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ABSTRACT 

Human Immunodeficiency Virus (HIV) is the virus that causes Acquired Immune Deficiency 

Syndrome (AIDS). HIV attacks and destroys certain types of white blood cells that are essential to 

body's immune system, the biological ability of the human body to fight infections. . The main aim 

of this study is modeling the factors that affect survival time of HIV infected patients by using Cox 

ph and parametric survival regression models. This study is a retrospective cohort study based on 

data from the ART clinical in Hossana Queen Elleni  Mohamad Memorial Hospital , south 

Ethiopia.  All HIV positive patients who are 15 years old and above placed under ART in between 

February 2011 to January 2016 were population in this study. The analytical methodologies were 

used the Kaplan-Meier and  Log Rank Test to estimate Descriptive analysis , Cox’s regression 

model was employed to identify the covariates that have a statistical significant effect on the 

survival time of  HIV infected patients and  exponential, weibull, log logistic and log-normal 

survival regression models were applied  to compare efficiency of the models.  The overall mean 

estimated survival time of patients was 51.5 months. The Cox Proportional Hazards regression 

Model result revealed that baseline weight, ART adherence, baseline CD4 count, WHO clinical 

stage, level of education, substance use and TB co-infection of patients  are the major factors that 

affect significantly survival time of HIV infected patients. For future researchers on this area 

should apply  Weibull survival regression model because Weibull distribution is unique  that 

means  only one that  simultaneously both proportional and accelerated and also it predicts well 

the covariate that are associated with high risk of mortality. 

 

Key Words: Survival analysis; Cox Proportional Hazard Regression model; Weibull Regression 

Model  ; Hazard ratio 
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  CHAPTER ONE 

1. INTRODUCTION 

1.1. Background of the study 

A pattern of highly unusual infection in otherwise healthy young adults emerged in the early 1980s in 

the united States of America. This pattern or clusters of diseases that appeared in those whose 

immune system being attacked, came to be called Acquired Immune Deficiency Syndrome (AIDS). 

Between the 1983 and 1994 a new virus called Human Immunodeficiency Virus (HIV) has been 

identified as a cause of AIDS (UNAIDS, 2005). 

Human Immunodeficiency Virus (HIV) is the virus that causes Acquired Immune Deficiency 

Syndrome (AIDS). People are said to be HIV positive when the HIV antibody is detected in their 

blood. HIV attacks and destroys certain types of white blood cells that are essential to body's immune 

system, the biological ability of the human body to fight infections. HIV infects primarily vital cells 

in the human immune system such as helper T cells (to be specific, CD4+ T cells), macrophages, and 

dendritic cells that are necessary to activate B-lymphocytes and induce the production of antibodies. 

The infected person becomes susceptible to a wide range of opportunistic infections, such as 

tuberculosis and Pneumocistic Carinii Pnemonia, and rare cancer such as Caposis Sarcoma (WHO, 

2007). 

 There are two types of HIV: HIV-1 and HIV-2. Both types are transmitted by sexual contact, through 

blood, and from mother to child, and they appear to cause clinically indistinguishable AIDS. 

However, it seems that HIV-2 is less easily transmitted, and the period between initial infection and 

illness is longer in the case of HIV-2.Worldwide, the predominant virus is HIV-1, and generally when 

people refer to HIV without specifying the type of virus they will be referring to HIV-1. The 

relatively uncommon HIV-2 type is concentrated in West Africa and is rarely found elsewhere 

(Marlinket, 1994). 

HIV/AIDS have caused the world most distressing tragedy and danger. More than 25 million people 

worldwide have died of AIDS since 1981. According to UNAIDS, around 33.4 million people are 

living with HIV throughout the world, including the approximately 2.7 million newly infected in 

2008 and over 2 million have lost their lives to the disease leaving behind orphaned children and 
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ravaged communities in 2008 Joint (UNAIDS, 2009). There are 34.2 million people living with HIV, 

2.5 million new HIV infections and 1.7 million deaths due to AIDS in 2011 worldwide (WHO, 2012).   

The greatest burden of the disease is concentrated in developing countries with the least ability to 

cope. More than 66% of the 34.2 million people living with HIV/AIDS are in sub Saharan Africa, 

where AIDS is the leading cause of death. The countries of sub-Saharan Africa are home to 

approximately 22.6 million people living with HIV/AIDS. The HIV pandemic created unprecedented 

burden on the economies and health care systems of affected countries, particularly in Sub-Saharan 

Africa, where prevalence is highest. Some of the most explosive epidemics have been seen in 

Southern Africa. South Africa has the largest number of people living with HIV/AIDS in the world. 

Botswana and Swaziland have the highest prevalence levels, 38% and 33% respectively. West Africa 

has been relatively less affected by HIV infection than other regions of sub-Saharan Africa. Uganda 

and Senegal represent two success stories. Uganda has brought estimated prevalence rate down to 5% 

by the end of 2011 from an estimated peak of close to 14% in the early 1990s with strong prevention 

campaigns. HIV prevalence has stabilized in Senegal at a relatively low level (Stephen et al., 2011). 

In Ethiopia since the first two AIDS case reported in 1986, the prevalence rate has continuously 

increased until the year 2000 when it begun to show some decline (Merso, 2008). Adult HIV 

prevalence in 2009 was estimated to be between 1.4% and 2.8% in the country. Prevalence was 1.8% 

for males and 2.8% for females, and women accounted for 59% of the HIV-positive population. 

There were an estimated 131,145 new HIV infections and 44,751 AIDS-related deaths of which 

females accounted for 57% of the total infections and deaths. The total estimated number of HIV-

positive pregnant women and annual HIV positive births in the same year were 84,189 and 14,140, 

respectively. There were an estimated 72,945 children less than 15 years old living with HIV, out of 

which 20,522 needed ART. Due to the combined effect of poverty and AIDS, more than 5.4 million 

children under the age of 18 years were orphaned out of which 855,720 lost at least one parent due to 

AIDS (FHAPCO, 2010). 

 From the total number of people who have died due to HIV/AIDS in 2006 alone was 88,997 and in 

2007 it was estimated that 71,902 people would die (FMOH, 2007). In 2010, AIDS related death is 

expected to decline to 28,073 which might be as a result of ART. It is estimated that 398,717 of the 

HIV positive cases are in need of ART out of which 26,053(6.5%) are children under 15 years of age. 

It is also estimated that the all ages HIV prevalence in SNNPR in 2013 is 0.9% with 18,557 male and 
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27,221 female cases who live with the virus, an estimated 45,778 people are living with HIV/AIDS 

this may increase the number of HIV positive patients in the region  (NAIDSR, 2014). 

Hadiya zone is one of South Nations, Nationalities and Peoples Region (SNNPR), Ethiopia. SNNPR 

is one of the largest regions in Ethiopia, accounting for more than 10 percent of the country’s land 

area and the current population is approximately 17 million with an average household size of 4.8 in 

2007. More than 91 percent of the SNNPR population lives in rural areas. The mid-2012 population 

was estimated at nearly 17,745,000. The region is divided into 13 administrative zones including 

Hadiya zone. Hadiya Zone has 10 woradas and one town administration with an estimated total 

population of 1.5 million in 2013. It has one zonal hospital, 37 functional public health centers and 

282 health posts among which ten health centers and one zonal hospital are provide a total of 2899 

HIV infected patients have visited ART clinic, 2039 ever started ART of which 258 have 

died(HZHD, 2014). 

The Antiretroviral Therapy (ART) drugs improve the quality of HIV infected persons by helping 

them to stay well much longer than they otherwise would. The drugs slow down the replication of 

HIV within the body. Although the treatments are not a cure and continue to present new challenges 

with respect to side-effects and drug resistance ART as disease modifying therapy for established 

HIV infection has produced dramatic effects on morbidity and mortality among HIV/AIDS patients. 

Recognizing the urgent need for antiretroviral treatment, the government of Ethiopia issued the first 

antiretroviral guideline in 2003, which is the same year as the antiretroviral treatment has, began on 

900 HIV patients. The number of people who were able to access ART has substantially increased 

from 900 in 2003 to 180,447 in 2008 and in 2009 as part of the global issue the government (Seyoum 

et al., 2009). 

Survival analysis is a statistical method for data analysis where the outcome variable of interest is the 

time to the occurrence of an event. Hence survival analysis is also referred to as "time to event 

analysis", which is applied in a number of applied fields, such as medicine, public health, social 

science and engineering. In medical science, time to event can be time until recurrence in a cancer 

study, time to death or time until infection. In the social sciences, interest can lie in analyzing time to 

events such as job changes, marriage, birth of children and so forth (Klembaum, 1996). 
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The method of survival analysis has experienced tremendous growth during the latter half of the 20
th

 

century. The methodological developments of survival analysis that had the most profound impact are 

the Kaplan-Meier method for estimating the survival function, the log-rank test for comparing the 

equality of two or more survival distributions, the Cox proportional hazards (PH) model for 

examining the covariate effects on the hazard function and the accelerated failure time (AFT) model 

for Analysis in Studies with time-varying covariates. The basic concepts of survival analysis, 

Descriptive Methods for Survival Data (the Kaplan-Meier method and the log-rank test), semi-

parametric methods (the Cox PH model) and parametric methods such as exponential survival 

regression model, weibull survival regression model, lognormal survival regression model and log-

logistic survival regression model  for analyzing survival data (Lawless, 1982). 

The Cox proportional hazard model is the most widely used for the analysis of survival data in the 

presence of covariates or prognostic factors. This is the most popular model for survival analysis 

because of its simplicity, and not being based on any assumptions about the survival distribution. The 

model assumes that the underlying hazard rate is a function of the independent covariates, but no 

assumptions are made about the nature or shape of the hazard function. In the last several years, the 

theoretical basis for the model has been solidified by connecting it to the study of counting processes 

and martingale theory. These developments have led to the introduction of several new extensions to 

the original model. However the Cox PH model may not be appropriate in many situations and other 

modifications such as stratifed Cox model or Cox model with time-dependent variables can be used 

for the analysis of survival data. The accelerated failure time (AFT) model is another alternative 

method for the analysis of survival data (Collett, 2003). 
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1.2. Statement of the Problem 

Today, Ethiopia has made progress in reducing the number of HIV/AIDS death nationally, but the 

observed changes are not sufficient enough compared to the desired goals of the response against the 

epidemic. Numerous researches have also been conducted that tried to address many of the issues that 

arise in connection with the HIV epidemic. One thing that should, however, be noted is that many of 

these research works mainly focused on the assessment of the prevalence and the study of the 

numerous prevention measures that should be undertaken to stop or reduce the spread of the epidemic 

(NAIDSRC. 2010), but it seems that little attention has been given to study high risk factors that 

facilitate mortality of those people living with HIV/AIDS. Investigating the existence of significant 

associations between the different factors and HIV/ADIS mortality can provide evidence for informed 

protection mechanisms.  The effectiveness of ART could vary from region to region (this variation is 

also generally a reflection of the variation that exists between and within countries and regions as 

regards HIV prevalence and its epidemiological patterns) because of the difference in background 

disease burden (such as tuberculosis or intestinal parasites), viral subtypes, and possible genetic 

differences in drug metabolism. However, such arguments are based on little data from the resource-

limited settings (UNAIDS, 2009, Degu et al., (2008). Given this as a back drop, this thesis will focus 

on the consideration of some of the possible factors/variables that may possibly influence the survival 

status of people who are following ART in HQEMMH, South Ethiopia. Furthermore, modeling time 

to death of HIV infected patients on ART is helpful to identify covariates that facilitate mortality of 

those people living with HIV/AIDS (Leigh et al., 2009).  

In addition, a study conducted previously in HQEMMH used the Multilevel logistic regression model 

(Gezaghen, 2013), but the Multilevel logistic regression model is not well suited to survival data for 

several reasons. According to (Collett, 2003), the survival times are not normally distributed and the 

censored data are the result of missing values on the dependent variable, but in this study the survival 

analysis method  used to identify the risk factors as well as to compare the efficiency of Cox ph and 

parametric survival regression models. Many covariates will collect to reduce possible modeling bias, 

when a large semi parametric/parametric model is built. An important and the first challenging task 

are to efficiently select a subset of significant variables upon which the hazard function depends 

(Hosmer and Lemeshow, 1999). 

 In general, the motivation behind this study is intended to address the following two major research 

questions:  
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 Which factors significantly affect survival time of HIV infected patients on ART?  

 Which type of survival model, Cox ph or parametric regression model, predicts well the 

covariate that are associated with high risk of mortality?  

 

1.3. Objectives of the study 

       1.3.1. General objective of the study  

The main objective of this study is modeling the factors that affect survival time of HIV infected 

patients by using Cox ph and parametric survival regression models based on HQEMMH data.  

       1.3.2. Specific objectives of the study 

1. To compare survival time among the different categories of covariates on HIV-infected patients 

2. To estimate time-to-death of HIV infected patients treated with ART 

3. To determine significant covariates that are high risk of mortality on HIV-infected patients  

4. To compare the efficiency of Cox ph and parametric survival regression models in case of 

HQEMMH  

1.4. Significance of the study 

1. The result of this study  provide information to the government program planners, decision 

makers, ART program implementers at different level and other stakeholder who work in the 

areas of giving care, support and treatment for HIV/AIDS patients. 

2. The study useful to identify death risk of patients under significant factors at different time 

during and after HIV-treatment. 

3. The study helps for both donors and government to understand factors that influence survival 

time of HIV patients. 

4.  The result of this study can provide better opportunity for further study in future. 

  1.5. Scope of the study 

The study would have been covered HIV infected patients from 1
st
 February 2011 to 1

st
 January 2016, 

if it had been carried out in Hossana district level.  However, it is limited to identify the risk factors 

and compare models in HQEMMH data.  
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CHAPTER TWO 

2. LITERATURE REVIEW 

2.1. General overview on HIV/AIDS  

According to UNAIDS (2004), the statistics about the impact of HIV/AIDS worldwide are 

overwhelming. Estimate of the United Nationals Agency for AIDS (UNAIDS) indicate that over 40 

million people were living with HIV/AIDS in 2004, that nearly 25 million people have died of AIDS 

since the disease was first discovered in the early 1980’s, and that more than 15.6 million children 

under 15 have lost either their mother or both parents as a direct result of AIDS. 

Moraes et al., (2008) conducted a national study of adults diagnosed with AIDS in Brazil to 

determine whether and to what extent survival time has increased with widespread access to 

antiretroviral drugs. Their results showed that predictors of longer survival included antiretroviral 

treatment, year of diagnosis, higher education, sexual exposure category, female sex and 

Pneumocystis carinii pneumonia prophylaxis. In further analysis, the predictive value of most of these 

was attenuated or disappeared, leaving antiretroviral treatment as the main predictor of survival. 

Johannessen et al., (2009), in developing countries of Africa 39.4 million Peoples were living with 

HIV/AIDS. Adults contribute 37.2 million. About 5 million peoples were newly infected of which 4.3 

million were adults from these more than 95% of new infections were in developing countries. Over 6 

million infected need ART but 350,000-400,000 was treated in developing countries. By December 

2006 two million people in low and middle income countries were receiving ART but this was still 

only 28% of those estimated to be in urgent need of it. 

According to AIDS Resource Center (2008), as one of the countries in Africa, Ethiopia’s GDP has 

increased in the last couple of years with double-digit economic growth. With the current effort of 

achieving the Millennium Development Goals, the country has made significant lead in several 

development sectors as in Health, Education and poverty reduction. Despite this dedicated effort to 

avert the burden of poverty, the hindrance caused by HIV/AIDS associated morbidity and mortality 

has posed an obstacle in the productive part of the society. The fact that the pandemic is 

predominately affecting part of individuals between the ages of 14-59, the productive age group, is a 

significant loss of labor supply. The protracted morbidity and eventual mortality resulting from 
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HIV/AIDS causes significant lost time to illness, reduced productivity, shortage of manpower, 

increased absenteeism in the workplace and rising medical costs. 

According to UNAIDS (2010), HIV/AIDS has the greatest challenges to the Ethiopian health system, 

as elsewhere in sub-Saharan African countries. It has remained among the major causes of deaths 

over the past two decades. In 2010, more than one million people were estimated to be living with 

HIV in Ethiopia of whom nearly 397,818 need ART care and treatment. According to the FHAPCO 

single point estimate for prevalence of HIV/AIDS in Ethiopia, the adult (15-49) HIV prevalence for 

2007 is estimated at 2.1% of which 7.7% is urban and 0.9% is rural (EMOH 2007). In 2010, the 

FHAPCO estimates of the overall adult (15-49) HIV prevalence is 2.4%. Urban and rural HIV 

prevalence rates were 7.7% and 0.9%, respectively. In 2010, an estimated 28,073 Ethiopians died of 

AIDS scaling the number of children who have lost one or both parents to AIDS to 804,184.  

