the child's early survival. Several studies have been 

done on infant growth using arm circumference as growth indicator. A cross-sectional 

study was performed among term live birth newborns, from June 1997 to August 1999, at 

Hospital Maternidade Leonor Mendes de Barros, São Paulo, Brazil, a public maternity 

hospital within the healthcare system that serves a low-income population and is used as 

a reference center for high-risk pregnancies. The study group consisted of newborns from 

single pregnancies, with gestational ages of between 37 weeks and 41 weeks and 6 days, 

as estimated by Capurro's method. These newborns were examined by the main author 

within their first 48 hours of life. Only newborns whose mothers agreed to participate in 

the study were included. The study comprised 131 newborns: 66 males and 65 females. 

The average gestational age was 39 complete weeks, ranging from a minimum of 37 

weeks to a maximum of 41 weeks. The normality test (Kolmogorov-Smirnov) showed 

that both variables studied followed the normal distribution. The Student t test, used in 

order to identify possible differences between sexes and the association of age with the 

dependent variable upper arm circumference, showed no significant differences for any 

of the evaluated parameters. And also there is direct association of upper arm 

circumference with age and other variables of the study. 
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Other studies which are done by WHO Child Growth Standards arm circumference-for-

age and sex methods and development.  There were a total of 10 770 arm circumference 

observations for boys and girls and The measurement of upper arm were followed 

starting from 3 to 60 months (de Onis et al., 2004b). The data of the longitudinal and 

cross-sectional samples were merged without any adjustments and a single model was 

fitted to generate one continuous set of curves constituting each sex-specific standard. 

The Box-Cox-power-exponential (BCPE) method (Rigby and Stasinopoulos, 2004), with 

curve smoothing by cubic splines was selected for constructing the WHO child growth 

curves. And the result shows that there is no significant difference between boys and 

girls. And also the arm circumference of both sexes increases with age. 

Many longitudinal studies are designed to investigate changes over time in a 

characteristic which is measured repeatedly for each study participant. Multiple 

measurements are obtained from each individual, at different times and possibly under 

changing experimental conditions. Often, we cannot fully control the circumstances 

under which the measurements are taken, and there may be considerable variation among 

individuals in the number and timing of observations. The resulting unbalanced data sets 

are typically not amenable to analysis using a general multivariate model with 

unrestricted covariance structure (Nan M. liard; James H.Ware, 1982). 

Random coefficient models, where we develop an overall statistical model by thinking 

first about individual trajectories in a “subject-specific” fashion, are a special case of a 

more general model framework based on the same perspective. This model framework, 

known popularly as the linear mixed effects model, is still based on thinking about 

individual behavior first, of course. However, the possibilities for how this is represented, 

and how the variation in the population is represented, are broadened. The result is a very 

flexible and rich set of models for characterizing repeated measurement data. One 

advantage of random coefficient models is that the model naturally represents Individual 

trajectories in a formal way, so that questions of interest about individual behavior may 

be considered.  In modeling longitudinal continuous data the model emphasize 

characterizing the mean vectors, how the mean response change over with time and 

depends on other factors. And taking into account important source of variation (i.e. 

characterizing the nature of the random source deviations).  
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CHAPTER THREE 

3. MATERIALS AND METHODS 

 

              3.1 Study Area 

The study was conducted from children born in south western Ethiopia. And the children 

were from rural, urban and semi-urban areas. Of special interest in this study is focusing 

on infants in urban setting that means Jimma town. 

 

         3.2 Study Population 

The study was conducted on children (infants) and they were visited every two months 

starting from birth until the age of one year (for twelve month). 

 

             3.3 Study Design 

A longitudinal study design was used using longitudinal continuous data to study factors 

affecting infant‟s early survival. Inference was made using linear mixed models, we 

describe a unified approach to inference this models. Both likelihood (maximum 

likelihood (ML) and restricted maximum likelihood (REML)) and Bayesian method of 

estimation was discussed. 

 

        3.4 Description of the data 

The Jimma Infant Survival Differential Longitudinal Growth Study is an Ethiopian study, 

set up to establish risk factors affecting infant survival and to investigate socio-economic, 

maternal, and infant-rearing factors that contribute most to the child's early survival.  

Children were examined for their first year growth characteristics. At baseline, there are a 

total of 7969 infants whereby 4317, 1494, and 2158 are from rural, urban, and semi-urban 

areas, respectively.  The children were visited every two months starting from birth until 

the age of one year. Data were collected on demographic, behavioral and environmental 

factors on infants. Of special interest is the assessment of the upper arm circumference of 

the infants as an indicator for growth focusing on infants in urban settings i.e Jimma 

town. 
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                     3.5 Software to be used 

In this study data were analyzed using R-software for the purpose of analyzing linear 

mixed models using different libraries in R packages and for Bayesian method of analysis 

we mainly used was open bug‟s software. And qq-plot of residual, histogram of residual, 

and the scatter plot of standardized residual versus predicted values to check whether the 

stated normality assumption is hold. 

                        3.6 Variables in the study 

The variables considered in this study are: 

 

1. Dependent  Variable:  

 AC (arm circumference):  

 

2.   Independent Variables:  

 Age in month 

 Sex (coded as MALE=1,  FEMALE=0) 

 Powdermil: whether the infant is given powder milk or no t(coded as 

Yes=1, No=0). 

 Suppfood: whether the infant is given supplementary food (coded as 

Yes=1, No=0). 
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               3.7 Linear mixed effects model 

3.7.1 The concept of random and fixed factors 

Searle et al. (1995) states that variance component estimation originated from estimating 

the error variance in the analysis of variance by equating the error mean square to its 

expected value. This procedure was then extended to random effects model for balanced 

data and then for unbalanced data. The beginning of variance component has revolved 

around the one- way random effects classification model as:  

   , where  i = 1,…,a, the  ’s and  ‘ s   are assumed to be random 

variables and  µ is the mean,  var( ) =  δ
2

β and var( ) = δ
2

e  with all covariance equal to 

zero. The variances associated with the random effects are called variance components. 

The flow chart below is taken from Searle et al.(2006) it helps to decide  on the 

appropriate model to be fitted(as an adequate representation of the data) using mixed 

model.  

                               _________________________________ 

                              ↓                                                                ↓ 

                           No                                                             Yes 

                             ↓                                                                 ↓   

     Treat factors as fixed                                                   treat factors as random 

                                                                                                 ↓   

                                                    _________Where does interest lie? ___________ 

                                                    ↓                                                                             ↓                                            

                             It is only in the distribution of                       in both the distribution and   

                         the   random effects                                        the realized value of  the           

                                     ↓    random effects        

                   Estimate the variance of the random ↓ 

                     effects                                                              Estimate the variance of the            

                                                                                              random effects and calculate  

                                                                                              the best linear unbiased 

                                                                                             predictor of the realized value                                                                                                                                                                                                                      

                                   of the random effects. 
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Here we need to describe and define concepts of fixed and random effects that are 

applied in mixed effects model.  A factor in a model is fixed if its levels are selected by a 

non random process or consists of entire population of all possible levels. A model is 

termed as fixed effect model if all the factors in the structure are fixed effects.  A factor 

in a model is random if its levels consist of a random sample from a population of all 

possible levels. A model is termed as random effect model if all the factors in the 

structure are random. Therefore in modeling, if the level of independent variable that 

occurs in the study is considered to be the only level of interest, each level has a fixed 

effect on the response variable and the independent variable is known as a fixed effect 

factor. However if the levels are considered to be random sample from the population of 

possible levels (and/or the levels of the effects are assumed to be randomly selected from 

infinite population of possible levels), each level will have a random effect on the 

response variable and the variable is known as a random effect factor. 

