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MODELLING AGE-AT-MENARCHE: A CASE STUDY IN VILLAGES OF JIMMA ZONE 

ABSTARCT 

Background:  Menarche, the first occurrence of menstruation in girls, is an important 

milestone in the development of female adolescent. Time to menarche is the duration from 

the birth of an individual to the occurrence of the first menstruation cycle. Often, such time to 

event data are clustered (correlated) based on geographic locations. In the standard survival 

models the covariate effect and standard errors are estimated with the assumption that event 

times within the same cluster are independent of each other which leads to invalid results due 

to the ignored correlation and or heterogeneity in the data. Hence, in this thesis we applied 

various clustered or multivariate survival models in the analysis of age at menarche. 

Methods: In this thesis, parametric frailty models, namely exponential, Weibull, lognormal, 

and loglogistic baseline hazards along with gamma, inverse Gaussian, lognormal and positive 

stable frailty distributions were used and the selected parametric frailty model was compared 

with the commonly used shared gamma frailty. AIC, model adequacy and standardized 

variability of coefficients were used in the comparison of various clustered survival models. 

Results:  The median age at menarche was about 14 years. The estimated heterogeneity 

parameter on menarcheal age across villages found to be significant except for exponential 

based frailty models. Comparison output shows that loglogistic-gamma frailty model has 

smallest AIC and has a better fit to the age at menarche data. Mother’s education level, house 

hold income, BMI for age and height for age are important prognostic factors of age at 

menarche.  

Conclusions:  The log logistic-gamma frailty model found to be a good time to event model 

that fits the data better than other frailty models used in this thesis. The estimated 

heterogeneity parameter found to be significant indicating there is clustering/heterogeneity 

in timing of menarche across villages of Jimma zone. Hence, it is appropriate to employ a 

multivariate survival model that take into account the clustering or heterogeneity in the data.  
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AFT: Accelerated Failure Time 

AIC: Akaike Information Criteria    

BAZ: Body Mass Index for age z-score 
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CHAPTER ONE 

1. INTRODUCTION 

1.1. Background 

Menarche which is the first  occurrence of menstruation in girls, is  an  important  milestone  

in  the  development  of  female  adolescent. Unlike other  pubertal  changes  that  are  

gradual  and continuous,  menarche  is an event  with a  sudden  and  dramatic  onset.  It is 

considered as a distinct benchmark for sexual maturation and also an indicator of quality of 

life  of  a  population  since  a  number  of  biological  as well as socio-economic  factors  

influence time to menarche (Prado et al, 1995). Variation  in  the  timing  of  puberty are 

marked  between well  of  and  under  privileged  population  with  a  marked  delay  in  

menarche  reported  in  under  privileged girls (Thomas et al, 2001). Association between 

nutritional status and onset of menarche has been studied (Belachew et al, 2011; 

Chowdhury, 2000; Osteria TS, 1983). In general adolescent  who  are  taller  and  heavier  

with  a  greater  body fat mass tend to reach menarche at  younger age  (Chowdhury, 2000; 

Osteria, 1983).  

Time to event analysis (most commonly known as survival analysis) is a set of methods 

applied for analysis of time to event data, where the dependent variable is the time until the 

occurrence of an event of interest. The event could be the onset of menarche, death, 

occurrence of a disease, marriage, divorce, etc.  

There are various survival analysis methods available to analyze the relationship of a set of 

predictor variables with the time to event outcome variable. These includes, parametric, 

non-parametric and semi parametric approaches. Among various approaches, Cox 

proportional hazard (PH) model is the most widely used models in survival analysis with the 

strong assumption of proportional hazards. Often, this PH assumption is reasonable for short 

follow-up studies (Perperoglou  et al,2007).  
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When there is at least one unaccounted predictors(univariate frailty) in the model or when 

there is clustering in the data, random effects survival model, also known as frailty model is 

used. That is, a frailty term, which is a random component designed to account for 

variability due to unobserved factors is considered during such situations (Kleinbaum  et al, 

2005).  

Regardless of the unobserved factors if widespread models such as Cox PH are used without 

taking into account the heterogeneity/clustering in the data, then the estimates are biased and 

the variances of the parameters are underestimated (Jonker et al, 2009). According to 

Keyfitz and Littman  (1979), ignoring heterogeneity or clustering in the data overestimates 

life expectancy based on a study on estimating life expectancy in a heterogeneous 

population. Lancaster (1990) also showed that, when heterogeneity is ignored in the study of 

unemployment rates, it resulted in underestimation of covariate effects.  

Therefore, the presence of clustering or dependence in the data can easily be handled using 

frailty models. In handling clustering in the data, the choice of frailty distribution is very 

important. Depending on the type of dependence in the data, various frailty distributions has 

been suggested in literature. Distributions with a large right tail such as positive stable 

distribution lead to strong early dependence, whereas distributions with a large left tail such 

as gamma distributions lead to strong late dependence (Hougaard, 1984). Mainly because of 

its easy mathematical properties, gamma distribution is the most widely used frailty 

distribution (Clayton, 1978). Hougaard (1986) suggested the gamma, the degenerate and the 

inverse Gaussian distributions on the positive stable family of distributions for the frailty 

model. Oakes D. (1989) suggested the inverse Gaussian and lognormal models for the 

distribution of the frailty.  

In this thesis, multivariate time to event models were applied with expectation that, girls 

with in the same village share similar unobserved factors which affect their timing of 

puberty and it can be handled by using  frailty model which consider place of 

residence(village) as clustering variable. 
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To examine the relationship between different covariates (parental education, house hold 

income, work load, BMI for age, height for age and MUAC) and age at menarche various 

multivariate time to event models were used. The multivariate survival models used in this 

thesis can be categorized as parametric frailty and semiparametric frailty models. The 

parametric frailty models includes, exponential, weibull , log-normal, and log-logistic 

baseline hazards along with gamma, inverse Gaussian, lognormal and positive stable frailty 

distribution. And, the semiparametric multivariate survival model used is the shared gamma 

frailty model. For comparison of different candidate models AIC, model adequacy and 

standardized variability of the estimates were used.   
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1.2. Statement of the problem  

Though menarche is a vital event in continuation of human being, only few studies are 

conducted to investigate the associated factors related to late or early timing of menarche 

using in-depth statistical analysis, such as multivariate survival models. Early timing of 

menarche has biomedical, emotional, and socio-cultural consequences, including 

predisposition to cancer and heart disease and early participation in risky behaviors, such as 

cigarette smoking, alcohol abuse, and sexual activity (Chodick et al., 2005). To model the 

age at onset of menarche, various statistical approaches including ordinary linear regression 

models and the classical mixed models can be applied. However, these methods are less 

efficient compared to time to event models, mainly because of the presence of incomplete 

information, i.e., censoring and non-normal nature of event times in the data.  

The standard or common application of survival methods implicitly assumes a homogenous 

population to be studied. Consequently, the classical Cox PH (without a random effect 

term), which is known as the most popular model in survival analysis is applied. These 

models assumes the baseline hazard to be common to all the individuals in the study 

population and the covariates act multiplicatively on the baseline hazard, which adds 

additional risks based on each individual's prognostic information. However, when subgroups 

of population share a common trait that cannot be observed, the covariates cannot always fully 

account for the true differences in risk and this may be due to the heterogeneity or clustering 

of event times, which is not accounted in the model. Hence, not taking into account the 

heterogeneity/ clustering in the data may lead to poor standard error estimates and a biased 

estimate of covariate effect. 

Therefore, adjusting for the existed correlation or clustering in the data may allow, correctly 

measure the standard errors and also avoid underestimation or overestimation of the 

parameters of interest. In general, the motivation behind this study is to address the 

following research questions: 

 What are the factors that are associated with time to menarche? 

 Which combination of baseline hazard and frailty distribution describe well the time 

to menarche data? 
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1.3. Objectives 

1.3.1. General Objective 

The overall objective of this study is to model age at menarche by applying appropriate 

multivariate time to event (frailty) model using the data obtained from Jimma longitudinal 

and family survey of youth Jimma zone, southwest Ethiopia. 

1.3.2. Specific Objectives 

The specific objectives of this study are: 

1. to compare the relative performance of different parametric and semi parametric 

baseline hazards in modeling age at menarche; 

2. to test the clustering or heterogeneity in timing of menarche across villages of 

Jimma zone;   

3. to identify important prognostic factors in modelling age at menarche using 

appropriate multivariate survival model, and  

4. to compare the timing of menarche for different groups of girls. 

 

1.4. Significance of the study 

The findings of this study are useful for policy makers and other organizations in creating 

effective policy mainly regarding reproductive health of females by identifying group of 

girls with lower and higher age at menarche using appropriate multivariate survival model. 

The outcomes of this thesis also contribute to the existing literature on the use of appropriate 

statistical modelling approaches in the analysis of time to event data mainly in the presence 

of unobserved heterogeneity or clustering in the data. 
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CHAPTER TWO 

2. LITERATURE REVIEW 

2.1. Age at menarche, anthropometric measures and physical activity  

 

Generally, body size parameters, such as weight, body mass index (BMI) and height are 

strongly correlated with the age at menarche. Higher fat levels and BMI at pre-pubertal ages 

are associated with increased likelihood of early, less than 11 years, menarche (Freedman et 

al, 2002). Age at menarche is negatively related to hip and thigh circumference and 

positively related to waist circumference, status and biiliac breadth (Lassek et al, 2007).  

Garn et al (1986) found that girls who experienced menarche before the age of 11 years 

were 2 to 3 kg/m2 heavier than those who experienced menarche aged 14 years. Similarly, 

Ayatollahi et al (2002)  also  indicated  that  BMI  was  significantly  correlated  with  age  

at menarche. They further demonstrated that, menarche age was delayed for underweight 

individuals.  Low  body  weight  delayed  menarche  by  approximately  15  weeks,  while  

high  body  weight  and  obesity  induce it by 13 and 19 weeks, respectively compared to 

girls with  normal  body  weight.  According to the study conducted in Bangladesh, age at 

menarche is associated with anthropometric indices of both childhood and adolescent such 

as height, mid-arm circumference (MUAC), BMI, height for age (HAZ) which in turn 

influenced by nutritional status (Bosh et al, 2008). 

Though  the  difference  between  the  exercising  and  the  non-exercising  group  were  

statistically  non-significant( Bagga and Kulkarni, 2000),  girls  who  had  to  do more  

physical  work,  or  had  a  long,  tiresome  way  to  school  and  spent  greater expenditure 

of calories delay the process of puberty (Serap et al,  2009). A cross sectional study 

performed in a group of Colombian University, women demonstrated that age at menarche 

was positively associated with the practice of at least two hours daily of physical 

activity (Chavarro, 2004). Menarche, on average, occurs later in athletes, including ballet 

dancers, than in the general population, with the exception of swimmers, suggesting that 

intense exercise delays puberty (Malina, 1982).  



