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Abstract 

This study was conducted with the overall purpose of comparing the performance of commonly 

used incomplete block designs over that of the classical RCBD. Among the incomplete block 

designs, Lattice design and alpha lattice designs were employed. The comparison was 

statistically done mainly based on mean square errors and their corresponding CVs for each 

design. For this purpose, three datasets obtained from SARI were analyzed using CRD, RCBD, 

lattice and alpha lattice designs. The results of the soybean variety trial data containing 8 

treatments having two factors with 3 replications at five different locations were used to assess 

the performance of RCBD over CRD. The result showed that 31, 3, 53, and 13% precision 

increased with RCBD over CRD for four sites namely, Hawassa, Areka, Gofa and Bonga, 

respectively. The CV for CRD is 25.9, 19.2, 7.3 and 12.9% for the four sites above, respectively. 

While that of RCBD is 22.6, 18.8, 5.9 and 12.3% respectively. This again confirms that RCBD is 

more efficient than CRD under those tested sites. The implication of the insignificant block 

effect is there is no need of block for this site. The results of the maize variety trial data 

containing 25 treatments with 4 replications shown that 0.4, 6.2, 15.0, 0.1 and 10.3% precision 

increased with Lattice design over classical RCBD for the five research sites namely, Hawassa, 

Areka, Bonga, Jinka and Arba Minch sub Center, respectively. The CV for lattice design was 

26.4, 20.9, 15.7, 21.7 and 18.9% for the above five sites, respectively. While that of the RCBD 

was 28.22, 25.0006, 21.8115, 26.291 and 20.5045%, respectively. This proves the increased 

efficiency of Lattice design over that of classical RCBD under SARI field condition. For the 

maize variety trial dataset containing 81 treatments with 3 replications, alpha lattice design is 

found to be more efficient than RCBD having relative efficiency of 18.8%. The CV of alpha 

lattice design is 21.1% while that of RCBD 22.9%. The relative efficiencies of three datasets and 

their corresponding CVs respectively signify that the precision of experiment increased 

significantly using incomplete block designs instead of completely blocked designs mainly when 

the numbers of treatments are increased tremendously. 

Based on the results of this study, under SARI field setup, we conclude that RCBD is more 

efficient than CRD, lattice design and alpha lattice designs are more efficient than classical 

RCBD. In order to increase the precision of agricultural field experiments researchers are 

advised to use RCBD for small number of treatments; lattice and alpha lattice designs whenever 

there are large number of treatments taking into considerations the nature of field conditions.
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CHAPTER ONE: INTRODUCTION 

1.1 Background of the study 

Experimentation plays a momentous role in the field of agriculture. A good experiment is one 

which involves good planning, accurate data collection, proper data analysis and precise 

interpretation of the data. A statistician is supportive in drawing inferences and conclusions from 

the experiment. However, before that the researcher must properly define the objectives of the 

experiment. Agronomists would like to choose an experimental design that maximizes the 

amount of information that is obtained from a fixed number of observations. To determine the 

optimal design among a set of candidates, it is necessary to define some criteria which allow 

discrimination between possible designs. Experimental design could be considered as the crucial 

state of any experiment due to its aim to ensure that the experimenter is able to detect the 

treatment effects that are of interest by using the available resources to obtain the best possible 

precision.  

Precision is the ability of an experiment to detect a true treatment effect. We can improve this 

precision by increasing the replication, proper allocation of treatments improved technique to 

reduce the variability among units treated alike, increasing the size of experimental units, the use 

of covariance, and the employment of a more efficient experimental design and method of 

analysis [27].  

