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ABSTRACT  

Diabetes is a group of diseases marked by high or low level of glucose resulting from defects in 

insulin production, insulin action or both. There are two main types of diabetes, namely type I 

and Type II diabetes. The objective of this thesis is to model time-to-first recovery of adult 

diabetic patients using Cox PH and shared frailty models. A retrospective data was obtained 

from JUSH diabetic patient clinic. All diabetic patients  18 years of age and who are under 

treatments in between September 2010 and August 2013 are included in the study. Time of 

fasting blood sugar level to reach the first normal range, 70-130 mg/dl, of blood since time of 

treatment or intervention were the response variable. Due to the impact of residential places and 

unmeasured shared similarities in a cluster, district (Woreda) is used as a random effect (frailty) 

term in the survival models. In this thesis, Cox PH and shared gamma frailty models were used. 

The AIC was used to compare the performance of the different models. First, inseparable 

diabetic mellitus (DM) was analyzed to identify whether diabetic types significantly influencing 

recovery time of DM. Second, separate types of DM are analyzed to identify factors influencing 

recovery time of these types of DM. The median recovery time of type-I and type-II diabetic 

patients were between 2 and 4 months respectively. The minimum and maximum recovery time 

of type-I diabetic are 1 and 6 months, respectively, whereas for type-II diabetic mini-max 

recovery time is found to be 1 and 31 months, respectively.  Types of diabetic, bodyweight at 

baseline, fasting blood sugar at baseline, sex and age of patients are significantly associated with 

time to first recovery of diabetic patients. These variables are important factors that should be 

considered during the selection phase a treatment (combination of treatments) for diabetes. 

Moreover, Cox PH with gamma frailty model have resulted in a minimum AIC as compared to 

Cox PH model without frailty term in the model. This might be due to the shared environmental 

and residential factors. Hence, Cox PH model with gamma frailty provide a suitable choice for 

modeling time to first recovery of DM as compared to Cox PH without frailty term in the model.  

Key Words: frailty, heterogeneity, gamma distribution, AIC, penalized partial likelihood, Cox-

Snell, deviance residuals. 
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1. INTRODUCTION 

1.1. Background of the Study 

Diabetes is a group of diseases marked by high or low level of glucose resulting from defects in 

insulin production, insulin action or both. It can lead to serious complication and premature death 

but steps to control the disease and lowers the risk of complications does exist. Insulin 

replacement is required for survival. The intensive-therapy regimen was designed to achieve 

blood glucose values as close to the normal range as possible with three or more daily insulin 

injections or treatment with an insulin pump. Conventional therapy consisted of one or two 

insulin injections per day (Leong W.Y., 2007). 

Diabetes is divided into two main different types which are type I and Type II diabetes. The 

former was called insulin dependent diabetes mellitus (IDDM) or juvenile-onset diabetes while 

the latter was called non-insulin- dependent diabetes mellitus (NIDDM) or adult-onset diabetes 

(National Diabetes Fact Sheet United States, 2005). Diabetes is becoming one of the rapidly 

increasing non-communicable diseases and an important public health problem all over the 

world. Connor and Boulton, (1989), notes that the main factors which lead to the cause of 

diabetes mellitus are hereditary (genetics) and environmental. Type-I diabetes which develops 

most frequently in children and adolescents can be caused by viruses that have injured the 

pancreas and destruction of insulin making cells by the body’s immune system. Also, a family 

history of diabetes is a risk factor of type-I diabetes. Type-II is a common and serious global 

health problem which is associated with rapid cultural and social changes, ageing populations, 

increasing urbanization, dietary changes, reduced physical activity and other unhealthy, lifestyle 

and behavioral patterns.  

In 2011, 14.7 million adults in the Africa are estimated to have diabetes, with a regional 

prevalence of 3.8%. The highest prevalence of diabetes in the Africa is in the island of Reunion 

(16.3 %), followed by Seychelles (12.4%), Botswana (11.1%) and Gabon (10.6%). Some of 

Africa’s most populous countries also have the highest number of people with diabetes, with 

Nigeria having the largest number (3.0 million), followed by South Africa (1.9 million), Ethiopia 
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(1.4 million), and Kenya (769,000). The top six countries with the highest number of people with 

diabetes make up over half of the total number in Africa (Diabetes atlas 5th edition).   

382 million people have diabetes in 2013; by 2035 this will rise to 592 million. The number of 

people with type 2 diabetes is increasing in every country. 80% of people with diabetes live 

in low- and middle-income countries. The greatest number of people with diabetes is between 40 

and 59 years of age. Ethiopia is one of the developing countries where by the prevalence is 

increasing time to time. The prevalence of diabetes in Ethiopia for 20-79 age groups in 2013 is 

4.89, Uganda 4.81 (IDF, 2013). 

In managing diabetic mellitus (DM) proper self-care practice and optimal glucose control is an 

essential cornerstone in achieving successful health outcomes. DM is a life-long challenge that 

requires behavioral change and adequate self-care practices for better glycaemic control. In the 

absence of appropriate self-care practice, the desired therapy targets are difficult, or even 

impossible to achieve. Glucose control is almost entirely in the hands of the patient who lives 

with this condition. The patient’s motivation to eat, exercise, take medication, test glucose levels 

and maintain a healthy body weight all play a significant role in the management of DM. If left 

untreated, it can lead to heart disease, stroke, blindness, and kidney failure (Diabetes in the UK, 

2011/12). Diabetes is a common health condition. The chances of developing it may depend on a 

mix of genes, lifestyle and environmental factors. Environmental factors that contribute to beta 

cell destruction and genes regulating immune response are involved. Numerous environmental 

events trigger the autoimmune process in genetically susceptible individuals. There are 

environmental factors which have a link with DM like, chemical compounds (rodenticides, 

heavy metals virus, rarely and exposure to bovine milk proteins), and physical factors 

(penetrative short-wave length rage) etc. People with underlying medical conditions such as 

diabetes are more vulnerable to the adverse health impacts of climate change. In hotter 

temperatures, dehydration and heatstroke increases morbidity and mortality in people with 

diabetes. People with diabetes are predisposed to cardiovascular events during heat waves and 

higher mortality from heart attack on days of high air pollution (Dereje A., 2005).  

A diabetic person has to eat a diet low in fat, high in fiber, and with plenty of starchy foods, 

fruits and vegetables and should exercise regularly. This reduces the weight, which will help 

reduce the blood glucose/sugar and risk of having heart attack or stroke. The blood sugar 
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concentration or blood glucose level is the amount of glucose (sugar) present in the blood of a 

human or animal. The body naturally tightly regulates blood glucose levels as a part of 

metabolic homeostasis. The mean normal blood glucose level in humans is about 5.5mM 

(5.5 mmol/l or 100 mg/dl, i.e. milligrams/deciliter); however, this level fluctuates throughout the 

day. Glucose levels are usually lowest in the morning, before the first meal of the day (termed 

"the fasting level"), and rise after meals for an hour or two by a few millimolar. Blood sugar 

levels outside the normal range may be an indicator of a medical condition. A persistently high 

level is referred to as hyperglycemia; low levels are referred to as hypoglycemia. Diabetes 

mellitus is characterized by persistent hyperglycemia from any of several causes, and is the most 

prominent disease related to failure of blood sugar regulation. Intake of alcohol causes an initial 

surge in blood sugar, and later tends to cause levels to fall. Also, certain drugs can increase or 

decrease glucose levels. Normally, the human body keeps its blood glucose level very stable 

(between 4mml-7.5mmol/l or 70-130 mg/dl). The body has various systems (regulated by 

hormones such as insulin and glucagon) to keep the blood glucose level in this range. These 

systems fail in people with diabetes. 

The world health organization (WHO) publishes standards of medical care yearly to promote the 

importance of achieving optimal glycaemic control. Diabetes was classified according to WHO 

recommendations. Recommended blood sugar for people with diabetes (according to the WHO) 

before meals plasma glucose levels within a narrow range 70-130 mg/dl (milligram per deciliter). 

Blood glucose is balanced between endogenous appearance from the liver (through 

glycogenolysis and gluconeogenesis) and   kidneys, exogenous appearance from the intestines 

(following a meal), and utilization of glucose by all tissues. Two gross metabolic conditions 

exist. When fasting, the body relies primarily on glucose stored in the form of glycogen and fatty 

acids stored in the form of triglycerides to fuel its metabolic needs. After a meal, glucose 

absorbed from the gut is used to replenish glycogen and fat stores diminished while fasting 

(Hipszer, B.R, 2001). 

The statistical analysis of survival data is an important topic in many areas, including medicine, 

epidemiology, biology, demography, economics, engineering and other fields. A variety of 

techniques have been developed to analyse survival data. A common approach to the analysis of 

survival data is based on the assumption that the study population is homogeneous. That is, 
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conditional on the covariates, every individual has the same risk of experiencing an event such as 

death or disease recurrence (Ulviya A., 2013). The event times of individuals in the population, 

conditional on the observed covariates, are assumed to be independent. However, this cannot be 

assumed in all applications as many applications require heterogeneous sample, i.e. individuals 

with different risks and hazards. In practice, there may be an association between the events 

times of some subgroups of the population since the individuals of these groups share a common 

trait that cannot be observed. For example, there may be an association in the times to events of 

cancer or cardiovascular diseases between siblings or married couples, even occurrence of 

nonlethal diseases within the same individual. Though individuals may look identical in some 

aspects, they may differ in unmeasured ways. In applications of survival analysis, usually only a 

few covariates such as age, sex, severity of disease or laboratory data are known. It is known that 

there are many other factors that can influence survival, including health status, life style, 

smoking, occupation and genetic risk factors. These factors are unknown and cannot be included 

in the analysis.  

Beard (1959), Vaupel et al. (1979), and Lancaster (1979) suggested a random effects model in 

order to account for the unobserved heterogeneity due to unobserved covariates. Beard (1959) 

used the term longevity factor to improve the effect of mortality models in populations. Vaupel 

et al. (1979) introduced the term frailty in order to account for unobserved heterogeneity, random 

effects, and association in univariate survival models. He introduced this concept of frailty to 

biostatistics by applying it on population mortality data. Lancaster (1979) introduced the model 

to the literature of economics and the model is called the mixed proportional hazards model. The 

concept, however, goes back to work of Greenwood and Yule on “accident proneness” in 1920. 

Clayton (1978) discussed the applications of the model to multivariable survival data in his 

seminar paper on chronic disease incidence in families. Frailty models account for unobserved 

heterogeneity that occurs because some observations are more prone to failure, and therefore 

more “frail” than others in a data set. Therefore, the objective is to introduce an additional 

parameter to the hazard rate that accounts for the random frailties. These frailties can be specific 

to groups, and are referred to as shared frailty. The overall aim of this thesis is modeling of time-

to-first recovery of adult diabetic patients from Jimma University Specialized Hospital (JUSH) 

using various survival models. 
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1.2. Statement of Problem  

Diabetic mellitus (DM) is a life-long challenge that requires behavioral change and adequate 

self-care practices for better glycaemic control. For this reason, people living with DM are in 

need of identifying risk factors and prognostic factor for their survival to control and care 

themselves.  

In the literature, there are many studies on the field of diabetic often researchers examine the 

effects of covariates on patients using logistic regression (Endalew H. et al (2012)) and chi-

square (Charlton, et al (2005), Endalew H. et al (2012)) models. Such data can also be more 

explored using survival models, such as the classical Cox PH and frailty models. However, to 

our best knowledge there is a limited work in this line. 

Inference for Cox PH model (Cox, 1972) was developed under the assumption that the 

observations are statistically independent and the population they come from is assumed to be 

homogeneous with respect to failure. However, this assumption may be violated. Thus, in many 

epidemiological studies, failure times are clustered into groups such as families or geographical 

units; some unmeasured characteristics shared by the members of that cluster, such as genetic 

information or common environmental exposures could influence time to the studied event. In a 

different context, correlated data may come from recurrent events, i.e. events which occur 

several times within the same subject during the period of observation. Ignoring the existence of 

heterogeneity will produce incorrect estimation of parameters and their standard errors in 

survival analysis. According to Keyfitz and Littman (1979), ignoring heterogeneity 

overestimates life expectancy based on their study on estimating life expectancy in a 

heterogeneous population. Lancaster (1990) showed that when heterogeneity is ignored, it 

caused underestimation of covariate effects in his study of unemployment rates. Henderson and 

Oman (1999) showed that ignoring frailty leads to regression coefficient estimates biased 

towards zero by an amount depending on the distribution and the variability of the frailty terms. 

For such situations, one approach accounting for correlation is to incorporate an additive or 

multiplicative random effect for each cluster, resulting in a frailty model. Random effect or 

frailty model attempts to account for the existence of unmeasured attributes (such as genotype, 

environment and geographical location) that introduce heterogeneity into the study population. 
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Not taking into account the unobserved frailty will thus under/overestimate the model 

parameters. 

Therefore, in this thesis, we are interested to address the following interesting research questions: 

 Which type of DM takes long time to recover to normal blood sugar level; 

 Is there heterogeneity among districts with respect to time to recovery of adult diabetic 

patients; 

 What are the covariates influencing the time to recovery for each type of diabetic; and 

 Which type of survival models, Cox-PH or shared gamma frailty models, predicts well 

the recovery time of adult diabetic patients. 
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1.3. Objective  

1.3.1. General Objective 

The general objective of the study is modeling of time-to-first recovery of adult diabetic patients 

from Jimma University Specialized Hospital (JUSH) using Cox-PH and shared gamma frailty 

Models. 

1.3.2. Specific Objective 

The specific objectives of the study are; 

 to identify the types of diabetic patients that mostly recover blood sugar level into 

normal range and model them separately; 

 to investigate important factors or covariates that are significantly associated with time 

to first recovery from each type of diabetic; and 

 to compare Cox-PH and frailty models and thereby to show the benefit of taking into 

account the clustering of subjects within districts using shared gamma frailty model.  

1.4. Significance of the Study 

The results of this study will be very useful in the development of an effective diabetic care and 

anti-diabetic therapy (ADT) patient monitoring system. Specifically, this study will be helpful to: 

 develop implementation plan to deliver the national institute for health and clinical 

excellence (NICE) quality standards and the national standards framework (NSF) 

outcomes, for the sake of society, the NHS, and above all for people with diabetes and 

those at risk of developing diabetes to monitor, care and prevent patients under treatment 

follow up.  

 give essential care standards to reduce complications, costs, diabetic related illness and 

premature death. 
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2. LITERATURE REVIEW 

2.1. Types of Diabetes 

2.1.1. Type-I Diabetes 

Type-I diabetes is an autoimmune disease. An autoimmune disease results when the body’s 

system for fighting infection (the immune system) turns against a part of the body. In diabetes, 

the immune system attacks the insulin-producing beta cells in the pancreas and destroys them. 

The pancreas then produces little or no insulin. Someone with type-I diabetes needs to take 

insulin daily to live. At present, scientists do not know exactly what causes the body’s immune 

system to attack the beta cells, but they believe that both genetic factors and environmental 

factors, possibly viruses, are involved. Type-I diabetes develops most often in children and 

young adults, but the disorder can appear at any age. Symptoms of type-I diabetes usually 

develop over a short period, although beta cell destruction can begin years earlier (Lancet, 2010). 

Undiagnosed or untreated type-I diabetes can make people lose weight and increase blood 

pressure. In type-I diabetes, the body stops producing the hormone insulin, which is needed to 

use glucose, the main type of sugar in the blood. Glucose comes from the foods we eat and is the 

major source of energy needed to fuel the body's functions. In type-I diabetes, the body can't use 

glucose properly, so flushes the glucose (and the calories) out of the body in urine. As a result, 

kids who develop type-I diabetes can lose weight and increase blood pressure despite having a 

normal or increased appetite. Once they're diagnosed and treated, their blood sugar usually 

returns to normal. Symptoms include increased thirst and urination, constant hunger, weight loss, 

blurred vision, extreme fatigue and increase blood pressure. If not diagnosed and treated with 

insulin, a person can lapse into a life-threatening diabetic coma, also known as diabetic 

ketoacidosis (James N. et al, 2002). 