A model which contains both fixed and random effect factor with error terms is called 

mixed model or mixed effect model. And if the relationship among these factors, the 

error term and the response variable is linear we call such a model as linear mixed model. 

Hence, mixed effects model is a generalization of the standard linear model that enables 

the analysis of the data generated from several source of variation instead of just one.  

   3.8 The linear mixed model 

   The linear mixed effects model (LMM) introduced by Henderson (1975) is given by: 

 

                         , where  

   is (ni x p) design matrix that characterize the systematic part of the response 

depending on covariate and time (fixed effects). 

 β is (P x 1) vector of fixed effects parameters. 

   is (ni x k) design matrix for random effects. 

   is  (k x 1)  vector of random effects , among unit variation. 

   is  (ni x 1)   vector of  within-unit variation. 
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Assumptions of the model 

The theoretical assumptions about the covariance structure of the random vector b   and ei  

are as follows: 

            

                        var( ) = δ
2

e  I    

 

 

                          var(b) =D =     

 

 we note that var( ) = δ
2

i Iqi , with q1+….+qr = n, cov( , ) = 0, i≠j, cov(b,e)=0,  

cov(x,e)=0. As a result, var(y) =  = ε. The assumptions for bi and 

ei   are bi~N(0.D) , ei ~N(0. Ri
 ).  

        

  3.9 Estimation  

The model fitting consists of two parts, in estimating variance parameters, fixed effects, 

random effects. Estimation in Linear mixed effects model made by using restricted 

maximum likelihood (REML) and maximum likelihood (ML) and it is based on the 

maximum likelihood estimation approach which requires the assumption that the 

distribution of the response is normal. 

                     3.9.1 Maximum likelihood method 

The crucial requirement in estimating variance components of a set of data using 

maximum likelihood technique is the assumption of underlying probability distribution 

for the data. Maximum likelihood estimates are then, by definition, the parameter values 

for which the likelihood is maximized (Searle et al. (2006)). Gives the estimates of 

variance components, 
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                      δ
2(m+1)

e     =     

 

               

              δ
2(m+1)

i= =    

 

 

                                                                               

where W =(I +Z‟R
-1

ZD)
-1

=Wij,  i,j= 1,2,..,r and D has qi diagonal elements of δ
2
i. The 

superscript m is the number of iterations used to arrive at these estimates. tr represent 

trace operator. 

         3.9.1.1 Estimation of the parameters using maximum likelihood 

After criterion for convergence is fulfilled the next step is estimation of the parameters 

for the mixed model. A key assumption in the analysis is that b and e is normally 

distributed with mean zero and variance D and R respectively. 

            

          E  =     and var =  

 

Estimating D and  R in LMM . estimation of parameters in the mixed model is more 

difficult. In many situations, the best approach is to use likelihood based methods, 

exploiting the assumption that b and e are normally distributed (Jennrich and schluchter, 

1986). Using calculus, it is possible to reduce this maximization problem to one over only 

the parameters in D and R. the corresponding log likelihood functions are as follows: 

 

       ML:l(D,R)=   

 

           Where the vector r =   and p = rank(x). 
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Mixed model actually minimizes -2 times these functions using a ridge-stabilized 

Newton- Raphson algorithm. The second derivative matrix (H) of the objective function 

evaluated at the optima is available upon completion and the asymptotic theory of 

maximum likelihood (Serfling ,1980) shows that 2H
-1

  is an asymptotic variance –

covariance matrix of the estimated parameters of D and R. Mixed model profiles the 

residual variance out of log likelihood whenever it appears reasonable to do so. Therefore 

in LMM analysis, the ML provide estimates of D and R. which are denoted by    and  , 

respectively. 

 

                  3.9.2 Restricted maximum likelihood method (REML) 

A major drawback of maximum likelihood estimation in Linear mixed effects model is 

that it ignores the loss in degrees of freedom due to fitting fixed effects. Fortunately, a 

modified maximum likelihood procedure, the so-called restricted maximum likelihood as 

described by Patterson and Thompson (1971), overcomes these problems by maximizing 

only part of the likelihood which is independent of fixed effects. REML is often 

interpreted as a technique that is based on linear combination of y. not forgetting that this 

linear combination do not contain any fixed effects. Not surprisingly these linear 

combinations of values not containing any fixed effects turn out to be equivalent to the 

residuals obtained after we fit the model of fixed effects.   

Consider the set of values c‟y where matrices c‟ of dimensions (r x n) can be chosen to 

satisfy c‟y = c‟xB+c‟Zb such that no term in β is contained. That is from c‟xβ = 0 follows 

that c‟x=0. 

                  

                              P= V
-1

 –V
-1

X (X‟V
-1

X)
-1 

X‟ V
-1

 

 

 Where r= rank(x) and v = var(y) 

Searle et al. (2006) give the following solutions for the estimate the variance components 

of the random factors form REML equations. 
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                      δ
2(m+1)

=       

 

                    

                   δ
2(m+1)

i=        

 

                                           =  

 

where  S=     R
-1

 –R
-1

X(X‟R
-1

X)
-1 

X‟ R
-1

 ,  T=(I+Z‟SZG) 
-1

  =Tij   , i,j=1,2,….r   

and G has   qi diagonal elements of δ
2

i. the superscript m denotes the number of iteration 

needed to obtain the estimate.   

3.9.2.1 Estimation of the parameters using Restricted maximum likelihood 

method 

After criterion for convergence is fulfilled the next step is estimation of the parameters 

for the mixed model. A key assumption in the analysis is that b and e is normally 

distributed with mean zero and variance D and R respectively. 

            

          E  =     and var =  

 

Estimating D and R in LMM. Estimation of parameters in the mixed model is more 

difficult. In many situations, the best approach is to use likelihood based methods, 

exploiting the assumption that b and e are normally distributed (Jennrich and schluchter, 

1986). Using calculus, it is possible to reduce this maximization problem to one over only 

the parameters in D and R. the corresponding log likelihood functions are as follows: 

 

  REML:lR(G,R)=  

 

           Where the vector r =   and p = rank(x). 
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Mixed model actually minimizes -2 times these functions using a ridge-stabilized 

Newton- Raphson algorithm. The second derivative matrix (H) of the objective function 

evaluated at the optima is available upon completion and the asymptotic theory of 

maximum likelihood (Serfling ,1980) shows that 2H
-1

  is an asymptotic variance –

covariance matrix of the estimated parameters of D and R. Mixed model profiles the 

residual variance out of log likelihood whenever it appears reasonable to do so. Therefore 

in LMM analysis, the REML provide estimates of D and R. which are denoted by    and 

 , respectively. 

                3.10 Estimating β and predicting b in a LMM  

Inferences about fixed effects have come to be called estimates, whereas those that 

concern random effects are known as predictions. Procedures for obtaining such 

estimators and predictors have been developed using a variety of approaches. The most 

widely used procedures are BLUE and BLUP, referring respectively to best linear 

unbiased estimator and to best linear unbiased predictor. 

 

For mixed model ,the BLUE of β and the BLUP of b are offered a more compact method 

for jointly obtaining  and   in the form of (Henderson‟s, 1984)  mixed – model 

equations (MME), 

 

 

                            =  

 

We used the qq-plot of residual, histogram of residual, and the scatter plot of 

standardized residual versus predicted values to check whether the stated normality 

assumption is hold (met). 
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                3.11 Bayesian estimation approach  

Inference will be made based on ML and empirical Bayes estimation methods. If Ө is q- 

vector of variances and covariance parameters found in Ri, i= 1,2,…,m and D, then 

estimation for β and  Ө is based on ML from the marginal distributions of y an estimate 

to b can be obtained by use of an extended version of  the Gauss-Markov theorem for 

random effects(Harville,1976). And it can be derived using Bayesian formulation of the 

model. Here we introduce a flat prior for the location parameter β and an estimate Ө from 

the marginal likelihood y after integrating out β and bi, i= 1,2,…,m. this approach was 

considered by Harville(1974,1976) and Dempster, Rubin and TSutakawa (1981). The 

empirical Bayes estimate of β and the bi are the estimated means of the posterior 

distributions. 