 
 

7 
 

2.2. Age at menarche and socio economic factors 

Socio-economic factors are among the determinants of age at menarche. A  study  conducted 

in India showed that in general daughters of hamals housemaids and day laborers 

experienced  menarche  later  than  the  girls  of  the  middle  and  higher  economic  groups. 

The difference was about 12 months (Bagga and Kulkarni, 2000). Contrary to the study on 

British teenagers which the study found out no difference on median age at menarche by 

social class or ethnic group, the study on  Iranian  School  girls  showed  that  nearly  one-

fourth  of  girls  who  were  from  poor families  had  higher  age  at  menarche  than  girls  

of  the  middle  and  higher  classes (Ayatollahi et al.,1999; Whincup, 2001). Similar study 

in Poland also shows that socioeconomic factors such as family income, level of parental 

education, also influence pubertal development. Girls from families with a high 

socioeconomic status experience menarche at an earlier age than girls from families with 

lower socioeconomic status (Wronka et al, 2005). Similar study on third World girls 

adopted in Western European countries revealed that the pattern of early menarche, which 

indicates the role of transition from an underprivileged to a privileged environment as of the 

determinant factor of menarche (Proos et al, 1991).  

Wronka et al (2005) showed higher parental education has been associated with earlier 

timing of puberty. However, in a similar study at a Bangladeshi University, the mother’s 

educational level and occupation(but not fathers) was found to have a significant influence 

on their daughter’s age at menarche (Hossain et al., 2010). On other hand, study conducted 

on female University students in Portugal (Padez, 2003) found no association between 

student’s age at menarche and their parents’ educational levels and occupations which is 

similar to the result obtained at USA, parents’ education was not a predictor of early age at 

menarche amongst the American population (Braithwaite et al., 2009). 
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2.3. Literature on survival models 

2.3.1. Common survival methods  

The beginning of survival analysis goes back to the time when mortality tables were 

introduced. Life tables are one of the oldest statistical techniques and are extensively used 

by medical statisticians and by actuaries. Kaplan and Meier (1958) gave a comprehensive 

review of earlier work and many new results. Cox (1972) extended the results of Kaplan and 

Meier to the comparison of life tables and more generally to the incorporation of regression-

like arguments into life table analysis. 

As the application of survival models became popular, parametric models gave way to non-

parametric and semi-parametric approaches for their demand in dealing with the growing 

field of clinical trials in medical study. Survival models have the capability of handling 

incomplete (censored) information in the data. Kalbflesch and Prentice (1963), Cox (1972), 

Cox and Oakes (1984), Miller (1981) used survival analysis in modeling human lifetimes. 

Allison (1984), and Bloessfeld et al (1989), Tuma and Hannan (1984) shows the application 

of survival analysis in social science. Fergusson et al (1984) used hazard functions to study 

the time to marital breakdown after the birth of chil. Hazard functions had been also applied 

in studies of time to shift in attentions in classroom (Felmlee et al., 1985) time to change 

decision in the face of irrelevant information from a low-status partner (Hembroff and 

Myers, 1984), and in the study of relapse of mental illness (Lavori et al., 1984). 

 PH modeling is the most commonly used type of the survival models in many research 

areas. It has been applied in diversified fields of specializations, such as, to topics like 

smoking relapse Stevens and Hollis (1989), affective disorders Shapiro et al (1989), 

childhood family breakdown Fergusson et al (1985), interruptions in conversation Dress 

(1986), and in medical areas for identification of important covariates that have as 

significant impact on the response of the interested variables. 
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A distinguishing feature of survival and event history models is that they take censoring into 

account. A simple definition of censoring is  that we have information about an individual’s 

survival time, but do not know  the exact survival time (Kleinbaum and Klein, 2005). 

Various types of censoring can occur, with the most common type being right-censoring, 

which will also be the primary focus in many studies. In most cases, truncation refers to the 

complete lack of information about the occurrence of the event.  There is often some 

confusion as to whether observations are censored or truncated. Strictly speaking, truncation 

refers to the cases where subjects do  not appear in the data because they are not observed. 

Censoring refers to cases  when subjects are known to fail within a particular episode, but 

the exact  failure time is unknown (Allison, 1984; Tuma and Hannan, 1984; Yamaguchi  

,1992 ).  

2.3.2. Frailty models 

Frailty is an unobserved random proportionality factor that modifies the hazard function of 

an individual, or of related individuals. To address the problem of unobserved heterogeneity 

in event times resulting from, first Beard (1959) and later Vaupel et al. (1979) and Lancaster 

(1979) independently suggested a random effects model for durations. Then after, 

investigators have recognized that ignoring individual heterogeneity or clustering in the data 

may lead to inaccurate conclusions. Models for heterogeneity have been proposed by 

Vaupel et al. (1979), who introduced frailty as an unobserved quantity in population 

mortality. Oakes (1989) proposed frailty models for bivariate survival times and introduced 

several possible frailty models. Flinn and Heckman (1982) also introduced heterogeneity 

into their model for analyzing individual event histories. They showed that improper 

modeling of heterogeneity will result in biased estimates, since the covariates in the model 

fail to explain the true effect of the covariates on a response variable. Keyfitz and Littman 

(1979) showed that ignoring heterogeneity will lead to an incorrect calculation of the life 

expectancy from known death rates. A similar conclusion was reached by Vaupel et al. 

(1979) using a continuous mixture model in which an unobserved non-negative random 

frailty represents all individual differences in endowment for longevity. 
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2.3.2.1. Frailty Distributions 

One of the practical problems in the area of frailty modeling is the choice of the frailty 

distribution. The frailty distributions most commonly used in practice are the gamma 

distribution (Clayton, 1978; Vaupel et al., 1979), the positive stable distribution (Hougaard 

1986b), a three-parameter distribution (PVF) (Hougaard 1986a), the compound Poisson 

distribution (Aalen 1988, 1992) and the log-normal distribution (McGilchrist and Aisbett, 

1991). The frailty distributions that have been studied most belong to the power variance 

function family, a particular family of distributions introduced first by Tweedy (1984) and 

later independently studied by Hougaard (1986b). For reasons of convenience, analysts 

often choose parametric representations of frailty models that are mathematically tractable. 

Hougaard (1986a, 1986b) used several distributions for frailty including gamma, inverse 

Gaussian, positive stable distributions and claimed that gamma and inverse Gaussian 

distributions are relevant and mathematically tractable as a frailty distribution for 

heterogeneous populations. Flinn and Heckman (1982) used a lognormal distribution for 

frailty, whereas Vaupel et al. (1979) assumed that frailty is distributed across individuals as 

a gamma distribution.  

  



 
 

11 
 

CHAPTER THREE 

3. DATA AND METHODOLOGY  

3.1. The Dataset   

The data for this thesis was taken from a longitudinal study of adolescents in the Jimma 

zone, southwest Ethiopia. The data was collected for the purpose of assessing the life events 

of adolescents as they transit to adulthood in Jimma zone, southwestern part Ethiopia. The 

first three rounds of the longitudinal data has been taken from 18 villages (also locally 

known as kebeles) selected from Jimma city and three rural districts, namely Kersa, Dedo 

and Manna.  

To select the target sample of adolescents a two-stage sampling plan was used. At the first 

stage, households were randomly sampled with the sample size in each “kebele” determined 

by the relative proportion of the study population in the “kebele” and the overall target 

sample size. In the second stage, one adolescent (a boy or a girl) was randomly selected 

from each household. Using this sampling strategy a total of 1059 boys and 1025 girls were 

interviewed in the first round. But, this study is based on 924 female adolescents, since 101 

girls were not interviewed for the response variable at any of consequent rounds. The 

questionnaires were interviewer-administered and the girls’ timing of menarche was 

obtained by female interviewers asking girls whether they had experienced their menarche 

and the timing at which the event had happened. The studied girls (924 girls) were followed 

for three rounds that are one year apart spanning starting at 2005. 

3.2. Variable Description  

3.2.1. Dependent variable 

The dataset for this thesis is right censored survival data; accordingly, the response variable 

has two components. The first component is the observed time and the second component is 

a status indicator which indicates whether the observed time is event time or censoring time. 

In modelling age at menarche survival time is defined from birth to the age at onset of 

menarche where the length of time is measured in years. Here, the status variable shows 

whether study subjects (girls) experience menarche or not at provided age.   



 
 

12 
 

3.2.2. Independent Variables  

To model age at menarche, two continuous and five categorical candidate covariates of 

interest were considered. Throughout this thesis village is considered as a clustering 

variable. These covariates are described together with their values or codes in Table 1.    

Table 1: Description of covariates used in modeling age at menarche  

Characteristics      Categories/description 

 

Father’s education level 

(0) Secondary and higher 

(1) Primary 

(2) No education 

 

Mother’s education level 

(0) Secondary and higher 

(1) Primary 

(2) No education 

  

House hold income category 

(0) Low 

(1) Middle 

(2) High 

 

BMI for age (Z-score) 

(0) Normal 

(1) Under weight 

(2) Over weight 

Height for age (Z-score) (0) Not-stunted 

(1) Stunted 

Workload Continuous (index) 

MUAC Continuous (measured in centimeters) 

Place of residence A total of 18 villages (clustering variable) 

  

As described in the above table, baseline MUAC and workload index are continuous 

variables. Whereas, for the rest of baseline covariates, a value code has been assigned so 

that the covariates can enter into the statistical analysis and interpreted in relative to a single 

reference category. Parental education level, the first and second categorical predictors were 

classified as secondary and above, Primary and no-education. Household income is 

classified as low, middle and high based on computed tertile values. BMI for age and height 
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for age were categorized based on WHO standards (using WHO Anthro-Plus software 

v3.2.2). BMI for age has three levels: underweight (< -2SD), normal (between -2SD and 

+1SD), and over weight (>+1SD). Similarly height for age is classified as stunted (< -2SD) 

and non-stunted (≥ -2SD).  

3.3. The Survival Methods 

In this thesis, we have used non parametric tests, such as log-rank and peto-peto tests. 

Among frailty models, shared gamma frailty (with unspecified baseline hazard) and frailty 

models (with parametric baseline hazard, such as exponential, Weibull, lognormal, and log 

logistic) with gamma, inverse Gaussian, lognormal and positive stable frailty distribution 

have been applied. R (surval and parfm packages) and STATA version 11 statistical 

packages were used in the analysis. 