Emmanuel, et al (1991-2005) studied the Incidences, Treatments, Outcomes, and Sex Effect on 

Survival in Patients with End Stage Renal Disease (ESRD) by Diabetes Status in Australia and 

New Zealand. The study included 1,284 type-I diabetic (4.5%), 8,560 type-II diabetic (30.0%), 

and 18,704 non-diabetic (65.5%) patients. The incidence rate of ESRD with type-II diabetes 

increased markedly over time (+ 10.2% annually, P< 0.0001). In patients aged <70 years, rates 

of renal transplantation in type-I diabetic, type-II diabetic, and non-diabetic patients were 41.8, 
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6.5 (P < 0.0001 vs. other patients), and 40.9% (P=0.56 vs. type-I diabetic patients), respectively. 

Compared with non-diabetic patients, the adjusted hazard ratio (HR) for death was 1.64 (P < 

0.0001) in type-I diabetes and 1.13 (P< 0.0001) in type-II diabetes. Survival rates per 5-year 

period improved by 6% in type-I diabetic patients (P = 0.36), by 9% in type-II diabetic patients 

(P< 0.0001), and by 5% in non-diabetic patients (P< 0.001). In type-II diabetic patients aged 

60 years, the adjusted HR for death in women versus men was 1.19 (P = 0.0003). 

Hypothesis Surveys in northern Ethiopia have demonstrated that apparent type-I diabetes occurs 

more frequently than elsewhere in Africa and, indeed, in other parts of the world. They 

investigated in detail a cohort of diabetic patients from this region to clarify the nature of this 

type of diabetes. Methods all patients attending the diabetic clinic at Mekelle Hospital in the 

Tigray region of northern Ethiopia were investigated over a 6 week period. Clinical, 

demographic and anthropometric data were collected, as well as measurements of HbA1c, 

fasting lipid profile, fasting serum C-peptide and serum markers of beta cell autoimmunity, i.e. 

islet antigen-2 and GAD antibodies (GADA). Results of 105 patients seen, 69 (66%) were on 

insulin treatment and had been from or close to diagnosis. Their median age and diabetes 

duration were 30 and 5 years, respectively, with a male excess of 2:1. Median BMI was 20.6 

kg/m2. Despite these clinical characteristics suggestive of type-I diabetes, only 42 of 69 (61%) 

patients were C-peptide- negative and 35% GADA-positive. Overall, 38 (36%) of the total group 

(n=105) had immunological or C-peptide characteristics inconsistent with typical type-I or type-

II diabetes. The clinical characteristics, local prevalence of under-nutrition, and GADA and C-

peptide heterogeneity suggest a malnutrition-related form of diabetes. 

2.1.2. Type-II Diabetes 

This form of diabetes usually develops in adults age 40 and older and is most common in adults 

over age 55. About 80 percent of people with type-II diabetes are overweight and elevates blood 

pressure. Type-II diabetes is often part of a metabolic syndrome that includes obesity, elevated 

blood pressure, and high levels of blood lipids. Unfortunately, as more children become 

overweight and increase their blood pressure, type-II diabetes is becoming more common in 

young people. When type-II diabetes is diagnosed, the pancreas is usually producing enough 

insulin, but, for unknown reasons, the body cannot use the insulin effectively, a condition called 
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insulin resistance. After several years, insulin production decreases. The result is the same as for 

type-I diabetes glucose builds up in the blood and the body cannot make efficient use of its main 

source of fuel. The symptoms of type-II diabetes develop gradually. They are not as sudden in 

onset as in type-II diabetes. Some people have no symptoms. Symptoms may include fatigue or 

nausea, frequent urination, unusual thirst, weight loss, blurred vision, frequent infections, and 

slow healing of wounds or sores.  

More than 85 per cent of children and young people over the age of 12 have blood glucose levels 

higher than recommended targets. The percentage of children and young people achieving the 

HbA1c target of <7.5 per cent varies from 1.6 per cent to 37.2 per cent. 15.5 percent of children 

and young people have had one episode of Diabetic Ketoacidosis (DKA)* in the last five years, 

and 10.4 per cent of children and young people have had two or more episodes of DKA in the 

last five years.  DKA is a critical, life-threatening condition caused by prolonged raised blood 

glucose levels (hyperglycemia) that requires immediate medical attention (State of the nation, 

2012 in England). 

Diabetes in the UK 2011/2012, most health experts agree that the UK is facing a huge increase in 

the number of people with diabetes. Since 1996 the number of people diagnosed with diabetes 

has increased from 1.4 million to 2.9 million. By 2025 it is estimated that five million people will 

have diabetes. Most of these cases will be Type-II diabetes, because of our ageing population 

and rapidly rising numbers of overweight and obese people. The figures are alarming and 

confirm that diabetes is one of the biggest health challenges facing the UK today. If we are to 

curb this growing health crisis and see a reduction in the number of people dying from diabetes 

and its complications, we need to increase awareness of the risks, bring about wholesale changes 

in lifestyle, improve self-management among people with diabetes and improve access to 

integrated diabetes care services.  More men than women have diagnosed diabetes; 56 per cent 

compared with 44 per cent in those with Type-I diabetes and 55 percent compared with 45 

percent in those with Type-II diabetes. This ratio is relatively unchanged from 2001. The 

estimated diabetes prevalence worldwide for 2011 was 366 million and it is expected to affect 

552 million people by 2030.    
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An estimated 280 Australians develop diabetes every day. The 2005 Australian AusDiab Follow-

up Study (Australian Diabetes, Obesity and Lifestyle Study) showed that 1.7 million Australians 

have diabetes but that up to half of the cases of type-II diabetes remain undiagnosed. By 2031 it 

is estimated that 3.3 million Australians will have type-II diabetes (Vos et al., 2004).  A 

reduction in the prevalence of type-II diabetes will not only result in cost savings in the health 

budget, but increased participation and productivity in the workforce and, most importantly, 

better health outcomes and quality of life for Australians. There is no doubt diabetes is a serious 

health crisis but it’s not all bad news. Up to 60% of cases of type-II can be prevented and we 

know that good blood glucose control and maintaining a healthy lifestyle can significantly 

improve the complications associated with diabetes. 

Chaudhry, Gannon, Nuttall, (2006) conducted a thesis on stability of body weight in type-II 

diabetes. Data were obtained from the records of 205 adult men who have attended a diabetes 

clinic for  5 years. Their weight and glycohemoglobin at the last visit were compared with the 

initial visit data. The subjects were categorized according to treatment modalities. The mean 

follow-up was 9.4 years (range 5–23). For the group as a whole, the mean increase in body 

weight was 0.23  0.2 kg/year. BMI or initial age had little effect on the rate of weight gain. 

Treatment regimen used did have an effect on weight change. In subjects treated with insulin, 

with or without oral agents, body weight increased at a rate of 0.44  0.1 kg/year. In subjects 

treated with metformin or metformin and a sulfonylurea, there was a mean loss in weight, i.e., 

0.24  0.09 kg/year, and with sulfonylureas alone weight increased by 0.42  0.2 kg/year. 

Concluded that the men treated with insulin alone or insulin combined with oral agents gained 

weight at a rate comparable with that reported for the general population, i.e., the weight gain 

was not extraordinary. Metformin treatment resulted in a modest loss of weight. 

Gebregziabher, M., et al (2010) used effect of Trajectories of Glycemic Control on Mortality in 

Type-II Diabetes, Multiple studies have established that poor glycemic control as measured by 

hemoglobinA1c (HbA1c) level is associated with increased mortality in persons with type-II 

diabetes. Recently, in the Norfolk, United Kingdom, component of the European Prospective 

Investigation into Cancer and Nutrition (EPIC-Norfolk), Khaw et al. demonstrated that HbA1c 

was continuously related to subsequent all-cause, cardiovascular, and ischemic heart disease 

mortality through the whole population distribution, with the lowest rates being seen among 

http://www.ncbi.nlm.nih.gov/pubmed?term=Gebregziabher%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20427326
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persons with HbA1c concentrations below 5%. In the EPIC-Norfolk study, an HbA1c level of 

5% was used as the reference category, and there was a significant linear relation between 

HbA1c and risk of death, such that there was an almost 3-fold increased risk of death in men 

with HbA1c concentrations greater than or equal to 7%. 

2.2. Adverse Health Outcomes and Increased Diabetes Risk 

Diabetes and climate change are directly and indirectly interconnected.  Direct connections refer 

diabetes and climate change adversely impact upon each other. The indirect connections refer to 

the common global vectors and pathways that are fuelling both these health and development 

disasters. People with underlying medical conditions such as diabetes are more vulnerable to the 

adverse health impacts of climate change. In hotter temperatures, dehydration and heatstroke 

increases morbidity and mortality in people with diabetes. People with diabetes are predisposed 

to cardiovascular events during heat waves and higher mortality from heart attack on days of 

high air pollution (IDF, 2012). 

2.3. Cox PH and Frailty Models 

Cox PH model keeps the baseline hazard as an arbitrary, unspecified, and nonnegative function 

of time. It is the most popular and commonly used model by researchers in medical sciences 

mainly because of its simplicity, and not being based on any assumptions about the survival 

distribution (Therneau T, & Grambsch P., 2000).  

Cox’s proportional hazard model (1972) augmented to include time invariant unobserved person 

specific variables is now widely used in duration analysis (see, e.g., Tuma(1976), Tuma et al. 

(1979), Lancaster (1979), Flinn and Heckman (1982) and the papers cited in Heckman and 

Singer (1982)). For single spell duration data, the only estimator of this model that controls for 

unobserved person specific heterogeneity is the random effect estimator. With this estimator, the 

analysis estimates the distribution function of unobservable and the parameters of the distribution 

model conditional on the unobserved variables. Heckman and Singer (1982) and Trussel and 

Richards (1983) finds that estimates obtained from duration models are very sensitive to 

arbitrary choices about the functional forms of the distribution of unobservable and the 

conditional duration distribution.  
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One alternative model that does allow for dependence between related individuals is the frailty 

model, which has been studied by a number of authors over the past years, including Clayton 

(1978), Clayton and Cuzick (1985), Hougaard (1986), Andersen  et  al. (1993, Chapter-IX), and 

Hougaard, Myglegaard, and Borch-Johnsen (1994). Another application of the frailty model is to 

interpret the frailty as modeling the effect of unobserved covariates (e.g., Vaupel, Manton, and 

Stallard, 1979; Hougaard, 1984).  Maximum likelihood estimation in the semiparametric shared 

frailty model (with gamma- distributed frailties) may be performed using the EM algorithm as 

suggested by Gill (1985) and further discussed by Nielsen et.al. (1992) and Klein (1992). More 

recently, interest  has focused on a model  where the  frailties  for related  individuals need  not  

be  shared  among  them  but  rather  are correlated  (Pickles  et  al.,  1994; Yashin, Vaupel,  and 

lachine, 1995). This model has the advantage that separate parameters describe association and 

unobserved heterogeneity. Also in this model, the EM algorithm may be used for maximum 

likelihood estimation (Petersen, Andersen, and Gill, 1996).  

Andersen, et al. (2013) employed Estimation of variance in Cox’s Regression Model with Shared 

Gamma Frailties. The Cox regression model with a shared frailty factor allows for unobserved 

heterogeneity or statistical dependence between the observed survival times. Estimation in this 

model when the frailties are assumed to follow a gamma distribution is reviewed and addressed 

the problem of obtaining variance estimates for regression coefficients frailty parameter and 

cumulative baseline hazards using the observed non-parametric information matrix. Comparing 

the models with and without frailties, concluded that both the estimates and their estimated 

standard errors are smaller in the models without frailty. 

Olive, D., et al (2007) employed a frailty model to study the determinants of recovery time of 

diabetic patients from three hospitals in Uganda. It was found that Biguanides work better than 

Insulin, diet and exercise and Sulphonylureas. Disease duration did not have a significant effect 

on time to remission. It was concluded that duration of the disease does not have any effect on 

the effectiveness of the interventions. Time to remission was found to decrease with increase in 

body mass index and age. Males tend to recover faster than the female and the less or non-

educated controlled the disease better than the educated ones. It is concluded that Biguanides are 

better interventions than Insulin, diet and exercise and Sulphonylureas, frailty models are better 

to model the recovery time of DM. 
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Semi-parametric inference for frailty models was introduced by Klein et al. (1992) and Nielsen 

et al. (1992) and as suggested by Gill (1985), they used an EM algorithm applied to the Cox 

partial likelihood. Hastie and Tibshirani (1993) proposed a general model and suggested 

estimation through penalized partial likelihood. Therneau and Grambsch (2000) noted a link 

between the gamma frailty model and a penalized partial likelihood. In the approach of the 

present paper, we penalize the hazard function (s) while Therneau and Grambsch (2000) penalize 

the frailties. In Cox and parametric models, hazard function may depend on unknown or non 

measurable factors which can cause the regression coefficients estimated from such models to be 

biased. In consequence, in order to overcome the problem and better model survival of patients, 

the frailty models were introduced. In fact, these models are used to explain the random variation 

of survival function due to unknown risk factors, such as genetic factors and numerous 

environmental factors.  

Ulviya, A., (2013) employed frailty models for modeling heterogeneity. Suggested as a 

Semiparametric regression model is an important way to handle heterogeneity. Regression 

models take lifetime as the dependent variable and explanatory variables as regressors.  

Sometimes these models may not provide adequate fit to the data. One of the reasons is due to 

omission of important covariates. Several methods have been developed to model the frailty in 

survival data during recent years. Used AIC to compare the performance of the models.  It is 

concluded that the generalization of the Cox proportional hazards model (Cox, 1972) is the best 

and widely applied model that allows for the random effect.  
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3. DATA AND METHODOLOGY 

3.1. Data Source 

For this study, longitudinal retrospective cohort follow up (retrospective cohort design) of adult 

diabetic patients data is collected from Jimma University Specialized Hospital Diabetic Patient 

Clinic located in southwest of Ethiopia. The data is extracted from the patient’s chart which 

contains epidemiological, laboratory and clinical information of all diabetic patients under 

insulin treatment follow-up.  

3.2. Study Population  

A total of 1930 diabetic patients are on active follow up. All diabetic patients greater than or 

equal to 18 years old and placed under treatments that have followed between September 2010 

and August 2013 (three years data) were included. The data for this study consists of 544 

individuals. Patents’ follow up time was one, two or  three months gap according to the order of 

the doctor and the data was collected from patients’ medical follow up card by assigning an 

identification number per individual by health workers in the chronic follow up clinic, which 

helps to find the patients profile easily during his/her next visit time. Times of fasting blood 

sugar level until it reaches the first normal range (70-130mg/dl according to WHO association) 

were used. 

3.3. Variables 

3.3.1. Dependent Variable 

The outcome variable considered in this study is the time to first recovery of diabetic patients 

until it reaches normal fasting (before meal) blood sugar level in the follow up period. Time to 

first recovery means the time until patients comes to normal fasting blood sugar level for first 

time in the follow up period according to WHO scale (70-130mg/dl). Right censoring is 

considered when patient is not recovered once between the study time, transferred to other 

hospital and death before first recovery to normal blood sugar level.  
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3.3.2. Independent Variables 

Covariates are described with their values or codes in Table 1 as follows. 

Table 1. Study Covariates 

No Variable Description Values/Codes 

1 Sex Sex 0=female, 1=Male 

2 Age Age in years 0=18-29; 1=30-44; 2= 45-59;  3=60-74 

and  4= > 74 

3 Diabtype Diabetic types 0=type 1,   1= type2 

4 Famhist Family history 0=no,  1= yes 

5 SBP Systolic blood pressure in 

Mm/Hg 

0= <110 (below), 1=110-130 (normal), 

2= >130(high) 

6 DBP Diastolic blood pressure 

in Mm/Hg 

0=  <60(below), 1= 60-80(normal), 2= 

>80(high) 

7 BW Body weight in kg Continues variable 

8 FBS Fasting blood sugar in 

mg/dl 

Continues variable 

 

3.4. Methods of Data Analysis 

3.4.1. Survival Analysis  

Survival analysis examines and models the time it takes for events to occur. Although there are 

well known methods for estimating unconditional survival distributions, most interesting 

survival modeling examines the relationship between survival and one or more predictors, 

usually termed covariates in the survival-analysis literature.  