The Bayesian formulation is emphasized in this paper because it provides both a 

conceptual and computations unity. And we denote these estimates by   ( ) and (Ө). 

When we consider the estimation of β and Ө simultaneously by maximizing there joint 

likelihood based on the marginal distribution of y. the ML estimates of ( , ) 

Satisfy      =   ( ) an =E (b/y, , ) gives   =   ( ) is the empirical Bayes 

estimate for b when Ө is estimated by ML,  so it is estimated using 

 ML for β and empirical Bayes for b. 

 

            3.11.1 Bayesian model fitting 

 

The Bayesian approach has a number of useful properties, for example it yields not only 

full posterior distributions for the parameters of interest but also full posterior (predictive) 

distributions for predicted values. It also provides a tractable method to fit more complex 

models - particularly of interest are those incorporating random effects that attempt to 

account for unobserved heterogeneity in the data set. 

From a frequentist perspective, the unknown parameters θ are treated as fixed values that 

must be estimated from the data. In contrast the Bayesian approach instead treats the 

parameters as random variables that are generated from some probabilistic distribution. 

A standard Bayesian model takes the form: 

 



18 

 

                              

                      

That is the conditional posterior distribution for the parameters θ given the data D is 

equal to the likelihood (the distribution of D given θ) multiplied by a prior distribution 

for θ, up to some normalizing constant. Hence the unknown posterior distribution p(θ | D) 

is expressed in terms of a known likelihood  p(D | θ) and a specified prior distribution 

p(θ). For simple models this can be calculated explicitly, however since the denominator 

involves integrating across the whole of the parameter space this becomes 

mathematically intractable when the number of parameters is large. Therefore a different 

fitting mechanism is required, the most widely used of which that of Markov chain 

Monte Carlo (MCMC) iterative is sampling. Monte Carlo integration involves sampling a 

large number of observations from a target distribution, and then using these samples to 

estimate various expected values. The law of large numbers ensures that the estimate can 

be made more accurate simply by increasing the sample size. Therefore if large numbers 

of samples can be obtained from the posterior distribution p(θ | D) then Monte Carlo 

integration offers a method to extract the required quantities of interest from these values. 

All that is required is a tractable method to sample from the posterior, and this can be done 

using a Markov chain. A Markov chain is a sequence of numbers where each number depends 

only on the previous value in the chain. It can be shown that under certain regularity conditions a 

Markov chain will converge to a so-called stationary distribution. If a Markov chain can be 

constructed such that its stationary distribution is identical to the posterior distribution of interest, 

then the required sample values can be obtained. MCMC combines these two techniques and has 

the advantage that it can produce estimates from the posterior distribution without requiring 

knowledge of the normalizing constant.  
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                           3.11.2 Gibbs sampling 

 

The parameters θ do not have to be updated as a block, but can be updated separately if preferred, 

with corresponding changes to the proposal distributions. In this circumstance a special case of 

the Metropolis-Hastings algorithm occurs when knowledge of the full conditional distributions 

for individual parameters θi, i = 1, . . . ,m, given θi−, that is  p(θi | x, θ1, . . . , θi−1, θi+1, . . . , θm) are 

known. Hence the proposal distribution q(θcandi |θi, θi−) = p(θcandi | θi−), and as a result the 

acceptance probability in is always equal to one. This technique is known as Gibbs sampling 

(Geman and Geman 1984, Gelfand and Smith 1990). 

Combinations of Metropolis-Hastings and Gibbs sampling can be used if required, and the 

adaptive rejection sampling method proposed by Gilks and Wild (1992) means that as long as the 

conditional distributions of the parameters are log-concave, then Gibbs sampling can be used 

even if the distribution is complicated and is not specified explicitly. And These techniques are 

implemented in WinBUGS (Bayesian inference Using Gibbs Sampling). 

 

                    3.12 Convergence analysis in Bayesian approach 

The Gelman-Rubin statistic convergence analysis in Bayesian analysis is working to 

check convergence with three independent parallel chains. Before we summarize 

simulated parameters, we must ensure that the chains have converged and accurate. 

History plot plots out a complete trace for the variable and can be used for diagnosing the 

convergence of parameter estimates in Bayesian analysis. The package gives the plot by 

making iteration number on the x-axis and parameter value on the y-axis for each 

parameter. For all parameters, the plots of the last  iterations for two independently 

generated chains demonstrated well “chain mixture” an indication of convergence.  The 

Time series plots (trace) show that the chains with two different colours overlap one over 

the other. Hence, we are reasonably confident that convergence has been achieved. 

Autocorrelation plot is the other recommended test for convergence of a Bayesian 

analysis.  For all statistical parameters, the plots of the first  lags of two independently 

generated chains demonstrated good “chain mixture” an indication of convergence. The 

plots show that the two independent chains were mixed or overlapped to each other and 

died out for higher lags and hence this is an evidence of convergence.  
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Density plot is another recommended technique for identifying non convergence. The 

plots indicates none of the coefficients have bimodal density, and hence the simulated 

parameter values were converged. 

 

Deviance information criterion (DIC) can be used to assess model complexity and 

compare different models. It is important to note that DIC assumes the posterior mean to 

be a good estimate of the stochastic parameters. The deviance information criterion (DIC) 

is the generalization of the AIC for Bayesian model fitting using MCMC methods 

(Spiegel halter et al 2002). Dbar is the posterior mean of the deviance.  
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CHAPTER 4 

4 Result and Discussion 

4.1 Exploratory Data Analysis for evolution of upper arm circumference of infant 

Exploratory analysis comprises techniques to visualize patterns in the data. Data analysis 

must begin by making displays that expose patterns relevant to the scientific question. 

Most longitudinal studies address the relationship of a response with explanatory 

variables, often including time. The following aspects of the data will be looked; 

individual profiles, the average evolution, the variance function, and the correlation 

structure. Data exploration is a very helpful tool in the selection of appropriate models. In 

the following sections exploratory analysis for the Jimma infants data sets considered. 

 

Let us consider the jimma infant data set. In this data set, subjects are classified into two 

groups by the variable SEX, an indicator variable assuming the value MALE for boys 

and FEMALE for girls. Each subject has seven measures of AC, and the 8966 total 

records are grouped into 1480 groups by Id. We will try to see the mean profile for this 

data set.  

                  

                        4.2 Individual profile of upper arm circumference growth by sex 

Figure 4.1 shows how the upper arm circumference of male and female infants evolves 

overtime. This is also something that we can observe from the individual profiles, which 

show an increasing pattern over age. There is an increase in upper arm circumference 

overtime for both males and females. Of course, at this point, it is not yet possible to 

decide on the significance of this difference. On the other hand, from the individual 

profiles, it seems that the variability is almost the same among the two groups. 
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Figure 4.1: Individual profile plot of upper arm circumference 

 

                  4.3 Mean profile of upper arm circumference growth by sex 

Figure 4.2 shows the average mean profile plot of mean evolution of upper arm 

circumference by sex, males appear to have higher mean profile than females, though this 

is not quite clear from subject specific profile plots. Of course, at this point, it is not yet 

possible to decide on the significance of this difference.  
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Figure 4.2: mean profile plot of upper arm circumference 

From figure 4.2 : 

-It appears that there is a linear growth pattern up to age 6 and almost constant after  

age  6 for both sex. 