Design of experiments forms the backbone of any research endeavor in the discipline of 

agriculture and clinical trials. The foundations of the statistical approach to experimentation were 

laid by R.A. Fisher in the early 1930s. The subject evolved in agriculture but is now applicable in 

almost all sciences, engineering and arts. The aim of an experiment is to compare a number of 

treatments on the basis of the responses produced in the experimental material. The confidence 

and accuracy with which treatment differences can be assessed will depend to large extent on the 

size of the experiment and on the inherent variability in the experimental material. Hence, design 

of experiments is an essential component of research in agriculture. In order to make research 

globally competitive, it is essential that sound statistical methodologies be adopted in the data 

collection and analysis [40].  
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In any experimental design, treatments are likely to be administered on experimental units under 

the same condition. However, a difference among experimental units is inevitable to occur and 

this is called an experimental error (residual). This error is primarily the basis for deciding 

whether an observed difference is real or due to chance. In other words responses from each 

treatment are obtained from different units called replications and they are essential for the 

estimation of experimental error. Replications also help to improve precision of an experiment 

by reducing the standard error of a mean or of a difference between means. Replication together 

with randomization will provide a basis for estimating the error variance. The control of 

experimental error is another aspect of experiment that needs attention. Intuitively one can 

anticipate an increase in treatment difference produced if there is a sizeable reduction in 

experimental error. To realize this, ne way of controlling error is by blocking or putting together 

similar experimental units in the same group and randomly assigning all treatments into each 

block separately and independently. The purpose of randomization is to prevent systematic and 

personal biases from being introduced into the experiment by the experimenter. 

The main technique adopted for the analysis and interpretation of data collected from an 

experiment is the Analysis Of Variance (ANOVA) technique that essentially consists of 

partitioning the total variation in an experiment into components assigned to different sources of 

variation due to the controlled factors and error. A design for agricultural trials must provide 

valid error terms and sufficient precision for the effects of interest. As Drane (1989) stated the 

manner in which the experiment is designed and executed determines what constitutes the 

experimental unit, the proper error terms in the ANOVA, and whether replication is either 

possible or desirable [11].  
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The designed experiments in this study are analyzed by ANOVA with the following two 

purposes. 

 To partition or decompose total variation in the response variable into separate components, 

each component representing a different sources of variation, so that the relative importance 

of the different sources can be assessed. 

 To give estimate of the underlying variation between experimental units in given treatment 

that provides the basis for inference about the effects of treatments. 

This second purpose is a measure of experimental error which provides the basis for interval 

estimates and significance tests. The variance or more correctly, the mean square associated with 

each of the other sources of variation may be compared with the experimental mean square error. 

This comparison provides F statistic for testing the significance of the difference among means 

for the particular variance source. In addition, ANOVA provides information from which 

standard errors of means and differences may be computed, and from which interval estimates 

may be constructed.  

Most popular method used to compare the performance of one design over the other design is 

relative efficiency. Efficiency is measured by the variance of the estimated treatment differences 

which depend on the design and the within-block variation, and it is estimated by the residual 

mean square. The efficiency of one design of experiment over another is usually measured in 

terms of reduced error variance, expected mean squared error, or average standard error of the 

difference between treatments means [12]. 

The efficiency of designs is compared in all locations to assess the efficiency of each design 

mainly their performance with respect to minimizing experimental error, coefficient of variation 

(CV) and mean squared error for yield. 

The CV affects the degree of precision with which the treatments are compared and is a good 

index of the reliability of the experiment. It is an expression of the overall experimental error as 

percentage of the overall mean; thus, the higher the CV value, the lower is the reliability of the 

experiment. 
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1.2 Statement of the problem 

Most of the time because of limited plot size, in field experiments, agricultural researchers will 

not use complete block designs, mainly when there are large number of treatments. As a result, 

most agronomists try to use different incomplete block designs such as lattice and alpha lattice 

designs.   

In this study, we address the following research questions:  

o What are the conditions to make choice among those incomplete block designs (IBD)? 

o What will be the efficiency of those designs as compared to the classical RCBD under SARI 

field setup? 

o What will be the efficiency of design when there are missing values in the dataset? 

o Is the relative performance of such designs studied and documented for the case of SARI? 