3.3.1. Basic Survival functions 

Let T be a non-negative random variable representing the time until the occurrence of an 

event, such as menarche. For simplicity we will adopt the terminology of survival analysis, 

referring to the event of interest as ‘death’ and to the waiting time as ‘survival’ time, but the 

techniques to be studied have much wider applicability. They can be used, for example, to 

study age at menarche, age at marriage, intervals between successive births to women, the 

duration of stay in a city (or in a job) and the length of life.         

3.3.1.1. The survival functions  

Suppose T is a continuous random variable with probability density function f(t) and 

cumulative distribution  function (c.d.f). 

             is the probability that the event has occurred by duration t.  

Often, it is convenient to work with complement of the c.d.f, the survival function 

                  
 

 
                                                                                    (3.1) 

Which gives the probability of being alive(not experience the event) at duration t. More 

generally, the probability that the event of interest has not occurred by duration t.  
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3.3.1.2 The Hazard Function  

An alternative characterization of the distribution of T is given by the hazard function, or 

instantaneous rate of occurrence of event, defined as  

            
                 

  
                                                                                     (3.2) 

The numerator of this expression is the conditional probability that the event will occur in 

the interval        ) given that it has not occurred before, and the denominator is the 

width of the interval. Hence, dividing one by the other will result in a rate of event 

occurrence per unit of time. Taking the limit as the width of the interval goes down to zero, 

one can obtain an instantaneous rate of occurrence. The conditional probability in the 

numerator may be written as the ratio of the joint probability that T is in the interval 

(      ) and T > t (which is, the same as the probability that t is in the interval), to the 

probability of the condition T > t. The former can be written as         for small   , while 

the latter is      by definition. Dividing by    and passing to the limit gives the useful result  

     
    

    
                                                                                                     (3.3) 

which some authors give as a definition of the hazard function. In words, the rate of 

occurrence of the event at duration t equals the density of events at t, divided by the 

probability of surviving to the duration without experiencing the event.  

From equation (3.1) that       is the derivative of     . This suggests rewriting (3.3) as 

 λ(t)=  
 

  
               

If we now integrated from 0 to t and introduce the boundary condition S(0) = 1 

The above expression to obtain a formula for the probability of surviving to duration t as a 

function of the hazard at all duration up to t: 

                  
 

 
                                                                         (3.4)                                                                                                 

The integral in curly brackets in this equation is called Cumulative hazard (or cumulative 

risk) and is obtained from the hazard function,   

            
 

 
                                                                                                        (3.5) 

Λ(t) can be taken as the sum of the risks one face going from duration 0 to t.  
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3.3.2. Comparison of Survivorship Functions 

In survival analysis, it is always a good practice to present numerical summaries of the 

survival times for the individuals using non parametric methods. The methods are said to be 

non-parametric methods, since they don’t require any assumption about the distribution of 

survival time. 

  
                

 
   

 

   
     

 
   

                                                                                                  (3.6) 

Where,     = 
     

  
         and              =

                

  
       

 

    is the number at risk at observed survival time      in group 0; 

     is the number at risk at observed survival time t(i) in group 1; 

     is the number of observed event in group 1;  

   is the total number of individuals or risk before time t(i); and  

   is the total number of event  at     . 

The contribution to the test statistic depends on which of the various tests is used, but each 

may be expressed in the form of a ratio of weighted sums over the observed survival time 

points.  Under the null hypothesis, the two survivorship functions are the same, and 

assuming the censoring experience is independent of group, and that the total number of 

observed events and the sum of the expected number of events is large, test statistic (Q) 

follows a chi-square distribution with one degree of freedom. We can also use the above test 

to compare k-groups.  In this study we used log-rank and generalized Wilcoxon tests to 

compare survival functions of different groups.  

3.3.2.1. The Cochran-Mantel-Haenszel log-rank test 

The log rank test, sometimes called the Cox-Mantel test, is the most well-known and widely 

used test in various areas of applied statistics. This test is based on weights equal to one (i.e. 

wi=1). The log rank test statistic is given as  

    
            

 
     

     
 
   

                                                                                  (3.7) 



 
 

16 
 

3.3.2.2. The Generalized Wilcoxon test 

Gehan (1965) and Breslow (1970) generalized the Wilcoxon rank sum test to allow for 

censored data. This test uses weights equal to the number of subjects at risk at each survival 

time i.e. wi=ni and is called Wilcoxon or generalized Wilcoxon. The generalized wilcoxon is 

given as 

      
              

 
     

   
     

 
   

                                                                           (3.8) 

3.3.3. Basic Survival models  

3.3.3.1. Cox PH models  

In survival analysis, a popular approach is to model the hazard function rather than the mean 

of the survival times as in classical regression models. Since a hazard function may be 

complicated, we can avoid a parametric assumption and allow the hazard function to be 

nonparametric. Then, one may link the hazard function to covariates xi through the usual 

(parametric) linear predictor   
  
, which is sometimes called a risk score or prognostic index 

in survival analysis. This leads to a semiparametric regression model.  

A widely used semiparametric survival regression model is the following Cox proportional 

hazards model (Cox 1972) 

     =      exp(  
   ), or       =     

       
   ,                                                             (3.9) 

Where       is an unspecified baseline hazard function,   is a vector of unknown regression 

parameters, and    =              
  is a vector of covariates, and           .In the Cox 

proportional hazard model (3.9) , no  distributional assumption is made for  for the survival 

data, so it is very flexible. The assumption in the model is that the hazards ratio  
     

     
 does 

not change over time (i.e., proportional hazards), which should be checked in a particular 

application. 
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3.3.3.2. Accelerated failure time (AFT) models  

Although the semiparametric Cox proportional hazards model (3.9) is widely used in the analysis 

of survival data, parametric regression models for survival data have also been developed. These 

parametric models assume that the survival data follow some parametric distributions, and they 

may be preferred if the distributional assumptions hold. A major advantage of parametric 

regression models is that, if the parametric distributional assumption holds for the survival data, 

statistical inference based on the parametric model will be more efficient than a semiparametric 

model which makes no distributional assumptions. On the other hand, a major advantage of 

semiparametric models such as the Cox proportional hazards models is that they are robust 

against distributional assumptions. 

For the proportional hazard models, we assume that the hazards ratio 
     

     
 is constant over time. 

In practice, however, the proportional hazards assumption may not be valid, so the PH models 

may not be appropriate in these situations. An alternative and popular survival regression model is 

the so-called accelerated failure time (AFT) model, which does not require the proportional 

hazards assumption. 

For AFT models, the following log-linear representation is widely used 

        =   
    +    ,     i=1,2, …, n,                                                                                     (3.10) 

where   is scale parameter  and    ’s are random errors. If we assume that    follows a parametric 

distribution, we have a parametric AFT model. Different choices of the distributions for    lead to 

different AFT models. The following are three commonly used parametric AFT models.  

If    follows the Gumbel distribution, the survival time Ti follows a Weibull distribution. Thus, 

the Weibull distribution has both the proportional hazards property and the accelerated failure 

time property, which is very appealing and makes the Weibull survival model very attractive. 

Additionally if    =1 ,  then  the weibull model  will  be  reduced  to  an  Exponential model. 

Another common choice for     is the distribution is the standard normal distribution N (0,1). If    

follows N (0,1), the survival time    follows a log-normal distribution. And, the third common 

choice for the distribution of    is the logistic distribution, if     follows a logistic distribution, 

which leads to loglogistically distributed the survival time    follows a log-logistic distribution. 

Inference for parametric AFT model (3.10) can be based on the likelihood method.  
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3.3.4. Frailty models 

3.3.4.1. Univariate frailty models 

The standard situation of the application of survival methods in scientific research projects 

assumes that the population being investigated is homogenous. Consequently,  appropriate 

survival model assumes that the survival data of the different subjects are independent form 

each other and that each subject’s individual survival time distribution is the same 

(independent and identically distributed failure times). However, the effect of treatment or 

the influence of various explanatory variables may differ greatly between subgroups of 

subjects. To account for such unobserved heterogeneity in the study population Vaupel et al. 

(1979) introduced univariate frailty models into survival analysis.  

In frailty models, the variability of survival times can be divided into two parts. One part is 

observed risk factors, known as covariates, and the other part is unobserved risk factors, 

known as frailty. In the univariate frailty model, the population under study is considered as 

a mixture in which baseline hazard is common to all individuals but each individual has its 

own frailty term. 

Suppose that there are samples of n observations in a study; with xi the observable covariate 

vector for the i
th

 individual.  The hazard function of the  i
th

 individual at time t  is 

                                         ,  i=1,…,n                                                          (3.11)  

This shows that the hazard of an individual also depends on an unobservable random 

variable,    which acts multiplicatively on the hazard rate. In the univariate case, frailty 

models are used to make adjustments for over dispersion. When unobserved or unmeasured 

effects are ignored, the estimates of survival may be misleading. Therefore, a correction for 

this over dispersion is needed in order to allow for adjustments for those important frailties. 
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3.3.4.2. Shared (Multivariate) Frailty Models 

Multivariate frailty model is a conditional independence model in which frailty is common 

to all subjects in a cluster. It is also known as a mixture model because the frailties in each 

cluster are assumed to be random. It assumes that, given the frailty, all event times in a 

cluster are independent. Shared frailty model was introduced by Clayton (1978) without 

using the notion frailty and extensively studied in Hougaard (2000), Therneau and 

Grambsch (2000), Duchateau et al. (2002), and Duchateau and Janssen (2008). 

Generally, multivariate frailty model can be taken as extension of univariate frailty(3.3.4.1) 

model which allows the individuals in the same cluster to share the same frailty value. When 

frailty is shared, dependence between individuals who share frailties is generated. However, 

when conditioning on the frailty, the individuals are independent of each other. Shared 

frailty models are very important in analysing multivariate or clustered survival data. Shared 

frailty model assumes that individuals in a subgroup share the same frailty u, but frailty 

from group to group may differ. 

Suppose there are G groups with ni individuals in the i
th

 group;     is the observable 

covariate vector for the j
th

 individual in the i
th

 group. The hazard function of the j
th

 

individual in the i
th

 group is   

                                                                                              (3.12) 

where    is a random variable assumed to have a one-dimensional distribution. This model 

is a random effect model with two sources of variation. There is a group variation, described 

by the random variable  . Secondly, there is the individual variation described by the 

hazard function                 .In multivariate frailty model, groups with a large value of 

the frailty will experience the failure at earlier times than groups with small values of the 

frailty. 