 A retrospective cohort study was done by Reda et al., (2013) among HIV infected patients on ART 

in Hiwot Fana, Jugal and Dil Chora hospitals located in eastern Ethiopia with objective of examining 

mortality and its predictors among a cohort of HIV infected patients on antiretroviral treatment 

retrospectively followed for five years. It was found that in the multivariate analysis factors such as 

WHO stage, weight, CD4 cell counts and level of education were predictors of mortality of HIV 

infected patients on antiretroviral treatment. The results revealed that WHO stage IV patients were 3 

times more likely to die compared to stage I and II patients (HR 3.19; 95% CI 1.51–6.76). Patients 

who reported to have lost more than 10% of their weight at baseline were 5 times more likely to die 

compared to those patients who did not (HR 4.93; 95% CI 1.20–20.41). Patients whose CD4 cell 

counts between 201–300 were 60% less likely to die compared to those whose CD4 counts less than 

200 (HR 0.40; 95% CI 0.17–0.93). Those patients with primary education were almost 3 times more 

likely to die than illiterate counterpart (HR 2.79; 95% CI 1.26–6.16). 

Asefa et al., (2005) a case-control study that was carried out in Addis Ababa provided evidence that 

substance abuse, particularly alcohol, was found to be a significant risk factor for HIV infection. The 

study suggested the need for health education to bring about behavioral changes and further study to 

identify the prevalence and role of substance in exposure to HIV infection in the community. 

HIV/AIDS has been and still is the greatest challenges to the Ethiopian health system, as elsewhere in 

sub-Saharan African countries. It has remained among the major causes of deaths over the past two 

decades.  
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FHAPCO (2006), In Southern Nation Nationalities and peoples Representative Region(SNNPR), the 

HIV prevalence was estimated to be 2.3% (2.6% for females and 2% for males) in 2005.The HIV 

prevalence among the urban population was estimated 10.2 % (11.5% in females and 8.9% in males). 

The corresponding estimate among the rural population was 1.5 % (1.7% for females and 1.3% for 

males). 

2.2. Review of ART 

 Recsky et al. (2010), Pearson’s X2, the Cochran-Armitage and the Wilcoxon rank-sum tests have 

been used to determine the degree to which antiretroviral resistance may contribute to mortality 

among HIV-infected individuals enrolled in the centralized HIV/AIDS Drug Treatment Program in 

British Columbia, Canada, who had died between July 1997 and December 2001. In the investigation, 

of a total of 637 deaths, 83 (13.0 %) were attributed to accidental causes; and the remaining 554 

deaths (87.0%) were attributed to non-accidental causes. The accidental causes were illicit-drug 

overdose (57.8 %), concussion (18.1%) and the remaining percentage accounted to suicide, traffic 

accidents, assaults, and other in-juries. The non-accidental causes were identified as 383 (69.1%) 

directly related to HIV infection (JCD-9 and 34 (6.1%) related to liver disease, 25 (4.5%) to various 

cardiac conditions, 20 (3.6 %) to viral and/ or bacterial infections, 18 (3.2%) to malignant neoplasms, 

43 (7.8%) to other causes, and 31 (5.6%) to unknown causes. The study concluded that not only 

treatment failure due to antiretroviral resistance was a major factor influencing mortality in this 

cohort but co-morbidities, and other factors had got a lion share as well. 

According to Isakidis, (2009). study which includes 285 HIV-positive children treated with first-line 

ART for at least 24 months to identify risk factors associated with treatment failure in two hospitals 

of Cambodia at Angkor Hospital for Children and Donkeo Referral Hospital, has shown that ART 

treatments have the desired effect to improve the survival of children, CD4 count progress, viral load 

suppression and weight for age Z-score increment, for children with viral load less than 1000 

copies/ml. On the other hand for children associated with viral load greater than 1000 copies/ml only 

CD4 counts and CD4 percentages below the threshold is responsible for severe immunologic 

suppression at 24 month which predicts treatment failure at this time. However, orphan status and 

caregiver characteristics, including literacy, age and socioeconomic status, were not associated with 

treatment failure after 24 months of ART. 
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2.3. Survival Modelling Approaches 

Some of the modeling approaches in survival data analysis particularly risk factors of mortality 

proposed by different authors were reviewed as follows: 

 Lavori et al., (1985), study the origin of survival analysis goes back to the time when life tables were 

introduced. Life tables are one of the oldest statistical techniques and are extensively used by medical 

statisticians and by actuaries. Yet relatively little has been written about their formal statistical theory. 

Kaplan and Meier, 1958 gave a comprehensive review of earlier work and many new results. Cox, 

1972 was largely concerned with the extension of the results of Kaplan and Meier to the comparison 

of life tables and more generally to the incorporation of regression like arguments into life table 

analysis. Survival models have the capability of handling censored data. Cox, 1972 and Cox and 

Oakes, 1984 used survival analysis in modeling human lifetimes. Fergusson, 1984 used hazard 

functions to study the time to marital breakdown after the birth of child. Hazard functions had been 

also used in studies of time to shift in attentions in classroom Females, 1983; in study of relapse of 

mental illness. 

Sethi et  al., (2009) , biomedical researchers tend to choose semi parametric methods to model time-

to-event data, in a study by, data was analyzed from a prospective cohort study of 195 adults 

receiving HIV/AIDS care and highly active antiretroviral therapy in Baltimore they were followed for 

1188 visits between February 2000 and December 2001. Kaplan-Meier estimation and Cox and 

Weibull regressions were performed. Results showed that illicit drug users experienced a greater 

hazard of clinically significant antiretroviral resistance as compared to non-users. Weibull regression 

demonstrated that a quarter and a half of illicit drug users developed resistance within 5 and 20 

months of viral suppression, respectively, compared to 20 and 85 months, respectively, for non-users. 

Both semi parametric and parametric methods demonstrated an increased hazard of clinically 

significant resistance associated with illicit drug use. The parametric model facilitated the estimation 

of elapsed time to resistance associated with illicit drug use. From the study above the relative hazard 

produced in semi parametric and parametric proportional hazards modeling helped researchers 

identify risk factors for an outcome of interest. 

Katubulushi and Chanda (2009), study conducted in  adults shows that the main Factors associated 

with the greatest reduction in risk of death from time of study entry were current use of HAART, HR 

0.13 (0.06–0.30, p<0.001), and CD4 count 200 at entry, HR 0.16 (0.08–0.35, p 0.001). Current use of 
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HAART was the strongest predictor of survival from time of AIDS diagnosis, HR 0.11 (0.05–0.25, 

p< 0.001). The use of  HAART therapy and CD4 count were primary predictors of survival (Under 

the hypothesis that the patients lost to follow-up were dead, study in Senegal shows the probabilities 

of dying were respectively 13.4% (95% CI, 10.4–17.1%) and 21.0% (95% CI, 17.4 25.4%) at 12 and 

24 months of follow-up. Mortality rate decreased from 12.5 deaths/100 person-years (95% CI, 9.4–

16.7) during the first year of treatment to 6.6/100 person-years (95% CI, 4.3–10.0) during the second 

year [hazard ratio (HR), 1.9; 95% CI, 1.1–3.1 P< 0.01] and kept decreasing thereafter (4.5, 2.3 and 

2.2/100 person-years for years 3, 4 and 5, respectively) (20). For 0-3, 3-9 and >9 months from ART 

start mortality rates were 24, 13 and 6/100 per years respectively. 43% of the deaths were in the first 

3 months of treatment. Adjusted hazard ratios (HRs) for participants with hemoglobin <8, 8.1-9.9, 

>11.9(f)/12.9 (m) g/mL were 4.99, 3.05 and 0.12 respectively comparing to 10-11.9 (f)/12.9 (m)g/mL 

in the first 3 months of ART. AHRs for CD4 counts were 0.40, 0.38 and 0.34 for 50-99, 100-200 and 

>200. 

Ferradini et al., (2006), study conducted in Sub-Saharan Africa based on data from 18 published 

cohort studies containing 39,536 HIV/AIDS patients had employed the Kaplan-Meir method to assess 

the proportion of survival time and random-effects model to find hazard ratio of prognostic variables. 

Thus, a result of the study suggested advanced WHO clinical stage and low CD4 cell count as 

indicator of high mortality. Similarly, a study in Malawi based on 1308 patients employed Kaplan-

Meier method to assess the probability of survival and the Cox proportional hazards model to assess 

the potential predictors of death. The study found low body-mass index, WHO clinical stage IV, male 

gender, and baseline CD4 count lower than 50cells/ml as independent determinants of death. 

Jerene et al., (2006), the study was conducted in south Ethiopia between August 2003 and August 

2005 on two cohorts of patients: the pre-HAART cohort (185 patients) and the HAART (180 

patients) cohort. In the study, the Kaplan-Meier method was used to assess the event-free survival, 

the log-rank test was employed to test for the statistical significance and the Cox proportional hazards 

model was used to find out the effect of HAART on mortality and on tuberculosis incidence rates. 

Thus, the study indicated that the HAART improved survival and decreased tuberculosis incidence. 

Furthermore, the study recommended the importance of strengthening tuberculosis prevention efforts 

with the scale-up of treatment programmers. 

Kaufmann et al., (2011), In Uganda a retrospective cohort of 427 HIV-1 patients who were initiated 

on ART was studied to establish the effect of AIDS defining complexes (ADCs) on immunological 
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recovery among patients initiated on ART. Kaplan-Meier survival curves were employed to estimate 

median times, log rank test to compare different categories and Cox proportional hazard models were 

used at multivariate analysis. The median time to gaining 50 CD4 cells/μl from the baseline value 

after ART initiation was longer in the ADC group (9.3 months) compared to the non-ADC group (6.9 

months) (log rank test, p = 0.027). At multivariate analysis after adjusting for age, sex, baseline CD4 

count, baseline HIV viral load, total lymphocyte count and adherence level, factors that shortened the 

median time to immunological recovery after ART initiation were belonging to the non-ADC group 

(HR = 1.31, p = 0.028), adherence to ART of ≥ 95% (HR = 2.22, p = 0.001) and a total lymphocyte 

count ≥ 1200 cells/mm3 (HR = 1.84, p =0.003). A low baseline CD4 count of ≤ 200 cells/μl (HR = 

0.52, p = 0.001) was associated with a longer time to immunological recovery. There was no 

interaction between low CD4 counts and ADC group. Patients with ADCs take longer to regain their 

CD4 counts due to the defect in the immune system. This may prolong their risk of morbidity and 

mortality.  

Sterensund (1989), PH modeling is the most frequently use type of the survival analysis modeling in 

many research areas, having been applied to topics such as smoking relapse and employee turnover 

(Morita, et al., 1989), and in medical areas for identification of important covariates that have as 

significant impact on the response of the interested variables. Derbachew, 2012 used PH modeling 

and parametric `models to examine causes of Survival of Patients with Diabetes Mellitus. Tesfaye 

Getachew, 2013 used Kaplan-Meier estimation method, Cox PH model and parametric regression to 

model Survival Analysis of Time to Recovery from Obstetric Fistula. 

Andinet and Sebastian (2010), study conducted on 272 HIV/AIDS patients in Shashemene and Assela 

Hospitals employed Kaplan Meier method to construct survival curves and the Cox proportional 

hazards model to determine predictors of mortality. The median survival time of the study was 104.4 

weeks. The findings of the study showed WHO clinical stage IV, hemoglobin 510 g/dL, and 

cotrimoxazole prophylaxis therapy (CPT) initiation as the independent determinants of mortality. By 

the same token, Jereneet al. (2006) based on 162 patients, who were enrolled and treated between 

August 2003 and January 2005, ascertained that advanced disease stage (WHO clinical stage IV) and 

having total lymphocyte count (TLC) of up to 750/mcL were the major prognostic factors of 

mortality. The study also recommended identifying and treating patients early through improved 

counseling and testing strategies. 
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A study conducted by Gezahegn (2011), on Cox proportional hazard regression to calculate the 

bivariate and adjusted hazard rate and then determine independent predictors of time to death in CD4 

cell counts data in Durame and Hosanna hospital. The estimated mortality was 7%, 8%, 11.3 %, 

15.7% and 21% at 6, 12, 24, 36 and 48 months respectively. After adjustment, the independent 

significant predictors of death in patients living with HIV/AIDS after initiation of ART remain poor 

ART adherence(AHR=5.09[95% CI: 5.51-49.48]), Advanced WHO staging (AHR=1.5[95% CI: 1.18-

2.16]), positive TB test (AHR=3.9[95% CI: 1.89-8.07]), not married or single (AHR=10.27[95% CI: 

1.35-78.3), male gender (AHR=1.704[95% CI: 1.23-2.24]) and older age(AHR=1.45[95% CI: 1.1-

1.96). This study demonstrated that simple laboratory and clinical data, available to health care 

providers prior to ART initiation, can predict which patients are at increased risk of death when they 

start therapy. 

Another study that was done by Ketema (2011), in Armed Forces General Teaching Hospital 

(AFGTH) located in Addis Ababa, Ethiopia and applied Kaplan-Meier survival curves and Log-Rank 

test to compare the survival experience of different category of ART patients, and employed 

proportional hazards Cox model to identify independent predictors of mortality. 734 patients on ART 

were followed for a median of 38.5 months (IQR 10.75, 53). The independent predictors of mortality 

were low CD4 cell count at baseline, (HR = 0.995, 95% CI: 0.991 -0.999), ambulatory and bedridden 

functional status, (HR=2.011, 95% CI: 1.018 - 3.973) and (HR=3.358, 95% CI: 1.734 - 6.500), 

respectively, WHO clinical stages III and IV (HR=7.052,95% CI: 1.677- 29.658) and (HR=12.64, 

95% CI: 3.003 - 53.199), respectively, TB co-infection,(HR=1.734, 95% CI: 1.039 - 2.893) and OIs 

(HR=8.985, 95% CI: 1.240 - 65.085). 

Xueyan et al., (2008), the world health organization reported in 1999 that of a total 53.9 million 

deaths, 1.5 million deaths was caused by TB. In addition, it was claimed as TB co-infection is the 

leading cause of mortality among those infected with HIV worldwide. A finding of a cross-sectional 

study based on 241 cases reported from nine domestic hospitals throughout mainland China was in 

agreement with the stated claim. The patients in the study were followed from January 2003 to 

December 2005. In spite of the fact that treatments for TB and HIV were provided to the patients, 

mortality attributable to co-infection was reported for 15.8% of the cases. As a result, the study 

concluded that HIV/TB co-infection was related to high mortality even when HAART or drug 

therapy for TB was provided. 
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Mohammed  et al.,(2011) conducted a case control study in Jimma and Mettu Karl hospitals where 

the two hospitals serve as referral and treatment centers for HIV and TB in south-west Ethiopia from 

January to March, 2009. The study population consisted of 162 cases and 647 controls. Cases were 

adult people living with HIV/AIDS who developed active pulmonary tuberculosis and controls were 

people living with HIV/AIDS without active tuberculosis. The final multivariate model was obtained 

by a forward and backward variables selection procedure. Then, the result reveals that, after 

adjustment for potential confounders, an initial weight less than 18.5 kg (OR=4.1; 95% CI: 2.3, 7.4), 

a CD4 lymphocyte count less than 200 cells/mm3 (OR=9.8‘95% CI: 5.5, 17.5), a WHO clinical stage 

IV (OR=4.3; 95% CI: 2.6, 6.8) and not taking antiretroviral treatment (OR=3.1; 95%CI: 1.9,4.9), 

were independently associated with the development of active tuberculosis in people living with 

HIV/AIDS. 

Yiannoutsos (2009), in certain circumstances parametric models may offer advantages over semi-

parametric model. Using semi-parametric model would have required a much more complex 

modeling exercise, where factors associated with the change-points would have to be included among 

the model predictors. In such a case, the parametric models such as Lognormal, Weibull, Exponential, 

and Log logistic are the common options. These models provide the interpretation based on a specific 

distribution for duration times without need to proportional hazard assumptions. Nevertheless, the 

results of data analysis using parametric models are similar to the semi-parametric model. Although 

the hazard ratios in semi-parametric and parametric models are approximately similar but the Weibull 

and Exponential regression models are the most favorable for survival analysis of the data (Dehkordi 

et al., 2008). Furthermore, the Weibull regression model is a generalization of the common 

Exponential regression model (having shape 1). It is more flexible for many real-world situations as, 

in contrast to the Exponential regression model, it does not assume constant hazard of death. 
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CHAPTER THREE 

3. DATA AND METHODOLOGY 

3.1.  Source of Data and Design 

This study is a retrospective cohort study based on data from the ART clinical in Hossana Queen 

Elleni Mohamad Memorial Hospital (HQEMMH), Hadiya Zone, SNNP Region of Ethiopia. The 

survival data were extracted from the patient’s chart which contains epidemiological, laboratory and 

clinical information of HIV patients under ART follow-up including a detailed antiretroviral therapy 

history. 

3.2. Study area and period 

The study was conducted in Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, and 

Ethiopia, from 1st February 2011 to 1st January 2016. Hadiya zone is one of 13 zones in SNNPR. There 

are 10 woredas and one town administration in the zone and Hosanna town its administrative center 

which is 235 km away from Addis Ababa.  In the town there is one hospital and three health center 

which gives preventive, curative and rehabilitative service for the population. The hospital has a 

separate ART clinic and the clinic has one doctor, one nurse, one   pharmacist and two data clerks. 