Suppose there are n  subjects followed over a certain time interval [ 0, ). The 
thi  subject at 

times  , 1,2,...,it i n and a (possibly censored) survival time it  to a certain endpoint. Let iT  

denotes the response for the 
thi subject (time to event), iC denote the censoring time for the 

thi  

subject, i  denote the event indicator 

   
 

 

1 if the event was observed 

0 if the response was censored 

i i

i

i i

T C

T C


  
  

  

 



Modeling Time-to-Recovery of Adult Diabetic Patients : A Comparison of Cox-PH and Shared Frailty Models 2014 

 

17 
 

The observed response  min ,i i iy T C . The covariates of interest are denoted by iX . 

3.4.1.1. Basic Definitions 

Let T denote a nonnegative random variable, representing time taken for recovery to occur. Let 

 f t  and  F t be the respective density and cumulative distribution functions of T.  The 

distribution of survival times is characterized by the survival and the hazard functions. 

3.4.1.2. Survival Function 

The survival function is defined as the probability that the survival time is greater or equal to    

    , 0S t P T t t    

3.4.1.3. Hazard Function 

The hazard function gives the instantaneous failure rate at t given that the individual has survived 

up to time t, i.e. 

  0

( / )
lim , 0

( ) log ( )
( )

( )

t

p t T t T t
h t t

t

f t d S t
h t

S t dt



  
 


 

 

Or the hazard function is the probability that an individual will experience an event. 

Relationship between S(t) and h(t) 

                
( ) log ( )

( )
( )

f t d S t
h t

S t dt


   

                
0

( ) exp ( ) exp( ( )), 0

t

S t h u du H t t
 

     
 
  

Where
0

( ) ( )

t

H t h u du   is called the cumulative hazard function, which can be obtained from the 

survival function since, ( ) log ( )H t S t   

The survival function is most useful for comparing the survival progress of two or more groups. 

The hazard function gives a more useful description of the risk of failure at any time point. 
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3.4.1.2. Non-parametric Survival Methods 

Nonparametric methods are often very easy and simple to understand as compared to parametric 

methods. Furthermore, nonparametric analyses are more widely used in situations where there is 

doubt about the exact form of distribution. 

Survival data are conveniently summarized through estimates of the survival function and hazard 

function. The estimation of the survival distribution provides estimates of descriptive statistics 

such as the median survival time. These methods are said to be non-parametric methods since 

they require no assumptions about the distribution of survival time. In order to compare the 

survival distribution of two or more groups, log-rank tests can be used. 

3.4.1.2.1. The Kaplan-Meier Product Limit Method 

In the nonparametric methods, the most popular and commonly used method is the Kaplan-Meier 

method. It is used for estimating the survival probabilities from observed survival times both 

censored and uncensored (Kaplan and Meier, 1958). The method is a modified form of the life 

table technique, with the condition that each time interval contains exactly one event and event 

occurs at the beginning of the interval. 

Suppose that r individuals have failures in a group of individuals. Let (1) ( )0 ... rt t     be the 

observed ordered recovery times. Let jr be the size of the risk set at ( )jt , where risk set denotes the 

collection of individuals alive and uncensored just before ( )jt . 

Let jd be the number of observed recovery at ( ) , 1,2,...,jt j r . Then the K-M estimator of ( )S t  is 

defined by
( ):

( ) 1
j t

j

j t j

d
S t

r


 
   

 
 , this estimator is a step function that changes values only at the 

time of each recovery. 

Suppose that the distribution is discrete, with atoms jh at finitely many specified points

1 20 ,..., j      .  

The survival function ( )S t may be expressed in terms of the discrete hazard function jh as 
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 
( ):

( ) 1
j t

j

j t

S t h


   

3.4.1.2.2. Median Survival Time 

Median is the preferred summary measure of the location of the distribution. This is the time 

beyond which 50% of the individuals in the population under  study are expected to survive and 

is given by that value t(50) which is such that  (50) 0.5S t  . When no possible realistic an 

estimated survival time that makes the survival function exactly equal to 0.5, the estimated 

median survival time, (50)t is defined to be the smallest observed survival time for which the 

value of the estimated survival function is less than 0.5. 

Mathematically; 

   50 min / ( ) 0.5 ,i jt t S t                                                                                           [1] 

Where, it  is the observed survival time for the 
thi individual, 1,2,..., .i n  

jt  is the 
thj ordered 

recovery time, 1,2,3,...,j r . 

3.4.1.2.3. Nonparametric Comparison of Survival Distributions 

The K-M survival curves can give us an insight about the difference of survival functions in two 

or more groups, but whether this observed difference is statistically significant requires a formal 

statistical test. There are a number of methods that can be used to test equality of the survival 

functions in different groups. One commonly used non-parametric tests for comparison of two or 

more survival distributions is the log-rank test. 

Let 1 2 ... kt t t    be the ordered recovery times across two groups. 

Suppose that jd failures occur at jt and that jr subjects are at risk just prior to , 1,2,3,...,jt j k  Let

ijd and ijr be the corresponding numbers in group ( 1,2)i i  . 

The log-rank test compares the observed number of recovery with the expected number of 

recovers for group i . Consider the null hypothesis: ( ) ( )1 2t tS S  i.e. there is no difference between 

survival curves in two groups. Given jr and jd  the random variable 1 jd has the hypergeometric 

distribution 
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1 1 1

1

j j j

j j j

j

j

d r d

d r d

r

r

  
  

  

 
 
 

 

Under the null hypothesis, the probability of recovery at 
 jt  does not depend on the group, 

i.e., the probability of recovery at 
 jt  is

j

j

d

r
.  

2

1 1

12

log
2 1

2
1

( * / )

( )

[ ( 1)]

k

j j j j

j

rank k
j j j j j

j j j

d r d r

X
r r d r d

r r





 
 

 







, this statistic approximate 

2X distribution with 1 df. 

3.4.1.3.  Cox PH Regression Models 

The Cox proportional hazards (PH) regression model (introduced in a seminal paper by Cox, 

1972), a broadly applicable and the most widely used method of survival analysis. Survival 

models are used to quantify the effect of one or more explanatory variables on failure time. This 

involves specification of a linear-like model for the log hazard. A parametric model based on the 

exponential distribution may be parameterized as follows: 

  1 1 2 2log ...i i i k ikh t x x x         

Or, equivalently: 

  1 1 2 2exp( ... ) exp( )exp( )T

i i i k ik ih t x x x X            

In this case the constant   represents the log-baseline hazard since log ( )ih t   when all the x’s 

are zero. The Cox PH model is a semi-parametric model where the baseline hazard ( )t  is 

allowed to vary with time: 

              1 2log ( ) ( ) ...i i k ikh t t x x       

                    0 1 1 2 2( ) ( )exp( ... )i i i k ikh t h t x x x       

                      0 0( ) ( ) ( )exp( )T

i t ih t h t h t X                                                                          [2] 
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Where 0 ( )h t , is the baseline hazard function; iX  is a vector of covariates and   is a vector of 

parameters for fixed effects.  

If all of the x ’s are zero the second part of the above equation equals 1 so, 0( ) ( )ih t h t . For this 

reason the term 0 ( )h t  is called the baseline hazard function. With the Cox proportional hazards 

model the outcome is described in terms of the hazard ratio.  

This model is called the proportional hazards model because the hazard of any individual is a 

fixed proportion of the hazard of any other individual, that is:  

1 1 1 2 2 2

( , 1)
exp( ( ) ( ) ... (( 1) ))

( , )

i k
k k k

k k

h t x
x x x x x x

h t x
  


         

      exp( )k , and is independent of the covariate value iX . 

Where, exp( )r : Hazard ratio of two subjects with a difference of r covariate units. Parameter 

estimate    refers to the increase in log-hazard with a one unit increase for the continuous 

covariate. 

The survival function for Cox-PH model is: 

  1

exp

0( , ) ( )

p

i i

i

X
S t X S t




 
 
 
 
 , the estimated survival function: 1

ˆexp

0
ˆ ˆ( , ) ( )

p

i i

i

X

S t X S t




 
 
 
 


 
 

  

Estimated quantities: 0
ˆ ˆ( ), iS t   are estimated baseline survival and coefficient of covariates 

respectively. 

Assumptions of the Cox proportional hazards model are; (1) the ratio of the hazard function for 

two individuals with different sets of covariates does not depend on time; (2) time is measured 

on a continuous scale and (3) censoring occurs randomly. 

Interpreting outputs from the Cox model involves examining the coefficients for each 

explanatory variable. Negative regression coefficient for an explanatory variable indicates that 

the hazard is lower and thus the prognosis worse. Conversely, positive a regression coefficient 

implies a better prognosis for patients with higher values of that variable when time to event is 

recovery and conversely for death.  
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3.4.1.3.1. Partial Likelihood Function  

Kalbfleisch and prentice derive a likelihood involving only   and X (not ( )oh t ) based on the 

marginal distribution of the ranks of the observed failure times (in the absence of censoring). 

Cox (1972), derived the same likelihood and generalized it for censoring using the idea of a 

partial likelihood 

Suppose we observe  , ,i i iT X for individual i , where  iT  is a censored failure time random 

variable; and i  is the failure/censored indicator (1=fail, 0= censor) and iX  represents a set of 

covariates. 

The covariates may be continuous, discrete, or time-varying.                     

( )

( ) Pr(   /1 failure from R( ))

Pr(  /   )

Pr(  l fails/at risk at )

( ; )

( ; )
j

i j

j

j

j j

j l

l R

L individual j fails

individual fails at risk at

individual

h X

h X


 

















 

Under the PH assumption, ( ; ) ( )exp( )oh t T h t X   so we get:          

1

( )

1

( )

( ) exp( )
( )

( ) exp( )

exp( )

exp( )

j

j

o j jpartial k

j

o j l

l R

jk

j

l

l R

h X
L

h X

X

X





 


 













 

 





 

In general, the likelihood contributions for censored data fall into two categories: 

 individual is censored at iT   

   
0

exp[ ( ) ]
iT

i i iL S T h u du     

 Individual fails at iT : 
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                           i

0

(T )exp[ ( ) ]
iT

i i i i j iL S T h T h h u du       

Thus, everyone contributes ( )iS T  to the likelihood and only those who fail contribute i(T )jh . 

This means we get a total likelihood of: 

                    
1 0

( ) xp[ ( ) ]
i

i

Tn

i i i

i

L h T e h u du




         

Now, let’s multiply and divide by the term
( )

  ( )

i

i

i i

j R T

h T


 
 
  
 . 

                  
 

1 ( ) 0( )

( )
( )] xp[ ( )

( )

i
i

i

i

Tn
i i

i i i

i j R Ti ij R T

T
L h T e h u du

h

h

T






   
   
     

    

If we just focus on the first term, then under the Cox PH assumption: 

 
1 ( )

( )

( )

i

i

n
i i

i i ij R T

Th
L

h T






 
 
 
 




 

 
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0

0

( )exp( )

( )exp( )

i

i

n
i i

i i ij R T

T X
L

h T

h

X








 
 
 
 
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 
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i

n
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i ij R T

X
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






 
 
 
 
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

 

This is the partial likelihood defined by Cox. Note that, it does not depend on the underlying 

hazard function  0 .h   Cox recommends treating this is as an ordinary likelihood for making 

inferences about   in the presence of the nuisance parameter  0 .h   

The log-partial likelihood is: 

 
1 ( )

exp( )

exp( )

i

i

n
i

j il R

X
l log

X










 
 
 
 


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 

 
 1

exp

exp
i

k
i

j il R

X
log

X






 
 
 
 




                                                        

1 ( )

log[ exp( )]
i

k

i i

j l R

X X


 


 
  

  
   

1

( )
k

j

j

l 


  

Where,
jl  is the log-partial likelihood contribution at the thj ordered event time. Suppose there is 

only one covariate (  is one dimensional): 

The partial likelihood score equations are: 

             
( )

1 ( )

exp( )
( )

exp( )
( )

j

j

n l ll R

j j

j ll R

X Xd
l X

d X
U






 

 




 
  
 
 







   

The maximum partial likelihood estimators can be found by solving ( ) 0U     

Analogous to standard likelihood theory, it can be shown that 

ˆ( )
~ (0,1)

ˆ( )
N

se

 




 

The variance of ̂ can be obtained by inverting the second derivative of the partial likelihood, 

                                                

1
2

2
( ) ~ ( )

d
Var l

d
 





 
 
 

 

Newton Raphson is used by many of the computer packages to solve the partial likelihood 

equations. 
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3.4.1.4.  Frailty Models 

The concept of frailty provides a suitable way to introduce random effects in the model to 

account for association and unobserved heterogeneity. In its simplest form, a frailty is an 

unobserved random factor that modifies multiplicatively the hazard function of an individual or a 

group or cluster of individuals. Vaupel et al. (1979) introduced the term frailty. Clayton (1978) 

promoted the model by its application to multivariate situation on chronic disease incidence in 

families. 

A random effect model takes into account the effects of unobserved or unobservable 

heterogeneity, caused by different sources. The random effect, called frailty and denoted here by 

Z is the term that describes the common risk, acting as a factor on the hazard function. 

3.4.1.4.1. Shared Frailty Model 

A natural extension of the univariate frailty model would be a multivariate survival model where 

individuals are allowed to share the same frailty value. Frailty models are getting more and more 

popular to account for over-dispersion and/or clustering in survival data. Gets name because they 

attempt to account for unobserved heterogeneity that occurs because some observations are more 

failure prone and hence, more “frail” than other observations in a data set. The basic idea is to 

introduce into the hazard rate, an additional random parameter that accounts for the random 

frailties. The concept of frailty was introduced by Vaupel et al. (1979) who studied the model 

with Gamma distributed frailties. In recent decades, a large amount of papers on “frailty models'” 

have appeared. The assumption of a shared frailty model is that both individuals in a pair share 

the same frailty Z, and this is why the model is called the shared frailty model. It was introduced 

by Clayton (1978) and extensively studied in Hougaard (2000), Therneau and Grambsch (2000), 

Duchateau et al. (2002), (2003) and Duchateau and Janssen (2004). These frailties may be 

individual-specific or group-specific thus giving rise to the nomenclature “individual frailty” or 

“shared frailty” models. Shared-frailty models are appropriate when you wish to model the 

frailties as being specific to groups of subjects, such as subjects within families. Here a shared-

frailty model may be used to model the degree of correlation within groups; i.e., the subjects 

within a group are correlated because they share the same common frailty. 
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In this situation, individuals j in a cluster  i are supposed to share the same frailty ,iZ the 

conditional hazard for individual j in cluster i  is: 

( / ) ( ),ij i i ijh ht Z Z t                                                                                                           [6] 

Where,   0( )exp( )ij ij ijh t h t X in the Cox regression model. The iZ are independent identically 

distributed following a chosen distribution, like in the univariate frailty models. This model is 

therefore an extension of the described model. The interpretation of this model is that the 

between-groups variability (the random variation of Z ) leads to different risks for the groups, 

which then show up as dependence within the group.  

3.4.1.4.1.1.Shared Gamma Frailty model 

Suppose there are n clusters and that the thi cluster has ik  individuals and associates with an 

unobserved frailty,     , 1iZ i n  . A vector 1  ;1 ,    ij iX i n j k     is associated with the  thij .  

Suppose ijT  is the survival time of the
thj individual in the thi cluster. Conditional on frailties,   iZ , 

the survival times are assumed to be independent and their hazard functions to be of the form 

0( / ) ( )exp( ),  1, 2,  ;  1, 2,  , T

ij i i ij ij ih t Z Z t X kh i n j                                       [7] 

Where, 0 ( )h t are the baseline hazard functions and   is a vector of fixed effect parameters to be 

estimated. The frailties,  iZ are assumed to be identically and independently distributed random 

variables with a common density function ( , )f z   where,   is the parameter of the frailty 

distribution. Individuals in cluster i  with 1iZ   tend to fail at a faster rate than that under 

independence model. A semi-parametric shared frailty model is a frailty model with a 

nonparametric baseline hazard function 0 ( )h t . 

The gamma frailty model assumes a gamma distribution for the frailties. The Gamma 

distribution is the most widely applied frailty distribution. The shared gamma frailty model was 

suggested by Clayton (1978) for the analysis of the correlation between clustered survival times 

in genetic epidemiology. An advantage is that without covariates its mathematical properties are 
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convenient for estimation (Oakes, 1982, 1986). From an analytical and computational view 

gamma is a very convenient distribution. Arguably, this is the most popular frailty model due to 

its mathematical tractability, by Duchateau and Janssen (2008). When observations are clustered 

into groups such as districts, or when observations are recurrent events times (cancer relapses), 

the shared gamma frailty model is the most often adapted model (Rondeau et al. 2003). In the 

model above or the use of the frailty model was justified on the ground that patients given the 

same intervention may not necessarily be coming from the same environment or were not 

exposed to the same events.  