1.3 Objectives of the study 

1.3.1 General objective 

- The general objective of this study is to assess statistical performance of incomplete and 

complete block designs comparison of RCBD, lattice and Alpha lattice designs in field trials 

of Southern Agricultural Research Institute (SARI) 

1.3.2 Specific objectives 

 The specific objectives of this study were: 

- evaluating the performance of the three most commonly used experimental designs complete 

and incomplete block designs namely; RCBD, Lattice design and alpha lattice design in field 

setup of SARI. 

- assessing ways of estimating missing values in RCBD  

- to support the theoretical justifications mainly using different datasets from SARI, comparing 

different experimental designs. 

1.4 Significance of the study  

  The result of the study will contribute to: 

- identify the appropriate and efficient experimental designs for field experiments in field 

setup like SARI 

- improve the precision of agricultural field experiments through using appropriate design and 

analysis. 
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CHAPTER TWO: LITRETURE REVIEW 
 

Design of experiments had its origin in supplying layout plans of experiments for comparison 

among a number of experimental treatments in regard to some of their responses when these are 

applied to a set of experimental units under certain conditions. Mainly, the objective of 

experimental design is to select and group the experimental material so that the experimental 

error in the experiment is reduced.  

The main purpose of conducting field experiment is to compare effectiveness of different 

treatments. Precision and accuracy are vital, but valid assessment of error is also crucial thing to 

be considered. This is why, for example, yield is influenced by non-treatment factors such as 

pests and soil fertility. If these factors are ignored, extraneous variation leads to erroneous 

comparisons. Proper field design and statistical analysis will also help minimize this problem. 

Classical methods for controlling such extraneous variation include replication, blocking, and 

randomization. Here, the first two replication and blocking help to increase precision in the 

experiment, while the last one randomization is used to decrease bias of the experimenter [21].  

Most agronomic field experiments are being conducted using the concepts of replication, local 

control (blocking) and randomization [2]. 

Replication is used for the purpose of increasing in precision by reducing standard error and 

increases representation since wider area is used. Without replication there is no estimation of 

experimental error [3]. 

Randomization is used in field experiments in order to avoid systematic, selection, accidental 

biases and to avoid the subjective bias of the experimenter. It should be used whenever possible 

and practical so as to eliminate or at least reduce the possibility of confounding effects that could 

render an experiment practically. That is, randomization ensures that no treatment is consistently 

favored or discriminated being placed under best or unfavorable conditions, thereby avoiding 
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bias. It also ensures independence among observations, which is a necessary condition for 

validity of assumption to provide significance tests and confidence intervals. 

Blocking is grouping of experimental units into blocks or groups of more or less uniform 

experimental units. So, experimental units within the same block are homogeneous.  

Effective blocking not only yields more precise results than an experimental design of 

comparable size without blocking, but also increases the range of validity of the experimental 

results. 

There are different experimental designs that are being used in agricultural field experiments. 

These include Complete Randomized Design (CRD), Randomized Complete Block Design 

(RCBD) and Incomplete Block Design; lattice designs are the most frequently used. 

The most common type of experimental design for making inferences about treatment means is 

the completely randomized design (CRD), where all treatments under investigation are randomly 

allocated to the experimental units. CRD is appropriate for testing the equality of treatment 

effects when the experimental units are relatively homogeneous or the experiment is conducted 

under controlled environment. When the experimental units are heterogeneous, the notion of 

blocking is used to control the extraneous sources of variability. The major criteria of blocking 

are characteristics associated with the experimental material and the experimental setting [40]. 

As the size of block increases, variance per unit for variety contrast increases and ultimately 

leads to inefficient estimates of precision. Effective control of error variance usually requires 

relatively small blocks [13]. Under such circumstances, the use of RCBD becomes questionable. 

RCBD is one of the most frequently used experimental designs, mainly due to the following 

merits: any number of treatments and replications can be included; the statistical analysis is easy 

and it provides information on the uniformity of experimental units.  