3.3. Study population 

In determining our sample, first we have to know our source population in this case all HIV positive 

patients who were 15 years old and above placed under ART in between 1
st
 February 2011 to 1

st
 

January 2016 in Hossana Queen Elleni Mohamad Memorial Hospital. This study was based on a 

review of the patients’ intake forms and follow-up cards of HIV patients. For uniformity use in the 

country so that those forms can be used to document almost all relevant clinical and laboratory 

variables. In this study were a total of 933 HIV infected patients were investigated who ever started 

ART. 

               3.3.1 Eligibility Criteria 

Patients a eligible for ART on the basis of the 2003 World Health Organization (WHO) Guidelines  

Inclusion criteria:  

 HIV infected patients aged 15 years or older who have started ART  
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Exclusion criteria:  

 Diagnosis made outside of the hospital  

  HIV infected infants and children 

     3.4. Data collection procedures   

The data were extracted from the available standard national medical registers which have been 

adopted by Federal Ministry of Health (FMOH) to be uniformly used by clinicians to simply identify 

and document clinical and laboratory variables. The registers include pre-ART register and follow up 

form, ART intake form, patients’ card and death certificate complemented registration by home 

visitors. Three days training was given for supervisors and data collectors. The overall activity was 

controlled by the researcher. Data quality was controlled by designing the proper data collection 

materials and through continuous supervision. The completed data collection forms were examined 

for completeness and consistency during data management, storage and analysis. The data were 

collected by data clerks working in the clinic and coded and analyzed using the statistical packages 

STATA and R. 
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3.5. Variables in the study 

        3.5.1.   Response Variable 

The response (dependant) variable is the survival time of HIV patients, the length of time from ART 

start date until the date of death or censor measured in months. 

         3.5.2. Predictor (independent) Variables 

The following predictor (covariate) variables were considered for this study. 

                           Table 3.1: Covariates which were used for the analysis of data in this study 

No. Name Representation                   Categories / codes 

1 Age of Patients Age Less than 40=0  , 40 or above=1 

2 Sex  of patients Sex Male =1, Female =0     

3 Marital status Marital Single =1,Married =2,Divorced =3, 

Widowed =4 

4  Education level  Edu No education=1, Primary=2,  

Secondary and above=3 

5 Functional Status  Fun Working =1,Ambulatory =2,Bedridden =3 

6 Residence of the patients   Res Rural=0 and urban=1  

7 Substance use (Alcohol) Subs No=0, Yes=1 

8 TB co-infection  TBco No=0, Yes=1 

9 ART Adherence  ART.ad Good =0,Poor=1 

10 Drug Regimen Dur.R D4T-3TC-NVP=1, AZT-3TC-NVP=2 , 

 TDF-3TC-EFV=3 

11 Base Line Weight BLW Less than 50kg=0 ,50kg or above=1  

12 WHO clinical stage Stage Stage I=1, Stage II=2, Stage III=3, Stage IV=4 

13 Base line CD4 cell 

counts 

CD4 <200 cells=0,    200 cells=1 
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3.6. Methods of Survival Analysis 

Survival analysis is an important statistical technique used to describe and model time to event data. 

The purpose of survival analysis is to model the underlying distribution of the failure time variable 

and to assess the dependence of the failure time variable on covariates. The term survival analysis 

suggests that the event is death, but that is not necessarily so. Events could also denote success, such 

as recovery from therapy. Survival time then describes the time from a certain origin to the 

occurrence of an event. 

One of the most important differences between the outcome variables modeled via linear and logistic 

regression analyses and the time variable in the survival data is the fact that we may only observe the 

survival time partially. The variable time actually records two different things. For those subjects who 

experienced the event (most of the time death), it is the outcome variable of interest, the actual 

survival time. However, for subjects who were alive at the end of the study,  for patient who were lost 

to follow-up, patient withdrawing from the study, competing event (e.g. death due to some cause 

other than the cause of interest) time indicates the length of follow-up(which is a partial or 

incomplete observation of survival time). These incomplete observations are referred to as being 

censored. Most survival analyses consider a key analytical problem called censoring. In essence, 

censoring occurs when we have some information about individual survival time, but we do not know 

the survival time exactly (Collett, 2003). The most common form of incomplete data is right 

censoring. A survival time is said to be right censored if it is recorded from its beginning until a well-

defined time before its end time. It means a subject's follow-up time terminates before the outcome of 

interest is observed. For instance, if an HIV-1 patient is followed until he has a viral load high than 

1000 copies/μl and is followed without experiencing this scenario until the end of the observation 

period. In other words, a survival time is said to be right censored if it begins at time t = 0 and 

terminates before the outcome of interest is observed. 

3.6.1. Descriptive Methods for Survival Data 

In any applied setting, a statistical analysis should begin with description of the data. In particular, an 

initial step in the analysis of a set of survival data is to present numerical or graphical summaries of 

the survival times in a particular group. Routine applications of standard measures of central tendency 

and variability will not yield estimates of the desired parameters when the data include censored 
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observations. In summarizing survival data, the two common functions of applied are the survivor 

function and the hazard function (Hosmer and Lemeshow, 1999). 

3.6.1.1. Survival Functions  

For most statistical application it is usual to describe models for probability distribution in terms of 

either the probability density function f(x) or the distribution function F(x). For survival analysis it is 

usually more appropriate to work with other functions which characterize the probability distribution. 

Let T be a positive random variable from a homogeneous population, representing the time until the 

relevant event occurs. In order to characterize the distribution of T one of the most often used 

functions is survivor function. The survivor function, S (t), is defined for both discrete and continuous 

distribution as the probability that an individual survives beyond time t i.e., for continuous random 

variable T, the density function, f (t), is given by 

               ∫       
 

 
                                                                                             (3.1)                             

Which represents the probability that a subject selected at random will have a survival time less than 

some stated value t. Then, the survival function     is defined as: 

       (   )                                                                                                                (3.2) 

The survivor function can be used to represent the probability that an individual survives from the 

time origin to sometime beyond t and then relationship between the probability density function f(t) 

and S(t) will be: 

     
         

  
 

      

  
                                                                                                               (3.3)  

3.6.1.2. Hazard Function  

The hazard function is widely used to express the risk or hazard of experiencing the event (death) at 

some time t, and is obtained from the probability that an individual experiencing the event at time t, 

conditional on he or she has survived (censoring) to that time. That is, the function represents the 

instantaneous failure rate for an individual surviving to time t.  

The hazard function      is defined by: -                                                  . 
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By applying the theory of conditional probability and the relationship in equation (3.4), the hazard 

function can be expressed in terms of the underlying probability density function and the survivor 

function as follows (Collett, 2003). 

         
    

    
  

 

  
                                                                                                        (3.5) 

The corresponding cumulative hazard function H   is defined by: 

     ∫       
 

 
                                                                                                          (3.6) 

Hence the survival function can be rewritten as 

                                                                                                                     (3.7) 

The hazard rate is not a probability, it is a probability rate. Therefore it is possible that a hazard rate 

can exceed one in the same fashion as a density function f(t) may exceed one. 

In survival analysis, it is always a good idea to present numerical or graphical summaries of the 

survival times for the individuals. In general, survival data are conveniently summarized through 

estimates of the survival function and hazard function. The estimation of the survival distribution 

provides estimates of descriptive statistics such as the median survival time. These methods are said 

to be Kaplan-Meier Estimator of the Survival Function since they require no assumptions about the 

distribution of survival time. In order to compare the survival distribution of two or more groups, log-

rank tests can be used (Collett, 2003). 

   3.6.1.3. Kaplan-Meier Estimator of the Survival Function 

The Kaplan-Meier (KM) estimator proposed by Kaplan and Meier (1958) is the standard non 

parametric estimator of the survival function                 Which is also called the Product-Limit 

estimator incorporates information from all observations available, both censored and uncensored, by 

considering any point in time as a series of steps defined by the observed survival and censored times. 

The Kaplan-Meier estimator is used to estimate the survival time (time of censoring) of a patient and 

construct survival curves to compare the survival experience of a patient between different 

categorical variables.  The first step in the analysis of ungrouped censored survival data is normally to 

obtain the Kaplan-Meier estimate of the survivor function.  

Suppose the data consist of n survival times t1, t2,…,tn and some of these observations are right-

censored times, i.e. for some of the tj, it is only know that individual j was still censoring at time tj. 

Let r be the number of distinct failure times, r ≤ n, and t(1)< t(2)<……<t(r) be the ordered failure times. 
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And assume that     is the number of patients at censored just before t(j)  and      is the number of 

patients who was died at time t(j) .  Then the Kaplan-Meier estimator of the survival function at time t 

is given by: 

 ̂    ∏ {
     

  
} 

                                                                                                            (3.8)              

for t(k) ≤ t(k+1) , j=1,2,…,r, with   ̂(t)=1 for t < t(1). 

Where,    is the number of individuals who are at risk of dying at time    and     is the number of 

individuals who failed (died) at time  . The variance of Kaplan-Meier survival estimator is estimated 

using Greenwood’s formula (Collett, 2003) given as: 

   ( ̂   )    ̂     ∑
  

         

 
                                                                                                       (3.9) 

3.6.1.4. Comparing Survival Functions 

The simplest way of comparing the survival times obtained from two or more groups is to plot the 

Kaplan-Meier curves for these groups on the same graph. However, this graph does not allow us to 

say whether or not there is a real difference between the groups. Assessing whether or not there is a 

real difference between groups can only be done by utilizing statistical tests. Thus, the Mantel- 

Hanzel (1959), currently called the “log-rank” test is used for comparison of two or more survival 

distributions in this thesis work.  

Let             be the   distinct ordered death times across two groups. Suppose that    

failures occur at      and that    subjects are at risk just prior to      (j = 1, 2,..., m). Let     and    be 

the corresponding numbers in group i (i = 1, 2). Then the log-rank test compares the observed number 

of deaths with the expected number of deaths for group i. consider the null hypothesis:          ; 

i.e. there is no difference between survival curves in two groups. Given   and    the random variable 

    has the hypergeometric distribution 

(
  

   
) (

     

       
)

(   
   

)
 

Under the null hypothesis, the probability of experiencing an event at      does not depend on the 

group, i.e. the probability of experiencing an event at    is  
  

  
. So that the expected number of deaths 

in group one is 

 (   )=    
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The test statistic is given by the difference between the total observed and expected number of deaths 

in group one 

   ∑(       )

 

   

 

Since     has the hypergeometric distribution, the variance of     is given by 

       (   )  
        (     )

  
 (    )

 

So that the variance of   is given by  

        ∑      

 

   

 

Under the null hypothesis, statistic has an approximate normal distribution with zero mean and 

variance   . This then follows   
  

 

  
   

  

The general form of the test statistic to test the equality of survival curves which can also be used by 

several alternatives to the log-rank test, such as the Wilcoxon test, may be defined as follows: 

  
∑         ̂   

 
   

∑   
  ̂  

 
   

                                                                                                                          (3.10) 

Where:   are weights whose values depend on the specific test 

The Cochran-Mantel-Haenszel Log Rank Test 

The log rank test, sometimes called the Cox-Mantel test, is the most well known and widely used test 

statistic. This test is based on weights equal to one, i.e. wi = 1. Therefore, the log rank test statistic 

becomes: 

  
∑         ̂   

 
   

∑  ̂  
 
   

                                                                                                                         (3.11) 

Log rank test is based on weights equal to one, i.e.     . And it is appropriate when hazard 

functions for two groups are proportional over time, i.e.              .  

The Generalized Wilcoxon Test 

Gehan (1965) and Breslow (1970) generalized the Wilcoxon rank sum test to allow for censored data. 

This test uses weights equal to the number of subjects at risk at each survival time, i.e. wi = ni and is 



23 
 

called Wilcoxon or Generalized Wilcoxon test in most software packages. Thus the Wilcoxon test can 

be defined as:          
∑         ̂   

 
   

∑   
  ̂  

 
   

                                                                                           (3.12)                                            

 3.6.2. Modeling Survival Data  

Both the non-parametric methods defined earlier are examples of univariate analysis; they describe 

the survival with respect to the factor under investigation, but necessarily ignore the impact of any 

others. In clinical investigations it is more common to have a situation where covariates potentially 

affect patient forecast. When investigating survival in relation to any one factor, it is often desirable 

to adjust for the impact of others. Moreover, while the log-rank test provides a P-value for the 

differences between the groups, it offers no estimate of the actual effect size.  

Through a modeling approach of survival analysis can explore how the survival experience of a group 

of individuals depends on the values of one or more explanatory variables, whose values have been 

recorded for each individual at the time origin. There are two broad reasons for modeling survival 

data. One objective of the modeling process is to determine which combination of potential 

explanatory variables affects the form of the hazard function.  

Another reason for modeling the hazard function is to obtain an estimate of the hazard function itself 

for an individual. A variety of models and methods have been developed for doing sort of survival 

analysis (Collett, 2003).  

3.6.2.1. Sem-Parametric Survival Models 

Semi-parametric models are models that parametrically specify the functional relationship between 

the lifetime of an individual and his characteristics (demographic, socio-economic, etc.) but baseline 

hazards unspecified for actual distribution of lifetimes. Due to the easy concept and accessibility of 

software the most popular semi-parametric model is the Cox proportional hazards regression model 

(Collett, 2003).  

3.6.2.1.1. The Cox Proportional Hazards Regression Model 

The basic model for survival data is the Cox proportional hazard model. Cox (1972) proposed a semi-

parametric model for the hazard function that allows the addition of covariates, while keeping the 

baseline hazards unspecified and can take only positive values. With this parameterization, the Cox 

hazard function is specified as a function of time and the covariates:  
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                                                                                                                                (3.13) 

 where,       is the baseline hazard function that characterizes how the hazard function changes as a 

function of survival time,          represents the hazard function at time t with covariates X = 

(          )      (          )
 
 is a column vector of p regression parameters, 

          characterizes how the hazard function changes as a function of subject covariates. The 

model (3.13) is referred to as Cox model, or Cox proportional hazards model or simply the 

proportional hazards model. There are two assumptions of proportional hazards model, those are:- 

1. The hazard of occurrence of an event at any given time for an individual in one group is 

proportional to the hazard at that time for an individual in the other group. When there are 

covariates in the analysis, which are times dependent, this assumption may not hold. This can 

be verified by considering the hazard ratios of different individuals (Collett, 2003). 

For two different individuals with covariates X1= (x11, x12,…, x1m)’ and X2= (x21,x22,…, x2m)
׳
, the 

proportion 

         

         
 

           
   

        (  
  )

 
      

   

   (  
  )

    (   
    

   )                                      

Called the hazards ratio, and clearly this ratio is independent of time which means that the log hazard 

ratio is constant at any given time. 

2. The relationship between log hazard or log cumulative hazard and a covariate is linear. The 

Cox proportional hazards model can equally be regarded as linear model, as a linear 

combination of the covariates for the logarithm transformation of the hazard ratio given by: 

   {
        

     
}     {    }                                                                        (3.15)                            

The quantity                      is called the linear combination of the Cox 

proportional hazards model. 

The hazard function in the Cox model is called semi-parametric function since it does not explicitly 

describe the baseline hazard function, ho (t). The survival function of the proportional hazard model is 

estimated as: 

            (     )                                                                                                                  (3.16)                           
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Where,         is the cumulative hazard function at time t for a subject with covariate x. Since we 

have assumed that survival time is absolutely continuous; the value of the cumulative hazard function 

is expressed as: 

                                                                                                                             (3.17) 

Consequently, from the proportional hazards function, we obtained the survivor function given by: 

         [     ]                                                                                                                 (3.18) 

Where,       is the baseline cumulative hazard function and       is the baseline survival function  

3.6.2.1.2. Fitting the Cox Proportional Hazard Regression Model 

Fitting the Cox model to observed survival data requires estimating the unknown regression 

coefficients ( ). Also, the baseline hazard function must be estimated. It turns out that these two 

components of the model can be estimated separately. The coefficients should be estimated first and 

the estimates are then used to construct an estimate of the baseline hazard function. The regression 

coefficients in the proportional hazards Cox model, which are the unknown parameters in the model, 

can be estimated using the method of maximum likelihood (Collett, 2003). 

In Cox proportional hazards model we can estimate the vector of parameters β without having any 

assumptions about the baseline hazard,      . As a consequence, this model is more flexible and an 

estimate of the parameters can be obtained easily. 

Maximum Likelihood Estimation  

Suppose the survival data based on n independent observations are denoted by the triplet (ti, δi, Xi), 

i=1, 2...n. 

Where 

ti -  the survival time for the i
th 

individual. 

δi - an indicator of censoring for the i
th 

individual. Given by i=0 for censored and i= 1 for 

event experience  

Xi = (Xi1, Xi2...Xim)’ - column vector of m covariates for individual i. 

The full likelihood function for right censored data can be constructed as: 

     ∏                      

 

   

                                                                                                          



26 
 

Where,          =       
     is the hazard function for the i

th
 individual. 