It is assumed that the iZ ’s are independently and identically distributed from a gamma 

distribution with mean 1 and unknown variance ; the probability density function is thus: 

                                          

)
1

(

)exp(
)(

1

1
1
















zz

zf z                                                         [8]           

Where, (.)  is gamma function, it corresponds to a gamma distribution,  ( ,  )Gamma    with 

(.)  fixed to 1 for identifiability. Its variance is then  with Laplace transform  

( ) (1 / )  ,  u 0L u u      

Large values of   signify a closer positive relationship between the subjects of the same group 

and greater heterogeneity among the groups. 

The conditional survival function of the gamma frailty distribution is given by: (Gutierrez, 2002)  

     1/

0[1 ln ]S t S t 

     

and the conditional hazard function is given by: 

       1/

0 0( )[1 ln ]h t h t S t 

      

Where, 0 ( )S t  and 0 ( )h t  are the survival and the hazard functions of the baseline distributions. In 

the case of gamma distribution for ,    1 Z EZ   and    varZ  . So, small value of1/  reflect a 

greater degree of heterogeneity among groups and a stronger association within groups. For the 

Gamma distribution, the Kendall's Tau (Hougaard 2000), which measures the association 
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between any two event times from the same cluster in the multivariate case, can be computed by:

(0,1)
2








.  

The joint survival function for the ik  individuals within the thi  cluster is easily written by:

   1 1 1 1 1

10

, , Pr , Pr( / ) ( )
i

i i i

k

i ik i i ik ik i i i i i

j

S t t T t T t T t Z g z dz





        

                                                            = T

0 ij ij

1

1
1 (t )exp(β X )

ik

j

H









 
 

 
   

In this model, the estimates of 0β,  θ,  H (t)  are obtained by using the penalized likelihood 

maximization (PLM). PLM is more elegant estimation tool. 

3.4.1.4.1.1.1. Penalized Likelihood Method 

Let’s introduce a semi-parametric approach to jointly estimate the parameters β, θ and the 

baseline hazard function  0 h t , which is assumed to be smooth. A possible means for 

introducing such an a priori knowledge is to penalize the likelihood by a term which has large 

values for rough functions. (O’Salivan, 1988; Joly, Commenges and letenneur, 1998). Thus for 

the vectors of baseline hazard functions, if conditionally on b the censoring is independent and 

non-informative also of b, then the likelihood for model (6) in terms of the parameters (

 0 t ,β,  θh ) is 

     iδ

i i0

1

( t ,β,  θ) t / b S t / b p(b;D / θ))db
n

i

L h h


   

                            
1

00( t exp ) t exp   ,i

n
T T

i i i i

i

h X Z b exp H X Z b x p b D db
  



    
        

Where    0 0

0

t u du

t

hH    and the unobserved frailties are integrated out. 

We restrict b to follow a multivariate normal distribution, but the derived likelihood 

approximations can be easily adapted to other frailty distributions as well. The approximate 

marginal log likelihood:-  
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If both   were known and b were considered a fixed effects parameter, then the second line in 

(9) would be a penalized log likelihood (Green, 1987), where

'
11

( )
2

b D b   is the penalty term 

penalizing for extreme values of b. Since the second line is the full likelihood for a Cox model 

with b as another set of parameters and a penalty term, it turns out that it can be maximized using 

penalized fixed effects partial likelihood (PPL), 

 

 
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j R t
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T T

i i i i iX Z b X Z b b D b   
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For given  , the estimating equations based on the first partial derivatives of the PPL are, for  ,

i
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                                                                                    [10] 

For b 
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Z D

X Z b


 







 
  
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
                         [11]                                               

and  
''

(β θ ,  b(θ) ) can be found by alternating between solving ( 10) and (11). Note that equation 

(10) can be solved with standard Cox regression software using estimated values of frailties as 

the offset term. 
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3.4.1.5. Model Selection  

3.4.1.5.1. Likelihood Ratio Tests (LRT) 

The likelihood ratio test (LRT) statistic is an adequate test as the new model is nested in the 

previous model. Suppose there are ( )p q explanatory variables measured: 1, ,  ,  , , i p p p qx x x x    

and proportional hazards are assumed. Consider the following models 

Model 1: contains only the first p-covariates
 

1 1

, 
exp( )

( )

i

p p

o

t X
x x

t

h

h
     

Model 2:-contains all ( )p q covariates
 

0

1 1

, 
exp( )

( )

i

p q p q

h t
x

th

X
x     . 

These are nested models. For such nested models, we can construct a likelihood ratio test of

p 1 p q0H :β β 0   as:   2 ˆ ˆ2[log 1 ( (2))]LRX L log L    under 0H , this test statistic is 

approximately distributed as
2X  with q df.  

The likelihood-ratio test of   0   is a boundary test and thus requires careful consideration 

concerning the calculation of its p-value.  In particular, the null distribution of the likelihood-

ratio test statistic  is  not  the  usual  
2

1  but  is  rather  a  50:50  mixture  of  a  
2

0  (point  mass  

at  zero)  and  a denoted as 
2

01 . See Gutierrez, Carter, and Drukker (2001) for more details. 

3.4.1.5.2. Akaike’s Information Criterion (AIC) 

Some models are nested within gamma model. For comparing models that are not nested, the 

Akaike information criterion (AIC) can be used instead, which is defined as:-

    2(   )   2(   )AIC log likelihood k  , where, k is the number of covariates in the model. The addition 

of  2 k can be thought of as a penalty if non predictive parameters are added to the model. 

Although the best-fitting model is the one with the largest log likelihood, the preferred model is 

the one with the smallest AIC value.  
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3.4.1.6. Model Checking and Diagnosis  

The use of diagnostic procedures for model checking is an essential part of the modeling process. 

There are different commonly used model checking to evaluate whether the appropriate 

functional form for a covariate is used in the model to assess the fitted model. 

3.4.1.6.1. Cox-Snell residuals  

The residual that is most widely used in the analysis of survival data is the Cox-Snell residual, so 

called because it is a particular example of the general definition of residuals given by Cox and 

Snell (1968). The Cox-Snell residual for the i
th 

individual, 1,2, ,i n  , is given by properties and 

features of residuals, when survival outcome are modeled, have been extensively studied in the 

literature. The Cox -Snell residuals are commonly used for a direct assessment of excess events 

(i.e., to reveal subjects that are poorly fit by the model), and for evaluating whether the 

appropriate functional form for a covariate is used in the model.  

 
 exp

( : )
X

oS t X S t


    or, in terms of hazards:    ( ;  ) expoh t X h t X So, for each person with 

covariates   ix ,  
 exp

S(t : ) x
ix

i oS t


     then we can calculate ˆlog[ ( ;  )]ˆ
i i iS T xh    

Or first predict survival probability at the actual survival time for individual, then log-transform 

it. The residuals in right censored data constitute a censored sample of the unit exponential 

distribution    * *ˆˆ logCi i i i ir H t S t   ,                                                                                     [13] 

Where  *ˆ
i iH t and  *ˆ

i iS t are the estimated cumulative hazard and survivor functions, 

respectively, for the i
th

 individual at the censored survival time. 

Then the modified Cox-Snell residual is given by 

1Ci i Cir r                                                                                                                       [14] 

o Plotting ( ) vs tl  ˆog iTS should yield a straight line 

o Plotting  (ˆlog[ log( lo))] g tvs iTS should yield a straight line through the origin with 

slope=1. 

Note: - the Cox-Snell residuals will not be symmetrically distributed about zero and cannot be 

negative.  
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3.4.1.6.2.  Deviance Residuals 

Although martingale residuals share many of the properties possessed by residuals encountered 

in other situations such as in linear regression analysis, they are not symmetrically distributed 

about zero, even when the fitted model is correct. This skewness makes plots based on the 

residuals difficult to interpret. The deviance residuals, which were introduced by Therneau et 

al.(1990) are much more symmetrically distributed about zero. They are defined by 

             1/2[ 2 log ]Di Mi Mi i i Mir sgn r r r                                                                             [16] 

Where, Mir is the martingale residual for the thi  individual and the function  sgn .  is the sign 

function. This is the function that takes the value +1 if its argument is positive and -1 if negative.  

3.4.1.6.3. Influential Observations 

Observations that have an undue effect on model-based inference are said to be influential. The 

most direct measure of influence is ( )
ˆ ˆ

j j i  where, ˆ
j is the j

th
 parameter, j =1, 2... p in a fitted 

Cox PH model and is obtained by fitting the model after omitting observation i. To check the 

influence of observations on a parameter estimate, Cain and Lange showed that an 

approximation to ( )
ˆ ˆ

j j i  is the j component of  the vector ˆvar( )sir   where sir  is the 1p  vector 

of score residuals  for the i
th

 observation, which   are   modifications of Schoenfeld residuals  and 

are defined for all the observations, and Var(β) is the variance-covariance matrix of the vector of 

parameter estimates in the fitted Cox PH model. The j
th

 element of this vector is called delta-beta 

statistic for the j
th

 explanatory variable ( )
ˆ ˆ ˆ

j j j i     , which tells us how much each coefficient 

will change by   removal of a single observation.  

3.4.1.7.Testing the Assumption of Proportional Hazards 

It is always a good practice to check the assumption of proportional hazards, before proceeding 

further with other inferential activities. Schoenfeld residuals can be used for this purpose. 



Modeling Time-to-Recovery of Adult Diabetic Patients : A Comparison of Cox-PH and Shared Frailty Models 2014 

 

33 
 

3.4.1.7.1. Using Schoenfeld residuals 

The expected value of the i
th

 scaled Schoenfeld residuals for the j
th

 explanatory variable is given 

by
* ˆ[ ] ( )

jip j i jE r t   , where, 

o ( )j it , the value of time varying coefficient of jx  at the i
th

 death time. 

o ˆ
j , is the estimated value of j  in the fitted Cox model. 

Plot * ˆ
pji jr  , against the recovery time. A horizontal line would suggest that the coefficient of 

jx  is constant and the proportional hazards assumption is satisfied. 

3.5. ETHICAL CONSIDERATION 

The data for the analysis is obtained from Jimma University Specialized Hospital (JUSH), and an 

ethical clearance for the study was provided by research ethics review board of Jimma University 

and the Department of Statistics was written an official support letter to JUSH. Qualified data 

collectors were carefully recruited and trained before the start of the data collection phase. 
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4. STATISTICAL ANALYSIS AND RESULTS 

4.1. Descriptive and non-parametric survival analysis of time to first recovery 

of diabetic patients 

Baseline categorical covariates are illustrated in Table 2. The data consists of 544 patients aged 

equal to or above 18 years old and placed under treatments that have followed between 1
st
 

September 2010 and 30
th
 August 2013 (a three years data) at JUSH were included to find out 

their time to first recovery in to normal blood sugar level.  

The outcome response is time to first recovery. From the total of 544, 404 (74.26%) were 

recovered to normal blood sugar level and the rest 140 (25.74%) loss to follow-up from the 

study. The median recovery time is 3 month but it varies depending on the covariates included in 

the study.  

The majority of the cases, 423(77.76%) were type-II diabetic, 351(64.52%) were males, 423 

(77.76%) had no family history of the disease. The results further shows that the majority of the 

patients were first detected at the age of 45-59 years (30.51%) followed by age group 30-44 

(28.49%) and a few cases at age above 74 years (4.96%). It can be seen that most of the cases 

had normal upper (systolic) (62.68 %) and lower (diastolic) (77.76 %) blood pressure.  

In type-I diabetic from the total of 121, 103 (85.12%) experienced the event and the rest 

18(14.88%) loss to follow-up and in type-II diabetic from the total of 423, 301 (71.16%) 

experienced the event and the rest 122 (28.84%) loss to follow-up from the study. The median 

recovery time for type-I and type-II diabetic were between 2 and 4 months respectively.  The 

minimum and the maximum recovery time of type-I diabetic were 1 and 6 months and for type-II 

diabetic 1 and 31 months respectively. In type-I diabetic from the total of 103 recovered patients, 

71(84.52%) were males and median recovery time was 2 months whereas, 32(86.49%) were 

females and median recovery time 1 month and in type-II from the total of 423 recovered 

patients, 202(75.66%) were males and median recovery time 3 months whereas, 99(63.46%) 

were females and median recovery time 8 months. Majorities of females with type-I DM are 

recover to normal blood sugar level as compared to males and majorities of males with type-II 

DM were recover to normal blood sugar level as compared to females. 
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Table 2: Diabetes mellitus patient baseline covariates of median recovery, percentage and frequencies 

  Type-I Diabetic Mellitus (DM) Type-II Diabetic Mellitus (DM) 

Covariates Total No (%) Total (%) 

(for type-I) 

Recovery Median Total (%) 

(for type-II) 

Recover Median 

Sex  Male  351 (64.52) 84(23.93) 71 (84.52) 2 267(76.07) 202(75.66) 3 

Female  193 (35.48) 37(19.17) 32(86.49) 1 156(80.83) 99(63.46) 8 

Family history Yes  121(22.24) 121(22.24) 103(85.12) 2    

No  423(77.76)    423(77.76) 301(71.16) 4 

Age at 

baseline (yrs) 

<30 109(20.04) 39(35.78) 38(97.44) 1 70(64.22) 64(91.43) 1 

30-44 155(28.49) 53(34.19) 44(83.02) 2 102(65.81) 82(80.39) 3 

45-59 166(30.51) 22(13.25) 19(86.36) 2 144(86.75) 101(70.19) 5 

60-74 87(15.99) 4(4.6) 2(50) 4 83(95.4) 44(53.01) 10 

>74 27(4.96) 3(11.11) 0 NA 24(88.89) 10(41.67) 16 

SBP(mm/Hg) <110 94(17.28) 19(20.21) 18(94.74) 1 75(79.79) 57(76) 5 

110-130 341(62.68) 84(24.63) 71(84.52) 2 257(75.37) 186(72.37) 4 

>130 109(20.04) 18(16.51) 14(77.78) 2 81(74.31) 58(71.60) 5 

DBP(mm/Hg) <60 8(1.47) 2(25) 2(100) 1 6(75) 4(66.67) 5 

60-80 423(77.76) 101(23.88) 86(85.15) 2 322(76.12) 227(70.50) 4 

>80 113(20.77) 18(15.93) 15(83.33) 1.5 95(84.07) 70(73.68) 4 

Overall  544 121(22.24) 103(85.12) 2 423(77.76) 301(71.16) 4 

Overall DM 544 404(74.265)                                  3(Median)             

Area: Jimma University Specialized Hospital (JUSH); study time: between September 2010 and August 2013 (a three year 

data); Median: Median recovery time; DM: Diabetic Mellitus. 
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All patients with type-I diabetic had family history of the disease whereas type-II diabetic had no 

family history of the disease. The results further shows that the majority of the type-I and II 

diabetic patients were first detected at the age of 30-44 (43.8%) and 45-59 (34.04%) years 

respectively. Type-I DM detected at young age whereas type-II DM at adult age. Patient’s age 

group 18-29 years was fast to recover to normal blood sugar level both for type-I and II DM.  