3.3.4.2.1. The shared gamma frailty model  

3.3.4.2.1.1. The model  

Here we consider models in which the hazard function partly depends on an unobservable 

random variable thought to act multiplicatively on the hazard, so that large values of the 

variable increase the hazard. In gamma shared frailty model the baseline hazard (  ) does 

not assumed to be a certain parametric distribution i.e.        left unspecified.  
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Let  jth 
 (j = 1,2,...,ni) individual of the i

th  
group (i=1,2,…,G), and let Tij denote the survival 

times under study and let Cij be the corresponding right censoring times. The observations 

are Yij =min(Tij,Cij)and the censoring indicators are δij =I{Tij≤Cij}. The frailty model specifies 

that the hazard function conditional on the frailty is: 

                =         exp(     ) 

Where        is the baseline hazard ; Xij=(X1ij, …, Xpij)’ denotes the covariate vector for the 

j
th

 individual of group i, and β is the corresponding vector of regression parameters. 

Conditionally on frailty   ’s are independently and identically distributed with mean 1 and 

unknown variance θ; the probability density function for gamma frailty is given by: 

      
 
 
 
 
   

      
 

 
 

  
 

 
  

 
 

                                                                                              (3.13) 

Large values of   signify a closer positive relationship between the subjects of the same 

group and greater heterogeneity among the groups. As discussed by Nielsen et al. (1992), 

we assume the censoring times     to be independent of the event times and of the frailties 

  . 

3.3.4.2.1.2. Penalized partial likelihood for Frailty models 

The addition of frailties to the Cox model leads to unobserved entities in the model which 

also prevail in the partial likelihood. It is however assumed that these frailties come from a 

gamma density with mean equal to 1 and unknown heterogeneity parameter θ. Therefore, a 

penalty is added to the partial likelihood that decreases with the distance of the frailty from 

one, the mean of the frailty density.  

The penalty term on the log scale in the case of the gamma density is given 

by               
 
   . The penalized partial likelihood for the frailty model is then given 

(McGilchrist, 1993) by 

    
         =       

                  

                         
 

   

  
   

 
                   

 
             (3.14) 
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For fixed value of the heterogeneity parameter θ, maximization of the penalized partial 

likelihood criterion leads to the same parameter estimates for the fixed effects β and the 

frailties    as the EM algorithm (Therneau et al., 2003). For a particular value of θ, 

estimates for the fixed effects, frailties and baseline hazards can thus be obtained by 

maximizing the penalized partial likelihood.  

To make it more clear, let’s keep θ fixed in      
          (model 3.14) and write as 

    
           We further use    

   and     to denote the value of     and  , for a given value 

of  , and get     
           We now consider the profile penalized partial likelihood 

    
     

         as a function of θ. Note that, the profile penalized partial likelihood is 

increasing with increasing values of θ. 

A way to obtain an estimate for θ that corresponds with the EM estimate is to replace the 

profile penalized partial likelihood by the profile marginal likelihood of θ and to estimate θ 

as the argument that maximizes this profile marginal likelihood. The marginal likelihood is 

obtained by integrating out the frailties from the joint density of the observed 

event/censoring time and the frailties (Klein, 1992) and is of form 

     
                            

 

 
       

 

 
      

 

 
             

            

            
  
                                 

  
                                                           (3.15) 

With    the number of events at i
th

 cluster and        is the cumulative hazard for j
th

 subject 

in cluster i. 

To arrive at the profile marginal likelihood, we replace            and        in this general 

expression for the marginal likelihood by their respective estimates    
 ,    

    , and     
    . In 

terms of the estimates    
  and     we can give explicit expression for the estimated baseline 

hazard and cumulative baseline hazard. With the total number of ordered distinct event 

times t(1) <···<t(e) and with d(k) the number of events at time t(k), k=1,...,e, define 

(Duchateau et al., 2002)  

   
        

    

    
        

                  
                                                                            (3.16) 

An estimate for the cumulative hazard  

    
        =    

                 
exp{           }                                                             (3.17)  
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3.3.4.3. Baseline hazards for parametric frailty models 

Under the parametric frailty approach the baseline hazard is defined as a parametric function 

and the vector of its parameters is estimated together with the regression coefficients and the 

frailty parameters. A number of possibilities for the baseline hazard are considered in the 

literature; but in this thesis our focus will be on exponential, Weibull, lognormal, and log 

logistic distributions. Table 2, presents the hazard and cumulative hazard functions for each 

of these distributions.  

Table 2: Baseline hazards for parametric frailty models  

Where,               respectively represent the probability density and the cumulative distribution 

functions of a standard normal random variable. 

3.3.4.4. Frailty distributions 

Various frailty distributions have been proposed in the literature (Duchateau and Janssen, 

2008). Here in this thesis, we have considered gamma, inverse Gaussian, lognormal and 

positive stable frailty distributions. In all cases, a single heterogeneity parameter indexes the 

degree of dependence. 

3.3.4.4.1. Gamma frailty  

The gamma frailty distribution has been widely used to model intra-cluster dependency 

because of its simple interpretation and mathematical tractability (Greenwood and Yule, 

1920; Vaupel et al., 1979 ; Hougaard, 2000). For this frailty distribution, it is easy to derive 

the closed form expressions of unconditional survival, cumulative density and hazard 

function because of the simplicity of the Laplace transformation. Despite these advantages 

Distribution ho(t) Ho(t)=        
 

 
 Parameters space 

Exponential                    λ 
          

         λt  

         

        λ  > 0 

Weibull                    λρ     
         

         λ   

 

         λ, ρ > 0  

 

 

Log normal 

  
        

 
 

       
        

 
  

 

 

-log[1-   
         

 
 ]         μ         

 

 

Log logistic  
         

        
 

 

Log(1+      ) 

        

               , γ >  0 
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there is no biological reason which makes the gamma distribution more preferable than 

other frailty distributions. 

The probability density function of gamma frailty distribution ( which is similar to equation 

3.13) is given by 

     
 
 
 
 
   

      
 

 
 

  
 

 
  

 
 

                                                                                               (3.18) 

where  (
.
) is the gamma function. It corresponds to a gamma distribution Gam (μ;θ) with μ 

fixed to 1 for identifiably.  Its variance is then θ. The associated Laplace transform is  

  L(s) =        
 

  ,  s ≥ 0 

For the gamma distribution, the Kendall's tau which measures the association between any 

two event times from the same cluster in the multivariate case, can be computed as    

    
 

   
                                                                                         (3.19) 

3.3.4.4.2. Inverse Gaussian frailty 

The inverse Gaussian (inverse normal) distribution was introduced as an alternative to the 

gamma distribution by Hougaard (1984) and has been used  by Keiding et al. (1997) and 

Price and Manatunga (2001). It has uni-modal density and is the member of exponential 

family. While its shape resembles the other skewed density functions, such as log-normal 

and gamma. 

The probability density function of an inverse normal distributed random variable with 

mean one and variance θ given by 

     
 

    
  

 

      
      

   
                                                                           (3.20) 

Consequently, the Laplace transform is given by 

L(s) = exp(
 

 
          ,   s ≥ 0 

With multivariate data, inverse Gaussian distributed frailty yields a Kendall's tau is 

    
 

 
 

 

 
 

    
 

 
 

   
       

 

 
 

 

        (0, 
 

 
                                                                (3.21) 
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3.3.4.4.3. Log-normal frailty  

Mc Gilchrist(1993) develop methodology for fitting frailty model that parallels the classical 

mixed model which is not a member of power variance function family. Log-normal frailty 

models are frequently used in modelling dependence structures in multivariate frailty 

models,  McGilchrist and Aisbett (1991), McGilchrist (1993). Unfortunately for this model, 

there is no explicit form of the unconditional likelihood. Consequently, estimation strategies 

based on numerical integration in the maximum likelihood approach are required. 

The probability density function of log normal frailty distribution is given by 

    =
 

     
exp(-

        

  
) with  θ>0                                                                            (3.22) 

For lognormal frailty distribution the Laplace transformation does not take a simple form 

and, no explicit formula exist for Kendall’s  . 

3.3.4.4.4. Positive Stable frailty 

Hougaard(2000) introduces the positive stable distributions as a family with two parameters: 

a scale   > 0 and the so called index α < 1. Imposing    α  the positive stable frailty 

distribution PS*(  ) is obtained, with   =1- α . 

The associated probability density function is then 

    =   
 

  
  

           

  

 
             sin((1-  )k ),                                     (3.23)         

The mean and variance are both undefined. Therefore, the heterogeneity parameter    does 

not correspond to the variance of the frailty term. Because of that, we intentionally call it   

instead of  θ to avoid misinterpretation.   

In contrast to the probability density function, the associated Laplace transform takes a very 

simple form, 

               L( s)=exp(     )     ,    s≥0   

With clustered data, the Kendall's tau for positive stable distributed frailties is 

     τ =    ϵ(0,1)                                                                                                         (3.24)           
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3.3.5.5. Parameter estimation in parametric frailty models  

For right-censored clustered survival data, the observation for subject j Ji ={1,...,ni} from 

cluster i   I={1,…,s} is the couple (yij,    ) , where yij=min(tij, cij) is the minimum between 

the survival time tij and the censoring time cij , and where δij = I(tij ≤ cij) is the event 

indicator. Covariate information may also have been collected; in this case, zij= (yij, δij, xij), 

where xij denote the vector of covariates for the (ij)
th  

observation. In the parametric setting, 

estimation is based on the marginal likelihood in which the frailties have been integrated out 

by averaging the conditional likelihood with respect to the frailty distribution. Under 

assumptions of non-informative right-censoring and of independence between the censoring 

time and the survival time random variables, given the covariate information, the marginal 

log-likelihood of the observed data                 , can be written as  

                 

                         
     

                             
  
          

        
 
         

                      
        

                                                                                            (3.25) 

where        
  
    is the number of events in the i

th
 cluster, and L

(q)
(.) the q

th 
 derivative of 

the Laplace transform of the frailty distribution defined as  

L(s)= E[exp(-Us)] =                   
 

 
 , s ≥ 0 

 ξ is used as generic notation  to denote either θ or   (for positive stable frailty model). 

Estimation of ψ, β, and ξ are obtained by maximizing the marginal log likelihood. This can 

be done if one is able to compute higher order derivatives L
(q)

(.) of the Laplace transform up 

to q=max{d1,…,dG}. 
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3.3.5. Model diagnosis 

3.3.5.1. Cox-Snell residuals  

The residual that is most widely used in the analysis of survival data is the Cox-Snell 

residual, so called because it is a particular example of the general definition of residuals 

given by Cox and Snell (1968). For observation j at time  , the Cox snell residual can be 

defined as 

    (  ) = - log   (  ),  

Where         and         are the estimated cumulative hazard and survivor functions, 

respectively, for the j
th

 individual at the censored survival time. 