                                    = [      ]           is the survival function for the i
th

 individual.  It follows 

that,                

      ∏[       
    ]

  
[      ]          

 

   

                                                                                           

The full maximum likelihood estimator of β can be obtained by differentiating the right hand side of 

equation (3.20) with respect to the components of β and the base line hazard,      . 

This implies that unless we explicitly specify the base line hazard      , we cannot obtain the 

maximum likelihood estimators for the full likelihood. To avoid the specification of the base line 

hazard, Cox (1972) proposed a partial likelihood approach that treats the baseline hazard as a 

nuisance parameter remove it from the estimating equation.  

Partial Likelihood Estimation 

Instead of constructing a full likelihood, we consider the probability that an individual experiences an 

event at time t(i) given that an event occurred at that time. Suppose that data are available for n 

individuals, amongst them there are r distinct failure times and n - r right-censored survival times, and 

assume that only one individual was died at each ordered failure time, so that there are no ties. The r 

ordered failure times will be denoted by t(1)<t(2)<….< t(r), so that t(i) is the i
th  

ordered failure time. The 

set of individuals who are at risk at time t(i) is the i
th

 ordered failure (experiences an event)  time, and 

denoted by R (t(i)). And let X(i) be the vector of explanatory variables for an individual who 

experiences an event  at t(i).  

The partial likelihood function is derived by taking the product of the conditional probability of a 

failure at time t(i), given the number of individuals who are at risk of experiencing the event at time 

t(i).Then,                             

P( j
th

 individual will experience an event at time t(i)) 
            

∑                     
                                    (3.21)                                                                                    

      Where, the summation in the denominator is over all individuals in the risk set. Thus the partial 

likelihood is the product over all event time t(i) for i= 1,2,...,n of the conditional probability (3.21) to 

give the partial likelihood function and  can be expressed in the form:-  
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  (      )  ∏ [
   (      )

∑    (    )    (    )

] 
   

  

                                                                                    (3.22)                       

The expression assumes that there are no tied times, and designed in such a way that it excluded 

terms when  i0, as a result the  equation in (3.22) becomes. The product is over the r distinct 

ordered survival times. The corresponding log-partial likelihood function is given by: 

     (      )  ∑ {          [∑                     ]} 
                                                     (3.23) 

 The maximum likelihood estimates of the regression parameters in the proportional hazards model 

can be found by maximizing the log-likelihood function in equation (3.23) using numerical methods. 

This maximization is accomplished using the Newton-Raphson procedure (Collett, 2003). The 

Newton-Raphson procedure is used to maximize the partial likelihood function based on the 

following iterative procedure. An estimate of the vector of β-parameters at the (s+1)
th 

cycle of 

iterative procedure,  ̂   , is given by: 

 ̂   = ̂ +   ( ̂ )U( ̂ ), for s = 0, 1, 2, ......         

 ( ̂ )  (
      (      )

   
       

      (      )

   
)                                                                        (3.24) 

Where U( ̂   is the     vector of first derivatives of the log-likelihood function in equation (3.23) 

with respect to the β-parameters and this quantity known as the vector of efficient scores evaluated at 

 ̂ .    ( ̂ )   
           

      
  is the     matrix and known as observed information matrix.  

 ( ̂ )   
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       (      )
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                          (3.25) 

     ̂     is the inverse of the observed information matrix evaluated at  ̂ is the variance-covariance 

matrix of  ̂    ( ̂)  can be approximated by the inverse of the information matrix evaluated at  ̂  i.e. 

   ( ̂    
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The partial likelihood derived above is valid when there are no ties in the data set. But in most real 

situations tied survival times are more likely to occur. In addition to the possibility of more than one 

experience an event at a time, there might also be more than one censored observations at a time of 

event. To handle this real-world fact, partial likelihood algorithms have been adopted to handle ties. 

There are three approaches commonly used to estimate regression parameters when there are ties. 

These are Breslow (1974), Efron (1977) and Cox (1972) approximations (Collett, 2003).The most 

popular and easy approach is Breslow’s approximation. In many applied settings there will be little or 

no practical difference among the estimators obtained from the three approximations. Because of this, 

and since the Breslow approximation is more commonly available, otherwise, analysis presented in 

this study was based on it. 

The Breslow Approximation 

This approximation is proposed by Breslow and Peto by modifying the partial likelihood which takes 

the following form;- 

  (      )  ∏
∏            

               

[∑                     ]
  

 
                                                                                       (3.26) 

Where xi is the sum of covariates over di subjects at time t(i),  di is the number of experienced an event 

occurred at time t(i). 

Now the partial log likelihood of (3.26) is given as                                               .   

     (      )  ∑[         ∑           

          

 ]

 

   

                                                                                      

We obtain the Breslow maximum partial likelihood estimator, adjusted for tied observation, by 

differentiating equation (3.27 ) with respect to the component of   and setting the derivative equal to 

zero and solving for the unknown parameters. 

3.6.2.1.3. Assessment of Model Adequacy 

The adequacy of the model needs to be assessed after the model has been fitted to observed survival 

data.  Model-based inferences depend completely on the fitted statistical model. For these inferences 

to be valid, the fitted model must provide an adequate summary of the data upon which it is based. 
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Indeed, the use of diagnostic procedures for model checking is an essential part of the modeling 

process.  

As model assumptions checking are based on residuals, we will first introduce the different types of 

residuals used in survival analysis, and more specifically in the semi-parametric proportional hazards 

model. Residuals are values that can be calculated for each observation and have the feature that their 

behavior is known, at least approximately, when the fitted model is satisfactory.  

Different types of residuals are typical for survival analysis due to the fact that censoring has to be 

taken into account. Ordinary residuals from linear or generalized linear models are therefore often not 

applicable. 

i. Cox-Snell Residuals 

The residual that is widely used in the analysis of survival data is the Cox-Snell residual, it is a 

particular example of the general definition of residuals given by Cox and Snell (1968). The Cox-

Snell residual for the i
th

 individual,  i=1, 2, ..., n, is given by: 

          ̂     ̂                                                                                             (3.28) 

Where  ̂ (ti) is an estimate of the baseline cumulative hazard function at time ti, the observed 

survival time of that individual. Note that from equation (3.28), the Cox-Snell residual,    , is the 

value of    ̂ (ti) =      ̂     , where  ̂ (ti) and  ̂      are the estimated values of the cumulative 

hazard and survivor function of the i
th

 individual at  ti.  

ii. Schoenfeld Residuals  

 Two disadvantages of Cox–Snell residuals depend heavily on the observed survival time and require 

an estimate of the cumulative hazard function. These disadvantages are overcome in a residual 

proposed by Schoenfeld (1982). These residuals were originally termed partial residuals, but are now 

commonly known as Schoenfeld residuals.  

Schoenfeld residual differs from those considered previously in one other important respect. This is 

that there is not a single value of the residual for each individual, but a set of values, one for each 

explanatory variable included in the fitted Cox regression model. 

The i
th

 partial or Schoenfeld residual for Xj, the j
th

 explanatory variable in the model, is given by:  

            
∑       ( ̂  )   (  )

∑    ( ̂  )   (  )

},                                                                                              (3.29) 
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Where, Xji is the value of the j
th

 explanatory variable, j=1,2,..,p, for the i
th

 individual in the study, and 

if individuals in the risk set are indexed by l and R(ti) is the set of all individuals at risk at time of ti. 

Schoenfeld residuals are also used to check the proportionality of the covariates over time that is to 

check the validity of the proportional hazards assumption. If the model fits well then the residuals are 

randomly distributed without any systematic pattern around the zero line, reference line. For greater 

diagnostic power the scaled schoenfeld residual is preferred. The scaling can be done on the variance 

of the i
th 

subject Schoenfeld residuals. If the plot of scaled Schoenfeld residuals versus the logarithm 

of time is a random, smooth, straight line about zero the proportional hazards assumption will be 

satisfied. 

iii. Diagnostics for Influential Observations 

Observations that have an undue effect on model-based inference are said to be influential. In the 

assessment of model adequacy, it is important to determine whether there are any influential 

observations. The most direct measure of influence is  ̂   ̂     where  ̂  is the     parameter, 

              in a fitted Cox PH model and  ̂     is obtained by fitting the model after omitting 

observation  . In this way, we have to fit the     Cox models, one with the complete data and n 

with each observation eliminated. This procedure involves a significant amount of computation if the 

sample size is large. We would like to use an alternative approximate value that does not involve an 

iterative refitting of the model. To check the influence of observations on a parameter estimate an 

approximation to  ̂   ̂     is the     component of the vector   
        ( ̂) where   

   is the  p ×1 

vector of score residuals for the     observation (Klein and Moeschberger 1997), which are 

modifications of Schoenfeld residuals and are defined for all the observations, and    ( ̂) is the 

variance-covariance matrix of the vector of parameter estimates in the fitted Cox PH model. The     

element of this vector is called delta-beta statistic for the     explanatory variable, i.e.    ̂   ̂  

 ̂      which tells us how much each coefficient will change by removal of a single observation. 

Therefore, we can check whether there are influential observations for any particular explanatory 

variable. 

iv.   Overall Goodness of Fit 

One method of checking goodness of fit of the model is to use R
2
. In proportional hazards regression 

model as in all regression analyses there is no single, simple method of calculating and interpreting 
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R
2
, a measure analogous to    in linear regression, as a measure of model performance of a Cox 

model is also used. Hosmer and Lemeshow (1999) recommended a statistic based on the log-

likelihood of the model, which is defined as follows;       

  
    {   [

 

 
(     )]}                                                                                                     (3.30) 

where    the log-likelihood for null model i.e. the model with no covariates,     the log-likelihood for 

the fitted final Cox model with p covariates and   number of observations included in the study. For 

reason of censored lower the value of     indicate that the better fit of the model.  

Under the assumption of proportional hazards, there are three different tests for model assessment 

(the significance of the coefficients): the partial likelihood ratio test, the Wald test and the score test 

a. Partial Likelihood Ratio Test 

Partial likelihood ratio test is the easiest test to compute and the best of the three tests for assessing 

the significance of the fitted model for testing the significance of a subset of q explanatory variables 

from p explanatory variables.  

The partial likelihood ratio test statistic,   , is given by: 

           ( ̂)                  
                                                                                          (3.31) 

Where,        ( ̂) - the log-partial likelihood evaluated at  ̂ 

                          - the log-partial likelihood evaluated at     . 

Under the null hypothesis, Ho:               that all q coefficients are simultaneously equal to 

zero, and under mathematical regularities and large sample size conditions     follows a chi-square 

distribution with q degree of freedom,   
 . 

b. Wald test 

The Wald test is used to check the overall goodness of fit as well as checking the significance of each 

parameter of the model.  

Under the hypothesis, Ho:                     vs H1: at least one      ,  ̂ will be 

asymptotically normally distributed with mean 0 covariance matrix estimated by  ̂ar( ̂) =  ( ̂)
  

. 

Then, the Wald test statistic,   
  ,  given by: 

   ( ̂    )
 
 ( ̂)

  
( ̂    )   ̂  ( ̂)

  
 ̂        

                                                                         (3.32) 
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Follows a chi-square distribution with q degree of freedom,      . 

c. Score test  

The score test statistic, to test H0:   = 0 = (0, 0, 0….0)'q × 1 is defined as 

  
              

                                                                                 (3.33) 

Where,      and      
   are the score vector and inverse of the observed information matrix 

evaluated at   . Under null hypothesis and for large sample   
   is asymptotically distributed as chi-

squared with q degree of freedom,   
 . 

3.6.3.1.4 Checking for the Proportional Hazards Assumption 

The basic assumption of the Cox model is the assumption of proportional hazards. There are several 

methods for verifying that a model satisfies proportionality assumption.  

Graphical Methods 

One can obtain Cox PH survival function by the relationship between hazard function and survival 

function 

       (     )
   (∑     

 
   )

                                                                                                         (3.34) 

Where,                   are the values of the vector of explanatory variables for a particular 

individual. When taking the logarithm twice, we can easily get 

   (    (      ))  ∑     
 
       (    ((     )))                                                           (3.35) 

Then the difference in log-log curves corresponding to two different individuals with variables 

   (               ) and    (               ) is given by:-  

   (    (       ))     (    (       ))  ∑            
 
                                                (3.36) 

Which does not depend on  . This relationship is very helpful to identify situations where we may 

have proportional hazards. By plotting estimated log (-log (survival probability)) versus survival time 

for two groups we would see parallel curves if the hazards are proportional.  
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This method does not work well for continuous predictors or categorical predictors that have many 

levels because the graph becomes "cluttered". Furthermore, the curves are sparse when there are few 

time points and it may be difficult to tell how close to parallel is close enough.  

Looking at the K-M curves and log(-log(survival probability)) is not enough to be certain of 

proportionality since they are univariate analysis and do not show whether hazards will still be 

proportional when a model includes many other predictors. But they support our argument for 

proportionality. There are some other statistical methods for checking the proportionality. 

Adding Time-Dependent Covariates in the Cox Model 

We create time-dependent covariates by creating interactions of the predictors and a function of 

survival time and including them in the model. For example, if the predictor of interest is   , then we 

create a time-dependent covariate      ,               ; where       is some specified function of 

time, usually             is used by most software’s by default . Then the model assessing PH 

assumption for    adjusted for other covariates is: 

 (      )          (                                 )                           (3.37) 

Where,     (             );    is the values of the vector of explanatory variables for a 

particular individual. The null hypothesis to check proportionality is that δ= 0. The test statistic can 

be carried out using either a Wald test or a likelihood ratio test. In the Wald test, the test statistic is  

  (
 ̂

  ( ̂)
)

 

 

The likelihood ratio test calculates the likelihood under null hypothesis,    and the likelihood under 

the alternative hypothesis,   . The LR statistic is then 

        (
  

  
)            

 Both statistics have a chi-square with one degree of freedom under the null hypothesis. If the time-

dependent covariate is significant, i.e. the null hypothesis is rejected, and then the predictor is not 

proportional. In the same way, we can also assess the PH assumption for several predictors 

simultaneously. 
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3.6.2.2 Parametric Survival Regression Models 

In the analysis of survival data, survival models can also be used in addition to hazards model. One 

advantage of such models is that the proportionality assumption of the hazards is not required. The 

parametric survival regression models work analogous to the multiple linear regression of logarithm 

of survival time on explanatory variables. Such survival models are termed as parametric accelerated 

failure time models or simply AFT models. Because these models work on survival, the 

complementary concept of hazard, the sign of the regression coefficients in an AFT model will be 

opposite to those in PH models (Klein and Moeschberger 1997).  

Most commonly used parametric Survival Regression models are Exponential, Weibull, Log-Logistic 

and Log-normal. Exponential and Weibull parametric models can work both in PH and in AFT 

models. These models are equally appropriate viewed in either model. And one can transform 

regression coefficients computed in PH model into the regression coefficient in AFT model or vice 

versa for Exponential and Weibull parametric survival models. That means:- 

 For exponential         , the exponential PH and AFT are in fact the same model, except 

that the parameterization is different, hence HR=exp (   ) is the hazard ratio of the i
th 

group 

with the reference groups.  

 For weibull,        , where   is the shape parameter and hence, HR=exp (     ) is the 

hazard ratio of the i
th

 group with the reference groups.  

 Other parametric survival models such as Log-Logistic and Log-normal work only in AFT model as 

these models do not fit into the proportional hazards frame work.  

3.6.2.2.1. The Exponential Survival Regression Model  

The simplest model for the hazard function is to assume that it is constant over time. The hazard of 

death at any time after the time origin the study is then the same, irrespective of the time elapsed 

(Collett, 2003).  

From the constant baseline hazard function; h0i=  , the corresponding survivor function is: 

      { ∫    
 

 
}                                                                                                             (3.38) 

And so the implied probability density function of the survival times is  

                                                                                                                                        (3.39) 
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For the time data and skewed to the right and with distribution of the time is exponentially, the time 

of survival for covariates matrix X, which is called, accelerated failure time, expressed as:  

T = exp (    + ε)                 

This model can be transformed by taking the natural log of each side of the equation as:  

lnT =      + ε* 

Where ε is the error component and   = (      ,…      

The exponential model (t ~exp( 𝜶))  is the simplest parametric model and assumes a constant risk or 

hazard over time, which reflects the property of the distribution appropriately called “lack of 

memory”. Reparameterizing the exponential distribution using         , the exponential regression 

model for the k covariates and i
 th

 individual is expressed as:  

          =h0i exp ( 0   1X11     1X1k)                                                                                           (3.40) 

 For the exponential regression survival models the hazard ratio, with one unit increase in covariate 

Xi while other covariates being held fixed, at a time t is HR ( Xi) = exp(- 1) . 