18 
 

Incomplete Block Design (IBD): if in a randomized block designs; the number of experimental 

units in a block is less than the number of treatments. Obviously in such designs one or more 

treatment block combinations are missing. The analysis of IBD is different from the analysis of 

Complete Block Designs in that comparisons among treatment effects and comparisons among 

block effects are no longer orthogonal to each other. 

Incomplete block designs (IBD) occur as balanced or partially balanced.  In balanced incomplete 

block designs all pairs of treatments occur together within a block the same number of times. 

Since each block does not contain all treatments, block and treatment effects are confounded[37]. 

Incomplete block designs such as lattice designs provide more precise estimates when the 

homogeneity condition does not hold, mainly when there is large number of treatments in the 

experiments. 

 Lattice designs are extensively used in agricultural field experiments especially for varietal 

trials. These designs are resolvable, but the requirement that the number of treatments be a 

complete square is a limitation. A block design is resolvable if the blocks can be partitioned into 

replicates, defined as sets of blocks with the property that each treatment is assigned to one unit 

in each set [46]. 

Yates (1936) reported that RCBD is the most popular design for field experiments.  

Of the 414 agronomic field experiments in USA, the majority (72%) were implemented as 

RCBD [44]. They further described that the vast majority (96.7 %) of agronomic field 

experiments conducted by agronomists are implemented through RCBD for their simplicity and 

intuitive layout. 
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In the class of equally replicated designs with v treatments, b blocks and a common block size k, 

a balanced incomplete block (BIB) design whenever existent, is the most efficient design for 

making tests versus control comparisons according to various efficiency criteria. 

In a RCBD every treatment appears in every block precisely once. RCBD is the most efficient 

design because there is no loss of information in estimating treatment contrasts as well as block 

contrasts. RCBD is affordable when the block size contains small treatments. 

Randomized block, Latin square, and other complete block types of experiments are inefficient 

for large number of treatments, because of their failure to adequately minimize the effect of 

experimental unit heterogeneity [30]. Generally, the greater the heterogeneity within blocks, the 

poorer the precision of variety effect estimates. 

Additional improvement is possible through modeling field variability using spatial features of 

the field layout. It has been advocated that use of incomplete blocking is generally more effective 

in reducing the unexplained structured variation in comparison with complete blocking. They are 

more flexible than lattice designs and can accommodate any number of varieties. The advantage 

of alpha designs is that they are easy to construct, and can be constructed in cases where 

balanced incomplete block designs and lattice designs do not exist. The early alpha designs were 

aimed primarily at controlling variation down the columns of experimental units in the field. 

This is often adequate when experimental units are long and narrow [44]. 

Mandefro(2005) compared efficiency of alpha lattice design with RCBD and the results 

indicated that alpha lattice design improved the efficiency 8 to 9 percent as compared to RCBD 

mainly when there is large number of treatments [29].  

Yates (1936) reported that the use of alpha lattice design in an international yield trials of 

different crops and found average efficiency 18 percent higher than the RCBD [46]. 
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Gunjaca et al (2005) studied the efficiency of alpha lattice designs in Croatian variety trials of 

cereal and non-cereal variety trials composed of 152 data sets and found that the maximum 

relative efficiency of alpha lattice design compared to RCBD in cereal and non cereal varieties 

were 1.37 and 1.55 respectively. Here, the alpha lattice design increased the precision of the two 

variety trials by 37% and 55% respectively [18]. 

According to Snyder (1962) study, based on three data sets and they found that for their three 

data sets alpha lattice design increased the precision of the experiments by 26%, 17% and 55%, 

respectively. Alpha designs were used for field trials mainly because they provide better control 

on experimental variability among the experimental units under field conditions [43].  

Hatfield (2000) showed that general lattice design (alpha lattice design) was on average more 

efficient than complete block analysis in reducing the mean square error when there are large 

number of treatments [21]. Alves et al. (2009) compared the efficiency of RCBD, alpha-design, 

and row-column design in genotypic mass selection. Their result indicated that greater efficiency 

for alpha-design and row-column design, enabling more precise estimates of genotypic variance, 

greater precision in the prediction of genetic gain and consequently greater efficiency in 

genotypic mass selection [1]. 