The estimated cumulative hazard function (       ) is obtained from the fitted model 

(Collett, 2003). Cox and Snell argued that if the correct model has been fit to the data, these 

residuals are n observations from an exponential distribution with unit mean. Thus a plot of 

the cumulative hazard rate of the residuals against the residuals themselves should result in a 

straight line of slope 1. Cox–Snell residuals can never be negative and therefore are not 

symmetric about zero 

3.3.5.2. Deviance residuals  

The deviance residual help in identifying poorly fitted subjects, which is defined in 

(Therneau, T. M. et al., 1990) as  

  =sign                             ).  

Where,       is martingale residual and     is censoring indicator. 

The function sign (.) is the sign function which takes the value 1 if     is positive and -1 if 

    negative. The martingale residuals take values between negative infinity and unity. They 

have a skewed distribution with mean zero (Therneau et al., 1990). The deviance residuals 

are,  however, a normalized transform of the martingale residuals. They also have a mean of 

zero but are approximately symmetrically distributed about zero when the fitted model is 

appropriate. Deviance residual can also be used like residuals from linear regression. The 

plot of the deviance residuals against the covariates can be obtained. Any unusual patterns 

may suggest features of the data that have not been adequately fitted for the model. Very 

large or very small values suggest that the observation may be an outlier in need of special 



 
 

27 
 

attention.  A plot of the deviance residuals versus the risk score(linear predictor)  is also 

helpful diagnostic to assess a given individual on the model. Potential outliers will have 

deviance residuals whose absolute values are very large.   

3.3.6. Models comparison criteria 

After fitting a number of different models for a given dataset, it will be wise idea to compare 

them using some standard methods of model comparison criteria. Akaike information 

criterion (AIC) is a measure of the relative quality of a statistical model, for a given set of 

data. As such, AIC provides a means for model selection. AIC deals with the trade-off 

between the goodness of fit of the model and the complexity of the model.  

In this thesis too, we have used AIC as a means to compare different candidate models. To 

apply AIC in practice, one need to start with a set of candidate models, and then search for a 

model with minimum AIC values. There will always be information lost due to using one of 

the candidate models to represent the "true" model. Hence, the goal to select among 

M candidate models, the model that minimizes this information loss. Suppose, the AIC 

values of the candidate models are AIC1, AIC2, AIC3, …, AICM, then a model with 

minimum AIC value will be considered as the ‘best’ model out of these M-candidate 

models. 

In addition to AIC, model adequacy and the standardized measure of variability for 

coefficients were used to identify a ‘best’ model among selected parametric frailty model 

and shared gamma frailty model. Standardized measure of variability is defined by the ratio 

of standard error to the corresponding parameter estimate (SVC= 
   β 

 β 
  ) in which the 

smaller is preferred.  

  

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Model_selection
http://en.wikipedia.org/wiki/Goodness_of_fit
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CHAPTER FOUR 

4. STATISTICAL ANALYSIS AND RESULTS 

4.1. Descriptive summaries  

Out of 924 girls included in the study 87.77% (811) of them experience the event of interest, 

i.e. menarche. The remaining 113 (12.23%) were censored. The median age at menarche 

found to be 14 years. For all covariates the median age at menarche appeared to vary 

between 14 to 15 years for different levels of categorical predictors.  

Table 3: Descriptive summaries   for baseline characteristics and survival status 

Characteristics   %n; Mean(   ) % Event % Censored Median age (years)   

Father’s education level      

 Secondary & higher 

education 

29.87 92.39 7.61  14 
  Primary 41.77 86.01 13.99  14 
 No education 28.36 85.49 14.51  14.5 
Mother’s education level       

 Secondary & higher 

education 

13.42 89.52 10.48  14 
  Primary 34.52 87.77 12.23  14 
 No education 52.06 87.32 12.68  15 
Household income      
 Low 32.57 86.71 13.29  15 
 Middle     34.31 84.23 15.77  14 

High 33.12 92.48 7.52  14 

BMI for age      

 Normal 86.90 88.04 11.96  14 
 Under weight 6.93 92.19 

 

7.81 

 

 

 

15 
Over weight 6.17 78.95 21.05  14 

Height for age      

 Non-stunted 88.96 88.81 11.19  14 

 Stunted  11.04 79.41 20.59  15 

Workload index 35.14( 16.97) 

 

- -  - 

  22.72( 2.92) - -  -  MUAC          

 Source: Jimma Longitudinal Family Survey of Youth; Round 1-3 
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According to Table 3, the median ages at menarche for girls with parental education level 

of illiterate were higher (14.5 and 15 years for illiterate fathers and mothers respectively) 

compared to girls with parental education of primary and, secondary & higher. On the other 

hand the median age at menarche is delayed for girls from low income family as compared 

to girls  from middle  and high income households. Similarly, median timing  of  menarche  

for  stunted  and  underweight  girls  were  delayed  by  one  year  as  compared to girls 

found in normal range of BAZ and HAZ.  

Table 4: log-rank and Peto and Peto tests for equality of survival function of  categorical 

covariates 

 

Categorical Predictors  

 

DF 

          Logrank Test          Peto-Peto Test  

 Test Statistics  P-value  Test Statistics P-value 

Father’s Education   2  1.42   0.491  2.45 0.300 

Mother’s Education  2  59.79 <0.001  57.99 <0.001 

House hold income  2  11.35  0.004  15.11 0.001 

BMI for age 2  21.90  <0.001  19.49 <0.001 

Stunting 1  46.18 <0.001  30.37 <0.001 

Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, DF=degree of freedom 

 

According to table 4,  the hypothesis on equality of survival functions for  different 

categories  of  father’s  education  level  is  not  rejected(in both logrank and peto-peto 

tests). However, for the rest categorical predictors (mother’s education level, house hold 

income, BMI for  age, and stunting), we have evidence that at least one category is 

significantly different from the rest.  
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4.3. The Shared gamma frailty model 

The first multivariate survival model used to analyze age at menarche is shared gamma 

frailty model. Gamma shared frailty model is a model with non-parametric baseline hazard 

and with gamma distributed random effects or frailty terms. In this thesis, variable 

selections for gamma shared frailty model is performed first by considering a univariable 

analysis (Annex 1) and then by including variables with significant association with the 

dependent variable (p-value < 0.10) in multivariable analysis. Unlike standard PH models, 

in frailty models the event times are not expected to be independent with in cluster (villages) 

but do so across villages.    

Table 5: Multivariable analysis using shared gamma frailty model 

    Covariates Coefficient     SE HR 95% CI 

Mother’s education level     

       Secondary & higher  Ref    

       Primary -0.009   0.115 0.991              (0.792, 1.241) 

       No-education -0.433   0.112 0.649              (0.521,0.808)* 

Work load index -0.003 0.003 0.997              (0.992, 1.002) 

House hold income     

           Low Ref    

           Middle 0.066 0.089 1.068               (0.897, 1.272) 

           High 0.173 0.095 1.189               (0.987, 1.431) 

 BMI for age     

           Normal  Ref    

           Under weight  -0.344 0.139 0.709             (0.539, 0.932)* 

           Over weight    0.097 0.156    1.102             (0.812, 1.495) 

Height for age             

         Non-stunted   Ref    

         Stunted -0.582 0.123 0.558             (0.439,0.711)* 

 θ= 0.048(SE=0.027)*                             = 0.023                                AIC= 9889.789      

Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.05, 

Ref=Reference group, SE=Standard Error, HR=Hazard Ratio, AIC=Akaike Information 

Criteria 
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According to the result obtained using gamma shared frailty model, given the frailty the 

hazard of having menarche among girls with maternal education level of illiterate is lower 

(HR=0.649 , 95% CI of  0.521,0.808 ) compared to girls with maternal education level of 

secondary and above. However, the estimated conditional HR for girls with maternal 

education level of primary is not statistically significant (HR=0.991, 95%CI: 0.792, 1.241). 

It is also possible to check the significance of the hazard ratio by looking the confidence 

intervals i.e. if one is included in the two estimates (the upper and lower confidence 

estimates) , it is evidence that the hazard ratio of the two groups is not significantly different 

from one.   

The hazard of menarche for stunted girls is lower (HR=0.558, 95% CI: 0.439, 0.711) 

compared to non-stunted girls. The hazard of menarche for underweight girls is also lower 

(HR=0.709, 95% CI: 0.539, 0.932). However, the estimated conditional hazard ratio for 

being overweight is not statistically significant (HR=1.102, 95% CI: 0.812, 1.495).   

The estimated regression coefficients for work load index and household income are not 

statistically significant in shared gamma multivariable model (unlike the univariable case).  

The estimated variance of random effect under shared gamma frailty model is 0.048 

(SE=0.027). On the other hand, the correlation between menarcheal ages for any two girls 

live within the same village estimated to be 0.023. The hypothesis on the significance of θ is 

performed by considering ordinary Cox PH model as reduced model where the critical value 

obtained from mixture of chi square  distribution with zero and one degree of freedom.  
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4.3.1. Diagnostic for Shared gamma frailty model 

4.3.1.1. Plot of Cox-Snell residuals 

Figure 1, which is plot of Cox snell residuals versus cumulative hazard of residuals, 

indicates the fitted line was better at the beggning(at smaller values of cox snell residuals ) 

but deviate heighly from aline with zero intercept and unit slope as the magnitude of cox 

snell residual  increases. Accordingly, the plotted line does not provide positive evidence in 

favor of the fitted shared gamma frailty model.  

 
Figure 1: Plot of  cumulative hazard vs Cox Snell residuals 
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4.3.1.2. Plot of deviance residuals 

According to plot of deviance residuals against the risk score (figure 2), the distribution of 

residuals is approximately symmetric about zero with random pattern and there exists no 

outlying observation.  

 

Figure 2: plot of deviance residuals with risk score  

4.4. Parametric frailty models 

A popular approach to model clustered survival data is to use parametric frailty models. In  

parametric  frailty  models  the  baseline  hazard  assumed  to  follow  some  parametric  

distribution.  Before  performing  a  univariable  analysis(one  predictor   at  a  time)  using 

candidate  frailty  models, it is better to check if the estimated heterogeneity parameter is  

significant using likelihood ratio test.  

 

Table 6: Summary of Estimated heterogeneity parameters with LR test 

 

Baseline 

hazard 

Frailty Distribution  

Gamma  Inverse Gaussian  Log normal  Positive stable 

   θ SE(θ)      θ SE(θ)      θ SE(θ)       SE( ) 

Exponential 5.3e-72 3.3e-69  6.9e-09 6.2e-06  7.8e-09 7.1e-05  4.9e-07 3.1e-04 

Weibull 0.093* 0.041  0.102* 0.048  0.097* 0.044  0.115* 0.042 

Log normal 0.096* 0.044  0.099* 0.045  0.105* 0.049  0.105* 0.037 

Log logistic  0.136* 0.062  0.133* 0.059  0.149* 0.068  0.118* 0.038 

Source: Jimma Longitudinal Family Survey of Youth; Round 1-3; SE=standard error,*p<0.05  
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As displayed in Table 6, the estimated heterogeneity parameters are significant for weibull, 

lognormal and loglogistic based frailty models but not for exponential based models. 