Generally exponential hazard model can be presented as 

                                                                                                                

                                                                                                       

                                                                                                                          

3.6.2.2.2 The Weibull Survival Regression Model 

The Weibull distribution is a generalization of the exponential distribution. However, unlike the 

exponential distribution, it does not assume a constant hazard rate and therefore has broader 

application. The distribution was proposed by Weibull (1939) and its applicability to various failure 

situations discussed again by Weibull (1951). Suppose that survival times are assumed to have a 

Weibull distribution with scale parameter and shape parameter, the Weibull density function can be 

expressed as: 

       μ    
 

μ 
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μ 
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                                                                                            (3.41) 
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The baseline hazard model for Weibull distributed event times is given by: 

         
 

μ 
(
 

μ 
)
   

 

 Reparameterizing the Weibull distribution using     = σ
−1

,   = μ 
– 𝜶   then ho=        would be the 

baseline hazard function. Now incorporate covariates matrix X in the hazard function, the Weibull 

regression model becomes: 

            =                 1X11     1X1k)                                                                                       

Generally Weibull survival regression model can be presented as 

                                                                                                                                   

                        
                                                                                                          (3.43) 

                                        
                                                                               (3.44) 

The event time of the     subject is then characterized by the Weibull distribution with scale 

parameter   and shape parameter  . The shape of the hazard function critically depends up on the 

values of   that means:- 

If   < 1: hazard decreases monotonically with time 

If   >1: hazard increases monotonically with time 

If    = 1: constant hazard (equivalent to exponential distribution) 

Thus, all subjects share the shape parameter but differ with respect to their scale parameter. The 

model assumes that individual i and j with covariates Xi and Xj have proportional hazard function of 

the forms. A different parameterization is used with intercept v and covariate effects    having 

relationship with original parameterization as    
   

 
  and μ =exp (v). 

       

 (    )
    = 

   (    )

   (    )
   =   (  (     )), the quantities         can be interpreted as hazard ratios 

3.6.2.2.3. Log-logistic Survival Regression Model 

The log-logistic model assumes that the disturbance term, in an accelerated failure time, has a 

standard logistic distribution. Covariate incorporated log logistic accelerated failure time may be 

expressed as:  

                                                                                                                                              (3.45) 
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This model can be transformed by taking the natural log of each side of the equation as:  

                                                                                                                                             

Where,                 ,   is intercept,   is scale parameter and    is a random variable used to 

model the deviation of values of       from the linear part of the model.     is assumed to have a 

particular probability distribution supposed to be followed by the survival time under study. 

Suppose a random variable  , representing survival time, follows Log-Logistic distribution with 

shape parameter   and scale parameter    with probability distribution 

     
       

(      )
                                                                                                                                               (3.46)  

The baseline hazard function is given by 

      
       

      
  for                                                                                                                               (3.47) 

If     the hazard function decreases monotonically and if    , the hazard function has single 

mode (Collett 2003).  

The corresponding baseline survival function for the equation as 

       [        ]                                                                                                                 (3.48) 

Where, z is the standardized log-time outcome variable, that is    
    

 
  and y =ln( t).  

Since (t, z) is the probability of surviving to time t for any given time t, the ratio is often called the 

odds of surviving to time t. The ratio 
        

          
 exp( -z) is often called the odds of surviving time. 

Therefore, with one unit increase in covariate while other covariates being held fixed, the survival 

odds ratio (SOR)  at a time t is given by 

      

   (     
 
     )

 

   (     
 
   )

 

    (
  

 
)                                                                                             (3.49) 

This is independent of time 

3.6.2.2.4 Log-normal Survival Regression Model 

 When a random variable T is said to have a Log-normal distribution with parameters   and   the 

probability density function is given as follows: 



38 
 

          
 

      
      { (

         

   )}   For                                                        (3.50)  

From which the survivor and hazard functions can be derived. The survivor function is given by 

             (
        

 
)                                                                                                          (3.51) 

Where      is the standard normal distribution function.  The hazard function can be found from the 

relation               . This function is zero when    , increases to a maximum and then 

decrease to zero as t tends to infinity (Collett, 2003).    

3.6.2.2.5 Fitting parametric Survival Regression Models 

The survival likelihood for Weibull distributed survival data with event times and right censored data 

is generally given by 

  ∏ {(      
            

 )
            

   
    } 

                                                 (3.52) 

Resulting in the log likelihood function 

                ∑          ∑   
  

   
 
                                                    (3.53) 

with  the total number of events. Maximum likelihood estimators can be obtained by equating the 

first derivatives of   with respect to λ and   to zero and we get. 

̂  =  
 

∑  
 

̂
 
    

  and        
 

̂
 ∑         

 

∑   

̂
 
    

 
   ∑   

  
           

which is nonlinear in ̂ and can only be solved by a numerical procedure such as the Newton 

Raphson algorithm. 

The likelihood function is derived from the log-linear function of the model defined in equation 

(3.51). The likelihood function of n observed survival times,            for the log-linear form of the 

parametric Survival Regression model is given by 

         ∏ [      ]
   

   [      ]
                                                                                                        (3.54)  

Where        and        are the density and survival functions for the     individual at time    and    

is the event indicator for the observation and has value zero for censored and one for uncensored 
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individuals. If    
     and    

     are probability density function and survival function respectively 

of the random variable    in equation (3.54) in such a way that  

          
      and         

 

   
   

     

     Where,    (
                             

 
) 

The resulting likelihood function using survival function and density function of assumed probability 

distribution represented by random variable    is as follows: 

         ∏      
   [   

    ]
   

   [   
    ]

      
                                                                                

The log-likelihood function is: 

   (        )  ∑ {                  
                 

    }
 
    ∑        

 
           (3.55) 

The term   ∑        
 
     is omitted as it does not involve any unknown parameters. Hence the full 

log-likelihood function is given by 

   (        )  ∑ {                  
                 

    }
 
                                    (3.56) 

The maximum likelihood estimates of the parameters are estimated by using iterative Newton-

Raphson procedure.  

3.6.2.3.6 Assessment Adequacy of parametric Survival Regression Models 

Once the model has been finalized, it is necessary to test the overall fit of it. For assessing the 

goodness of fit of a parametric Survival Regression model different methods can be applied.  In this 

study Cox-Snell residuals plot and maximum likelihood ratio Test statistics are applied. The overall 

fit of the parametric Survival Regression model is evaluated by using the diagnostic plot of Cox-Snell 

residuals as described in Cox regression model. However, the calculation of Cox-Snell residuals in 

parametric Survival Regression is different from that of Cox regression model because of the 

difference in formulation between these two families. The Cox-Snell residuals for parametric survival 

regression model are calculated by using standardized residuals which are defined as 

          
{      ( ̂  ̂      ̂        ̂    )}

 ̂
                                                                                        (3.57) 
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Where  ̂  ̂   ̂     ̂  and  ̂ are the maximum likelihood estimates of  ,            and   

respectively. In the Cox-Snell residuals plot, if the plotted points lie on a line that has an intercept 

zero and slope unity, then it indicates that the fit is good. 

                Maximum Likelihood Ratio Test 

Maximum likelihood ratio test is the easiest test to compute and the best tests for assessing the 

significance of the fitted model for testing the significance of a subset of q explanatory variables from 

p explanatory variables.  

The maximum likelihood ratio test statistic,    , is given by: 

           ( ̂)                  
                                                                                

Where, 

     ( ̂) -   Log-maximum likelihood evaluated at  ̂  

           -  Log-maximum likelihood evaluated at     . 

Under the null hypothesis, Ho:               that all q coefficients are simultaneously equal to 

zero, and under mathematical regularities and large sample size conditions     follows a chi-square 

distribution with q degree of freedom,    
 .   

3.7.   Model Development 

The methods of selecting a subset of Variable and Comparison of Models in a PHs regression model 

are essentially similar to those used in any other regression models. The most common methods are 

purposeful selection, step-wise (forward selection and backward elimination) and best sub-set 

selections. Survival analysis using Cox regression method begins with a thorough univariable 

analysis of the association between survival time and all important covariates (Hosmer and 

Lemeshow, 1999). 

             3.7.1. Variable Selection 

When the number of variables is relatively large, it can be computationally expensive to fit all 

possible models. In this situation, automatic routines for variable selection that are available in many 

software packages might seem an attractive prospect. These routines are based on forward selection, 

backward elimination or a combination of the two known as the stepwise procedure. Thus, instead of 
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using automatic variable selection procedures, the following general strategy for model selection is 

recommended by Collet (2003). 

1. The first step is to fit models that contain each of the variables one at a time. The values of 

      ̂ for these models are then compared with that for the null model. The null model is a 

model in which there are no explanatory variables in the linear component of the hazard 

model and used to determine which variables on their own significantly reduce the value of  

      ̂. 

2. The variables that appear to be important from step 1 are then fitted together in a multivariable 

model. In the presence of certain variables others may cease to be important. Consequently, 

those variables that do not significantly increase the value of       ̂  when they are omitted 

from the model can now be discarded. We therefore compute the change in the value of 

      ̂  when each variable on its own is omitted from the set. Only those that lead to a 

significant increase in the value of       ̂  are retained in the model. Once a variable has 

been dropped, the effect of omitting each of the remaining variables in turn should be 

examined. 

3. Variables that were not important on their own, and so were not under consideration in step 2, 

may become important in the presence of others. These variables are therefore added to the 

model from step 2, one at a time, and any that reduce       ̂  significantly are retained in the 

model. This process may result in terms in the model determined at step 2 ceasing to be 

significant. 

4.  A final check is made to ensure that no term in the model can be omitted without 

significantly increasing the value of      ̂, and that no term not included significantly 

reduces      ̂. 

When using this selection procedure, rigid application of a particular significance level should be 

avoided. In order to guide decisions on whether to include or omit a term, the significance level 

should not be too small. A level of around 20% - 25% is recommended.   

             3.7.2. Model Comparison 

Different models can be compared on the basis of the variables selected and their coefficients in each 

model Cox-Snell residuals plot and AIC. If the models being compared have a similar set of 

covariates that have entered in the respective final models, it can be interpreted as all models are 

equally good or bad as far as the identification of important covariates associated with the outcome. 
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However, it is difficult to interpret either way if the selected variables in the models being compared 

are different, as there is no way of knowing the truth. The precision of the regression coefficients is 

another criterion that can be used to compare different models. The smaller the standard error, the 

more precise an estimate is expected to be a model with more precise coefficients can be considered 

as a more precise model. In this study Cox-Snell residuals plot and AIC are applied to compare 

different models in similar set of covariates. 

i. Comparison Based on Cox-Snell Residuals Plots       

The construction of the Cox-Snell residuals plot is explained in the respective sections above. 

Broadly, all models require the plot to be a straight line, passing through the origin to qualify for a 

good fit. So the plots under each model can be visually assessed as to which one of them is close to 

the requirements of a good fit. 

ii. Comparison based on AIC  

Akaike’s Information Criterion (AIC) proposed by (Akaike, 1974) may also be used when comparing 

can be used to compare models that are not nested. The AIC of a model may be defined as 

                                                                                                                                 (3.58) 

Where L is the log-likelihood,   is the number of covariates and   is the number of model-specific 

ancillary parameters. A lower value of the AIC suggests a better model.  

3.8. Ethical Considerations 

Ethical clearance was obtained from Jimma University, College of Natural science Department of 

Statistics. And, the official ethical clearance also was obtained from Hossana Queen Elleni Mohamad 

Memorial Hospital medical director. To keep the confidentiality, the data collectors extracted the 

necessary data from the patient baseline and follow up card. Moreover, no personal identifier was 

used on data collection form. The recorded data was not accessed by a third person except the 

researcher, and was kept confidentially. Thus, the data obtained by checklist was organized by the 

researcher. 
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CHAPTER FOUR 

  4. RESULTS AND DISCUSSION  

 4.1. Descriptive Analysis of HIV patients 

The study included 933 HIV patients, who started ART in Hossana Queen Elleni Mohamad Memorial 

Hospital between 1st February 2011 to 1st January 2016.  Among those patients 15.3% were dead cases 

and the rest 84.7% were censored. The baseline socio-demographic variables of the cohort are 

summarized in Table 4.1.1 of the appendix. Out of these patients 501(53.7%) were females, death 

proportion were 14.2%. In case of age 530(57%) of the patients were less than 40 years old, death 

proportion were 13.2%. The settlement of the patients were 481(51.5%)  lived in rural out of Hossana 

town, death proportion were 15.8% .When we see base line weight, 570(61%) were greater than or 

equal to 50kgms . Of the total patients, 226(24.2%) were single, 242(26%) were ambulatory and 

234(25%) were not educated. Furthermore, the clinical variables of the patients are summarized in  

table 4.1.2 0f the appendix. Among the patients, the regimen TDF-3TC-EFV was frequently 

prescribed 398(43%) patients and 295(31.6%) were staged clinically as IV. In case of ART Adherence 

were 174(18.6%) not followed the drug combinations properly. From the total of HIV-infected 

patients 190(20.4%) were TB co- infected, 172(18.4%) were abuse Substance and 426(45.7%) were 

CD4 count less than 200 cells/ l. 

 The overall mean estimated survival time of patients under the study was 51.50 (95% CI: 50.30, 

52.73) months. The minimum follow up time was 1month and the maximum was 60 months. Females 

and males have almost the same survival times i.e., 52.18 months with 95% CI, (50.55, 53.81) for 

females and 50.9 months with 95% CI, (49.13, 52.72) for males. Patients with age less than 40 had 

survived for about 52.19 months with 95% CI,( 50.47, 53.91) while the mean survival time for older 

patients was 49.3 months with 95% CI, (47.70 ,51.99). The mean survival time of HIV-infected 

patients from rural, 52.35 months with 95% CI, (50.15 , 53.55) is greater than that of from urban, 

51.14 months with its 95% CI (49.41 , 52.87). The mean survival time of patients based on different 

socio-demographic and clinical variables are summarized in Table 4.1(1 and 2). 
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4.2. Comparison of Survival Experience  

The Kaplan-Meier survivor estimator is used to investigate the significance differences between the 

survival probabilities of different categories.  In this study  overall graph of the Kaplan-Meier 

survivor function showed that relatively  small number of the deaths occurred in the earlier months of 

ART treatment which given in Figure 4.1. Separate graphs of the estimates of the Kaplan-Meier 

survivor functions for the covariates such as place of residence, baseline weight, functional status, 

marital status ,drug regimen, education level, ART adherence, WHO clinical stage, baseline CD4, 

substance use and TB co-infection are also presented in figures 4.(2 to 3)  and figures 4.(9 to12) of 

the Appendix .  In order to see whether there is difference in survival experience between different 

categories of individuals. Most of the graphs show differences between different categories; such as 

baseline weight, education level, functional status, WHO clinical stage, ART adherence, baseline 

CD4, substance use and TB co-infection. However, residence, marital status and drug regimen graphs 

did not show clear differences between the intended categories.  In general, the pattern of one 

survivorship function lying above another means the group defined by the upper curve had a better 

survival than the group defined by the lower curve.  
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Figure 4.1: the plot of the overall estimate of Kaplan-Meier survivor function of HIV Patients   

   

     

  Figure 4.2: Plots of Kaplan-Meier survivor function estimates for the variable baseline weight and 

education level 

 

   

Figure 4.3: plots of Kaplan-Meier survivor function estimates for the variable substance use and 

ART adherence 
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To check for significance differences among categories of factors that are shown using the Kaplan-

Meier estimates of the survivor functions, we employ a log-rank statistical test. Based on the Log-

Rank test, there was no significant difference in survival experience between the various categories of 

gender, age, residence, marital status and drug regimen. However, the log-rank test shows  that the 

survival experience of patients in different categories such as baseline weight, functional status, level 

of education, ART adherence, baseline CD4, substance use and TB co-infection are differs 

significantly which displayed in Table 4.2 below. A close examination of figures 4.(2 ,3) , figures 

4.(9 to12) and Table 4.2 reveal that patients who had: baseline weight 50kgms or above, working 

functional status, secondary and above education level, good ART adherence ,  200 line CD4 count, 

not abuse substance and no TB co-infected  had better survival time compared with other categories. 
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Table 4.2 Comparison of Survival Experience of HIV Patients Using socio-demographic and clinical 

variables. 

Covariates/Factors 

 

DF    Chi-square                P-value  

    

    

Log Rank 

(Mantel-Cox) 

Breslow (Genera- 

lized  Wilcoxon) 

 

 

 

 

 

 

Log Rank 

(Mantel-Cox) 

Breslow (Genera- 

lized Wilcoxon) 

Gender  1 0.47 0.017 0.491 0.896 

Age  1 0.0 1.741 0.992 0.187 

Residence  1 0.779 3.326 0.377 0.068 

Base line weight  1 11.594 13.595 0.010 0.000 

Marital status  4 2.318 4.038 0.128 0.440 

Functional status  2 6.007 4.175 0.034 0.041 

Drug regimen  2 4.048 3.538 0.440 0.600 

Education level 2 13.289 9.791 0.000 0.002 

ART Adherence  1 6.789 5.114 0.009 .0024 

WHO clinical  

stage 

3 3.975 1.320 0.046 0.251 

Base line CD4  1 4.016 4.199 0.045 0.040 

Substance use 1 9.274 7.106 0.020 0.008 

TB co-infection 1 17.667 19.804 0.000 0.000 

Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1
st
 February 2011 to 1

st
 January    

             2016* indicates statistical significance at 0.05 level of significance.   
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4.3. Results of the Cox proportional hazards Regression Model 

In order to study the relationship between survival time and covariates, a regression modeling 

approach to survival analysis using the Cox proportional hazards model can be employed for 

estimating the regression coefficients, making interpretation based on the hazard function, conducting 

statistical tests, constructing confidence intervals, checking the adequacy of model and its 

development precede interpretation of results obtained from the fitted model.  