-The mean profile for males is higher than that of females 
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                    4.4 Exploring the Variability of the Observed Data 

 

Having appropriate model, studying the evolution of the variance is very important step 

of the modeling approach. For the Jimma infant survival data, the observed variance 

displayed in the Figure below, shows an increase in variability overtime. Hence, a 

heterogeneous variance structure may be a good starting point. 

 

Moreover, the variability for males and females seems to be more or less the same up to 

age 6 and different after age 6.  
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                             Figure 4.3:  Variability of the Observed AC 
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4.5 Statistical analysis of Data Sets Using Mixed Models 

4.5.1 Fitting Linear Mixed Effect Model for upper arm circumference of infant’s 

A model fitted to the evolution of upper arm circumference of infant using the covariate 

age(AGE), sex(SEX), supplementary food(SUPPFOOD), powder milk(POWDERMI) 

and their interaction with age(AGE) the model is, 

 

ACi=β0+ β1AGE+ β2*SEX+ β3*SUPPFOOD+ β4*POWDERMI+ β5*AGE*SEX+ 

β6*AGE*SUPPFOOD+ β7*AGE*POWDERMI+b0i + b1i*AGE + єi 

  Where βi „s are the parameters and boi , b1i are intercept and slope for the random effect 

and they are normaly distributed, єi is the within unit variation for i = 1,2,…. 

The random effects estimate using restricted maximum likelihood method. 

Table 4.1 standard deviation of random effects estimate using restricted maximum 

likelihood method. 

 

 

           

 

 

 

The lme(linear mixed effect) function we are using in the above model is the restricted-

maximum likelihood fit, which tends to produce more conservative estimates of the 

variance components. A maximum likelihood fit of Random effects estimate using 

maximum likelihood method can be obtained. 

Table 4.2 standard deviation of random effects estimate using maximum likelihood 

method. 

 

 

 

                

 

 StdDev Corr   

(Intercept) 0.8352031 (Intr) 

AGE 0.1081101 -0.052 

Residual 0.9670271         

 StdDev Corr   

(Intercept) 0.8339264 (Intr) 

AGE 0.1078235 -0.049 

Residual 0.9661860  
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As expected, the ML estimates of the random-effects standard deviations are smaller than 

the corresponding REML estimates. The estimated within group residual standard 

deviations are identical. In general, the fixed-effects estimates obtained using ML and 

REML are similar. Inferences regarding the fixed effects are essentially the same for the 

two estimation methods. By fitting linear model using linear model (lm) fit, we can 

compare it with lme fit as follows. 

 

ACi=β0+ β1AGE+ β2*SEX+ β3*SUPPFOOD+ β4*POWDERMI+ β5*AGE*SEX+ 

β6*AGE*SUPPFOOD+ β7*AGE*POWDERMI + єi 

 

Table 4.3 comparison of lm with lme  

 

Where fit8 is lme and fitlm8 is linear regression model. 

In this case, as evidenced by the low p-value for the likelihood ratio test, the linear 

mixed-effects model provides a much better description of the data than the linear 

regression model.  This is because the model used in lm ignores the group structure of the 

data and incorrectly combines the between-group and the within-group variation in the 

residual standard error. 

 

 

 

 

 

 

 

 

 

 Model Df AIC BIC logLik Test L.Ratio p-value 

fit8 1 12 28636.29 28721.49 -14306.14    

fitlm8 2 9 31972.18 32036.08 -15977.09 1 vs 2 3341.887 <.0001 
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4.5.2 Patterned Variance Covariance Matrices for the Random Effects  

The pdMat(positive definite matrix) classes are used to specify patterned variance 

covariance matrices for the random effects. The default class of positive definite matrix 

for the random effects is pdSymm, corresponding to a general symmetric positive definite 

matrix. The constructor for the pdDiag class is also called pdDiag. Because initial values 

for D can be derived internally in the lme function and it can be fitted. 

   

ACi=β0+ β1AGE+ β2*SEX+ β3*SUPPFOOD+ β4*POWDERMI+ β5*AGE*SEX+ 

β6*AGE*SUPPFOOD+ β7*AGE*POWDERMI+b0i + b1i*AGE + єi 

  Where βi „s are the parameters and boi , b1i are intercept and slope for the random effect 

with diagonal structure. 

When we fit with pdDiag class all estimates are similar to the previous object which was 

created previously with the default covariance structure (pdSymm). Another pdMat 

classes, that are used to specify patterned variance covariance matrices for the random 

effects is positive definite compound symmetry structure (pdCompSymm) and block 

diagonal (pdBlocked). 

We can compare the four models one with general symmetric positive-definite (pdSymm) 

covariance matrix the other with the modified or simplified covariance structure(pdDiag) 

and the block diagonal(pdBlocked) covariance matrix using anova procedure as follows. 

     Table 4.4 comparison of the different patterned covariance structure  

    pdMat            Model df AIC BIC logLik Test L.Ratio p-value 

Fit8 1 13 28633.51 28725.81 -14303.75    

pdDiag  2 12 28632.40 28717.60 -14304.20 1 vs 2 0.88919 0.3457 

pdCompSymm 3 12 29287.58 29372.78 -14631.79    

pdBlocked 4 12 28632.40 28717.60 -14304.20      

                        

since the fitted models are not nested we can compare them using AIC and BIC. So, the 

smaller AIC and BIC makes fit3diag preferable. 

            

 

         



28 

 

                      5.3 Variance Functions with linear mixed effect  

The  varFunc classes are used to specify within-group in the mixed effects model. 

Standard varFunc classes like varFixed (fixed variance), varIdent (different variances per 

stratum),varPower (power of covariate), varExp (exponential of covariate), varComb( 

combination of variance functions). 

      

Figure 4.4 shows that the plot of the standardized residuals versus fitted values by gender 

for homoscedasticity variance and the variability in the infants‟ upper arm circumference 

measurements is almost the same for both genders but few outlying observations are 

clearly seen. 

           - Within each gender the variability is somewhat constant 

           - Few outlying observations are clearly seen. 
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Figure 4.4  plot of the standardized residuals versus fitted values 
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The above results suggest that a model that allows different variances by gender for the 

within-group error might represent the upper arm circumference growth of infant data set. 

The lme function allows the modeling of heteroscesdasticity of the within-error group via 

a weights argument. The varIdent variance function structure allows different variances 

for each level of a factor and can be used to fit the heteroscedastic model for the upper 

arm circumference evolution of infant.  

The parameters for varIdent give the ratio of the stratum standard errors to the within-

group standard error. To allow identifiably of the parameters, the within-group standard 

error is equal to the first stratum standard error. The standard error for the girls is about 

0.965717/1 multiplied by 100 gives 96 percent of that for the boys. The remaining 

estimates are very similar to the ones in the homoscedastic fit. 

We can assess the adequacy of the heteroscedastic fit by re-examining plots of the 

standardized residuals versus the fitted values by gender. Figure 4.5 gives us the Scatter 

plots of standardized residuals versus fitted values for the heteroscedastic fit of varIdent 

by gender. 
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Figure 4.5 Plots of the standardized residuals versus the fitted values by gender. 

 

-  Like the previous plot the standardized residuals in each gender have about the same  

variability. 

-    We can still identify the outlying observations, corresponding to the previous Id. 

 

A better way of seeing this by looking at a plot of the observed responses versus the 

within-group fitted values for hetroscedastic variance of model  varIdent as shown in 

Figure 4.6. 
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        Figure 4.6 Plot of the observed responses versus the within-group fitted values 

 

The varIdent fitted values are in close agreement with the observed infant upper arm 

circumference, except for the two extreme observations on Id 254 and 1179. The need for 

an heteroscedastic model growth data can be formally tested by comparison. 