Table 3: Baseline characteristics of DM patients and types of DM for continues variables 

 

Covariates 

DM Type-I DM Type-II DM 

Mean  SD Medi

an 
Mean  SD Med

ian 
Mean  SD Median 

Bodyweight  61.63 16.16 60 55.52 14.89 56 63.38 16.10 61 
Age  44.66  16.11 45 35.93 13.12 35 47.16 16.02 48 
Upper (systolic) 

blood pressure  
120.55 16.17 120 119  13.56 120 120.99 16.83 120 

Lower(Diastolic) 

blood pressure  
77.83 10.12 80 77.77 9.7 80 77.85 10.25 80 

Fasting Blood sugar 215.38 91.37 196 209.34 89.1 188 217.999
90.793 

199 

Table 3 describes the baseline characteristics of diabetic mellitus patients and types of diabetes 

for continue variables. The mean age at the start of follow up was 35.93 yrs for type –I DM with 

a standard deviation of 13.12 and median 35 yrs, the mean age for type-II DM was 47.16yrs with 

a standard deviation of 16.02 and median age was 48 yrs, the mean bodyweight at the start of 

follow up for type-I DM was 55.52kgs with a standard deviation of 14.89 and median 56kgs, the 

mean bodyweight for type-II DM was 63.38kgs with standard deviation of 16.10 and median 

61kgs, the mean upper (systolic) blood pressure for type-I DM was 119 mm/Hg with a standard 

deviation and median 120mm/Hg, the mean upper (systolic) blood pressure for type-II DM was 

120.99mm/Hg with a standard deviation of 16.83 and median 120mm/Hg and the mean 

lower(diastolic) blood pressure for type-I DM was 77.77mm/Hg with a standard deviation of 9.7 

and median 80mm/Hg and the mean lower(diastolic) blood pressure for type-II DM was 

77.85mm/Hg with a standard deviation of 10.25 and median 80mm/Hg. Type-II diabetic patients 

were the oldest whereas type-I diabetic patients were the youngest. Bodyweight and FBS at 

baseline for type-II (61kg and 199mg/dl) patients were large as compared to type-I (56kg and 

188mg/dl) diabetic patients.  
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Kaplan-Meier Estimates and Logrank Tests 

The logrank test (Section 3.4.3.3) and a plot of Kaplan-Meier (Section 3.4.3.1) estimates for only 

two selected categorical covariates; diabetic type and sex are displayed below. The K-M curves 

for each study sub group (category) provide an initial insight difference for each subgroup.  

Table 4: The log-rank test for Diabetic Type 

Diabetic Type N Observed Expected (O-E)^2/E (O-E)^2/V 

DT=type-I 123 104 62.3 27.91 42.9 
DT=type-II 421 300 341.7 5.09 42.9 

Chisq= 42.9           on 1 degrees of freedom,  p= 5.7e-11 

Table 5: The log rank test for Sex 

Sex N Observed Expected (O-E)^2/E (O-E)^2/V 

Sex=female 193 131 185 15.8 38.2 

Sex=male 351 273 219 13.3 38.2 

Chisq= 38.2  on 1 degrees of freedom, p= 6.49e-10 

As per to the log-rank presented in table 4 and 5 there is a significant difference in the 

cumulative incidence of recovery time for diabetic type (p= 5.7e-11)  and sex (p= 6.49e-10).  

Figure 1 shows patients with type-I diabetic and male patients have a higher probability to 

recover than type-II and female DM patients respectively. The results are consistent with the log 

rank test.  

 

Figure 1. Kaplan-Meier estimate of the Diabetic type and Sex survivor function 

 



Modeling Time-to-Recovery of Adult Diabetic Patients : A Comparison of Cox-PH and Shared Frailty Models 2014 

 

38 
 

4.2. Result: from Cox-PH Models  

4.2.1. Modeling Recovery Time for DM Inseparably 

In order to select variables in the model, first univariate analysis is used to check all the 

covariates associated with recovery time. Accordingly, the univariate Cox proportional hazards 

regression models are fitted for every covariate shown (Appendix-I A). In this study, the 

predictors in the multivariate model is considered, if the test for the univariate model has a p-

value less than or equal to 0.1 in the univariate analysis. Then the full multivariate Cox PH 

model is fitted including all the potential covariates which are significant at 10% at the univariate 

level and from multivariate model variables non-significant at 10% were eliminated using 

backward selection method. Accordingly variables with minimum AIC are; bodyweight at 

baseline, age group, sex, fasting blood sugar (FBS) at baseline and diabetic types are significant 

covariates selected for the model (Table 6).  

Table 6: Multivariate Cox-PH model for the diabetic types inseparably  

Covariates 
Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR) 

95%C.I for HR 

Age       

30-44 years -0.387 0.135 0.004125* 0.6788 (0.5209, 0.8845) 

45-59 years -0.695 0.139 5.84e-07* 0.4992 (0.3801, 0.6556) 

60-74 years -1.378 0.1858 1.22e-13* 0.2521 (0.17514, 0.3629) 
>74 years -1.909 0.3465 3.63e-08* 0.1483 (0.07517, 0.2924) 

Bodyweight(kg) -0.0216 0.0032 1.68e-11* 0.9786 (0.97248, 0.9848) 

Diabetic Type 
(Type-II) 

-0.482 0.1240   0.000101* 0.6173 (0.48409, 0.7872) 

FBS -0.0032 0.0006 9.91e-08* 0.9968 (0.9956, 0.998) 

Sex (Male) 0.582 0.1127   2.39e-07* 1.79 (1.43525, 2.2324) 

Likelihood ratio test= 251.2.1, p=0.0001, Wald test = 222.2   p=0.0001, Score (logrank) test = 243.3, 
p=0.0001, AIC= 4138.79. 

Area: Jimma University Specialized Hospital (JUSH); study time: between September 2010 and 

August 2013 (a three year data), Inseparable: when two types of diabetic is in one data set, Coef: 

coefficient for covariate, HR: hazard ratio, p-value: probability value, 95%C.I HR: 95% confidence 

interval for HR, FBS: Fasting Blood Sugar, * Significant at 0.05 level. 

In the univariate (Appendix-I A) Cox PH models, the model with a covariate, age group 30-44 

(P-value=0.00148), 45-59(P-value=5.62e-09), 60-74 (P-value=< 2e-16), >74(P-value=1.89e-11) 

(when age group <30 as a reference), bodyweight (kg) (P-value=2.22e-15), sex (P-value=1.71e-

09 when female as a reference) , diabetic type (P-value= 1.07e-14 when type-I as a reference) 

and FBS(mg/dl)(p-value=3.44e-08) at base line shows statistically significant association with 
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time-to-recovery at 10% level of significance. But, upper (Systolic) (110-130, P-value= 0.617& 

>130, P-value =0.359) (<110 as a reference) and lower (Diastolic) (60-80, P-value=0.843 &>80, 

P-value =0.837) (<60 as a reference) blood pressure at baseline are not significant at 5% let leave 

alone10% revealing that this variable will not be included in the model.  

The multivariate results of a Cox PH model fitted to this dataset were obtained on table 6. It is 

now observed that effects of age group, bodyweight (kg) (p-value= 1.68e-11) at baseline, sex (p-

value=2.39e-07), FBS (mg/dl) (p-value=9.91e-08) at baseline and diabetic type (p-value= 

0.00010 1) are significantly associated. Again also, the likelihood ratio test (p-value=0.0001), 

Wald test (p-value=0.0001) and score (logrank) test (p-value=0.0001) are highly significant.   

      Estimating the hazard and survival functions 

The semi-parametric Cox PHs model is the most commonly used model in hazard regression. In 

this model, the conditional hazard function, given the covariate value x , is assumed to be of the 

form  

0( \ ) ( )exp{ },Th t x h t x where, 1( ,..., )T

p   is the vector of regression coefficients, 

and 0 ( )h t  denotes the baseline hazard function. No particular shape is assumed for the baseline 

hazard; it is estimated non-parametrically. The contributions of covariates to the hazard are 

multiplicative.  

The baseline survival function is estimated as 0 0( ) exp{ ( )}S t h t  , by 0 0
ˆˆ ( ) exp{ ( )}S t h t   

In the Cox PHs model, the survival function ( \ )S t x  of an individual with covariate values x  is 

given by    
exp( )

0( \ ) ( )
T xS t x S t   

The final multivariate Cox PH model (2) (table6)is then written as:- 

30 44 45 59 60 74 74( ) ( )exp( 0.387* 0.695* 1.378* 1.909*

         0.0216* 0.482* 0.0032* 0.582* )

i o i i i i

i i i i

h t h t Age Age Age Age

bodyweight DT FBS Sex

      

   
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The estimated survival model:  

30 44 45 59 60 74 74exp( 0.387* 0.695* 1.378* 1.909*
         0.0216* 0.482* 0.0032* 0.582* )     

0
ˆ ˆ( , ) ( )

i i i i

i i i i

Age Age Age Age
bodyweight DT FBS Sex

S t X S t
      

      
   

 

 Figure 2: Estimated of the baseline survival and hazard in the PHs models respectively for inseparable 

DM patients of Cox PH model 

The baseline survival and hazard are decreasing and increasing respectively as time goes (Figure 

2). The Cox PHs model is a semi-parametric model where the baseline hazard 0 ( )h t and survival 

0 ( )S t  vary with time. A baseline hazard function is left unspecified but must be positive. The 

patients’ chance of recovery time up to 15 months slowly decreases and increases for baseline 

survival and hazard function respectively. 

The PH assumption checking with graphical method based on the Schoenfeld residuals have 

been described (Figure 3) and included in the model. Systematic departures from a horizontal 

line are indicative of non-proportional hazards, since PH assumes that estimates 1 2, ,..., p    do 

not vary much over time. Also, the graphs for some of the categorical variables displayed (Figure 

1) using Kaplain Meir appeared were parallel, implying that the proportional-hazards assumption 

among categorical and continues variables has not been violated.   
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Figure 3: Plots of Scaled Schoenfeld Residuals for each Covariate in the model for inseparable DM data 

 4.2.1.1. Model Diagnosis for Diabetic Types Inseparably 

A plot of the Cox-Snell residuals against the cumulative hazard is presented (Figure 4). The 

hazard function follows the 45 degree line very closely except for very large values of time. It is 

very common for models with censored data to have some wiggling at large values of time and it 

is not something which should cause much concern. Overall, the final model fits the data very 

well. 

 

Figure 4: Cox-Snell residuals obtained from fitting Cox PH model to the DM data. 
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Figure 5: Deviance Residuals for Cox PH model to the DM data 

The plot of deviance residual (Figure 5) shows that the deviance residuals seem to be 

approximately symmetrically distributed about zero and there exists not as such clearly outlying 

observation. There is a pattern in the residuals that do not necessarily indicate any problems with 

the model. Therefore, there is almost some concern about the adequacy of the fitted Cox PH 

model.  
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Figure 6: Influential observations for Cox PH model for DM data set 

The index plots produced in Figure 6, comparing the magnitudes of the largest dfbeta values to 

the regression coefficients suggests that none of the observations is terribly influential 

individually for inseparable DM.  

4.3. Separate Analysis of Type of Diabetic Mellitus 

First, inseparable diabetic mellitus is modeled using Cox- PH above to identify whether diabetic 

types significantly influencing the recovery time of diabetic patients. Second, since, diabetic 

types are significantly influencing recovery time of patients, then separate (when a type of 

diabetic is in different data set) models for type-I and II were undertake to identify factors 

affecting the recovery time of patients.   

4.3.1. Modeling Recovery Time for Type-I Diabetic  

The univariate analysis (Appendix-I B) for type-I diabetic with a covariate, age group ((30-44, P-

value=0.0036), (45-59, P-value=0.0577), (>60, P-value=0.0015)), bodyweight (P-value=0.0236), 

lower (Diastolic) (60-80, p-value=0.0572, >80, p-value=0.0934) blood pressure and fasting 

blood sugar (P-value=0.1) at baseline are significant with time-to-recovery at significance level 

of 10%. While, sex (p-value=0.467) and upper (Systolic) (110-130, p-value=0.253, >130, 

p=0.462) blood pressure are non-significant at 5% let leave alone10% revealing that this variable 

will not be included in the model and from multivariate model variables non-significant at 10% 
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were eliminated using backward selection method. Accordingly variables with minimum AIC are 

age group, bodyweight, and FBS at baseline.  

Multivariate results of a Cox PH model (2) (Appendix-I C) shows that effects of age groups, 

bodyweight and FBS at baseline had a statistically significant impact on time-to-recovery while 

diastolic blood pressure is non-significant at 10% level of significance. Therefore, these variables 

reduced from the model. In the appendix-I C, an individual with lower DBP recovers faster than 

a higher DBP. 

It is now observed in the table 7 that effects of age groups, bodyweight and FBS at baseline had a 

statistically significant impact on time-to-recovery. Therefore, age group, bodyweight and FBS 

at baseline are selected for the final model reducing the non-significant covariates. Again also, 

the likelihood ratio test (P-value=1.615e-05), Wald test (P-value=0.0002363) and score (logrank) 

test (P-value=5.684e-05) are highly significant.   

Table 7: Multivariate Cox-PH model for type-I DM 

Covariates Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR) 

95%C.I for HR 

Age       

30-44 years -0.5827 0.2254 0.00972* 0.5584 (0.35899,  0.8685) 

45-59 years -0.61796 0.283 0.02919* 0.539 (0.30934, 0.9393) 

> 59 years -2.079 0.7398 0.00495 * 0.125 (0.02933, 0.5331) 

bodyweight(kgs) -0.018 0.00835 0.03358* 0.9824 (0.96648, 0.9986) 

FBS(mg/dl) -0.0028 0.0012 0.01737* 0.9972 (0.99492,  0.9995) 

Likelihood ratio test= 29.8,  p-value=1.615e-05, Wald test = 23.81,  p=0.0002363, Score (logrank) 

test = 27.01,  p-value=5.684e-05, AIC= 803.804. 

Coef: coefficient for covariate, HR: hazard ratio; p-value: probability value, 95%C.I HR: 95% 

confidence interval for HR, * Significant at 0.05 level. 

The multivariate model in table 7, the hazard of bodyweight is 0.9824, implies that for a unit 

increase of bodyweight in type-I DM who has not yet recovered by a certain time has 0.9824 

times the chance of being recovered at the next point in time after controlling other factors in 

type-I DM or for a unit increase of bodyweight, the recovery time of diabetic patient delayed by 

0.0176. The hazard of fasting blood sugar (FBS) is 0.9972, implies that for a unit increase of 

FBS at baseline in type-I DM who has not yet recovered by a certain time has 0.9972 times the 
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chance of being recovered at the next point in time after controlling other factors in type-I DM or 

for a unit increase of FBS at baseline, the recovery time of diabetic patient prolonged by 0.0028. 

Thus, the lower the bodyweight, age and FBS at baseline the faster the rate of the blood sugar 

level returning to normal range in this type of DM.  

The final Cox PH model (2) for type-I DM is then given by:- 

0 30 44 45 59 60 74( ) ( )exp( 0.5827* 0.61796* 2.079* 0.018*

           0.0028* )

i i i i i

i

h t h t Age Age Age bw

FBS

      

  

Estimated Survival model for type-I DM for is:- 

30 44 45 59 60 74exp( 0.5827* 0.61796* 2.079* 0.018*
           0.0028* )        

0
ˆ ˆ( , ) ( )

i i i i

i

Age Age Age bw
FBS

S t X S t
      

   
   

 

Figure 7: Estimated baseline survival and hazard in the PHs models respectively for type-I DM patients 

of Cox PH model 

From figure 7 the baseline survival and hazards are varying with time. The patients’ chance of 

recovery time up to 3 month decreases and increases and then increases in survival and decreases 

in hazard at baseline survival and hazard function respectively. 

The PH assumption checking with test statistics based on the Schoenfeld residuals have been 

described (table 8) to test whether the correlation between Schoenfeld residual for these 
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covariates is zero. The PH assumption for all variables is checked and included in the model.  

Hence, PH assumption among age group, bodyweight and FBS variables are not violated and the 

global test is also not quite statistically significant. 

Table 8: Cox PH assumption checking test statistics based on Schoenfeld residuals for type-I DM 

       Age group rho      chisq             P 

factor(z3)1 0.1175 1.3607 0.243 

factor(z3)2        0.0889 0.7758 0.378 

factor(z3)3       -0.0106 0.0125 0.911 

bodyweight       -0.0352 0.1629 0.686 

FBS       -0.0635 0.3634 0.547 

GLOBAL  2.0860 0.837 

 

4.3.1.1.  Model Diagnosis for Type-I DM Patients 

A plot of the Cox-Snell residuals against the cumulative hazard is presented for the final model 

in figure 8. This plot reveals that there is little evidence of a systematic deviation from the 

straight line, which gives us only some concern about the adequacy of the fitted models. It is 

very common for models with censored data to have some wiggling at large values of time and it 

is not something which should cause much concern.  

Figure 8: Cox-Snell residuals obtained from fitting Cox PH model to the Type-I Diabetic data. 
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Figure 9: Deviance Residuals for Cox PH model for type-I DM 

The plot of deviance residual (figure 9) shows that the deviance residuals seem to be 

approximately symmetrically distributed about zero and there exists some outlying observation. 

There is a pattern in the residuals that do not necessarily indicate any problems with the model. 