4.3.1. Univariate Analysis of Cox ph Regression Model 

The univariate Cox proportional hazard model analysis is an appropriate method that is used to show 

potentially important variables before directly included in the multivariate model. The relationship 

between each covariates and survival probability of HIV patients are presented in Table 4.3.  As can 

be seen from this Table, survival probability of the patients was significantly associated with base 

line weight, education level, ART adherence, baseline CD4, substance use and TB co-infection.  But 

the covariates like gender, age, residence, drug regimen, marital status, WHO clinical stage and 

functional status were not statistically significant at 5% significance level. Furthermore, using a 

modest level of significance 25% to include in the multivariate model for further investigation were 

base line weight, marital status, WHO clinical stage, functional status ,drug regimen, education level , 

ART adherence, baseline CD4, substance use and TB co-infection. 
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Table 4.3: Single Covariate Analysis of Cox proportional hazards regression model of HIV Patients  

Covariates B SE Wald DF P-Value HR  95.0% CI for HR 

    Lower Upper 

Gender -0.115 0.168 0.469 1 0.493 0.891 [0.641 , 1.239] 

Age 0.002 0.169 0.000 1 0.992 1.002 [0.719 , 1.396] 

Residece -0.147 0.168 0.769 1 0.380 0.863 [0.621 , 1.199] 

Baseline weight -0.559 0.167 11.175 1 0.001 0.5714 [0.411 , 0.793] 

Marital status   10.351 4 0.055    

       Married 0.609 0.442 1.893 1 0.169 1.838 [0.772 , 4.375] 

, 2.309]        Divorced 

      Windowed 

0.006 0.424 0.100 1 0.990 1.006 [0.438 

0.506 0.476 1.132 1 0.087 1.659 [0.653 , 4.213] 

Functional status 7.037 2 0.166    

    Ambulatory -.438 0.268 2.675 1 0.102 .645 [0.382 , 1.091] 

    Bedridden 0.012 0.283 0.002 1 0.967 1.012 [0.581 , 1.763] 

Drug regimen   3.968 2 0.138    

AZT-3TC-NVP 0.395 0.199 3.922 1 0.048 1.484 [1.004 , 2.194] 

, 1.882] TDF-3TC-EFV 0.227 0.207 1.204 1 0.272 1.255 [0.837 

Education level   18.518 2 0.000    

     Primary -0.503 0.188 7.145 1 0.008 0.604 [0.418 , 0.874] 

   secondary and 

    above 
-0.971 0.231 17.639 1 0.000 0.379 [0.241 , 0.596] 

ART Adherence -0.734 0.169 6.610 1 0.010 0.427 [0.244 , 0.721] 

WHO clinical stage  16.986 3 0.053    

     stage II 0.087 0.351 0.061 1 0.805 1.091 [0.548 , 2.171] 

     stage III 0.5007 0.349 0.025 1 0.035 1.650 [1.578 , 2.290] 

     stage IV 0.750 0.325 5.318 1 0.021 2.116 [1.119 , 4.002] 

Base line CD4 -0.430 0.170 6.419 1 0.011 0.65 [0.465 , 0.907] 

Substance use 

(alcohol) 
0.558 0.177 9.982 1 0.002 1.748 [1.236 , 2.471] 

TB co-infection 0.714 0.174 16.752 1 0.000 2.042 [1.708 , 2.383] 

Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1
st
 February 2011 to 1

st
 January    

             2016, SE= Standard Error, B=Parameter Estimate, HR= Hazard Ratio, CI = Confidence Interval, DF= Degrees of  

 Freedom. 
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4.3.2. Multivariate Analysis of Cox ph Regression Model 

One problem with any univariate analysis is that it ignores the possibility that a collection of 

covariates, each of which is weakly associated with the outcome may have a significant effect when 

used together with other covariates in the model. If this is thought to be a possibility, then we should 

choose a significance level large enough to allow the suspected variables to become candidates for 

inclusion in the multivariate model. That is why we used 20-25% significant for selection of variables 

that are candidates for the multivariate analysis from single covariate findings (Table 4.12 in 

Appendix).  Consequently, the most important subset of these predictors to be included in the 

multivariable model will be selected by stepwise procedure, which based on their contribution to the 

maximized log partial likelihood of the model (-2LL). The summary result indicate that the highest 

reduction in - 2LL(bˆ) is observed for drug regimen that reduced the value for the null/empty model, 

from 1707.449 to 1655.784, the difference is 51.66 and the next highest change is obtained for 

functional status of (48.789)  followed by marital  status (42.021). Therefore, all the covariates will 

be included in the multivariate study. The next step is to check the significance of the covariates in 

the multivariable model. The covariates which are not significant at 5% significance level, then those 

covariates eliminated from the model. Lastly, the final Cox ph regression model is fitted in Table 4.4 

using the remaining significant covariates.  
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Table 4.4: the Parameter Estimates, Standard Errors and the Hazard Ratios of the Final Cox 

Proportional Hazard Regression Model  

Covariates DF Parameter 

Estimate 

SE Wald P-Value HR 95.0% CI for the 

HR 

 Lower Upper 

Baseline weight 

     <50kgms      (Ref.) 

       50kgms 

 

 

1 

 

 

-0.438 

 

 

0.173 

 

 

6.332 

 

 

0.012 

 

 

0.6455 

 

 

[0.459 

 

 

, 0.906] 

Education level 

    no education    (Ref.) 
2 

  
18.518 0.000 

   

    Primary 1 -0.504 0.188 7.145 0.008 0.604 [0.417 , 0.875] 

    secondary and above 1 -0.972 0.231 17.639 0.001 0.379 [0.242 , 0.596] 

ART Adherence 

     Poor        (Ref.) 

     Good  

 

1 

 

-0.7881 

 

0.172 

 

5.068 

 

0.024 

 

0.454 

 

[0.284 

 

, 0.749] 

WHO clinical stage 3   13.923 0.003    

       stage I     (Ref.)         

     stage II 1 0.325 0.354 0.845 0.358 1.384 [0.692 , 2.769] 

     stage III 1 0.507 0.351 0.159 0.022 1.650 [1.578 , 2.290] 

     stage IV 1 0.823 0.327 6.340 0.012 2.278 [1.700 , 4.323] 

Base line CD4 

   < 200 cells/ l (Ref.) 

      200 cells/ l 

 

 

1 

 

 

-0.4033 

 

 

0.1734 

 

 

5.379 

 

 

0.020 

 

 

0.685 

 

 

[0.495 

 

 

, 0.907] 

Substance use 

      No        (Ref.) 

   Yes       

 

1 

 

0.6034 

 

0.184 

 

10.739 

 

0.001 

 

1.828 

 

[1.275 

 

, 2.621] 

TB co-infection 

  Not infected (Ref.) 

  Co-infected 

 

1 

 

0.3775 

 

0.188 

 

4.021 

 

0.045 

 

1.458 

 

[1.008 

 

, 2.109] 

Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1
st
 February 2011 to 1

st
 January    

2016* indicates statistical significance at 0.05 level of significance.  SE= Standard Error, HR= Hazard Ratio,                               

CI = Confidence Interval, Ref. = Reference, DF= Degrees of Freedom, AIC value= 1698.571 
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4.3.3. Assessment of Model Adequacy 

The adequacy of the model needs to be assessed after the model has been fitted to the observed 

survival data. At this point we have a preliminary fitted model and the next step is assessing the 

adequacy of the fitted model should be done in order to evaluate how well the fitted regression 

describes the data set. In Cox ph survival regression analysis assessment of model adequacy the study 

must test the assumption of proportional hazards, check influence observation and overall goodness 

of fit. 

4.3.3.1 Test the assumption of proportional hazards 

A proportional hazard is one of the very important assumptions in the Cox model. To check the PH 

assumption for all the categorical variables included in the fitted model, we used the log (-log 

(survival probability)) plot versus log survival time, which is called as a log-cumulative hazard plots 

are presented in Figure 4.13: (a – e) of the appendix. The graphs for each of the categorical variable 

display lines that appeared to be parallel implying that the proportional hazards assumption among 

groups of the categorical variables such as baseline weight, ART Adherence ,baseline CD4 count, 

substance use and TB co-infection has not been violated. The assumption also checked for each 

covariate in the final Cox regression model by adding an interaction term with log of time. The 

results after adding the interaction term with log time are presented in table 4.5. The coefficient for 

interaction effect of each covariate with log time is found not significant which indicates that the 

proportional hazards assumption is not violated. Moreover, the plot of the scaled Schoenfeld in 

Figure 4.14 and 4.15 of the Appendix shows that the residuals are random without any systematic 

pattern and the smoothed plot looks straight line without any departure from the horizontal line. This 

above interaction effect and figures indicate that the PH assumption is satisfied for all the covariates 

in the model.  
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  Table 4.5: Results of the multivariable proportional hazards regression model containing the  

  variables in Table 4.4 and their interaction with log time (in months) 

Covariates 

Interacted with Log time 

Parameter 

Estimate 

SE Wald  P-Value Hazard 

Ratio 

95.0% CI for the 

Hazard Ratio 

 

Baseline weight    -0.336 0.806 0.418 0.676 0.714 (0.147 , 3.469) 

Education level -0.351 0.517 0.680 0.497 0.703 (0.394 , 3.221) 

ART Adherence -0.492 0.964 0.510 0.610 0.611    (0.255 , 1.939) 

WHO clinical stage -0.314 0.497 0.063 0.950 0.969 (0.092 , 4.051) 

Base line CD4 -1.247 0.936 1.332 0.183 0.287 (0.165 , 2.568) 

Substance use 0.788 0.912 0.864 0.387 1.200 (0.586 , 1.800) 

TB co-infection 1.167 0.864 1.349      0.177 3.212 (1.315 , 3.681) 

Baseline weight 

*ln(Time)  

-0.646 0.243 0.027       0.979 0.199 (0.058 , 1.750) 

Education *ln(Time) -0.012 0.155 0.073 0.942 0.988 (0.617 , 1.600) 

ART Adherence*ln(Time)  -0.001 0.287 0.035 0.972 0.990 (0.728 , 1.342) 

WHO clinical 

stage*ln(Time)  

0.007 0.147 0.310 0.757 1.047 (0.563 , 1.739) 

Base line CD4*ln(Time) 0.268 0.279 0.957 0.339 1.307 (0.784 , 1.398) 

Substance*ln(Time)  0.0157 0.271 0.058 0.954 1.016 (0.755 ,  2.261) 

TB co-

infection*ln(Time) 

-0.193 0.260 0.740 0.460 0.824 (0.596 , 1.729) 

    Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1st February 2011 to 1st January 2016.  

 SE= Standard Error 

      4.3.3.2. Identification of Influential Observation 

The next step this study follows in evaluation of regression diagnostic is to see if there are any 

observations that have undue influence on the estimates of the Cox regression parameters, or have an 

unexpected influence on the fit of the model. The DFBETA statistic for measuring the influence of 

the i
th

 observation is defined as the one-step approximation to the difference in the MLE of the 

regression parameter vector with i
th

 and the MLE of the regression parameter vector without the i
th

 

observation. As a result, the first five largest changes in parameter estimates are shown in Tables 4.13 

and 4.14 of the Appendix. From the tables deleting observation decreases the relative hazard of death, 
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but again the change is not big. Therefore, this study conclude that there is not much influential 

outlier observation in the HIV infected patient data from HQEMMH.  

      4.3.3.3. Overall Goodness of Fit 

The final step in the model assessment is to measure the overall goodness of fit. For this objective the 

study use the Cox-Snell residuals, R
2
 and Likelihood Ratio, Score and Wald tests.  Plot of the Cox-

Snell residuals was applied to test the overall fit of the model. The plot of the Nelson-Aalen estimate 

of the cumulative hazard function against the Cox-Snell residuals is presented in Figure 4.4 below. It 

can be seen that the plot of the residuals in Figure is almost close to the 45
0
 straight line through the 

origin. Thus, the plot is evidence that the model fitted to the data is satisfactory. However, there is 

little evidence of a systematic deviation from the straight line at the left, this can be expected even if 

we have a well-fitting Cox model because of the reduced effective sample size caused by prior 

failures and censoring (Khanal 2009). 

 

Figure 4.4: Cumulative hazard plot of the Cox-Snell residual for final Cox PH model 

An adequate model is a model with low R2
 due to high percent of censored data. The value of the -

2Log-Likelihood of the model with covariates in table 4.6 which is equal to 1649.303 and the -2Log-

Likelihood for the null or empty model equals 1707.449. The measure of goodness of fit R
2

p is 

calculated as:   
 =1- exp[

 

 
(LO - Lp)] = 1-exp[

 

   
((-853.7245-(-824.65))] = 0.0604. which is small, 

indicating that the model fit the data well. Furthermore, the results of the Likelihood ratio, Score and 
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Wald tests for model goodness of fit displayed in Table 4.6  which suggest that the model is good fit 

(i.e. significant at 5% level of significance). Therefore, the model with estimates as given in Table 4.4 

is the final Cox PH Regression model. 

Table 4.6: The Likelihood Ratio, Score and Wald tests for overall measures of goodness of fit of the 

final Cox PH model in table 4.4 

Test  Chi-Square       DF                    Pr>Chisq 

Likelihood Ratio 72.34        10 <.0001 

Score 76.23         10 <.0001 

Wald 72.94        10 <.0001 

  Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1st February 2011 to 1st January 2016 

4.3.4. Interpretation and Presentation of the Final Cox PH Regression Model 

The coefficient of the categorical covariates is interpreted as the logarithm of the hazard ratio of death 

to the baseline (reference group) hazard. That is, they are interpreted by comparing the reference 

group with others. Similarly, the coefficient for a continuous explanatory variable indicates the 

estimated change in the logarithm of the hazard ratio for a unit increase in the value of the respective 

covariate when the remaining covariates in the model are under control. Accordingly, the 

interpretation of the covariates included in the final Cox proportional hazard model of HIV infected 

patients in the case of HQEMMH is as follows. 

The estimated hazard ratio of death for patients whose baseline weight is  50 kgms is   ̂= 0.6455 

[95% CI: 0.4595-0.9068, p=0.012]. This means that the hazard rate of death of patients whose 

baseline weight  50 kgms reduced by 35.45% compared to patients whose baseline weight<50 kg 

controlling for other variables in the model. Similarly, the covariate baseline CD4 count is 

statistically significant influence on the survival time of the patients. The estimated hazard rate of 

death of patients whose CD4 count  200cells/ l is 0.687 [95% CI: 0.4957-0.9071, p=0.02]. This 

indicates that the estimated hazard rate of death of patients whose CD4 count  200cells/ l reduced 

by 31.3% compared to patients whose CD4 count < 200 cells/ l controlling for other variables in the 

model. 

The estimated relative risk of death for a patient whose level of education are primary and secondary 

or above are 0.604 (95% CI: 0.417- 0.875, p=.008) and 0.379 (95% CI: 0.242-0.596, p<0.001), 
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respectively. This means that the hazard rate of death of patients whose level of education are primary 

and secondary or above are reduced by 39.6% and 62.1% respectively compared to patients with no 

education controlling for other variables in the model. Moreover, the estimated hazard ratio of 

primary level of education compared to secondary or above level of education is exp (-.972+.504) 

=0.626 (95% CI: 0.543 - 0.7083). Since the confidence interval does not contain 1, it indicate that an 

individual whose level of education is secondary or above has a significantly reduce hazard rate at 

any given time than patients with primary level of education. Similarly, the estimated relative risk of 

death for patients whose ART adherence good as compared to those who are ART adherence poor 

is,  ̂  0.454 [95% CI: 0.2845 - 0.7498, p=0.024]. This means estimated hazard rate of death of 

patients whose good ART adherence was reduced by 54.6% times than patients whose poor ART 

adherence controlling for other variables in the model. 

The estimated hazard ratio of death for patients in WHO stages III and IV are    ̂ = 1.650 [95% CI: 

1.578-2.290, p=0.022] and   ̂=2.278 [95% CI: 1.700-4.323, p=0.012] respectively in comparison to 

that of stage I controlling for other variables in the model. This indicates that the hazard rate of death 

was 1.65 times higher in stage III and 2.3 times higher in stage IV as compared with stage I. On the 

other hand, the estimated hazard ratio of stage IV compared to stage III is 1.38 =exp (0.823-0.5007). 

This suggests, patients in stage IV are 38% more likely to die than patients in stage III. 

 The estimated hazard ratio of death for patients who were  abuse substance (tobacco, alcohol, soft 

drugs) was 1.828 times higher than those who didn’t uses substance[95% CI: 1.275- 2.621, p=0.001]. 