      Table 4.5 comparison of varident variance function with the default variance function  

 

Variance func Model   df AIC BIC logLik 

default 1 12 28636.29 28721.49 -14306.14 

varIdent 2 12 28633.30 28718.50 -14304.65 
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The small AIC of the anova test confirms that the heteroscedastic model explains the data 

significantly better than the homoscedastic model. The assumption of normality for the 

within-group errors can be assessed with the normal probability plot of the residuals, 

produced by the qqnorm method. Figure below, is a normal plots of the residuals 

corresponding to varIdent by gender.  
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      Figure 4.7 Normal Probability Plot of Residuals for the Model with Heteroscedastic 

Variance 

 

Once again, we observe the two outlying points, but for the rest of the observations the 

normality assumption seems plausible. 
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                 4.5.3.1 Assessing Assumptions on the Random Effects 

In this section, we describe diagnostic methods for assessing on the distribution of the 

random effects. As we have seen in the previous sections the random effects method is 

used to extract the estimated BLUPs of the random effects from lme objects. These are 

the primary quantities for assessing the distributional assumptions about the random 

effects.  

 

Let us consider for which we have fitted the homoscedastic and heteroscedastic models. 

We first consider the homoscedastic fitted object and investigate the marginal normality 

of the corresponding random effects using the normal probability plots. 

And figure 4.8 shows:     

-The assumption of normality seems reasonable for both random effects, though there 

      is some asymmetry in the distribution of the (AGE) random effects. 

- A few outliers appear to be present in both random effects. 
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Figure 4.8 Normal Probability Plot of Residuals for the Model with homoscedastic 

Variance 

 

To investigate the homogeneity of the random-effects distribution for boys and girls, we 

use the pairs method to obtain scatter plots of the random-effects estimates by gender. 
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Figure 4.9 Scatter Plots of Random Intercept versus Slope for Homoscedastic Model 

 

- This plot is the scatter plot of estimated random effects for the homoscedastic fit. 

- Once again the observation from 1134 is identified as outlier. 

- Except for the pair corresponding to Id 1134, the estimated random effects in 

    the two groups seem to have similar distributions. 

 

 Now let us consider the normal plot of estimated random effects for the heteroscedastic 

varIdent lme fit.  
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Figure 4.10 Normal Probability Plot of Residuals for a Model with Heteroscedastic 

Variance 

 

- Figure 4.10 is a normal probability plot for the model with heteroscedastic random 

effects. 

- The normal probability plots of the estimated random effects with heteroscedastic 

varIdent fit are almost similar to the corresponding plots for the model with 

homoscedastic fit. 

-  In mixed-effects estimation, there is a trade-off between the within group variability 

and the    between-group variability, when accounting for the overall variability in the 

data. 
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The homogeneity of the random-effects distribution for boys and girls can be investigated 

by using the pairs method. This gives us the scatter plots of the random-effects estimates 

by gender, for the heteroscedastic model varIdent are as shown in Figure 4.11.  
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Figure 4.11 Scatter Plot of Random Intercept versus Slope for Heteroscedastic Model 

 

The above plot does not suggest any departures from the assumption of homogeneity of 

the random effects distribution. 
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               4.5.3.2 Different Variance Functions for Modeling Heteroscedasticity 

Variance functions are used to model the variance structure of the within group errors 

using covariates. Here we will try to show how to apply the different variance functions 

in modeling heteroscedasity.  

 

We begin by using the fitted homoscedastic linear mixed effects model. The primary tool 

for investigating within-group heteroscedasticity is the plots of residuals against the fitted 

values and other candidate variance covariates. Let us first see the plot of residuals with 

age by sex for homoscedastic fitted model.  
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                 Figure 4.12    Plots of raw residuals versus AGE 
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From the plots of raw residuals AGE by SEX, shown in Figure 4.12, we can see the 

residual variability is some what higher for females than for males. However, the 

residuals variability remains constant with age classifying residuals by sex. The variance 

covariate used in this case is AGE.  Let us see by fitting varPower variance function to 

compare with the homoscedastic model. 

Table 4.6 Comparison of the homoscedastic  with heteroscedasitic varPower models 

Variance 

function 

Model df AIC BIC logLik 

defoult 1 12 28636.29 28721.49 -14306.14 

varPower 2 12 28611.57 28696.78 -14293.79 

      

The smallest AIC for hetroscedastic varPower model is preferable. We may wish to 

further investigate if a varExp and varComb variance structure. This is the combination 

of variance structures. With this variance structure, we can allow for both an increase in 

residual spread for larger AGE values as well as a different spread per SEX.  
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                     4.5.3.2.1 Comparison between models for the fitted variance function 

Now let us see how we can compare all the models we have fitted above. In order to use 

the likelihood ratio test to compare models the models must be nested. Two models are 

called nested if one model can be obtained from the other model by setting specific 

parameters equal to zero. Therefore, in our case models are not nested and we use AIC to 

compare the models.  

Table 4.7 comparison of  the different  variance function 

 Model df AIC BIC logLik Test L.Ratio p-value 

fit3diag 1 11 28635.27 28713.38 -14306.64    

fm3Orth.lme 2 12 28633.30 28718.50 -14304.65 1 vs 2 3.976 0.0461 

fitvp.lme 3 12 28611.57 28696.78 -14293.79    

fm6Orth.lme 4 13 28394.37 28486.67 -14184.18 3 vs 4 219.21 <.0001 

fm7Orth.lme 5 14 28394.79 28494.20 -14183.40 4 vs 5 1.574 0.2097  

 

Where fit3diag, fm3Orth.lme, fitvp.lme, fm6Orth.lme, and fm7Orth.lme are models for 

pdBlocked, varIdent, varPower, varExp and varComp variance functions.  

The smallest AIC for hetroscedasticity model fm6Orth.lme is preferable. AIC is almost 

equal to model fm7Orth.lme but when we look their Bayesian information criteria(BIC) 

model fm6Orth.lme has smallest BIC. Therefore, model fm6Orth.lme is preferable. 

 

4.5.4 Correlation Structure for Modeling Dependence  

In the linear mixed effects model, Yi = Xiβ + Zibi + єi,  We have assumed that the within 

group error terms are independent and have homoscedastic variance. The assumption of 

homoscedastic variance was relaxed by using different types of variance functions. Now 

we shall discuss different approaches of handling the dependence of the within error 

terms in the model. Correlation structures are used to model dependence among 

observations. In the context of linear mixed-effects models the correlation structures are 

used to model dependence among the within-group errors.   The nlme library provides a 

set of classes of correlation structures, the corStruct classes, which are used to specify 

within-group correlation models to model dependence of the within group errors in the 

above linear mixed effects model.  
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            4.5.4.1 Different Correlation Structures with linear mixed effect  

Correlation structures are specified as corStruct objects. Now we describe the use of 

correlation models in lme by considering the upper arm circumference growth of infant 

data set. While analyzing the upper arm circumference growth of infants data set we have 

selected one of the Heteroscedasitic variance model. We will begin from this model to 

search for a better correlation structure. The selected model was fm6Orth.lme.  

Let us assume that our data are time series data and then study the autocorrelation func- 

tion . The ACF method for the lme class obtains the empirical autocorrelation function 

from the residuals of an lme object. The autocorrelation function of the selected model  

fm6Orth.lme  is indicated below. 

Table 5.8 Autocorrelation function 

s.no  lag  ACF 

1  0  1.00000000 

2  1  -0.02551666 

3  2  -0.22255578 

4  3  -0.26064938 

5  4  -0.22406909 

6  5  -0.04978312 

7  6  0.15765067 

 

              

Figure 4.13 shows The empirical autocorrelation functions are significantly different 

from 0 at lag one. 
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                            Figure 4.13   Plot of Auto Correlation 

This suggests that an AR(1) model may be fitted and compared with model fm6Orth.lme. 