Consequently, it is possible to ignore exponential based frailty models from our list of 

candidate frailty models. Even if exponential based frailty models are ignored, it is possible 

to see whether these models are appropriate based on p-values for estimate of log(shape) or 

log(ρ) in Weibull based models. That is, if log(ρ) is not significantly different from zero 

exponential based models are better than Weibull based models. The statistical significance 

of heterogeneity parameters can also be seen by constructing CI for thetas(  for positive 

stable frailty) i.e. if the estimated lower confidence limit is zero, it is evidence that the 

estimated heterogeneity can be ignored.  

4.4.1. Variable Selection and Comparison of Parametric frailty models  

To identify important covariates we use a univariable analysis (one predictor at a time) 

which is similar to method used in section 4.3 with similar level of significance. The results 

of univariable and multivariable analysis for gamma and inverse Gaussian frailty are 

displayed in Annex1 & Annex 2 of this thesis, respectively.  

After performing multivariable analysis for each model, the next step is to identify a model 

which is ‘best’ for describing the association of age at menarche with different potential 

covariates. The following table displays the AIC values for each combination of baseline 

hazard and frailty distribution.  

Table 7: AIC values for candidate parametric frailty models   

Baseline 

hazard 

Frailty Distribution  

 
Gamma Inverse Gaussian Log normal Positive stable 

     
Weibull 2714.140 2714.103 2713.81    2720.814 

Log normal 2525.285 2526.327 2525.805    2534.577 

Log logistic  2479.017 2481.278 2480.795    2488.393 

     
Source: Jimma Longitudinal Family Survey of Youth; Round 1-3; AIC=Akaike information criteria  
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According to Table 7, AIC values of all weibull based  frailty models are larger indicating 

worst fit of models compared to the rest candidate models. On the other hand, log logistic-

gamma frailty model has the smallest AIC(2479.017) demonstrating better fit as compared to 

the rest candidate models. 

4.4.2. Log logistic gamma frailty model  

As described in section (4.4.1), the AIC value of log logistic gamma frailty model is the 

smallest as compared to the rest. Accordingly, it has been selected as ‘best’ parametric 

frailty model for modeling age at menarche.  

Table 8: multivariable analysis of logistic gamma frailty models  

 Covariates Coefficient          SE            95% CI 

Mother’s education level     

       Secondary & higher   Ref    

       Primary   0.005    0.008 1.005 (0.988, 1.022) 

       No-education   0.046    0.008 1.048 (1.031, 1.065)* 

Workload index       0.0002    0.0002 1.0002 (0.999, 1.001) 

House hold income      

       Low   Ref    

       Middle  -0.007    0.006 0.993 (0.982, 1.005) 

       High  -0.022    0.007 0.979 (0.966,0.992)* 

 BMI for age     

       Normal  Ref    

       Under weight  0.032    0.010 1.033 (1.013, 1.053)* 

       Over weight  -0.015    0.011    0.985 (0.964, 1.007) 

Height for age             

       Non stunted    Ref    

       Stunted   0.060    0.008 1.062 (1.044,1.079)* 

Cons= 2.632 (SE=0.012)*                                  γ=0.043 (SE=0.002)*         

θ=0.090(SE=0.049,95%CL[0.030,0.267])*        = 0.043                           AIC= 2479.017 

Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.05, Ref=Reference 

group, SE= Standard Error,  =Acceleration factor, AIC=Akaike Information Criteria, CI= 

confidence interval  
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According to the result obtained using loglogistic gamma frailty model, age at menarche for 

girls with maternal education level of illiterate is delayed with a factor of  =1.048 (95% CI: 

1.031, 1.065) compared to girls with maternal education level of high school and higher. 

However, the acceleration factor for maternal education level of primary is not statistically 

significant ( =1.005, 95% CI: 0.988, 1.022).  

Girls in the households with the highest income experience menarche earlier ( =0.979, 95% 

CI: 0.966, 0.992) compared to those in low income category. But, the estimated acceleration 

factor for girls in the households with middle income tertile is not statistically significant 

( =0.993, 95% CI: 0.982, 1.005).   

The timing of menarche for stunted girls is delayed by a factors of 1.062 (95% CI: 1.044, 

1.079) compared to non-stunted girls. The menarcheal age for underweight girls also 

delayed by a factor of  =1.033 (95% CI: 1.013, 1.053) compared to girls with normal BAZ 

range. However, the age at menarche for overweight girls is not significantly different from 

BAZ-normal girls ( =0.985, 95% CI: 0.964, 1.007). 

The estimated acceleration factor for work load is not statistically significant at 

multivariable loglogistic gamma frailty model (unlike the univariate case) 

In log logistic gamma frailty model (Table 8) the estimated variance of random effect is 

0.090 (95% CI: 0.030, 0.267) and the lower confidence interval estimate for θ is 0.030. The 

significance of heterogeneity parameter can be also confirmed using likelihood ratio test p-

value, where the reduced model is log logistic survival model and the full model includes 

one additional parameter θ. So, the achievement in loglikelihood obtained by including 

heterogeneity parameter θ will be illustrated by p-value in our case, the inclusion of θ is 

supported. In frailty models Kendell’s tau ( ) represent the correlation between any two 

failure times within the same cluster. Based on the final parametric frailty model Kendell’s 

tau is estimated to be 0.043. Here the estimated shape parameter is less than one (0.043) 

indicating the hazard of menarche decreases to some points then rises.   
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4.4.3. Model Diagnostic  

4.4.3.1. Checking adequacy of Log-logistic distribution  

Graphical evaluation of the log logistic baseline distribution can be assessed by plotting the 

log failure of odds i.e.     
        

     
), which is a linear function of log(t).And it is expected to 

be a straight line, if it is plotted against log(t). If so, it is evidence that the assumed log 

logistic baseline distribution holds. Where       is a KM survival estimate. From figure 3, it 

can be seen that the plotted points fall in a linear fashion. This is evidence that the assumed 

log-logistic baseline distribution is appropriate for modelling age at menarche. 

 

Figure 3: plot of log time vs log failure odd   
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4.4.3.2. Plot of Cox-Snell residuals  

The Cox-Snell residuals obtained from Weibull, lognormal and log-logistic gamma frailty 

models were plotted with cumulative hazard of residuals to assess goodness of the 

respective fitted models. Among the three plots (Figure 4) the line fitted by log-logistic 

gamma frailty model lies in a better fashion on a line which is with unit slope and zero 

intercept. So based on plot of cox Snell residuals log-logistic-gamma model fit the data well 

compared with others.  

  

 

Figure 4: Cumulative hazard plot of the Cox-Snell residual for frailty models.  
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4.4.3.3. Plot of Deviance residual  

The plot of deviance residual against the risk score (figure 5) shows that the deviance 

residuals seem to be approximately symmetric about zero with random pattern and there 

exists no outlying observation. Therefore, we have almost no concern about the adequacy of 

the fitted log-logistic gamma frailty model. 

 
Figure 5: plot of deviance residual vs risk score  
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4.5. Comparison of Shared gamma and log logistic–gamma frailty models  

The AIC value for shared gamma frailty model which is based on penalized partial 

likelihood approach is 9889.789 which is higher than the AIC value for log-logistic gamma 

frailty model (2479.017) which may give us some insight in selecting our appropriate model. 

In addition to AIC values of the two models we used the standardized variability of 

coefficients and their adequacy using plot of Cox-Snell residuals. 

Table 9: SVC for shared gamma and log logistic gamma frailty models 

 

 

Covariate 

    Shared gamma frailty   Log logistic–gamma frailty  

  
Estimate      SE  SVC  Estimate     SE SVC 

       
Mother’s education level       

      Secondary &  higher Ref     Ref   

        Primary  -0.009   0.115 12.778   0.005    0.008     1.6 

        No-education  -0.433   0.112 0.259   0.046    0.008     0.174 

Workload index  -0.003 0.003 1  0.0002    0.0002      1 

House hold income       

        Low Ref   Ref   

        Middle 0.066 0.089 1.348 -0.007  0.006      0.857 

        High  0.173 0.095 0.549 -0.022  0.007      0.318 

BMI for age        

       Normal  Ref    Ref   

        Underweight  -0.344 0.139 0.404  0.032 0.010     0.312 

        Over weight 

  

  0.097 0.156    1.608 -0.015 0.011        0.733 

 Height for age        

        Non stunted   Ref     Ref   

        Stunted  -0.582 0.123 0.211  0.060 0.008     0.133 

       Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, Ref=Reference group, SE= 

Standard Error, SVC=Standardized Variability of Coefficients 
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As shown in Figure 1, the Cox Snell residual plot for shared gamma frailty model indicates 

the plotted line lie far from a line which has zero intercept and unit slope. Since plot of Cox-

Snell residuals indicate the overall goodness of fit of used model to the dataset, we lost 

evidence to accept shared gamma frailty model as appropriate model in modeling age at 

menarche. On the other hand, the plotted line of Cox-Snell residual for log logistic- gamma 

frailty model (Figure 4) shows good fit of the model to the dataset. Similarly, the computed 

SVC values of all estimate of covariate effect using log logistic-gamma frailty model is less 

than the corresponding values for shared gamma frailty model. To model age at menarche, 

we found appropriate to use log-logistic gamma frailty model, mainly because of its smallest 

AIC value, adequacy of model fitness in modeling age at menarche and due to its smallest 

SVCs compared to shared gamma frailty model. 
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CHAPTER FIVE 

5. DISCUSSION AND CONCLUSION 

5.1 Discussion   

In this thesis, we modeled age at menarche taking in to account the clustering within a 

village in the dataset. In survival analysis if the assumption of independence between the 

event times is questionable, then the classical or standard survival models will result in 

incorrect inference. During such situation, where there is clustering or dependence in the 

event times, then random effect survival models (also known as frailty models) are 

appropriate to consider. In this thesis, time to menarche data was analyzed using gamma, 

inverse Gaussian, lognormal and positive stable frailty models with different specification of 

baseline hazards.  