This indicates patients who were abuse substance was 82.8% higher risk of death than patients who 

did not use substance controlling for other variables in the model. Similarly, the estimated relative 

risk of death for patients who were TB co-infected was 1.458 times higher risk of death than patients 

not TB co-infected [95% CI: 1.008-2.109, p=0.045] controlling for other variables in the model. 
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4.4. Parametric Survival Regression Model Analysis  

       4.4.1. Model Comparison for Time to death of HIV infected Patients 

From this Time to death of HIV infected patients the parametric regression models were fitted in 

Table 4.15 of the Appendix. This study consider model Comparison after adjusting for the effect of 

covariates and also compare models by using graphical method based on the Cox-Snell residual plots 

and Akaikie information criterion (AIC). In case of Cox-Snell residual plot, if the model is good, the 

plot of Cox-Snell residuals versus cumulative hazard estimates line should passes through the origin. 

Here this study presents the Cox-Snell residual plots for model comparison in Figures 4.5 to 4.8. 

From those figures Cox-Snell residuals plot for Weibull regression model shows deviation from the 

straight line passing through origin, it indicates that the Weibull regression model fit the data better, 

otherwise that the exponential, log normal and log logistic regression models fit the data  poorly. 

 

 

 

  

Figure 4.5 The Cox Snell plot after fitting                      Figure 4.6 The Cox Snell plot after fitting   

                 Weibull regression model                                                  Exponential regression model 

0
.5

1
1
.5

2
2
.5

0 .5 1 1.5 2 2.5
Cox-Snell residual

weibull Cox-Snell residual

0
.5

1
1
.5

2
2
.5

0 .5 1 1.5
Cox-Snell residual

Exponential Cox-Snell residual



58 
 

 
Figure 4.7 The Cox Snell plot after fitting                           Figure 4.8 The Cox Snell plot after fitting 

                   log logistic regression model                                                  lognormal regression model 

 

But graphical methods may not assure the result. In order to select the appropriate parametric survival 

regression mode1, the most common applicable criterion called Akaikie information criterion (AIC). 

Nevertheless, the results of cox-snell were consistent with the results based on Akaikie‟s  information 

criterion. Here, the models are not nested; it is not possible to compare the models using logliklihood 

values. When the models were compared using AIC in Table 4.7, among the parametric models, the 

result of  table  reveal that the Weibull regression model has the smallest AIC, which shows that 

weibull model is the appropriate parametric survival regression model for HIV infected  patients from 

Hossana Queen Elleni Mohamad Memorial Hospital. 

   Table 4.7: Selection of parametric survival regression model by using Log likelihood and AIC  

Model  log-likelihood  AIC  

Exponential -865.9 1759.879 

Weibull -827.1 1684.139 

Log logistic -828.6 1687.193 

Lognormal -840.8 1711.652 

              Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1st February 2011 to 1st January 2016 

                             AIC=Akaike’s information criteria 
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And also using the same type of variables model comparison made between semi-parametric and 

parametric is carried out using AIC. The result given on Table 4.8 blow shows that AIC for Cox 

proportional hazard regression model is 1698.57 while the AIC value for Weibull regression model is 

1684.139. Hence the Weibull regression model is better model than Cox proportional hazard 

regression model in fitting to the data on survival time of HIV infected patients considering in this 

study. Finally, the Weibull distribution is unique in that it is the only one that is simultaneously both 

proportional and accelerated so that both relative event rates and relative extension in survival time 

can be estimated. 

Table 4.8: Comparison of AIC values for Cox proportional model and weibull survival regression

       model 

Model AIC 

Weibull regression model 1684.139 

 Cox proportional hazard regression model 1698.571 

                Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1st February 2011 to 1st January 2016,  

                             AIC=Akaike’s information criteria 

  4.4.2. Univariate Analysis of  Weibull Regression Model 

According to the Weibull analysis of single covariate, the selected covariates for further analysis and 

interpretation are made here below. To have an idea about the individual effects of the different 

explanatory variables on survival of HIV infected patients fitted Weibull regression model separately 

for each explanatory covariate results displayed in Table 4.9 bellow.  Which illustrate that statistically 

significant factors for the survival probability of HIV infected patients, thus are baseline weight, 

education level, ART adherence, WHO clinical stage, baseline CD4, substance and TB co-infection. 

Whereas the factors that were not statistically significant are gender, age group, residence of patients, 

marital status, functional status and drug regimen at 5% level of significance. The factors those were 

statistically significant included in the final Weibull regression model for the prediction of survival 

probability of HIV infected patients. 
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Table 4.9: The Result of Deviance, -2*LL and Pr (>Chi) of univariate weibull regression model 

Analysis. 

Covariate Df Deviance Resid.

Df 

-2*LL Pr(>Chi) 

NULL NA NA 931 1720.972 NA 

Gender 1 4.42518e-01 930 1720.529 5.059107e-01 

Age  1 4.068705e-04 930 1720.529 9.839069e-01 

Residence 1 1.117299e+00 930 1719.952 2.905007e-01 

Baseline weight 1 1.215160e+01 930 1719.877 4.904580e-04 

Marital   status 4 8.581178e+00 927 1711.708 3.930489e-01 

Functional status 2 4.747349e+00 929 1713.989 6.724579e-02 

Drug regimen   2 3.674616e+00 929 1717.146 5.893753e-02 

Education level 2     1.747705e+01 929 1702.713 3.150739e-05 

ART adherence 1    3.576980e+00 930 1714.454 4.383535e-02 

WHO clinical stage 3   1.411636e+01 928 1704.820 2.750965 e-02 

Baseline CD4 1     3.634150e+00 930 1714.177 3.653883 e-02 

Substance use 1     1.212300e+01 930 1711.324 3.927276e-04 

TB-co-infection 1     3.153572e+00 930 1704.493 8.930405e-03 

Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1
st
 February 2011 to 1

st
 January    

             2016, NA=Not applicable, Df= Degrees of freedom, LL= Loglikelihood. 

4.4.3. Multivariate Analysis of Weibull Regression Model  

The result of relationship between covariates and survival probability of HIV infected patients 

modeled by Weibull regression model are presented in Table 4.10. It indicate the parameter estimates 

of coefficients for the covariates in the final Weibull regression model along with the associated 

significance level, hazard ratio with corresponding standard error and 95% confidence interval for the 

hazard ratio. Survival time of HIV infected patients were significantly associated with baseline 

weight, WHO clinical stage, education level, ART adherence, baseline CD4, substance use and TB 

co-infection as can be seen from the Table 4.10. 
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Table 4.10: Summary result of Parameter Estimates, Standard Errors and the 95% CI of the final 

multivariate Weibull regression model Analysis  

Covariates Parameter 

Estimate 

SE Z P-Value Hazard 

Ratio 

     95.0% CI for  

 the  H R 

Baseline weight 

      50kgms      ( Ref.) 

     < 50kgms 

 

 

0.215 

 

 

0.084 

 

 

2.511 

 

 

1.10e-02* 

 

 

1.24 

 

 

[1.048, 

 

 

1.461] 

Education level 

      no education   ( Ref.) 

  
  

   

       Primary -0.230 0.084 -2.357 1.63e-02* 0.792 [0.619, 0.981] 

      secondary and above -0.463 0.117 -3.948 8.62e-05* 0.629 [0.402, 0.845] 

ART Adherence 

                         

      Good 

 

 

-0.589 

 

 

0.084 

 

 

-2.240 

 

 

3.06e-02* 

 

 

0.554 

 

 

[0.389, 

 

 

0.716] 

WHO clinical stage        

      Stage I (Ref.)        

      stage II 0.086 0.122 0.712 5.04e-01 1.090 [0.844, 1.366] 

      stage III 0.237 0.107 2.207 2.90e-02* 1.267 [1.064, 1.476] 

      stage IV 0.648 0.170 0.866 3.86e-03* 1.711 [1.517, 2.044] 

Base line CD4 

      200 cells/ l  (Ref.) 

     200 cells/ l 

 

 

0.289 

 

 

0.084 

 

 

2.234 

 

 

2.19e-02* 

 

 

1.335 

 

 

[1.170, 

 

 

1.499] 

Substance use 

    No   (Ref.) 

   Yes       

 

0.492 

 

0.091 

 

3.196 

 

1.29e-03* 

 

1.636 

 

[1.427, 

 

1.734] 

TB co-infection 

     Not infected (Ref.) 

     Co-infected 

 

 

0.388 

 

 

0.092 

 

 

2.049 

 

 

3.46e-02* 

 

 

1.473 

 

 

[1.298, 

 

 

1.654] 

Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1
st
 February 2011 to 1

st
 January    

             2016* indicates statistical significance at 0.05 level of significance.  SE= Standard Error, HR= Hazard Ratio,   

             CI = Confidence Interval, Ref. = Reference, AIC value= 1684.139 
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 In this study the baseline hazard for final weibull regression model obtained from equation ( 3.42) 

and with the parameters found in Table 4.10, the survival time of HIV  patients with Weibull 

distribution can be expressed as t ∼ Weibull( ,  ), with parameters         
 μ

 
 )= 2.98e

-4
 and   

 

 
 

= 2.056 this  shows hazard increases monotonically with time , time ~ Weibull ( 2.056, 2.98e
-4

). By 

substituting the parameters in the final Weibull model with substitution of             and 

          the Weibull hazard regression model that predicts the hazard rate of patients with 

identical data settings is: 

                     
                                                               (4.1) 

Form the final Weibull regression model the baseline hazard vary with        ; so the base line 

hazard function of  HIV  infected  patients for HQEMMH is given with formula of (4.2) in every 

increase in time. 

ho   =        =                                                                                                                             (4.2) 

4.4.4. Assessment of adequacy and Interpretation of the Weibull Regression Model 

The likelihood ratio test presented in Table 4.11, it illustrate that the model was significantly fit the 

data of HIV patients. And in using the log likelihood, the model has a significant improvement after 

the covariates is incorporated in the model. 

Table  4. 11: The Likelihood Ratio Test of the Final Weibull Regression Model for Time to death of HIV Patients  

Log likelihood 

(intercept only) 

Log likelihood  

(Model) 

LR chi-

square 

DF P-values Intercept Scale 

       

-860.5 -804.2 72.48 10 0.000 4.0712 0.482 

Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1
st
 February 2011 to 1

st
 January    

             2016* indicates statistical significance at 0.05 level of significance.     DF= Degrees of Freedom.  

The importance of this interpretation is that for those data where it was considered reasonable to 

apply Cox regression to estimate the underlying hazard ratio, it should also be reasonable to apply a 

Weibull analysis to estimate the hazard ratio and using the estimated scale parameter. In this study 

Weibull regression model was considered as better fit to the data, and also both hazard ratio and 

survival probabilities can be still interpreted as the hazard rate of death or survival probabilities 

increase/decrease in survival time on the reference group relative to others.  
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From the Weibull regression model, Baseline CD4 count is statistically significant influence on the 

survival time of the patients. After adjusting the other covariates, the hazard rate of patients who were 

CD4 count < 200 cells/ l was 1.335 times higher than those patients who were CD4 count   200 

cells/ l (adjusted HR=1.335, CI=1.170-1.499), this means  the survival probability of HIV patients 

whose CD4 count < 200 cells/ l  was declined by 33.5%. Similarly, keeping other covariates 

constant, the hazard rate of  patients who were baseline weight < 50 kg was 1.237 times  higher than 

those patients who were baseline weight  50 kg  (adjusted HR=1.237, CI=1.04829-1.461633), which 

means  the survival probability of HIV patients who were baseline weight less than 50 kg was 

reduced by 23.7%. 

For WHO clinical stage, after fixing other covariates constant, The hazard rate of a patients in WHO 

stages III were 1.267 times that of patient in stages I (adjusted HR=1.267, 95% CI: 1.064 -1.476). 

And the hazard rate of a patients in WHO stages IV were 1.711 times that of patient in stages I 

(adjusted HR=1.711, 95% CI: 1.517  -2.044). This indicates that the survival probability of HIV 

patients in stage III was reduced by 26.7% and in stage IV was reduced by 71.1% as compared with 

stage I.  For  education level after fixing other covariates , the hazard rate of patients whose  

education  level are primary and secondary or above are 0.792 (95% CI: 0.619-0.981) and 0.629 

(95% CI: 0.402  -0.845), respectively. This means that the survival probability of HIV patients whose 

level of education are primary and secondary or above are increased by 20.8% and 37.1% 

respectively compared to patients with no education. Similarly, the After adjusting other covariates, 

the hazard rate of patients who were good ART adherence was reduced by 0.554 times than those  

patients who were poor ART adherence   (adjusted HR=0.554, CI=0.389-0.716), which means that 

the survival probability of HIV patients who good  adherence was increased by 44.6%. 

 The abuse substance (alcohol) had also a significant effect on the survival probability of HIV 

patients. After adjusting other covariates, the hazard rate of patient who were abuse substance was 

1.636 times higher than those patient who didn’t use substance (adjusted HR=1.636, CI=1.427-

1.734), this pointed out that the survival probability of patients who use substance was reduced by 

63.6%. Similarly, After adjusting other covariates, the hazard rate of patients who were co-infected 

with TB  was 1.473 times higher than patients who had not co-infected  (adjusted HR=1.473, 95% 

CI: 1.298-1.654). This means that the survival probability of HIV patients who TB co-infected was 

declined by 47.3%. 
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  4.5 .DISCUSSION 

The study used stepwise selection technique, enter and remove, and backward technique the most 

non-significant covariates are removed and the rest in the model are refitted. At the last step the 

procedure ended with the most likely selected covariates: baseline weight, ART adherence, baseline 

CD4 count, WHO clinical stage, education level, substance use and TB co-infection of the patients on 

ART. In both Cox proportional and Weibull regression models, the baseline body weight <50kgs was 

significantly associated with reducing the survival probability of HIV infected patients. This result 

confirms the finding observed in West Africa, in which body weight at initiation of ART treatment 

<50 kgs was significant risk factors of death during ART treatment period (Moha et al., 2007 and 

Ferradini et al., 2006). Similarly, our study revealed that the weight of patients is significantly 

associated with mortality and those patients having lower weight were at higher risk of mortality. 

This finding showed that the majority of HIV patients had started antiretroviral treatment with more 

advanced immunodeficiency status. Since the majority of HIV patients had AIDS as defined by their 

CD4 cell counts < 200 cells/ l, indicated advanced immune suppression at initiation of ART. These 

findings indicated that the HIV patients with lower the CD4 cells count which greater chances of 

getting very serious diseases, which lead to high risk of mortality. The result of this study and findings 

of Lawn et al. (2008) are similar in low baseline CD4 cell count strong risk factor association to early 

mortality.   

A study by Zubairu and Musa (2009) suggested that WHO clinical Stages III and IV have significant 

impact on reducing the survival probability and also it indicated that WHO clinical stage is a risk 

factor of HIV infected patients. According to previous studies by Mohammed et al (2011) showed that 

WHO clinical stage III and IV are significantly associated with high risk of mortality on HIV infected 

patients. Similarly, this study result revealed that the patients in advanced WHO clinical stage III and 

IV were significantly reduced the survival probability compared to those patients in Stages I. The 

study also revealed that the HIV infected patients whose level of education was secondary or above 

were more likely to survive to compare those patients with no education. This result is consistent with 

studies done previously by DeSilva et al.,(2009). Similarly, this study  revealed that the patients whose  

education level was secondary or above were more likely to survive compared to those patients with 

no education which is also consistent result with previous study by Reda et al., (2013). In the same 

manner, this study revealed that the patients with primary education were more likely to survive than 

illiterate patients (patients with no education). 
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The study showed that substance abuse had a significant impact on the survival probability of HIV 

infected patients. This result confirmed the finding obtained from previous studies by Asefa (2005),  

Liu et al., (2006) and Moattia et al., (2000) alcohol and other substances abuse were associated with 

mortality, non-adherence to medication and lower quality of life of HIV infected patients. This study 

showed similar result that HIV infected patients who were substance abused more likely died 

compared to those patients who do not use. This might be due to ART non-adherence in addition to 

the complications that alcohol brings in to one’s health.  A study conducted in Uganda showed non 

adherent patients had a mortality of 42.5 deaths per 1000 person-years and after adjusting for age, sex 

and educational level were two times as likely to die as adherent participants (Kaufmann et al., 2011). 

In addition study conducted in Ethiopia revealed, the risk of death in non- adhered patients is 4 times 

higher compared to adhered patients (Bedru, 2009). Above studies were in agreement with this study 

results which indicated that there was strong association between mortality and ART adherence. 

The result of this study showed that patients co-infected with TB had highly increased the rate of 

death than uninfected patients.  Similar study conducted in China and Ethiopia showed that TB co-

infection was associated with high risk of mortality on HIV infected patients (Xueyan et al., 2008, 

and Gezahegn, 2011). This study confirmed that HIV infected patients who were TB positives at 

ART initiation were more likely to die compared to those HIV infected patients who were TB 

negatives. This might be due to the fact that TB is the leading cause of death worldwide in HIV-

infection and mycobacterium tuberculosis is a virulent organism that can produce disease in HIV-

infected persons at any stage of disease even when the immuno suppression is minimal.  