The new model that takes into account the dependence of the within error terms can be 

fitted with AR(1) correlation structure and using different correlation structures like 

moving average of order one, continuous-time AR(1), ARMA(1,1), exponential, 

compound symmetric, ratio, spherical, linear, and Gaussian.  
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            4. 5.4.1.2 Comparison between models for the fitted correlation structure 

The following output is model comparison for different correlation structures. This result 

shows that the model with corARMA (Autoregressive-moving average) correlation 

structure is preferable model for the infant data. 

 

Table 4.9 Comparison of models for selection of different correlation structure. 

 

 Model df  AIC  BIC logLik Test L.Ratio P-value 

fmcor.lme 1 14  28396.37  28495.77 -14184.2    

fm6Orth.lme 2 13  28394.37  28486.67 -14184.2 1 VS 2 0.0000 1.0000 

fmcor.lme2 3 15  28025.73  28132.23 -13997.9 2 VS 3   372.6406 <.0001 

fmcor.lme3 4 14  28194.17  28293.57 -14083.1 3 VS 4 170.4392 <.0001 

fmcor.lme4 5 15  28188.74  28295.24 -14079.4 4 VS 5 7.4273 0.0064 

fmcor.lme5 6 14  28194.17  28293.57 -14083.1 5 VS 6 7.4273 0.0064 

fmcor.lme6 7 14  28736.58  28835.98 -14354.3    

fmcor.lme7 8 14  28194.17  28293.57 -14083.1    

fmcor.lme8 9 14  28212.24  28311.64 -14092.1    

fmcor.lme9 10 14  28212.24  28311.64 -14092.1    

fmcor.lme10 11 14  28211.69  28311.09 -14091.8    

 

Where fmcor.lme, fm6Orth.lme, fmcor.lme2, fmcor.lme3, fmcor.lme4, fmcor.lme5, 

fmcor.lme6, fmcor.lme7, fmcor.lme8, fmcor.lme9, and fmcor.lme10 are model for 

Autoregressive of order one, exponential variance function, Autoregressive moving 

average of order one, continuous-time AR(1), ARMA(1,1), exponential, compound 

symmetric, ratio, spherical, linear, and Gaussian respectively.  

For infant data set we have tried several models with different correlation structure. We 

end up in selecting a model fmcor.lme2 with smallest AIC, BIC, using anova , with 

Autoregressive-moving average. To mention a few points about modeling in R first we 

deal with the variance structure by using different variance functions then we consider 

the correlation structure. The combined result will be equivalent to dealing with variance 

covariance structure. 
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The following table 4.10 is fixed effect estimate for the selected model with 

Autoregressive-moving average. 

 

Table 4.10 fixed effect estimate of the parameter 

 Value Std.Error DF  t-value p-value 

(Intercept) 11.41677 0.047146 7479 242.1603 0.0000 

AGE 0.338638 0.007578 7479 44.68478 0.0000 

SEXMALE 0.251061 0.06256 7479 4.01314 0.0001 

SUPPFOOD 1.843013 0.069629 7479 26.46906 0.0000 

POWDERMI 0.439541 0.27244 7479 1.61335 0.1067 

AGE:SEXMALE 0.006951 0.008092 7479 0.85891 0.3904 

AGE:SUPPFOOD -0.31411 0.008809 7479 -35.6587 0.0000 

AGE:POWDERMI -0.06051 0.034399 7479 -1.75909 0.0786 

   

The small p-values associated with SEXM and large p-value for AGE:SEXM in the 

summary output indicate that boys and girls haven‟t significant difference in upper arm 

circumference growth patterns. And also the parameters intercept, age, sex, 

supplementary food, and the interaction of age with supplementary food are found to be 

significant parameter. The other parameter powder milk, and the interaction of age with 

sex, the interaction of age with powder milk are not significant. 

 

Table 4.11 is the summarized maximum likelihood and restricted maximum likelihood 

estimators of the model with random intercept and slope. The summary is made for the 

model that contains eight covariates and as we can see the standard errors of the two 

estimates are the same. 
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Table 4.11 summarized maximum likelihood and restricted maximum likelihood 

estimators 

 

Effect Parameter MLE(s.e) REML(s.e) 

(Intercept) β0 11.416962( 0.047) 11.416767( 0.05) 

AGE β1 0.338599( 0.008) 0.338638 (0.008) 

SEXMALE β 2 0.251115 (0.063) 0.251061 (0.062) 

SUPPFOOD β 3 1.843030( 0.069) 1.843013 (0.069) 

POWDERMI β 4 0.439355( 0.272) 0.439541 (0.272) 

AGE:SEXMALE β 5 0.006944 (0.008) 0.006951 (0.008) 

AGE:SUPPFOOD β 6 -0.314096( 0.009) -0.314112 (0.009) 

AGE:POWDERMI β 7 -0.060463 (0.034) -0.060512 (0.034) 

 

    Variance covariance matrix for Random effects of selected model. 

Table 4.12 Variance covariance matrix for Random effects of selected model. 

 

 

 

 

 
 

 

Now let us consider the normal plot of estimated random effects for the heteroscedastic 

fmcor.lme2 lme fit using  finally selected(preferable) model. 

 

                                 

 

 (Intercept) AGE 

(Intercept) 0.495220 0.0142460 

AGE 0.014246 0.0087795 
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               Figure 4.14 Normal plots of estimated random effects 

 

- The assumption of normality seems reasonable for both random effects. 

- A few outliers appear to be present in both random effects. 
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4.5.5 Inference for fixed effects using contrasts for Linear Mixed effects  

Using the evolution of upper AC we shall briefly show how to apply contrasts to lme 

objects. Suppose our interest is to compare the mean evolution of upper arm 

circumference of infant between genders, mean evolution of upper arm circumference of 

infant changes over time and mean evolution of upper arm circumference of infant differ 

for those infant given supplementary food or not .  

 

4.5.5.1 Mean evolution of upper arm circumference of infant over time and gender 

difference. 

Table 4.13 fixed effect for mean evolution of upper arm circumference of infant  

 

 Value Std.Error DF t-value P-value 

(Intercept) 10.683090 0.04531637 7473 235.7446 0.0000 

AGE 2 1.900051 0.04496911 7473 42.25235 0.0000 

AGE 4 2.725439 0.05094171 7473 53.50113 0.0000 

AGE 6 2.948209 0.05543581 7473 53.18239 0.0000 

AGE 8 2.903339 0.05857493 7473 49.56624 0.0000 

AGE 10 2.853430 0.06178234 7473 46.18520 0.0000 

AGE 12 2.837058 0.06608990 7473 42.92726 0.0000 

SEXMALE 0.179800 0.06205235 7473 2.89755 0.0038 

AGE 2:SEXMALE 0.133679 0.06219779 7473 2.14926 0.0316 

AGE 4:SEXMALE 0.191518 0.07016389 7473 2.72958 0.0064 

AGE 6:SEXMALE 0.201832 0.07657086 7473 2.63589 0.0084 

AGE 8:SEXMALE 0.153391 0.08066327 7473 1.90163 0.0573 

AGE 10:SEXMALE 0.054971 0.08495498 7473 0.64706 0.5176 

AGE 12:SEXMALE 0.041618 0.09048396 7473 0.45994 0.6456 

 

From the above output we can see that the intercept = 10.683 is the mean evolution of 

upper arm circumference of infant for females at the reference age 0. The corresponding 

mean evolution of upper arm circumference of infant for males is given by 

10.683+0.1798=10.851. The coefficients for age 2, age 4, age 6, age 8, age 10,  and age 



48 

 

12 are 1.900, 2.7254, 2.9482, 2.9033, 2.8534, 2.8371 respectively. These values show the 

difference in mean evolution of upper arm circumference of infant between the reference 

age and the specified age level for females. For instance, the coefficient of age 2, which 

is  1.900, is the difference in mean evolution of upper arm circumference of infant 

between age 0 and age 2 for females. 