Among various frailty models (with parametric and semi-parametric baseline hazards), log 

logistic-gamma frailty model was selected due to its lowest AIC value, fit the data well, and 

has smallest standardized variability of coefficients as compared to shared gamma frailty 

model. Overall, models with flexible hazard fit time to menarche data well as compared to 

models with monotone and constant hazard based frailty models (Table 6 & 7). In modeling 

clustered survival data using frailty models, often it is better to test whether the 

heterogeneity parameter is significantly different from zero or not. Such a test is based on 

50:50 mixture of chi-square distribution with zero and one degrees of freedom (Duchateau 

and Janssen, 2008). In modeling age at menarche using frailty models the estimated 

heterogeneity parameters were significant except for exponential based models.  

The estimated heterogeneity parameter was estimated to be 0.090 (95% CI: 0.030, 0.267). 

The correlation of age at menarche for any two girls lives within the same village (Kebeles) 

was estimated to be 0.043. From Annex-1 and 2, the estimated log(shape) parameters in 

weibull based frailty models are significant indicating Weibull based models are 

significantly better than exponential based frailty models in modeling age at menarche. It 

can be also seen that among estimated heterogeneity parameters the variance of random 

effect estimated by log-logistic-gamma frailty model is the maximum.    
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In modeling cluster survival data the shape of the frailty distribution also plays an important 

role. Accordingly, a gamma distribution which has large left tail leads to strong late 

dependence (Hougaard, 2000). There are many applications of the gamma frailty model. 

Lancaster (1979) suggested this model for the duration of unemployment. Aalen (1987) 

studied the expulsion of intrauterine contraceptive devices. Ellermann et al. (1992) studied 

recidivism among criminals using gamma-Weibull model. Andersen et al. (1993) used the 

gamma frailty model to check the proportional hazards assumptions in his study of 

malignant melanoma. Vaupel et al. (1979) used the gamma distribution in their studies on 

population mortality data from Sweden. 

Generally, the gamma distribution has two advantages as a frailty distribution beside its 

mathematical simplicity. The frailty distribution of the survivors at any given age is again a 

gamma distribution, with the same parameter and a different scale parameter. The second 

advantage is that the frailty distribution among the subjects experiencing event at any time is 

also a gamma distribution, with the same shape parameter plus one, and a scale parameter as 

a function of the event time (Abdulkarimova, 2013).  

This study also closely examine the effect of parental education level, house hold income 

category, work load, stunting, body mass index for age, and  MUAC on the age at onset of 

menarche. Each predictor effect was assessed with univariable analysis and those predictors 

significant at level of 0.10 were analyzed together in multivariable model. Consequently, 

mother’s education level, household income, height for age and BMI for age were identified 

as important prognostic factors in modelling age at menarche. Results of loglogistic-gamma 

frailty model indicates significant effect of maternal education level on timing of menarche 

which is similar result to study done in Bahrain (Al-Sayyad et al,1991). Similarly, study at a 

Bangladeshi University also shows the mother’s educational level and occupation (but not 

fathers) was found to have a significant influence on their daughter’s age at menarche 

(Hossainet al., 2010). 
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Study  done  in Iran  also showed  similar result that  BMI  was  significantly  associated  

with  age  at  menarche  and  being underweight  delayed menarche (Ayatollahi et al, 1999). 

Though  the  work load was  not  statistically  significant similar to Bagga and Kulkarni( 

2000)  at our multivariable result, there are studies showing girls  who  had  to  do more  

physical  work,  or  had  a  long,  tiresome  way  to  school  and  spent  greater expenditure 

of calories delay the process of puberty (Serap et al,  2009)  supporting the result of 

univariable analysis on work load. 

The result of our selected model also showed that stunted girls have delayed age at 

menarche which is consistent with the result of studies in Bangladesh (Bosh et al, 2008). 

Other studies have also declared that the stunted girls experienced a significant delay in age 

at menarche of as compared to the tallest girls (Simondom et al, 1998). Similarly, girls  who  

were  from  poor families  had  higher  age  at  menarche  than  girls  of  the  higher  classes 

(Ayatollahi et al, 1999) which consolidate with our result. 

5.2. Conclusions  

This study was based on a dataset of time to menarche obtained from Jimma longitudinal 

and family Survey of youths. The aim of this study was to model time to menarche data 

using appropriate multivariate survival models. Hence, the data was modeled using various 

frailty models. The modeling for each candidate models was done first by performing 

univariable analysis to identify important prognostic factors for time to menarche data. 

Since the analysis is based on correlated event time analysis, for frailty models we first 

observe whether the failure times are really correlated or not. The result shows that 

exponential based models produce insignificant variance of random effect (  in positive 

stable case which is not the variance of random effect). Consequently, exponential-based 

frailty models were not compared with other parametric frailty models, but these models 

found to be inappropriate compared to Weibull based frailty models.  

To identify a best distribution AIC values were used. And, the result shows that logistic –

gamma frailty models fit the data well. The adequacy of the selected model also checked 

using different diagnostic mechanisms. Plot of Cox Snell residual for log-logistic-gamma 

frailty model is well straight and close to a line which has zero intercept and unit slope. 
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Similarly, adequacy of log logistic model (log-logistic baseline distribution for frailty 

model) was assessed using plot of log(t) versus log(failure odd).  And the plot gives positive 

evidence on adequacy of log logistic distribution for our selected model. Finally, the 

assessment for outliers was performed by plotting deviance residual with risk score. And, 

the plot does not identify any clear outlier for our selected model. It has been also founded 

that mother's education, house hold income category, BMI for age and height for age 

(stunting) were important prognostic factors in modeling age at menarche.  
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ANNEX 1 : Univariable analysis 

 Univariable Shared gamma frailty model 

 

 

 

 

 

        Covariate Coefficient  SE  HR    90% CI 

Father’s education level     

 Secondary &  higher   Ref.    

 Primary   -0.035 0.085 0.966 (0.840,1.111) 

 No-education  -0.083 0.096 0.921 (0.787,1.077) 

Mother’s education level   

 Secondary &  higher  Ref.    

 Primary -0.020 0.114 0.983 (0.815,1.185) 

 No-education -0.489 0.110 0.613 (0.512,0.733)* 

Work load index 

 

-0.005 0.002 0.995 (0.991,0.999)* 

HH income category      

 Low Ref    

 Middle 0.051 0.088 1.052 (0.909,1.217) 

  High  

 

0.294 0.091 1.341 (1.156,1.557)* 

BMI for age    

 Normal  Ref    

 Underweight -0.394 0.139 0.675 (0.536,0.849)* 

Over-weight  0.075 0.155 1.078 (0.835,1.393) 

 Height for age    

   Non stunted  Ref    

  

 

 

Stunted -0.655  0.122  0.520 (0.425,0.636)* 

  MUAC  -0.003 0.004  0.997 (0.990,1.004) 

 Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.10, 

Ref=Reference group, SE=Standard Error,     =Hazard ratio, CI=confidence interval 
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Univariable :Weibull –gamma frailty  

Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.10, 

Ref=Reference group, SE= Standard Error,   =Acceleration factor, CI=confidence interval 

 

       Covariate       Coefficient  SE       90% CI 

     
   Father’s education level    

 Secondary &  higher        Ref.   

 Primary        0.002 0.008 1.002 (0.989,1.015) 

 No-education        0.003 0.009   1.003 (0.989,1.017) 

log(ρ)=2.42(SE=0.024)*           

Mother’s education 

level 

    

 Secondary & higher             Ref.    

 Primary          0.004 0.009 1.004 (0.988,1.019) 

 No-education          0.067 0.009 1.069 (1.053,1.085)* 

log(ρ) =2.481(SE=0.023)*        

     
  Workload index 

 

         0.001 0.0002   1.001 (1.0006,1.001

3)* log(ρ) =2.433(SE=0.024)*       

House hold income     

 Low           Ref    

 Middle         -0.023 0.008 0.977 (0.965,0.990)* 

   High 

 

        -0.034 0.008 0.966 (0.953,0.979)* 

log(ρ)=2.425(SE=0.024)*         

BMI for age     

 Normal        Ref   

  Underweight        0.084 0.013 1.088 (1.065,1.111)* 

Over-weight        -0.014 0.013 0.986 (0.964,1.008) 

log(ρ) =2.459(SE=0.024)*  

  Height for age     

  Non stunted       Ref   

 

 

 

Stunted 

 

    0.089 0.011 1.094 (1.074,1.113)* 

     log(ρ) =2.469(SE=0.024)*      

   MUAC       0.0005 0.0003 1.0005 (0.999,1.001) 

log(ρ) =2.420(SE=0.024)*     
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Univariable lognormal –gamma frailty   

Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.10, Ref=Reference 

group, SE= Standard Error,   =Acceleration factor, CI=confidence interval 

   

 

 

 

 

 

 

       Covariate Coefficient  SE        90% CI 

Father education level      

 Secondary &  higher Ref.    

 Primary 0.007 0.008 1.006 (0.994,1.021) 

 No-education 0.010 0.007 1.010 (0.998,1.022) 

Mother education level     

 Secondary &  higher Ref.    

 Primary 0.015 0.009 1.015 (1.001,1.029)* 

 No-education 0.065 0.008 1.067 (1.052,1.082)* 

Workload index 

 

  0.0006   0.0001  1.0006  (1.0003,1.001)* 

Household income     

 Low Ref    

 Middle -0.007  0.007 0.993 (0.982,1.005) 

 High 

 

-0.040  0.007 0.961 (0.949,0.972)* 

BMI for age     

 Normal Ref    

 Underweight 0.039  0.011 1.040 (1.021,1.059)* 

Over-weight  -0.014  0.012 0.986 (0.966,1.006) 

 Height for age     

  Non stunted Ref    

  

 

Stunted 

 

 0.070  0.010 1.072 (1.056,1.089)* 

  MUAC   0.0003  0.0005 1.0003 (0.999,1.001) 
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Univariable Loglogistic–gamma frailty  

 Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.10, Ref=Reference       

group, SE= Standard Error,   =Acceleration factor, CI=confidence interval 

 

 

 

 

 

 

 

       Covariate  Coefficient  SE         90% CI 

Father’s education level     

 Secondary &  higher  Ref.    

 Primary 0.003 0.006 1.003 (0.993,1.014) 

 No-education  0.012 0.007 1.012 (0.999,1.024) 

Mother’s education level    

 Secondary &  higher Ref.    