Therefore, we have almost some concern about the adequacy of the fitted Cox PH model.  

 

Figure 10: Influential observations for Cox PH model for Type-I DM data set 

The index plots produced in figure 10, comparing the magnitudes of the largest dfbeta values to 

the regression coefficients suggests that none of the observations is terribly influential 

individually for type-I diabetic.  
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4.3.2. Modeling Recovery Time for Type-II Diabetic  

The univariate analysis (Appendix-I D) for type-II with a covariate, age group ((30-44, P-value 

=0.05), (45-59, P-value =6.13e-05), (60-74, P-value =2.77e-11)and(>74,P-value=4.65e-09) (18-

29 is as a reference)), bodyweight (P-value =1.37e-10), sex(P-value =1.83e-10) and FBS(P-

value=3.92e-07) at baseline are significant with recovery time at significance level of 5% let 

leave alone 10% significance level.  

Hence, age group, bodyweight, FBS and sex are the significant covariates associated with the 

recovery time of type-II diabetic mellitus whereas upper (Systolic) (110-130, P-value=0.701, 

>130, P-value =0.696) and lower (Diastolic) (60-80, P-value=0.907, >80, P-value=0.796) BP at 

baseline are not significantly associated with recovery time at 10% level of significance, hence 

these variables not included in multivariate analysis.  

Table 9: Multivariate Cox-PH model for type-II DM 

Covariates 
Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR) 
95%C.I for HR 

Age       

30-44 years -0.3694 0.16896 0.0288 * 0.6911 (0.49629,  0.9625) 

45-59 years -0.6988 0.16351 1.92e-05* 0.4972 (0.36087,  0.6850) 

60-74 years -1.3351 0.20118 3.21e-11* 0.2631 (0.17739,  0.3903) 

>74 years -1.8210 0.35671 3.31e-07* 0.1619 (0.08045,  0.3257) 

Bodyweight(kg)  -0.0212 0.00354 2.23e-09* 0.9791 (0.9723,  0.9859) 

Sex (Male) 0.7588 0.12992 5.19e-09* 2.1357 (1.65563,  2.7551) 

FBS(mg/dl) -0.0031 0.00072 1.79e-05* 0.9969 (0.99553,  0.9983) 

Likelihood ratio test= 175.1 , p=0.0001, Wald test =156.5,   p=0.0001,  Score (logrank) test = 166 ,   

p=0.0001 

Coef: coefficient for covariate, HR: hazard ratio; p-value: probability value, 95%C.I HR: 95% 

confidence interval for HR, * Significant at 0.05 level. 

The results of a Cox PH model (2) fitted to this dataset were obtained on table 9. It is observed 

that effects of age groups (30-44, P-value= 0.0288, 45-59, P-value=1.92e-05, 60-74, P-

value=3.21e-11, >74, P-value=3.31e-07), sex (P-value=5.19e-09), bodyweight (kg) (P-value= 

2.23e-09) and FBS (P-value=1.79e-05) at baseline had a statistically significant impact on time-
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to-recovery for type-II diabetic mellitus. A male patient recovers faster in type-II diabetic. A 

hazard ratio of 2.1357 corresponds to 68.11% chance of the male patient’s recovered first.  

The final Cox PH model (2) for type-II DM is then written by:- 

0 30 44 45 59 60 74 74( ) ( )exp( 0.3694* 0.6988* 1.3351* 1.821*

          0.0212* 0.7588* 0.0031* )

i i i i i

i i i

h t h t Age Age Age Age

bodyweight Sex FBS

      

  
 

Survival model for type-II DM is:- 

30 44 45 59 60 74 74exp( 0.3694* 0.6988* 1.3351* 1.821*
          0.0212* 0.7588* 0.0031* )
           

0
ˆ ˆ( , ) ( )

i i i i

i i i

Age Age Age Age
bodyweight Sex FBS

S t X S t

      
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 Figure 11: Estimated baseline survival and hazard in the PHs models for type-II DM patients of Cox PH 

model 

From figure 11 the baseline survival and hazard are decreasing and increasing respectively. The 

patients’ chance of recovery up to 15 months slowly decreases and increases at baseline survival 

and hazard function respectively. 
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Figure 12: Plots of Scaled Schoenfeld Residuals for each Covariate in the model for type-II DM 

The PH assumption checking with graphical method based on the Schoenfeld residuals have 

been described in figure 12. The PH assumption for all variables is checked in appendix and 

included in the model, implying that the proportional-hazards assumption among categorical and 

continues variables has not been violated. 

 4.3.2.1. Model Diagnosis for Type-II DM Patients 

A plot of the Cox-Snell residuals against the cumulative hazard is presented in figure 13. This 

plot reveals that there is little evidence of a systematic deviation from the straight line which 

gives us only some concern about the adequacy of the fitted models. The hazard function follows 

the 45 degree line very closely except for very large values of time. It is very common for 

models with censored data to have some wiggling at large values of time and it is not something 

which should cause much concern. Overall, the final model fits the data very well. 
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Figure 13: Cox-Snell residuals obtained from fitting Cox PH model to the type-II DM 

The plot of deviance residual (figure 14) shows that the deviance residuals seem to be 

approximately symmetrically distributed about zero and there exists not as such clearly outlying 

observation. There is a pattern in the residuals that do not necessarily indicate any problems with 

the model. Therefore, we have almost some concern about the adequacy of the fitted Cox PH 

model.  

 

Figure 14: Deviance Residuals for Cox PH Model to the type-II DM 
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The index plots produced in figure 15, comparing the magnitudes of the largest dfbeta values to 

the regression coefficients suggests that none of the observations is terribly influential 

individually for type-II DM.  

 

 

Figure 15: Influential observations for Cox PH model for type-II DM data set 
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4.4. Cox-PH with Shared Gamma Frailty Model 

4.4.1. Modeling Recovery Time of DM Inseparably 

The dependent variable used was time from start of treatment to return to normal blood sugar 

levels and the status variable was whether the blood sugar was in normal range or not. The 

districts are used to capture the random effect in the model.  

In Cox-PH models, hazard function may depend on unknown or non-measurable factors which 

can cause the regression coefficients estimated from such models to be biased. In consequence, 

in order to overcome the problem and better model survival of patients, the frailty models were 

introduced. In fact, these models are used to explain the random variation of survival function 

due to unknown risk factors, such as genetic factors and numerous environmental factors.  

From figure 16 below, the median first recovery time for different districts are significantly 

different, because the median recovery time for all districts are not the same, describe us 

presence of heterogeneity.  

 

Figure 16. Box plot for recovery time (months) of patients District 

Since, patients in dedo and serbo districts takes long time to recover, therefore, the median 

recovery times are delayed whereas patients in Jimma district, they are fast to recover into 

normal blood sugar level.  



Modeling Time-to-Recovery of Adult Diabetic Patients : A Comparison of Cox-PH and Shared Frailty Models 2014 

 

54 
 

4.4.2. Between-Cluster Variance Estimate 

The results in table 10 show the estimated shared gamma frailty model with random effects.  

                      Table 10: Cluster Variance Estimate 

Between-Cluster Variance Estimate 

Cluster Theta Standard error 

District 0.18 0.081 

A large value of cluster variance (theta=0.18) indicates a greater degree of heterogeneity among 

districts and strong association within districts.  

In Cox PH frailty models (7) same to Cox PH (2) done above, first univariable (Appendix-II A) 

analysis were done for all variables to select variables at 10% level of significance, then 

variables significant at 10% were considered to fit in multivariable analysis to identify the 

significant variables associated with the disease accounting frailty in the model. The results in 

the univariable analysis (Appendix-II A) shows that age group, bodyweight at baseline, sex, 

fasting blood sugar at baseline and diabetic types are significantly associated with time to first 

recovery after controlling other prognostic factors and accounting frailty.  

Table 11: Multivariable Cox-PH with Shared Gamma Frailty model for Diabetic Types Inseparably  

Covariates  Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR)  

95%C.I for HR 

Age        

30-44 years -0.387 0.137 4.8e-03* 0.679 (0.519,   0.888) 

45-59 years -0.645 0.1418 5.4e-06* 0.525 (0.3973,  0.693) 

60-74 years -1.299 0.189 6.3e-12* 0.273 (0.1883,  0.395) 

>74 years -1.839 0.3514 1.7e-07* 0.159 (0.0799,  0.317) 

Bodyweight(kg)  -0.022 0.00332 6.4e-11* 0.979 (0.9722,  0.985) 

Diabetic Type (Type-II) -0.541 0.1251 1.5e-05* 0.582 (0.4556,  0.744) 

FBS -0.0033 0.00063 2.6e-07* 0.997 (0.995,   0.998) 

Sex (Male) 0.547 0.1143 1.7e-06* 1.728 (1.3809, 2.161) 

Theta ( ) =0.0526, 
2

01 = 16.79, p-value= 2.088e-05, 50 Newton-Raphson, I-likelihood = -2053, 

Likelihood ratio test= 287,   p=0.0001, Wald test= 202 , p=0.0001, AIC= 4117.636 

      Note: standard errors of hazard ratios are conditional on theta, * Significant at 0.05 level.  

But, the upper (systolic) and lower (diastolic) blood pressure at baseline have no significant 

effect at 5% let leave alone 10% significance level for recovery time of diabetic patients after 

accounting frailty in the model the same to Cox without frailty. Let us now drop the upper 
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(Systolic) and lower (Diastolic) blood pressure at baseline with the aim of introducing 

unobserved heterogeneity. The likelihood-ratio test and random effects are significant at 5% 

level.  

The multivariate results of a Cox PH with gamma frailty model (7) fitted to this dataset was 

obtained on table 11. In this table, all covariates are statistically significant at 5% level of 

significance. The improvement in log-likelihood (-2043.381) relative to the no-frailty (-

2061.395) model is largest for the shared gamma frailty model.  

The LR of a Cox-PH model without frailty (log likelihood=-2061.395) and with gamma frailty 

model in frailty (I-likelihood=-2053) is 2(2061.395-2053) =16.79, its’ p-value=2.088e-05, there 

is a significant frailty effect, implies correlation within district cannot be ignored. In inseparable 

DM, gamma frailty models indicating that frailty variable (districts) is very highly significantly 

related to the time to first recovery of DM. Thus, there is much evidence pointing towards a 

population that is indicating heterogeneity. 

After controlling for other prognostic factors and accounting for frailty in table 11, patients with 

age group 30-44, 45-59, 60-74 or >74 are recovered  0.679, 0.525, 0.273 and 0.159 times age 

group of 18-29. Being young is associated with better recovery. The results reveal that after 

accounting for heterogeneity and other confounders in the data, time to recovery takes longer 

time with a unit increase of FBS and bodyweight at baseline in diabetic patients. This implies 

that the lower the age, FBS and bodyweight at baseline the faster the rate of recovery (blood 

sugar level reaching the normal range) of diabetic patients. Type of diabetes has a significant 

effect on the life of diabetic patients. A hazard ratio of 0.582 indicates, 36.79% chance of the 

type-II diabetic patients recovered first as compared to type-I diabetic patients after accounting 

and controlling other factors in the model. Thus, an individual suffering from type-II diabetes 

delayed to recover as compared to type-I diabetic. And also, sex is seen to be significantly 

associated with the recovery time of the diabetic patient. After accounting for heterogeneity and 

other factors, the male diabetic recovers 1.728 times the female. That is, males recover faster 

than females (HR=1.728, 63.34% chance of the male diabetic patients recovered first) 

inseparable DM data set.  
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The final model then given by:- 

0 30 44 45 59 60 74 74( / ) ( ) exp( 0.387* 0.645* 1.299* 1.839*

          0.022* 0.541* 0.0033* 0.547* )
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Data reveals moderate dependence ( 0.0526, '  0.02563)kendall s   . Since, Kendall’s  is 

0.02563 for Cox-PH with gamma frailty, thus there is a positive correlation of 0.0263 between 

the recovery times of diabetic patients within district.  

 

Figure 17: Estimated baseline survival and hazard in the PHs models for inseparable DM patients of Cox 

PH with gamma frailty model 

From figure 17 above, the patients’ chance of recovery time up to 15 months in districts slowly 

decreases and increases at baseline survival and hazard function respectively. 

4.4.3. Model Diagnosis for Diabetic Types Inseparably  

The goodness of fit by residual plots (Section 3.4.8.1) assessed. A plot of the Cox-Snell residuals 

against the cumulative hazard is presented in figure 18. The hazard function follows the 45 

degree line very closely except for very large values of time.  
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Figure 18: Cox-Snell residuals obtained from fitting Cox PH frailty model to the DM data. 

It is very common for models with censored data to have some wiggling at large values of time 

and it is not something which should cause much concern. Overall, the final model fits the data 

very well. 

Figure 19: Deviance Residuals for Cox PH Frailty model to the DM data 

The plot of deviance residual (Figure 19) shows that the deviance residuals seem to be 

approximately symmetrically distributed about zero and there exists not as such clearly outlying 

observation. There is a pattern in the residuals that do not necessarily indicate any problems with 

the model. Therefore, we have almost some concern about the adequacy of the fitted Cox PH 

with gamma frailty model of diabetic inseparably.  
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The index plots produced in figure 20, comparing the magnitudes of the largest dfbeta values to 

the regression coefficients suggests that none of the observations is terribly influential 

individually for inseparable DM.  

 

 

Figure 20: Influential observations for Cox PH with shared gamma frailty model for inseparable DM 

data set 

4.5. Separately Modeling Types of Diabetic Mellitus (DM) 

4.5.1. Modeling recovery time for type-I Diabetic Mellitus (DM) 

In type-I DM, univariate (Appendix-II B) and multivariate analysis (Appendix-II C and Table 

12) used to identify the significant variables associated with the disease accounting frailty in the 

model to reduce non-significant covariates. The results in the univariate;  age group, bodyweight, 

lower (Diastolic) BP and fasting blood sugar (FBS) at baseline are significant at 10% level of 

significance, hence this factors associated with blood sugar level. But, sex and the upper 
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(systolic) blood pressure at baseline are non significant effect on the time to recovery for type-I 

DM patients after accounting frailty in the model at 10% level of significance the same to Cox-

PH without frailty.  

Let us now drop the non-significant covariates with the aim of introducing unobserved 

heterogeneity. Lower (Diastolic) BP is significant in univariate but, become non-significant in 

multivariate analysis (Appendix-II C). Hence, these covariates are reduced from the model and 

age group, bodyweight and FBS have a minimum AIC value.   

Table 12: Multivariable Cox-PH with shared Gamma frailty model for type-I DM 

Covariates  Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR)  

95%C.I for HR 

Age        

30-44 years -0.5673 0.23814 0.017* 0.567 (0.3556,  0.904) 

45-59 years -0.6791 0.30318 0.025* 0.507 (0.2799,  0.919) 

>59 years -2.1373 0.76105 0.005* 0.118 (0.0265,  0.524) 

Bodyweight -0.0165 0.00852 0.043* 0.984 (0.9674,     0.9985) 

FBS  -0.0024 0.00127 0.048* 0.998 (0.9951,  0.9995) 

Theta ( ) = 0.195, 
2

01 =4.4, p-value= 0.01797, 28 Newton-Raphson, I-likelihood=-394.7, 

Likelihood ratio test= 52.5, p=4.34e-07, Wald test = 12.4,  p=0.0388, AIC=794.73. 

  Note: standard errors of hazard ratios are conditional on theta, * Significant at 0.05 level.  

After controlling for other prognostic factors and accounting for frailty (Table 12), patients with 

age group 30-44, 45-59 and >59 (years) who has not yet recovered by a certain time has 0.567, 

0.507 and 0.118 times the chance of being recovered at the next point in time compared to 

someone in the age group 18-29 (years) in type-I DM. For a unit increase of bodyweight and 

FBS, patient recovery time who has not yet recovered by a certain time has 0.984 and 0.998 

respectively, after accounting and controlling the effects of the other variables in the model. 

Thus, the lower the ages, bodyweight and FBS at baseline the faster the rate of the blood sugar 

level returning to normal range in type-I DM. 