The coefficients for the interaction terms refer to the difference between males and 

females at deferent age levels. From our above output we can produce the coefficients for 

males and females as follows. 

         Table 4.14 Estimate of the coefficients for male and female at different age levels 

 

 Estimate   For 

Female 

Estimate 

for male 

 

(Intercept)  10.683090  10.6830+0.180=10.863 

AGE 2  1.900051  1.900051+0.134=2.034 

AGE 4  2.725439  2.725439+0.192=2.917 

AGE 6  2.948209  2.948209+0.202=3.150 

AGE 8  2.903339  2.903339+0.155=3.058 

AGE 10  2.853430  2.853430+0.055=2.908 

AGE 12  2.837058  2.837058+0.042=2.879 

 

Therefore small p-value for age 2, age 4, ….,age 12 indicates that there is significance 

difference in mean evolution of upper arm circumference of  infants between  the 

reference age 0 and age 2, age 4, ….,age 12. and  for the interaction term 

AGE12:SEXMALE, AGE14:SEXMALE and AGE16:SEXMALE small p-value 

indicates  that there is significance difference in mean evolution of upper arm 

circumference of infants between  males and females at age 2, age 4, age 6.  

The other interactions have large p-value which means that there is no significant 

difference in mean evolution of upper arm circumference of infants between males and 

females at age 8, 10, 12 respectively. 
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4.5.5.2 Mean evolution of upper arm circumference of infant differ for 

supplementary food behavior. 

Table 4.15 fixed effect estimate of the mean evolution of upper arm circumference of 

infant differ for supplementary food behavior. 

 

 Value Std.Error DF t-value  P-value 

(Intercept) 10.77773 0.032234 7473 334.3619  0.0000 

AGE 2 1.968151 0.031089 7473 63.3069  0.0000 

AGE 4 2.857342 0.036462 7473 78.3644  0.0000 

AGE 6 3.109016 0.045026 7473 69.0491  0.0000 

AGE 8 3.087466 0.058732 7473 52.5691  0.0000 

AGE 10 3.002383 0.07666 7473 39.165  0.0000 

AGE 12 3.048194 0.10691 7473 28.5118  0.0000 

SUPPFOOD 1 -0.97829 1.007579 7473 -0.9709  0.3316 

AGE12:SUPFOOD 1 0.92358 1.029172 7473 0.8974  0.3695 

AGE14:SUPFOOD 1 0.747589 1.009926 7473 0.7402  0.4592 

AGE16:SUPFOOD 1 0.856978 1.008695 7473 0.8496  0.3956 

AGE18:SUPFOOD 1 0.841135 1.009098 7473 0.8336  0.4046 

AGE110:SUPFOOD 1 0.848181 1.010103 7473 0.8397  0.4011 

AGE112:SUPFOOD 1 0.784516 1.012876 7473 0.7745  0.4386 

 

From the above output we can see that the intercept = 10.77796 is the mean evolution of 

upper arm circumference of infant  for those Childs with out supplementary food  at the 

reference age 0. The corresponding mean evolution of upper arm circumference of 

infants for those Childs with supplementary food  is given by 10.778-0.979=9.799. The 

coefficients for those Childs with out supplementary food  at  age 2, age 4,age 6,age 8,age 

10,  and age 12 are 1.969, 2.8595, 3.1099, 3.0869, 2.9947, 3.0475 respectively. These 

values show the difference in mean evolution of upper arm circumference of infant 

between the reference age and the specified age level for those Childs with out 

supplementary food. For instance, the coefficient of age 2, which is  1.969 , is the 
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difference in mean  evolution of upper arm circumference of infant between age 0 and 

age 2 for those Childs with out supplementary food. 

The coefficients for the interaction terms refer to the difference between those Childs 

with out supplementary food and those Childs with supplementary food at deferent age 

levels.  

 

From Table 4.15 we can produce the coefficients for those Childs with supplementary 

food and without. 

Table 4.16 estimate of age level covariate with supplementary food and without 

 

 Estimate for those Childs 

without 

Supplementary food 

Estimate for those Childs 

with 

Supplementary food 

Intercept  10.77773 10.77773+0.924=11.602 

AGE12 1.968151 1.968151+0.748=2.716 

AGE14 2.857342 3.604931 

AGE16 3.109016 3.965994 

AGE18 3.087466 3.928601 

AGE110 3.002383 3.850564 

AGE112 3.048194 3.83271 

 

Therefore small p-value for age 2, age 4, ….,age 12 indicates that there is significance 

difference in mean evolution of upper arm circumference of infants between  the 

reference age 0 and age 2, age 4, ….,age 12. and  for the interaction term large p-value 

indicates that there is no significance difference in mean evolution of upper arm 

circumference of infants between infants those with supplementary food and with out 

supplementary food  at each age levels.  
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   4.5.5.3 Gender difference for supplementary food behavior  

Table 4.17 Gender difference for supplementary food behavior  

 Value Std.Error DF t-value p-value 

(Intercept) 12.79165 0.044498 7483 287.4626 0.0000 

SEXMALE 0.228847 0.061707 7483 3.70861 0.0002 

SUPPFOOD11 0.202126 0.041131 7483 4.91424 0.0000 

SEXMALE:SUPPFOOD11 0.051595 0.059302 7483 0.87004 0.3843 

   

           Large p-value for the interaction SEXM and SUPPFOOD11 indicates that there is 

is no significance difference in mean evolution of upper arm circumference of infants 

between genders. 
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If we see the plot of mean evolution of upper arm circumference of infants versus infants 

those with supplementary food and with out supplementary food there is no difference in 

mean evolution of upper arm circumference of infants between genders. 
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 Figure 4.15 Plot of mean evolution of upper arm circumference for supplementary food 

behavior 
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                   4.5.6 Bayesian analysis of the Linear mixed effects models 

In the analysis of Bayesian implementation of the Linear mixed effects models we run the 

Gibbs sampler defined with 60,000 iterations in two different chains, 10000 burn-in terms 

discarded, as to obtain 50000 samples from the full posterior distribution.  Of which 

seven covariates which were significant in the likelihood approach were also statistically 

significant in the Bayesian implementation of the Linear mixed effect models. History 

plot plots out a complete trace for the variable and can be used for diagnosing the 

convergence of parameter estimates in Bayesian analysis. The package gives the plot by 

making iteration number on the x-axis and parameter value on the y-axis for each 

parameter. For all parameters, the plots of the last 40000 iterations for two independently 

generated chains demonstrated well “chain mixture” an indication of convergence.  

Figure below shows history plot for the intercept and other seven parameters. The Time 

series plots (trace) show that the chains with two different colours overlap one over the 

other. Hence, we are reasonably confident that convergence has been achieved.  
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                Figure 4.16  history plots for the seven parameter        

Autocorrelation plot is the other recommended test for convergence of a Bayesian 

analysis.  The plots show that the two independent chains were mixed or overlapped to 

each other and died out for higher lags and hence this is an evidence of convergence.  
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                    Figure 4.17 Autocorrelation plots for all seven parameter. 

 

Gelman-Rubin statistic (GR) is also another way of checking convergence in Bayesian 

analysis.  
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               Figure 4.18  plot of Gelman-Rubin statistic for all parameter. 

 

Density plot is another recommended technique for identifying non convergence. 
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                          Figure 4.19 density plot for all parameter. 

 

Deviance information criterion (DIC) can be used to assess model complexity and 

compare different models. It is important to note that DIC assumes the posterior mean to 

be a good estimate of the stochastic parameters. The deviance information criterion (DIC) 

is the generalization of the AIC for Bayesian model fitting using MCMC methods 

(Spiegel halter et al 2002). Dbar is the posterior mean of the deviance.  