Patterson et al. (1976) reported the efficiency of alpha lattice designs relative to other incomplete 

block designs. Using a large collection of experiments, they have shown that alpha designs on 

the average produced a 30% gain in efficiency over designs which did not use incomplete block 

designs. They also reported that the use of generalized lattice designs (alpha lattice designs) 

instead of complete block designs. In 244 cereal variety trials grown in UK has resulted in 

average reduction of 30% in variances of varietal yield differences. 

Historically agronomists have relied heavily on the CV as a measure of trial’s reliability and 

thereby to see the efficiency of their designs.   
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But, it should be noted that the CV varies with the type of experiments and the characteristics 

measured. According to Gomez and Gomez (1984) the acceptable range of CV is: 6 to 8% for 

variety trials; 10 to 12% for fertilizer trials and 13 to 15% for insecticide and herbicide trials. 

Furthermore, they pointed out that in field experiment CV for yield is about 10%, that for tiller 

number is about 20%, and for plant height CV is about 3% [17]. 
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CHAPTER THREE: STUDY METHODOLOGY 

 3.1 DATA  

This study used data from South Agricultural Research Center (SARI) one soybean yield trial 

and two maize yield trials conducted at different locations. The trials were conducted at different 

research Centers of the region using RCB, lattice and alpha lattice designs. 

The soybean trial was conducted using RCBD with three replications at five different locations; 

namely Hawassa, Areka, Gofa, Inseno and Bonga in 2007. The maize variety trial was conducted 

using 5×5 partially balanced lattice design with four replications at Hawassa, Areka, Bonga, 

Jinka and Arba-Minch centers of SARI in 2008/9. Maize variety trial was also conducted using 

alpha lattice design at Hawassa research center in 2008/9. The last experiment was laid out with 

3 replications, 81 treatments, 9 blocks and 9 plots per block.  

 

3.2 METHODOLOGY 

In this part the methodologies for the data analysis using each design was discussed in detail. 

3.2.1 Commonly used Experimental Designs under Ethiopian Context in Field Conditions 

The commonly used experimental designs in National and Regional Agricultural Research 

Institutes are completely randomized design, randomized complete block design, lattice design 

and alpha lattice designs mainly for factorial and split-plot treatment structure [15, 28]. 

3.2.1.1   Completely Randomized Design (CRD) 

This design is the simplest design from the standpoint of assignment of experimental units to 

treatments or treatment combinations. In this design, the treatments are allotted to experimental 

units entirely at random or by chance as the single group and the units forming the group should 

be homogeneous. So, this design is mostly recommended for controlled experiments such as 

laboratory or greenhouse experiments.  

The ANOVA Model:   
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where, Yij is the i
th

 observation on j
th

 treatment; μ is the overall treatments average response to a 

mean; τi is the i
th 

treatment effect; εij is the random error associated with the j
th

 experimental unit 

of the i
th

 treatment. 

The model assumption for the ANOVA of CRD: 

E(εij)= 0 observations within a treatment have the same mean for every i and j  

Var(εij)=   all observations in different treatments have the same variance, namely,    

Furthermore, we assume the εij are uncorrelated. 

 Table 1: ANOVA table for CRD with t treatments 

Source of variation Degree of freedom Sum of squares Mean squares F-value 

Treatment t-1 
  

 

Error n-t 
 

    

Total n-1 
 

  

Where, t = treatment number, n = total number of entries C=   and G is the grand total of the 

treatment.  The mean square for the treatment and error can be calculated by dividing the sum of 

squares of the corresponding variations by their df.  

To find grand mean =  and CV =  

3.2.1.2 Randomized Complete Block Design (RCBD) 

In agricultural research, the experimental units, often being plots of land or animals, will by their 

very nature be different from place to place or animal to animal etc. 