The LR of a Cox-PH model without frailty and with gamma frailty model is 2(396.90-394.7) = 

4.4, its P-value=0.01797, there is a significant frailty effect, implies that the correlation within 

district cannot be ignored. In type-I DM, gamma frailty models indicating that frailty variable 

(districts) is very highly significantly related to time to first recovery. Thus, there is much 

evidence pointing towards a population that is indicating heterogeneity. 
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The results of a Cox PH with gamma frailty model fitted to this dataset were obtained on table 

12. The hazard of the final model is then given by:- 

0 30 44 45 59 59( / ) ( ) exp( 0.5673* 0.6791* 2.1373* 0.0165*

             0.0024* )

ij i ij i ij ij ij ij
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Data reveals moderate dependence ( 0.195, '  0.089)kendall s   . Since, Kendall’s  is 0.089 

for Cox-PH with gamma frailty, thus there is on average a positive correlation of 0.089 between 

the recovery times of type-I diabetic patients within district.  

From figure 21 below, the patients’ chance of recovery time in districts monotonically decreases 

and increases at baseline survival and hazard function respectively. 

 

Figure 21: Estimated baseline survival and hazard in the PHs models for type-I DM patients of Cox PH 

with gamma frailty model 
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4.5.1.1. Model Diagnosis for Type-I DM Patients 

The goodness of fit by residual plots (Section 3.4.8.1) assessed. A plot of the Cox-Snell residuals 

against the cumulative hazard is presented above in figure 22. The hazard function follows the 45 

degree line very closely except for very large values of time. It is very common for models with 

censored data to have some wiggling at large values of time and it is not something which should 

cause much concern.  

Figure 22: Cox-Snell residuals obtained from fitting Cox PH with Gamma frailty model to the type-I DM. 

Figure 23: Deviance Residuals for Cox PH with Shared Gamma Frailty model to the type-I DM 

This plot reveals that there is little evidence of a systematic deviation from the straight line 

which gives us only some concern about the adequacy of the fitted models. Overall, the final 

model fits the data very well. Again, the plot shows that the line related to the Cox-Snell 
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residuals of the Cox PH with frailty model were nearest to the line through the origin as 

compared to Cox PH without frailty (figure 8) indicating that this model describes the type-I DM 

dataset well.  

The plot of deviance residual (figure 23) shows that the deviance residuals seem to be 

approximately symmetrically distributed about zero and there exists not as such clearly outlying 

observation. There is a pattern in the residuals that do not necessarily indicate any problems with 

the model. Therefore, we have almost some concern about the adequacy of the fitted Cox PH 

with gamma frailty model.  

 

Figure 24: Influential observations for Cox PH with shared gamma frailty model in type-I DM  

The index plots produced in figure 24, comparing the magnitudes of the largest dfbeta values to 

the regression coefficients suggests that none of the observations is terribly influential 

individually for type-I DM. 
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4.5.2. Modeling recovery time for type-II Diabetic Mellitus (DM) 

From table 13; age group(30-44, p-value=3.0e-02,45-59, p-value=2.6e-04, 60-74, p-value=1.7e-

09 and>74, p-value=8.3e-07), bodyweight(p-value=6.9e-09), sex(p-value=1.6e-07) and FBS (P-

value=1.6e-05) at baseline are significant with recovery time in type-II diabetic mellitus at 

significance level of 5% after controlling and accounting frailty. Then we selected among 

variables significant at 10% in the univariate analysis (Appendix-II D).  

Hence; age group, bodyweight, FBS at baseline and sex are the significant covariates associated 

with the recovery time of type-II DM same to Cox PH without frailty in multivariate analysis. 

Rates of recovery time takes longer time in females than in male patients (table 13) in type-II 

DM same in Cox PH. After controlling for other prognostic factors and accounting for frailty, 

patients with age group 30-44, 45-59, 60-74 and >74 (years) who has not yet recovered by a 

certain time has 0.687, 0.543, 0.288 and 0.165 times the chance of being recovered at the next 

point in time compared to someone in the age group 18-29 (years) in type-II DM. Thus, the 

lower the ages the faster the rate of the blood sugar level returning to normal range in type-II 

DM.  

Table 13: Multivariable Cox-PH with shared gamma frailty model for type-II DM 

Covariates  Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR)  

95%C.I for HR 

Age        

30-44 years -0.3759 0.17331 3.0e-02* 0.687 (0.4889,  0.964) 

45-59 years -0.6113 0.16733 2.6e-04* 0.543 (0.3909,  0.753) 

60-74 years -1.2443 0.20668 1.7e-09* 0.288 (0.1922,  0.432) 

>74 years -1.8038 0.36596 8.3e-07* 0.165 (0.0804,  0.337) 

Bodyweight(kg)  -0.0216 0.0037 6.9e-09* 0.979 (0.9716,  0.986) 

Sex (Male) 0.7058 0.13455 1.6e-07* 2.026 (1.5560,  2.637) 

FBS(mg/dl) -0.00324 0.00075 1.6e-05* 0.997 (0.9953,  0.998) 

Theta ( )= 0.0661, 
2

01 = 12.8,  p-value= 0.00017, 49 Newton-Raphson, I-likelihood = -

1451.1, Likelihood ratio test= 207,   p=0.0001, Wald test = 132,   p=0.0001,  AIC=2911.5 

Note: standard errors of hazard ratios are conditional on theta, * Significant at 0.05 level.  

The LR of a Cox-PH model without frailty and gamma frailty model is 2(1457.50-1451.1) 

=2*6.4=12. 8, it’s P-value = 0.00017, there is a significant frailty effect, implies the correlation 

within district cannot be ignored. In type-II DM, gamma frailty models indicating that frailty 



Modeling Time-to-Recovery of Adult Diabetic Patients : A Comparison of Cox-PH and Shared Frailty Models 2014 

 

60 
 

variable (districts) is very highly significantly related to the time to first recovery of type-I DM. 

Thus, there is much evidence pointing towards a population that is indicating heterogeneity. 

The multivariate results of a Cox PH with gamma frailty model fitted to this dataset were 

obtained on table 13. The final model is then given by:- 

0 30 44 45 59 60 74 74( / ) ( ) exp( 0.3759* 0.6113* 1.2443* 1.8038*

          0.0216* 0.7058* 0.00324* )

ij i ij i ij ij ij ij

ij ij ij

h t Z h t Z Age Age Age Age

bodyweight Sex FBS

      

  

and  

1
1

0.0661

1

0.0661

exp( )
0.0661( )

1
0.0661 ( )

0.0661

z

zz
f z








 

Data reveals moderate dependence ( 0.0661, '  0.032)kendall s   . Since, Kendall’s  is 0.032 

for Cox-PH with gamma frailty, thus there is on average a positive correlation of 0.032 between 

the recovery times of type-II diabetic patients within district.  

 

Figure 25: Estimated baseline survival and hazard in the PHs models for type-II diabetic patients of Cox 

PH with gamma frailty model. 

From figure 25 above, the patients’ chance of recovery time up to 15 months in districts slowly 

decreases and increases at baseline survival and hazard function respectively. 

4.5.2.1. Model Diagnosis for Type-II DM Patients 

A plot of the Cox-Snell residuals against the cumulative hazard is presented in figure 26. The 

hazard function follows the 45 degree line very closely except for very large values of time. It is 
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very common for models with censored data to have some wiggling at large values of time and it 

is not something which should cause much concern. This plot reveals that there is little evidence 

of a systematic deviation from the straight line which gives us only some concern about the 

adequacy of the fitted models. Overall, the final model fits the data very well. Again, the plot 

shows that the line related to the Cox-Snell residuals of the Cox PH with frailty model were 

nearest to the line through the origin as compared to Cox PH without frailty (figure 13) 

indicating that this model describes the type-II DM dataset well. 

 
Figure 26: Cox PH with Shared Gamma Frailty Model for type-II DM 

 

Figure 27: Deviance Residuals for Cox PH with Shared Gamma Frailty Model for type-II DM 

The plot of deviance residual (Figure 27) shows that the deviance residuals seem to be 

approximately symmetrically distributed about zero and there exists not as such clearly outlying 
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observation. There is a pattern in the residuals that do not necessarily indicate any problems with 

the model. Therefore, we have almost some concern about the adequacy of the fitted Cox PH 

with gamma frailty model for type-II DM.  

 

 

Figure 28: Influential observations for Cox PH with shared gamma frailty model in type-II DM  

Also, delta-beta statistic for Cox PH with shared gamma frailty is used to measure the influential 

observations on the model as a whole (Figure 28). That is, comparing the magnitudes of the 

largest dfbeta values to the regression coefficients suggests that none of the observations is 

terribly influential individually. Therefore, we do not remove them from the dataset and 

conclude that there are no influential observations. 
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4.6. Comparison of Cox PH versus Shared Gamma Frailty Models 

In this study, in order to compare the efficiency of the models the AIC (Akaike’s Information 

Criterion) was used.  

Table 14. Comparison of Cox PH and Shared Gamma Frailty Models for separate and inseparable DM  

 

Disease  

Types of DM 

 inseparably  

Types of Diabetic Mellitus Separately   

 Type-I DM Type-II DM 

Model Log-like 

(model) 

AIC Log-like 

(model) 

AIC Log-like 

(model) 

AIC Rank 

Cox-PH 
without frailty  

-2061.395 4138.8 -396.9 803.8 -1457.50 2929 2 

Cox-PH with 

gamma frailty 
-2043.38 4117.6 -385.55 794.73 -1441.677 2911.5 1 

DM: Diabetic Mellitus, Log-like: Log-likelihood, AIC: Akaike’s Information Criterion 

The AIC is a criterion that assesses goodness of fit of a statistical model, and the lower value of 

AIC suggests a better model. Table 14 gives the log-likelihood and AIC values of the two 

models telling the Cox with gamma frailty to be the most powerful one in predicting recovery 

time of DM types separately and generally when compared to Cox without frailty model. 
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5. DISCUSSION AND CONCLUSION  

5.1.  Discussion  

Diabetes Mellitus (DM) is a life-long challenge that requires behavioral change and adequate self-

care practices for better glycaemic control. In the absence of appropriate self-care practice, the 

desired therapy targets are difficult, or even impossible to achieve. Glucose control is almost 

entirely in the hands of the patient who lives with this condition. Several factors are known in 

various studies as influencing factors. In the literature, there are many studies on the field of 

diabetic, but researchers tend to examine the effects of covariates on patients using logistic 

regression (Endalew H. et al (2012)) and chi-square (Charlton, et al (2005) and Endalew H. et al 

(2012)) model. If patients’ recovery time differs, results of Cox model are seriously under 

question. Hougaard (1995) points out that the impact of unmeasured covariates can lead to 

transformation of the hazard function and the coefficients of the measured covariates. A model 

that is becoming increasingly popular for modeling association between individual survival times 

within subgroups is the use of a frailty model. Beard (1959), Vaupel, et al. (1979), and Lancaster 

(1979) suggested a random effects model in order to account for the unobserved heterogeneity 

due to unobserved covariates. Here, the frailty represents the total effect on survival of the 

covariates not measured when collecting information on group of subjects. The frailty 

distributions most often applied are the gamma distribution. 

The main goal of this study was modeling time-to-first recovery of adult diabetic patients of 

Jimma University Specialized Hospital using Cox PH and shared gamma frailty models using 

numerous factors such as gender, age, bodyweight, diabetic type , upper (systolic) blood pressure, 

lower (diastolic) blood pressure and fasting blood sugar (FBS) at baseline using district as a 

cluster. The outcome response is time to first recovery. 

From the total of 544, 404(74.26%) experienced the event and the rest 140 (25.74%) loss to 

follow-up from the study. In type-I diabetic from the total of 121, 103 (85.12%) experienced the 

event and the rest 18(14.88%) loss to follow-up and in type-II diabetic from the total of 423, 301 

(71.16%) experienced the event and the rest 122 (28.84%) loss to follow-up from the study. The 

95% C.I for type-I and type-II diabetic were 1&2 and 4&5 months respectively but, it varies 

depending on the covariates included in the study. The minimum and the maximum recovery time 
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of type-I diabetic were 1 and 6 months and for type-II diabetic 1 and 31 months respectively. 

More men than women are in diabetes; 69.42 per cent compared with 30.58 per cent in those with 

type-I diabetes and 63.12 percent compared with 36.88 percent in those with type-II diabetes this 

is consistent with DM in state of UK (2011/12).  

The mean bodyweight, age, and FBS at baseline for diabetic mellitus patients in type-I were 

55.52kg, 36 years, & 209.34 mg/dl respectively whereas, in type-II were 63.38kg, 47 years, and 

217.999 mg/dl respectively. Patients with type-I diabetic are young (36 years), lower bodyweight 

(55.52kg) and lower FBS (209.34mg/dl) at baseline as compared to type-II diabetic (47 years old, 

63.38 kg and 217.999 mg/dl). These results showed the age and FBS at baseline for type-II and 

type-I DM are older and higher respectively as compared to cross- sectional study which was 

conducted in Jimma, South Western Ethiopia and Mekele, Northern Ethiopia. This may reflect 

different nutritional and environmental influences as well as methods of data collection and 

analysis may vary. 

The PH assumption checking with graphical method based on the Schoenfeld residuals have been 

described and included in the model. The graphs for some of the categorical variables displayed 

using Kaplain Meir (figure 1) appeared were parallel; implying that the proportional-hazards 

assumptions for all variables have not been violated.  

In Cox-PH with and without shared gamma frailty models of inseparable diabetic types; age 

group, bodyweight, diabetic type, FBS, and sex of patients at baseline shows a statistically 

significant association with time to first recovery to normal blood sugar level. In univariable and 

multivariable analysis of Cox-PH with and without frailty models,  the types of diabetic was a 

strong and independent prognostic factor, indicating better recovery time for type-I patients 

controlling other factors in the model. This means that patients with type-II getting affected by 

diabetic mellitus prolonged recovery time as compared to type-I; these findings are consistent 

with those done in Uganda countries by Olive, D., et al., (2007). 

Olive, D., et al., (2007), showed that the five factors determined as significant by p-value were 

age, bodyweight, sex, type of diabetic and family history of diabetic. In this study; age group, 

bodyweight, sex, FBS at baseline and diabetic type for two models are found to be significant 
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with the Wald statistics 222.2 (P-value=0.0001) for the Cox PHs model (2) without frailty and 

202 (P-value= 0.0001) for the gamma frailty model (7).  

In separate analysis of type-II DM, Cox-PH with and without shared gamma frailty models; age 

group, bodyweight, FBS and sex of patients at baseline shows a statistically significant 

association with time to first recovery whereas in type-I DM, age group, bodyweight and fasting 

blood sugar of patients at baseline shows a statistically significant association with time to 

recovery. The results further reveal that the upper (systolic) and lower (diastolic) blood pressure 

has no significant effect for type-II and type-I diabetic patients, while for type-I diabetic; sex is 

not significantly associated. In Cox-PH with and without shared gamma frailty models, the lower 

the ages, bodyweight and FBS at baseline the faster the rate of the blood sugar level returning to 

normal range in type-I & II DM. 

In Cox-PH with shared gamma frailty model (7) the recovery time of an individual suffering from 

type-II diabetes who has not recovered yet has 0.586 (HR=0.586, 36.95% chance of the type-II 

diabetic patients recovered first) times as compared to type-I DM. Being female prolonged the 

recovery time as compared to males (HR=2.026, 66.953% chance of the male diabetic patients 

recovered first) in type-II DM. In Cox-PH with and without shared gamma frailty models gender 

was a strong and independent prognostic factor in univariable and multivariable analysis, 

indicating males are better recovering to normal blood sugar as compared to females’ inseparable 

diabetic types and type-II diabetic. This means that females getting affected by diabetic mellitus 

(DM) have a slightly takes longer time to recover to normal blood glucose level than males, these 

findings are consistent with those again obtained in Ugandan countries by Olive, D., et al., (2007). 

When the frailty is ignored, the estimate for   and its estimated error is smaller compared to the 

shared gamma frailty model (7). This is expected as the frailty model account for the extra 

variance associated with unmeasured risk factors. 

The heterogeneity parameter   estimated and kendall’s   for each type of diabetic and 

inseparable DM are ( 0.0526, 0.02563)    (inseparable diabetic), ( 0.195, 0.089)    (in 

type-I), and ( 0.0661, 0.032)    (type-II) and the likelihood-ratio test of, 0H : 0   are rejected 

with P-value 0.01797(type-I), 0.00017(type-II) and 2.088e-05 (inseparable diabetic) , implies that 

the correlation within district cannot be ignored.  