  

Table 4.18 Deviance information criterion (DIC) 

    Dbar             Dhat             DIC      pD 

 

AC 2431.0           81930.0                       -77060.0 -79490.0 

Total 2431.0           81930.0           -77060.0  -79490.0 

 

One way to assess the accuracy of the posterior estimates is by calculating the Monte 

Carlo error for each parameter. To have accurate posterior estimates the simulation 

should be run until the Monte Carlo error for each parameter of interest is less than about 

5% of the sample standard deviation. The output in Table below shows that all covariates 

have Monte Carlo errors much less than 0.05, and hence evidence for accuracy of 

posterior estimates in the Bayesian implementation of the Linear mixed effect models.  

Once convergence and accuracy of posterior estimates are maintained, summarizing the 

posterior statistics is possible. As a result the summary statistics of the posterior 

distributions are presented below. 
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Table: 4.19 Summary statistics of the posterior distributions of the model parameters  

                                    Mean            standard    MC-error         lower CI  median         upper CI     

                                                         deviation                      interval interval 

 β0      11.68              0.1082   0.002168           11.47   11.67             11.89**  

 β1        0.3749           0.02072    4.195E-4             0.3338    0.3751               0.4138**  

 β2        0.1991           0.1376   0.002734            0.1739    0.1994              0.3676**  

 β3        1.704             0.2538   0.005756             1.221    1.699              2.208**  

 β4       -1.895            1.331   0.02621              -4.497   -1.884              0.6962  

 β5        0.01138        0.02026   3.973E-4            -0.02807    0.01132             0.05107  

 β6       -0.3289          0.03131   7.158E-4            -0.3905   -0.3282             -0.2697**  

 β7        0.2009          0.1472   0.002823           -0.08818     0.2006              0.4922  

 sigma        0.9968          0.5665   0.02594                0.03571        1.362              1.521  

                 boi               0.997            0.4234   0.04248                0.1394     1.132               1.484  

                 b1i      0.04773          0.01239   0.00138               0.02666     0.04615             0.07345  

 

The above table contains the estimated coefficients, the standard errors (sd), Monte Carlo 

(MC) errors, and credible interval. The significant results are indicated by (**) which 

indicate the importance of the predictor variables in the model since the 95% credible 

intervals do not contain zero. sigma, alpha.tau, and  beta.tau are the residual standard 

deviation and the random effects standard deviation respectively and their results of 

model errors suggest that accounting for significant skewness, when the data exhibit 

skewness, provides a better model fit to the data and gives more accurate estimates to the 

parameters.  
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4.5.7 Comparison among the likelihood and Bayesian approach 

The purpose of the present study is to compare the mean evolution of upper arm 

circumference of infant between genders, does mean evolution of upper arm 

circumference of infant changes over time and to compare mean evolution of upper arm 

circumference of infant differ for those infant given supplementary food or not using 

linear mixed effect model. Findings from the present study demonstrated that the ML 

estimates of the random-effects standard deviations are smaller than the corresponding 

REML estimates which is different result from the Bayesian. The estimated within group 

residual standard deviations are identical and also similar with result of the Bayesian 

techniques. In general, the fixed-effects estimates obtained using ML, REML and 

Bayesian techniques are similar. Inferences regarding the fixed effects are essentially the 

same for the two estimation methods.  

Overall without looking each age level the mean evolution of the upper arm 

circumference of infant for boys and girls is not different and also the mean evolution of 

the upper arm circumference of infant increases as the infants age increases.  For those 

infants given supplementary food and for infants without supplementary food their mean 

evolution of the upper arm circumference is not different and also there is no gender 

difference in mean evolution. But if we look the mean evolution at different age level 

there is significance difference in mean evolution of upper arm circumference of infants 

between  males and females at age 2, age 4, age 6. There is no significant difference in 

mean evolution of upper arm circumference of infants between males and females at age 

8, 10, 12 respectively. 

In Bayesian techniques the coefficient estimate of the parameter is almost the same with 

the likelihood approach except the insignificant parameters and the interpretation of the 

fixed effect is the same.  
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CHAPTER 5 

5 Conclusions 

This paper is concerned in presenting the linear mixed effect model for a longitudinal 

Gaussian data using likelihood and Bayesian techniques. The main aim is to compare 

likelihood and Bayesian techniques as an alternative approach Gaussian longitudinal 

response. Within this frame work first exploratory analysis techniques is discussed to 

visualize patterns in the data. And then different variance function that are used to specify 

the within-group linear mixed effect model and different correlation structures in 

selection of an appropriate residual covariance structure, especially in the presence of 

random effect are used to select the best model.  The result indicates the ML estimates of 

the random-effects standard deviations are smaller than the corresponding REML 

estimates. The estimated within group residual standard deviations are identical. In 

general, the fixed-effects estimates obtained using ML and REML are similar. Inferences 

regarding the fixed effects are essentially the same for the two estimation methods.  

In Bayesian techniques the coefficient estimate of the parameter is almost the same with 

the likelihood approach except the insignificant parameters and the same residual 

standard deviation is obtained with different result of the random effect. The 

interpretation of the fixed effect is the same.  

Numerous researches finding support the present finding that the mean evolution of the 

upper arm circumference of infant is not different for boys and girls and also the mean 

evolution of the upper arm circumference of infant increases as the infants‟ age increases.  

For those infants given supplementary food and for infants without supplementary food 

their mean evolution of the upper arm circumference is not different and also there is no 

gender difference in mean evolution.    
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                         APPENDIX: WINBUGS CODE 

In this Appendix we list the WinBUGS code used for the data analyses of Section 5.6 

model 

{ 

for( i in 1 : 8965) { 

for( j in  Id[i] :  

(Id[i+1]-1) )  

         { 

AC[j] ~ dnorm(mu[ j],tau.c) 

mu[j]  <- beta0 +  beta1*AGE[j]+ beta2*SEX[j]+  beta3*SUPPFOOD[j] 

+beta4*POWDERMI[j]+beta5*AGE[j]*SEX[j]+beta6*AGE[j]*SUPPFOOD[j]+beta7*A

GE[j]*POWDERMI[j]+alpha[i]+beta[i]*AGE[j] 

} 

alpha[i] ~ dnorm(0,alpha.tau) 

beta[i] ~ dnorm(0,beta.tau) 

    

  } 

  tau.c~dgamma(0.001,0.001) 

  alpha.tau ~ dgamma(0.001,0.001) 

  sigma <- 1 / sqrt(tau.c) 

                        boi<-1/sqrt(alpha.tau) 

 b1i<-1/sqrt(beta.tau) 

  beta.tau ~ dgamma(0.001,0.001)     

  beta0 ~ dnorm(0.0,1.0E-6) 

  beta1 ~dnorm(0.0,1.0E-6) 

  beta2 ~ dnorm(0.0,1.0E-6) 

  beta3 ~ dnorm(0.0,1.0E-6) 

  beta4 ~ dnorm(0.0,1.0E-6) 

               beta5 ~ dnorm(0.0,1.0E-6) 

             beta6 ~ dnorm(0.0,1.0E-6) 

  beta7 ~ dnorm(0.0,1.0E-6) 
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 } 

  

list( beta0=0, beta1=0,  beta2=0,  beta3=0,  beta4=0,  beta5=0,  beta6=0,  beta7=0, 

alpha.tau = 1,beta.tau=1,tau.c=1) 

 

list( beta0=0.01, beta1=0.01,  beta2=0.01,  beta3=0.01,  beta4=0.01,  beta5=0.01,  

beta6=0.01,  beta7=0.01,alpha.tau = 1,beta.tau=1,tau.c=1) 

 

 

 

 

 