 Primary  0.011 0.009 1.011 (0.996,1.025) 

 No-education  0.058 0.008 1.060 (1.046,1.075)* 

Work load index 

 

 0.001 0.0002 1.001 (1.0003,1.001)* 

House hold income  

 Low Ref    

  Middle -0.004 0.007 0.996 (0.985,1.006) 

 High 

 

-0.037 0.007 0.964 (0.953,0.975)* 

BMI for age  

  Normal Ref    

  Underweight 0.033 0.011 1.033 (1.011,1.055)* 

 Over-weight  -0.013 0.012 0.987 (0.964,1.010) 

 Height for age  

  Non stunted Ref    

  

 

 

Stunted 

 

0.071 0.009 1.073 (1.058,1.089)* 

    MUAC 0.001 0.001 1.001 (0.9997,1.0014) 
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Univariable Analysis weibull  –Inverse gaussian frailty   

Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.10, Ref=Reference       

group, SE= Standard Error,   =Acceleration factor, CI=confidence interval  

 

 

   Covariate    Coefficient    SE         90% CI 

Father’s education level     

 Secondary &  higher    Ref.    

 Primary      0.002 0.008 1.002 (0.987,1.018) 

  No-education      0.003 0.009 1.003 (0.986,1.021) 

 log(ρ)=2.42(SE=0.024)*  

Mother’s education level      

 Secondary &  higher      Ref.    

 Primary      0.003 0.010 1.003 (0.985,1.022) 

 No-education      0.067 0.009 1.069 (1.050,1.088)* 

log(ρ)=11.951(SE=0.272)*  

 Workload index  

 

       0.001 0.0002 1.001 (1.001,1.0014)* 

log(ρ)=2.43(SE=0.024)*     

House hold income      

 Low       Ref    

 Middle      -0.023 0.008 0.977 (0.962,0.992)* 

  High 

 

     -0.034 0.008 0.966 (0.950,0.982)* 

log(ρ)=2.425(SE=0.024)* 

BMI for age     

 Normal       Ref    

  Underweight      0.084 0.013 1.087 (1.060,1.116)* 

Over-weight      -0.014 0.013 0.986 (0.960,1.012) 

log(ρ) =2.458(SE=0.024)*  

 Height for age     

  Non stunted        Ref    

 

 

 

Stunted 

 

      0.089 0.011 1.094 (1.071,1.117)* 

log(ρ)=2.47(SE=0.02)*  

   MUAC         0.0005 0.0003 1.0005 (0.999,1.001) 

   log(ρ) =2.419(SE=0.024)*     
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Univariable lognormal –Inverse gaussian frailty  

      Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.10, 

Ref=Reference       group, SE= Standard Error,   =Acceleration factor, CI=confidence 

interval 

 

 

 

 

 

 

 

        Covariate  Coefficient  SE         90%CI        

Father’s education level     

 Secondary &  higher  Ref.    

 Primary  0.006 0.007 1.006 (0.992,1.019) 

 No-education  0.015 0.007 1.015 (0.999,1.031) 

Mother’s education level     

 Secondary &  higher  Ref.    

 Primary   0.015 0.009 1.015 (0.998,1.033) 

 No-education   0.065 0.008 1.067  (1.050,1.085)* 

Workload index 

 

  0.001 0.0002   1.001 (1.0003,1.001)* 

 House hold income      

 Low   Ref    

 Middle -0.007 0.007  0.993 (0.979,1.007) 

  High 

 

-0.040 0.007  0.961 (0.947,0.974)* 

BMI for age     

 Normal  Ref    

 Underweight 0.039 0.011  1.040 (1.017,1.063)* 

Over-weight  -0.014 0.012  0.986 (0.962,1.010) 

 Height for age     

  Non stunted Ref    

 

 

 

Stunted 

 

0.070 0.009 1.073 (1.053,1.093)* 

    MUAC 0.0003 0.0004 1.0003 (0.999,1.001) 
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Univariable loglogistic–Inverse gaussian frailty  

   Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.10, 

Ref=Reference    group, SE= Standard Error,   =Acceleration factor, CI=confidence 

interval 

 

 

 

 

 

 

 

       Covariate Coefficient  SE       90% CI 

 Father’s education level     

 Secondary &  higher Ref.    

 Primary 0.003 0.006 1.003 (0.990,1.016) 

 No-education 0.012  0.007 1.012 (0.997,1.027) 

Mother’s education level     

 Secondary &  higher  Ref.    

 Primary  0.010 0.009 1.010 (0.993,1.028) 

 No-education  0.058 0.008 1.060 (1.043,1.077)* 

Workload index 

 

 0.001 0.0002 1.001   (1.0003,1.001)* 

House hold income 

category  

    

 Low Ref    

 Middle -0.004 0.007 0.996 (0.983,1.008) 

  High 

 

-0.037 0.007 0.964 (0.951,0.977)* 

BMI for age     

 Normal Ref    

 Underweight   0.033 0.011 1.033 (1.012,1.055)* 

 Over-weight   -0.013 0.012 0.987 (0.964,1.010) 

 Height for age     

  Non stunted Ref    

 

 

 

Stunted 

 

0.071 0.009 1.073 (1.055,1.092)* 

   MUAC 0.001 0.0005 1.001 (0.999,1.002) 
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Annex 2: Multivariable Analysis  

Weibull - gamma frailty Model 

Covariates 

 

Coefficient SE              95% CI           

Mother’s education level     

        Secondary & higher  Ref    

        Primary 0.003   0.008   1.003              (0.986, 1.021) 

        No-education 0.053   0.009   1.054              (1.037, 1.072)* 

     
Work load  index            0.001 0.0002 1.001              (1.0004,1.0011)* 

House hold income      

           Low         

           Middle -0.006 0.008 0.994               (0.979,1.009) 

           High -0.017 0.007 0.983               (0.970, 0.996)* 

 BMI for age     

           Normal    Ref    

           Under weight   0.054 0.011 1.056             (1.032, 1.079)* 

           Over weight  - 0.015 0.012    0.985             (0.962, 1.008) 

Height for age             

         Non stunted   Ref    

          Stunted 0.069 0.009 1.072              (1.052,1.092)* 

Cons= 2.629(SE=0.012)*                        ρ=13.087 (SE=0.303)*         log(ρ)=2.571(SE=0.023)  

θ=0.083(SE=037,95%CL[0.034,0.199])     = 0.039                               

Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.05, Ref=Reference 

group, SE= Standard Error, HR=Hazard Ratio 
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Multivariable 

Lognormal gamma frailty 

         Covariates                Coefficient          SE                                           95% CI            

Mother’s education level     

      Secondary & higher Ref    

      Primary 0.012   0.008 1.012              (0.995,1.029) 

      No-education 0.055   0.008 1.056              (1.039,1.074)* 

     Work load index             

ow 

 0.0002 0.0002 1.0002               (0.999,1.001) 

House hold income      

           Low Ref    

          Middle -0.007 0.006 0.993               (0.980, 1.005) 

          High -0.023 0.007 0.977               (0.964,0.991)* 

 BMI for age     

           Normal  Ref    

           Under weight   0.038 0.010 1.039             (1.018, 1.059)* 

           Over weight  -0.015 0.011   0.985             (0.963, 1.007) 

Height for age             

         Non stunted   Ref    

        Stunted 0.058 0.009 1.060              (1.042,1.079)* 

        Cons= 2.617 (SE=0.011)*                                            =0.078 (SE=0.002)*         

       θ=0.058(SE=0.032,95%CL[0.019,0.172])*                   = 0.029            

 Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.05, Ref=Reference 

group, SE= Standard Error,  =Acceleration factor 
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Multivariable  

Weibull - Inverse gaussian frailty  

 Covariates 

 

Coefficient  SE   95% CI 

     Mother’s education level     

       Secondary & higher  Ref    

       Primary 0.003   0.009   1.003 (0.986, 1.021) 

       No-education 0.053   0.009   1.054   (1.036, 1.072)* 

     Work load index 0.001 0.0002 1.001   (1.0004,1.001)* 

HH income cat     

         Low Ref    

         Middle -0.006 0.007 0.994 (0.979, 1.009) 

         High -0.017 0.007 0.983  (0.969, 0.996)* 

 BMI for age     

         Normal  Ref    

         Under weight  0.054 0.011 1.055 (1.032, 1.079)* 

         Over weight  -0.015 0.012    0.984 (0.962, 1.008) 

Height for age             

         Non stunted   Ref    

         Stunted 0.069 0.010 1.072 (1.052,1.093)* 

Cons=2.629(SE=0.012)*                         ρ =13.081 (SE=0.302)*      log(ρ)=2.571(SE=0.023)* 

 

θ=0.089(SE=0.042,95%CL[0.036,0.224])                                     

 Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.05, 

Ref=Reference group, SE=Standard Error, HR=Hazard Ratio 
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Multivariable  

Lognormal Inverse Gaussian frailty 

         Covariates                Coefficient          SE                                          95% CI           

Mother’s education level     

       Secondary & higher  Ref    

       Primary 0.012   0.008 1.012              (0.996,1.029) 

       No-education 0.054   0.008 1.056              (1.039,1.074)* 

     Work load  index  0.0002 0.0002 1.0002              (0.999,1.001) 

House hold income     

       Low Ref    

       Middle -0.008 0.006 0.992               (0.979, 1.005) 

       High -0.023 0.007 0.977               (0.964,0.991)* 

 BMI for age     

       Normal  Ref    

       Under weight  0.038 0.010 1.039             (1.018, 1.060)* 

       Over weight  -0.016 0.011    0.985             (0.963, 1.006) 

Height for age             

        Non stunted   Ref    

        Stunted 0.058 0.009 1.060              (1.042,1.079)* 

       Cons= 2.617 (SE=0.011)*                                   =0.078 (SE=0.002)*         

       θ=0.058(SE=0.032, 95% CL[0.019,0.169])*                     

 Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.05, Ref=Reference 

group, SE= Standard Error,  =Acceleration factor 
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Multivariable  

Loglogistic Inverse gaussian frailty 

         Covariates                Coefficient          SE                                        95% CI            

Mother’s education level     

       Secondary & higher  Ref    

       Primary 0.005   0.008 1.005              (0.988,1.022) 

       No-education 0.046   0.008 1.048              (1.030,1.065)* 

     
Work load index 0.0002 0.0002 1.0002              (0.999,1.001)   

House hold income     

       Low Ref    

       Middle -0.007 0.006 0.993               (0.981, 1.005) 

       High -0.022 0.007 0.978               (0.966,0.992)* 

 BMI for age     

       Normal  Ref    

       Under weight  0.032 0.010 1.033             (1.013, 1.053)* 

        Over weight  -0.015 0.011    0.985             (0.963, 1.006) 

Height for age             

       Non stunted   Ref    

       Stunted 0.060 0.008 1.062              (1.044,1.080)* 

        Cons= 2.631 (SE=0.011)*                                     γ=0.043 (SE=0.001)*         

       θ=0.085(SE=0.045,95% CL[0.030,0.239])*                             

 Source: Jimma Longitudinal Family Survey of Youth; Round 1-3, * = p < 0.05, Ref=Reference 

group, SE= Standard Error,  =Acceleration factor 
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