Modeling Time-to-Recovery of Adult Diabetic Patients : A Comparison of Cox-PH and Shared Frailty Models 2014 

 

66 
 

The goodness of fit by residual plots assessed using the Cox-Snell residuals, deviance residuals 

and influential observations. Overall, the final model fits the data very well. In this study, in order 

to compare the efficiency of models the AIC (Akaike Information Criterion) (section 3.4.6.2) and 

log-likelihood were used. The AIC is a criterion that assesses goodness of fit of a statistical 

model, and the lower value of AIC suggests a better model. Cox with shared gamma frailty model 

is the smallest AIC as compared to without shared gamma frailty model in inseparable, type-I and 

II DM patients. Additionally, the Cox-Snell residuals of the Cox-PH with shared gamma frailty 

models are nearest to the line through the origin as compared to without frailty, indicating that 

these models fit the data best. Therefore, the Cox-PH with shared gamma frailty model is the 

most powerful one in predicting recovery time of diabetic patients when compared to without 

frailty in diabetic mellitus inseparably, in type-I and type-II.  

5.2.  Conclusion 

The study considers diabetic mellitus inseparably (when types of diabetic are in one data set) & 

individual types of Diabetic Mellitus (when types of diabetic are separately analyzed) at JUSH. 

The aim of this study was to suggest a better model to analyze recovery time for types of diabetic 

mellitus (DM) patients among Cox-PH with and without shared gamma frailty using districts 

(weredas) as clustering. 

The proportional hazards assumptions were hold, indicating a good fit. Cox-PH with shared 

gamma frailty models indicates that frailty variable (districts) is very highly significantly related 

to the time to first recovery for DM in both univariable and multivariable analysis. In univariable 

and multivariable analysis of Cox-PH with and without shared gamma frailty models the type of 

diabetic was a strong and independent prognostic factor, indicating better recovery time for type-I 

patients accounting and controlling other factors. This means that patients with type-II getting 

affected by diabetic mellitus delayed the recovery time as compared to type-I.  

AIC and log-likelihood were used to evaluate the performance among models. Based on AIC and 

log-likelihood, the Cox-PH with shared gamma frailty model provides a suitable choice for the 

life time model of first recovery time for Diabetic Mellitus (DM) as compared to Cox-PH without 

frailty model. Also, the Cox-Snell residuals of the Cox-PH with shared gamma frailty models are 

nearest to the line through the origin as compared to without frailty, indicating that these models 
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fit the data best. Therefore, the Cox-PH with shared gamma frailty model is the most powerful 

one in predicting recovery time of diabetic patients when compared to without frailty in diabetic 

mellitus inseparably, in type-I and type-II. For Cox PH with and without shared gamma frailty 

models influential observations in the magnitudes of the largest delta-beta statistics suggests that 

none of the observations terribly influential, individually. 

In type-I diabetic a significant factor associated with first recovery time were age group, 

bodyweight and FBS at baseline and in type-II diabetic patients significant factors associated with 

first recovery time were age group, sex, FBS and bodyweight at baseline both in Cox-PH with 

and without shared gamma frailty models. These covariates are important factors that should take 

into consideration when selecting a treatment method for both types of DM.  

Covariates significant in the Cox-PH model (2) are also significant in the Cox-PH with shared 

gamma frailty model (7) both in univariable and multivariable analysis. The covariates that 

increased time to recovery in Cox-PH model also increased in Cox-PH with shared gamma frailty 

model and vise versa. Being old, female, higher FBS and overweight at baseline prolonged the 

recovery time. In Cox-PH model the estimate for   and its estimated error is smaller compared 

to the shared gamma frailty models (7). This is expected as the frailty model account for the extra 

variance associated with unmeasured risk factors. 
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APPENDIX-I  

Modeling Recovery Time for Inseparable Diabetic Mellitus (Dm) 

A.  Univariable Analysis using Cox PH Model for DM Dataset  

Covariates  Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR)  

95%C.I for HR 

Age       

30-44 years -0.4266     0.1342 0.00148 * 0.6527       (0.50170, 0.8491) 
45-59 years -0.7926     0.1360 5.62e-09 * 0.4527       (0.34674, 0.5909) 

60-74 years -1.5320     0.1817 < 2e-16 * 0.2161       (0.15137, 0.3085) 

>74 years -2.2596     0.3365 1.89e-11 * 0.1044       (0.05398, 0.2019) 
Bodyweight(kg)  -0.024278   0.003061 2.22e-15 * 0.976   (0.9702, 0.9819) 

Systolic blood 

pressure(SBP) 

     

110-130 mm/Hg -0.06583    0.13147 0.617 0.9363       (0.7236,  1.211) 
>130 mm/Hg -0.15208    0.16564 0.359 0.85961   (0.6208,  1.188) 

Diastolic blood 

Pressure(DBP) 

     

60-80 mm/Hg -0.0817     0.4127 0.843 0.9215       (0.4104, 2.069) 

>80 mm/Hg -0.0868     0.4229 0.837 0.9169       (0.4003, 2.100) 

Diabetic Type 
(Type-II) 

-0.9227 0.1194 1.07e-14 * 0.3974 (0.3145, 0.5022) 

Sex (Male) 0.6605     0.1097 1.71e-09 * 1.936      (1.561, 2.4) 

FBS(mg/dl) -0.0035119 0.0006365 3.44e-08 * 0.9965 (0.9953, 0.9977) 
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Modeling Recovery Time for Type-I Diabetic Mellitus (Dm) 

B.  Univariable Analysis using Cox PH Model for Type-I DM  

Covariates  Coef  ̂   se(Coef  ̂ ) P-value Hazard 
Ratio(HR)  

95%C.I for HR 

Age       

30-44 years -0.6505 0.22342 0.0036 * 0.5218 (0.33677, 0.8085) 

45-59 years -0.5357 0.2823 0.0577* 0.585 (0.33655, 1.0177) 

>60 years -2.32013 0.7309 0.0015 * 0.09826 (0.02345, 0.4116) 
Bodyweight(kg)  -0.016107 0.007117 0.0236 * 0.984 (0.9704,  0.9978) 

Systolic blood 

pressure(SBP) 

     

110-130 mm/Hg -0.3030 0.2653 0.253 0.7386 (0.4391, 1.242) 

>130 mm/Hg -0.2628 0.3577 0.462 0.7689 (0.3814, 1.550) 

Diastolic blood 
Pressure(DBP) 

     

60-80 mm/Hg -1.3791 0.7251 0.0572* 0.2518 (0.06079,  1.043) 

>80 mm/Hg -1.2776 0.7614 0.0934. 0.2787 (0.06266,  1.240) 
FBS -0.00181 0.00111 0.100* 0.9982   (0.996,  1) 

Sex (Male) -0.155 0.2132 0.467 0.8564 (0.5639, 1.301) 

C. Multivariate Cox-PH Model for the Selected Variable 

Covariates  Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR)  

95%C.I for HR 

Age       

30-44 years -0.578017 0.22583 0.01048 * 0.561 (0.3604,  0.8734) 

45-59 years -0.6124 0.28624 0.03239* 0.542 (0.3093,  0.9499) 
60-74 years -2.04026 0.7412 0.00591 * 0.130 (0.0304, 0.5556) 

Bodyweight(kg)  -0.018406 0.0084 0.02757 * 0.9818 (0.9658, 0.998) 

FBS -0.00283 0.00119 0.01756 * 0.9972 (0.9948, 0.9995) 

Diastolic blood 
Pressure(DBP) 

     

60-80 mm/Hg -1.2020 0.7277 0.09857. 0.3006 (0.0722,  1.2513) 

>80 mm/Hg -1.071 0.76644 0.16230 0.3427 (0.07629, 1.539) 

Likelihood ratio test= 31.91, P-value=4.213e-05, Wald test = 26.71  p-value=0.0003758, Score (logrank) 

test =  30.59,   p-value=7.41e-05 

Coef: coefficient for covariate, HR: hazard ratio; p-value: probability value, 95%C.I HR: 95% confidence 

interval for HR, * Significant at 0.05 level. 
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Modeling Recovery Time for Type-II Diabetic Mellitus (Dm) 

D. Univariable Analysis using Cox PH Model for Type-II DM Data set  

Covariates  Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR)  

95%C.I for HR 

Age       

30-44 years -0.3297 0.1682 0.05. 0.7192 (0.51721, 1.000) 

45-59 years -0.6470 0.1614 6.13e-05 * 0.5236 (0.38158, 0.7185) 

60-74 years -1.3266 0.1992 2.77e-11 * 0.2654 (0.17958, 0.3921) 

>74 years -2.0219 0.3451 4.65e-09 * 0.1324 (0.06732, 0.2604) 

Bodyweight(kg)  -0.022119 0.003445 1.37e-10 * 0.9781 (0.9715, 0.9848) 

Systolic blood 

pressure(SBP) 

     

110-130 mm/Hg -0.05834 0.15171 0.701 0.9433 (0.7007, 1.270) 

>130 mm/Hg -0.07328 0.18753 0.696 0.9293 (0.6435, 1.342) 

Diastolic blood 

Pressure(DBP) 

     

60-80 mm/Hg 0.05913 0.50530 0.907 1.061 (0.3941, 2.856) 

>80 mm/Hg 0.13318 0.51471 0.796 1.142 (0.4166, 3.133) 

Sex (Male) 0.8075 0.1267 1.83e-10 * 2.242 (1.749, 2.874) 

FBS(mg/dl) -0.0038 0.00075 3.92e-07 * 0.9962 (0.9947,  0.9977) 
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APPENDIX-II 

Modeling Recovery Time for Inseparable Diabetic Mellitus (Dm) 

A.  Univariable Analysis Using Cox PH with Shared Gamma Frailty Model for DM 

Dataset  

Covariates  Coef  ̂   se(Coef  ̂ ) Chisq  P-value Hazard 
Ratio(HR)  

95%C.I for HR 

Age         

30-44 years -0.455 0.138  1.0e-03 0.635 (0.4842, 0.832) 

45-59 years -0.769 0.140  4.1e-08 0.464 (0.3523,0.610) 

60-74 years -1.477 0.186  1.9e-15 0.228 (0.1586, 0.329) 

>74 years -2.157 0.342  3.0e-10 0.116 (0.0591, 0.226) 

Theta  0.0735  39.1 9.7e-06   

Bodyweight(kg)  -0.0248 0.00324  1.9e-14 0.976 (0.969, 0.982) 

Theta  0.146  58.8 1.7e-08    

Systolic blood 

pressure(SBP) 

       

110-130 mm/Hg -0.0977 0.133  4.6e-01 0.907 (0.698, 1.18) 

>130 mm/Hg -0.2598 0.169  1.2e-01 0.771 (0.554, 1.07) 

Theta  0.173  64.72 2.1e-09   

Diastolic blood 

Pressure(DBP) 

       

60-80 mm/Hg -0.029 0.418  9.4e-01 0.971 (0.428, 2.21) 

>80 mm/Hg -0.125 0.430  7.7e-01 0.882 (0.380, 2.05) 

Theta  0.169  64.06 2.6e-09    

Family History 

present 

0.942 0.122  9.9e-15 2.56 (2.02, 3.26) 

Theta  0.17  64.9 1.9e-09    

Diabetic Type 

(Type-II) 

-0.942 0.122  9.9e-15 0.39 (0.307, 0.495) 

Theta  0.17  64.9 1.9e-09    

Sex (Male) 0.574 0.113  3.8e-07 1.77 (1.42, 2.21) 

Theta  0.111  50.1 3.3e-07    

FBS -0.0031 0.00065 22.4 2.2e-06 0.997   (0.996, 0.998) 

Theta  0.124  53.0 1.3e-07   
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Modeling Recovery Time for Type-I Diabetic Mellitus (Dm) 

B.  Univariable Analysis using Cox PH with Gamma Frailty Model for Type-I DM 

Dataset  

Covariates  Coef  ̂   se(Coef  ̂ ) Chisq  P-value Hazard 

Ratio(HR)  

95%C.I for HR 

Age         

30-44 years -0.685 0.234  0.0034* 0.5040 (0.3188,  0.797) 

45-59 years -0.626 0.309  0.0420* 0.5347 (0.2921,  0.979) 

60-74 years -2.377 0.751  0.0015* 0.0928 (0.0213,  0.404) 

Theta 0.266  19.39 0.016   

FBS(mg/dl) -0.00144 0.0012  0.10* 0.999 (0.996,  1) 

Theta  0.233  17.62 0.0250*   

Bodyweight(kg)  -0.017 0.0074  0.021* 0.983 (0.969, 0.997) 

Theta  0.255  17.62 0.014*    

Systolic blood 

pressure(SBP) 

       

110-130 

mm/Hg 

-0.316 0.281  0.260 0.729 (0.420, 1.26) 

>130 mm/Hg -0.254 0.382  0.510 0.776 (0.367,  1.64) 

Theta  0.264  19.71 0.015*   

Diastolic blood 

Pressure(DBP) 

       

60-80 mm/Hg -1.16 0.734  0.110 0.313 (0.0743, 1.32) 

>80 mm/Hg -1.05 0.780  0.180 0.350 (0.0759, 1.61) 

Theta  0.25  18.79 0.019*    

Sex (Male) -0.159 0.229  0.490 0.853 (0.545, 1.34) 

Theta  0.268  19.54 0.017*    

C. Multivariable Analysis using Cox PH with Shared Gamma Frailty Model for Type-I DM 

Dataset 

Covariates  Coef  ̂   se(Coef  ̂ ) P-value Hazard 

Ratio(HR)  

95%C.I for HR 

Age       

30-44 years -0.56414 0.23827 0.0180* 0.569 (0.3566,  0.907) 

45-59 years -0.66536 0.30441 0.0290* 0.514 (0.2831,  0.934) 

60-74 years -2.10596 0.76255 0.0057* 0.122 (0.0273,  0.543) 
FBS -0.00243 0.00127 0.057* 0.998 (0.9951,   1.000) 

Bodyweight(kg)  -0.01695 0.00855 0.047* 0.983 (0.9669,  1.000) 

Diastolic blood 
Pressure(DBP) 

     

60-80 mm/Hg -1.00816 0.73276 0.170. 0.365 (0.0868,  1.534) 

>80 mm/Hg -0.91881 0.78164 0.24. 0.399 (0.0862, 1.846) 

30 Newton-Raphson, Theta( )=0.177, P-value=0.051,  I-likelihood = -394,  Likelihood ratio test= 

53,   p=1.07e-06, Wald test = 23.5,   p=0.0393 
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Modeling Recovery Time for Type-II Diabetic Mellitus (Dm) 

D. Univariate Analysis using Cox PH with Shared Gamma Frailty Model for Type-II 

DM Data Set  

Covariates  Coef  ̂   se(Coef  ̂ ) Chisq  P-value Hazard 

Ratio(HR)  

95%C.I for HR 

Age         

30-44 years -0.369 0.176  3.6e-02* 0.691 (0.4899, 0.976) 

45-59 years -0.629 0.168  1.9e-04* 0.533 (0.3835,  0.742) 

60-74 years -1.268 0.206  7.4e-10* 0.281 (0.1878, 0.421) 

>74 years -1.965 0.355  3.3e-08* 0.140 (0.0699,  0.281) 

Theta  0.115  41.50 5.5e-06   

Bodyweight(kg)  -0.0231 0.0037  4.5e-10* 0.977 (0.97,  0.984) 

Theta  0.169  54.3 7.5e-08   

Systolic blood 

pressure(SBP) 

       

110-130 mm/Hg -0.103 0.154  5.0e-01 0.902 (0.666, 1.22) 

>130 mm/Hg -0.219 0.192  2.5e-01 0.803 (0.552, 1.17) 

Theta  0.182  58.59 1.5e-08   

Diastolic blood 

Pressure(DBP) 

       

60-80 mm/Hg 0.1524 0.513  7.7e-01 1.16 (0.426, 3.18) 

>80 mm/Hg 0.0964 0.523  8.5e-01 1.10 (0.395, 3.07) 

Theta  0.178  57.90 1.9e-08    

Sex (Male) 0.707 0.132  8.5e-08* 2.03   (1.57, 2.63) 

Theta  0.104  40.3 6.8e-06    

FBS(mg/dl) -0.0034 0.000773  1.1e-05* 0.997 (0.995,  0.998) 

Theta  0.139  48.7 4.9e-07   

      

 

 

 

 

 

 

 

 

 

 

  