In this study comparison among four models were made, exponential, weibull, lognormal and log 

logistic regression models, the models were compared based on their Cox-Snell plots and Akaikies 

information criterion (Akaike, 1974). In this study, the Weibull regression model fit the data better 

than the other models. And also model comparison made between semi-parametric and parametric 

was carried out using AIC(Yiannoutsos ,2009 and Dehkordi et al., 2008). Hence the Weibull 

regression model was better model than Cox proportional hazard model in fitting to the data on 

survival time of HIV infected patients considering in this study. This result was similar to previous 

study by Dehkordi et al., (2008) and Tesfaye (2013). Finally, the Weibull regression model was 

appropriate for HQEMMH HIV infected patient data set.   
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CHAPTER FIVE 

  5. CONCLUSION AND RECOMMENDATION 

       5.1. Conclusion 

The results of Kaplan-Meier and log-rank test showed  that  patients who had: baseline weight 

50kgms or above, working functional status, secondary and above education level, good ART 

adherence ,   200 line CD4 count,  not abuse substance and no TB co-infected  had better survival 

time compared with reference groups. Univariate Cox Proportional Hazards regression models were 

developed to assess the relation between each covariate survival status and their selected variables. 

The result of multivariate Cox proportional hazards regression model showed that baseline weight, 

ART adherence, baseline CD4 count, WHO clinical stage, education level, substance and TB co-

infection of patient were the major factors that affect the survival probability of HIV infected patients.  

For modeling time to death of HIV patients Exponential, Weibull, lognormal and log logistic 

parametric regression models were applied. Among these using Cox-Snell residuals plot and AIC for 

model comparison, the Weibull survival regression model was better fitted model for time to death of 

HIV infected patients in case of Hossana Queen Elleni Mohamad Memorial Hospital than the other 

remaining parametric models. The Weibull regression model results revealed that baseline weight<50 

kg, low CD4 count at baseline, no education, WHO stages III and IV, poor ART adherence, co-

infection with TB and substance abuse are the categories that reduce the survival probability of HIV 

infected patients. Finally, The Weibull survival regression model provides better predictions to the 

survival probability of HIV patients. 

5.2. Recommendation  

Based on this study finding, the following recommendations can be forwarded for government 

program planners, decision makers, ART program implementers at different level and other 

stakeholder who work in the areas of giving care, support and treatment for HIV/AIDS patients.  

 

  Health workers should be cautious when a patient has lower baseline CD4 and lower baseline 

weight.  
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 Health workers need to support those patients with no or little education by continuous 

awareness creation of taking care of themselves and knowing what factors facilitate death. 

Hence, education level of the patients has an important role in increasing their quality of life. 

 Prompt initiation of TB treatment in order to reduce patient mortality and Patients who drink 

alcohol need to be given advice to reduce excessive drinking. And also Careful follow up for 

poorly adhered patients and giving them drug counseling is crucial to improve survival  

 For future researchers on this area should apply  Weibull survival regression model because 

Weibull distribution is unique  that means  only one that  simultaneously both proportional and 

accelerated so that both relative event rates and relative extension in survival time can be 

estimated and  it  predict  the survival probability of HIV patients well  

Limitation of the Study 

  The study presumed that all deaths are caused by HIV infection. 

 The study is based on baseline values of the variables of interest i.e. CD4 cell count stability 

or improvement, weight loss or gain, which are associated to mortality of AIDS patients, are 

not included in the study because they were not consistently recorded.  
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APPENDIX  

Table 4.1.1: Summary of descriptive statistics for Socio-Demographic Variables 

 

Covariates            categories 

                  Status of patients   

 

Mean    

 

 

95% CI 

Total Number 

of censored 

 

 

Number  

Of  death 

Gender  
Female 501(53.7%) 430(85.8%) 71(14.2%) 52.18 (50.55 , 53.81) 

Male 432(46.3%) 360(83.3%) 72(16.6%) 50.92 (49.13 , 52.72) 

Age  group 
below 40 530(57%) 460(86.8%) 70(13.2%) 52.19  (50.47, 53.91) 

40 and above 403(43%) 330(82%) 73(18%) 49.34 (47.70 ,51.99) 

Residence  
Rural 481(51.5%) 405(84.2%) 76(15.8%) 52.35 (50.15 , 53.55) 

Urban 452(48.5%) 385(85.2%) 67(14.8%) 51.14 (49.41, 52.87) 

Base line 

weight  

less than 50kg 363(39%) 293(80.7%) 70(19.3%) 48.99 (46.84 , 51.16) 

50kg or above 570(61%) 497(87.2%) 73(12.8%) 52.98 (51.55 , 54.42) 

Marital status  

Single 226(24.2%) 187(82.7%) 39(17.3%) 47.84 (44.58 , 51.10) 

Married 526(56.4%) 453(86%) 73(14%) 52.78 (51.32 , 54.24) 

Divorced 122(13%) 100(82%) 22(18%) 48.57 (44.23 , 52.93) 

Functional 

status  

Working 608(65%) 529(87%) 79(13%) 52.71 (51.28 , 54.15) 

Ambulatory 242(26%) 195(80.6%) 47(19.4%) 49.28 (46.74 , 51.83) 

Bedridden 83(9%) 66(80%) 17(20%) 49.96 (45.96 , 53.96) 

Education level  

no education 234(25%) 183(78%) 51(22%) 47.35 (44.68 , 50.06) 

Primary 383(41%) 324(84.6%) 59(15.4%) 52.09 (50.32 , 53.86) 

secondary and 

above 
316(34%) 283(89.6%) 33(10.4%) 53.86 (51.93 , 55.80) 

       

   Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1
st
 February 2011 to 1

st
 January  

               2016; mean: mean survival time, CI: Confidence Interval for mean 
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Table 4.1.2: Summary of descriptive statistics for clinical Variables 

 

Covariates            categories 

                  Status of patients   

 

Mean    

 

 

95% CI 
Total Number 

of censored 

Number  

Of  death 

 

  

Drug regimen  

D4T-3TC-NVP 255(27%) 207(81.2%) 48(18.8%) 49.80 (47.46 , 52.14) 

AZT-3TC-NVP 280(30%) 238(85%) 42(15%) 51.23 (48.91 , 53.57) 

TDF-3TC-EFV 398(43%) 345(86.7%) 53(13.3%) 52.68 (50.92 , 54.45) 

Education level  

no education 234(25%) 183(78%) 51(22%) 47.35 (44.68 , 50.06) 

Primary 383(41%) 324(84.6%) 59(15.4%) 52.09 (50.32 , 53.86) 

secondary and 

above 
316(34%) 283(89.6%) 33(10.4%) 53.86 (51.93 , 55.80) 

ART Adherence  
Poor 174(18.6%) 132(75.8%) 42(24.2%) 49.38 (47.22  , 51.54) 

Good 759(81.4%) 658(86.7%) 101(13.3) 52.71 (51.27  , 54.15) 

WHO clinical 

stage  

stage I 263(28%) 233(88.6%) 30(11.4%) 53.20 (51.06  , 55.36) 

stage II 279(30%) 246(88.2%) 33(11.8%) 53.70 (51.72 , 55.68) 

stage III 295(31.6%) 236(80%) 59(20%) 47.76 (45.46 , 50.07) 

stage IV 96(10.4%) 75(78%) 21(22%) 46.40 (42.59 , 48.22) 

Base line CD4 

cell counts 

less than 200 426(45.7%) 346(81%) 80(19%) 50.32 (48.52 , 52.13) 

200 or above 507(54.4%) 444(87.6%) 63(12.4%) 52.59 (50.96 , 54.23) 

Substance use 

(alcohol) 

No 761(81.6%) 663(87%) 98(13%) 52.41 (51.06 , 53.77) 

Yes 172(18.4%) 127(73.8%) 45(26.2%) 48.47 (45.76 , 51.18) 

TB co-infection 
No 743(79.6%) 642(86.4%) 101(13.6%) 52.86 (51.54 , 54.18) 

Yes 190(20.4%) 148(78%) 42(22%) 47.13 (44.32 , 49.94) 

Over All     84.7%  15.3% 51.50 (50.30 , 52.73) 

   Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1
st
 February 2011 to 1

st
 January  

               2016; mean: mean survival time, CI: Confidence Interval for mean 

 



75 
 

Table 4.12: Results of the multivariable proportional hazards Cox regression model containing the 

variables significant at 25% level in the single covariate proportional hazards Cox regression model 

Covariates B SE Wald DF Sig. HR 95.0% CI for HR  

Baseline weight -0.414 0.175 5.594 1 0.018 0.661     [0.474 ,  .915] 

Marital status   7.780 4 0.100    

       Married 0.743 0.457 2.643 1 0.104 2.101      [0.858  , 5.145] 

       Divorced 0.236 0.437 0.293 1 0.588 1.266      [0.538  , 2.980] 

      Windowed 0.657 0.493 1.772 1 0.183 1.928      [0.733  , 5.072] 

Functional status   2.983 2 0.225     

       Ambulatory 0.025 0.281 0.008 1 0.929 1.025     [0.591  , 1.780] 

       Bedridden 0.341 0.294 1.342 1 0.247 1.406     [0.790 , 2.502]  

Drug regimen   2.691 2 0.260    

      AZT-3TC-NVP 0.335 0.205 2.666 1 0.103 1.397     [0.935  , 2.088] 

      TDF-3TC-EFV 0.125 0.216 0.338 1 0.561 1.134     [0.743 , 1.730]  

Education level   17.618 2 0.000    

       Primary -0.504 0.188 7.145 1 0.008 0.605      [0.417  , 0.873] 

      secondary and 

          above 

-0.972 0.231 17.639 1 0.000 0.378     [0.242 , 0.591] 

ART Adherence -0.788 0.174 5.068 1 0.040 0.461     [0.294 , 0.816] 

WHO clinical stage  12.216 3 0.007    

stage II 0.201 0.359 0.313 1 0.576 1.222     [0.605  , 2.469] 

stage III 0.508 0.355 0.092 1 0.052 1.678     [1.568  , 2.332] 

stage IV 0.739 0.328 5.067 1 0.024 2.093     [1.100 , 3.981]  

Base line CD4 -0.364 0.175 4.329 1 0.037 0.695     [.4957 , 0.926] 

Substance use 

(alcohol, soft 

drugs) 

0.571 0.186 9.367 1 0.002 1.546     [1.674 , 1.965] 

TB co-infection 0.336 0.193 3.030 1 0.048 1.498     [1.106 , 2.124] 

Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1st February 2011 to 1st January 2016*  

                indicates statistical significance at 0.05 level of significance.  SE= Standard Error, DF= Degrees of Freedom, HR= Hazard Ratio,  
                 CI = Confidence Interval, B=Parameter Estimate. 
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Table 4.13:  The five highest differences in the parameter estimates of the variables included in the 

model in Table 4.6 when the data value for each patient is in turn deleted from the model 

Covariates Deleted 

Observation (i) 

         ̂-   ̂-i) |         ̂-   ̂-i) | 

 

 

Baseline weight 

 

315 0.0801931 0.0801931 

309 0.0802415 0.0802415 

419 0.0804372 0.0804372 

40 0.0806846 0.0806846 

624 0.0810465 0.0810465 

 

 

Education level 

   

876 0.0148935 0.0148935 

834 0.0149413 0.0149413 

440 0.0149916 0.0149916 

214 0.0151039 0.0151039 

117 0.0151124 0.0151124 

    

 

 ART Adherence 

 

607 0.0760346 0.0760346 

591 0.0760713 0.0760713 

453 0.0760852 0.0760852 

293 0.0760861 0.0760861 

72 0.0760885 0.0760885 

 

 

WHO clinical Stage 

IV 

557 -0.0234476 0.0234476 

264 -0.0244906 0.0244906 

172 -0.0249060 0.0249060 

69 -0.0240998 0.0240998 

30 -0.0252037 0.0252037 

 

 

Base line CD4 

 

391 0.0952784 0.0952784 

440 0.0953783 0.0953783 

214 0.0954956 0.0954956 

643 0.0962211 0.0962211 

181 0.0965172 0.0965172 

 

 

Substance(yes) 

     

 

315 0.0118264 0.0118264 

866 0.0119088 0.0119088 

155 0.0120706 0.0120706 

117 0.0122306 0.0122306 

849 0.0122318 0.0122318 

 682 0.0112145 0.0112145 
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Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1st February 2011 to 1st January 2016 

Table 4.14: The five highest likelihood displacement values when each observation is in turn deleted 

from the model in Table 4.6 

 

Deleted observation (i) LDi  [           i)] 

117 0.00630594 

643 0.10305253 

866 0.0148392 

591 0.10102374 

214 0.03259605 

                   Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1st February 2011 to 1st January 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TB (co-infected) 

 

67 

214 

866 

0.011345 

0.011354 

0.011377 

 

 

0.0113453 

0.0113547 

0.0113774 

442 0.0114403 0.0114403 
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Table 4.15:  Univariate Parametric Survival Regression Model analysis for modeling time to  

                        death   of HIV infected patients. 

Source: Hossana Queen Elleni Mohamad Memorial Hospital, SNNPR, Ethiopia; from 1st February 2011 to 1st January 2016*  

                indicates statistical significance at 0.1 level of significance, CI = Confidence Interval,   =Parameter Estimate. 

 

 

Covariate  Exponential Weibull Log- logistic Log-normal 

      (95% CI 

       coef) 

p-value   (95% CI   

coef) 

P-

value 

  (95% CI 

coef) 

P-value   (95% CI 

coef) 

P-

value 

    
Gender -.11[-.460 , .252] 0.554 -.06 [-.23 , .12] 0.497 -.05[-.24 ,.13] 0.575 -.09[-.31  ,.13] 0.419 

Age -.14[-.48 3 , .197] 0.414 -.01 [-.16 ,.16] 0.981 .02[-.15 ,.19] 0.788 .01[-.21,  .22] 0.960 

Residence -.11[-.44  , .224] 0.519 -.05 [-.21 , .11] 0.535 -.08[-.25 ,.09] 0.358 -.13[-.33 , .08] 0.229 

Baseline weight .41[.062 ,    .762] 0.021 .20 [.03,  37] 0.021 .23[.06 , .42] 0.010 .30[.08,  .52] 0.007 

Marital   status .11[-.066  , .280] 0.226 .06  [-.02 , .15] 0.140 .09[-.01, .18] 0.060 .12[.02 , .24] 0.27 

Functional.s. -.07[-.307 , .173] 0.584 -.04 [-.15 , .07] 0.498 -.03[-.16 ,.09] 0.593 -.05[-.20 , .11] 0.526 

Drug regimen .14[-.054   , .340] 0.157 .08 [-.010 ,.18] 0.080 .08[-.02 , .18] 0.121 .09[-.03 , .22] 0.126 

Education level .45[.223 ,  .669] 0.000 .22 [.11 ,  .33] 0.000 .23[.12 , .36] 0.000 .29[.15 , .44] 0.000 

ART adherence .36[.014 ,  .698] 0.042 .16 [01  , .32] 0.037 .15[-.03 , .33] 0.097 .22[.01 , .44] 0.045 

WHO clinical 

stage 

-.18[-.262 , -.093] 0.044 -.07 [-.12 , .01] 0.035 -.08[-.13,.-03] 0.048 -.08[-.13, -.03] 0.073 

Baseline CD4 .35[.008  ,  .692] 0.044 .16  [.01 , .32] 0.043 .18[.01  , .36] 0.038 .23[.02 , .44] 0.033 

Substance use -.31[-.46  , - .25] 0.001 -.27 [-.44,-.09] 0.001 -.29[-.49,-.10] 0.003 -.36[-.59, -.12] 0.004 

TB-co-infection -.24[-.48  , -.197] 0.004 -.24 [-.42,-.06] 0.004 -.28[-.48,-.09] 0.003 -.42[-.65, -.18] 0.001 
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      Figure 4.9: plots of Kaplan-Meier survivor functions estimates for the variable WHO clinical  

                         Stage and ART baseline CD4 

 

  

Figure 4.10: plots of Kaplan-Meier survivor function estimates for the variable TB co-infection and 

 Residence 

 

 

 

 

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 20 40 60
analysis time

stage I stage II

stage IV stage III

kaplan meire survival estimate for WHO stage

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 20 40 60
analysis time

<200cells/mm3 >=200cells/mm3

kaplan meire survival estimate for CD4 count

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

0 20 40 60
analysis time

not infected co-infected

kaplan meire survival estimate for TB co-infection

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

0 20 40 60
analysis time

rural urban

kaplan meire survival estimate for Resistance



80 
 

Figures 4.13: (a – e) Plot of log (-log (survival)) versus log survival time for categorical predictors in 

the fitted model, for TB co-infection, for baseline weight, for CD4 count, for substance use and for 

ART adherence of the patient seen respectively. 

 

a. For TB co-infection                                           b. For baseline weight 

    

  

d. For CD4 count                                                               c.  For  ART adherence 
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Figure 4.14: The plot of Scaled Schoenfeld residual for baseline weight and level of education 

 respectively, to check the validity of the PH assumption 

 

 Figure 4.15: The plot of Scaled Schoenfeld residual for ART adherence and WHO clinical stage 

 respectively, to check the validity of the PH assumption 
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