RCBD is one of the most widely used experimental designs in agricultural research. It is the 

most common and extensively used block design when the treatments are the several levels of a 

factor and also it is the most efficient design because there is no loss of information in estimating 
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treatment contrasts as well as block contrasts. This design is a restricted randomization design in 

which the experimental units are first sorted into homogeneous groups, called blocks and the 

treatments are then assigned at random within blocks. The major reason for grouping plots 

(experimental units) into uniform blocks is to reduce plot to plot variation and to improve the 

precision of the experiment. Failure to adequately block a field can result in unacceptably large 

error variance and/or biased estimates of treatment effects [13]. 

The major advantages of this design are its accuracy of results, flexibility of design and ease of 

statistical analysis. 

Blocking will increase treatment precision only if plots are blocked according to one or more 

varying external factors. If an experimental area is homogenous, blocking may actually decrease 

the precision of estimating treatment effects. This results from a larger mean square error (MSE) 

term in the ANOVA since error degrees of freedom are reduced without a comparable reduction 

in sum of square error (SSE). In this situation, (CRD) would give more precisely estimate of 

treatment effects than a RCBD [23].  

The statistical model for RCBD is:  

where   i = 1,2,3,….,a  ,  j =1,2,3….,b 

Where    is the i
th

   observation in the j
th
 block and μ is an overall mean,   is the effect of the 

i
th

 treatment,  is the effect of j
th

 block, and  is a random error component. 

Assumptions: 

 The mathematical model  is additive  

  is the (additive) effect of the i
th

 treatment and  is the (additive) effect of the j
th

 block,  

 μ and  are fixed parameters and    may be fixed or random effects. 

 As usual, the treatment and block effects are subject to the restrictions that  and  

, respectively  
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    Distributed normally and independently with mean 0 and σ
2  

i.e.    N(0, σ
2) 

ANOVA table for RCBD with t number of treatments, r replications and b number of blocks is 

given as follow: 

Table 2:   ANOVA for RCBD 

Source of 

variation 

 Df SS MS F 

Treatment (t-1) 
  

 

Block (b-1) 
  

 

Error (t-1)(b-1) 
  

 

Total tb-1 
 

  

Where, C =   , G is the grand treatment total where Ti is the treatment total for the i
th

 

experimental unit   

To find grand mean =  and CV =   

Relative efficiency of RCBD over CRD: R.E =  

It should be noted that when the error dfs is less than 20, Fisher (1974) proposed an adjustment 

to account for the discrepancies in df. He suggests that the R.E parameter be multiplied by an 

adjustment factor as:  

R.E =  x  

The analysis of incomplete block designs is different from the analysis of complete block designs 

in those comparisons among treatment effects and comparisons among block effects are no 

longer orthogonal to each other. 
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3.2.1.3 Lattice Designs 

Historically, lattice designs were developed for large-scale agricultural experiments (Yates, 

1936b) in which large numbers of varieties were to be compared. The main application since 

then has been and continues to be in agriculture. 

Even though this limits the number of possible designs, lattice designs represent an important 

class of designs nevertheless, in particular when one is dealing with a large number of 

treatments. In certain types of agronomic experiments the number of treatments can easily be 

100 or more, for example, in breeding experiments. These designs are referred to as quasi -

factorial or lattice designs. These designs are the most commonly used in agricultural research 

when the number of treatments to be tested is significantly large. But, if small, (say less than 

ten), use of an ordinary RCBD or Latin square design may be appropriate according to the 

situation of the experiment. However, when the number of treatments tested is large, as is often 

the case with varietal trials or breeding experiments, use of RCBD may not be appropriate 

because of the increase in error variance due to the larger block size. IBD, including lattice 

design facilitates the comparison of a large number of treatments which are assigned to 

incomplete blocks within replications. In lattice design, the number of treatments must be an 

exact square and the number of units in each block is the square root of the number treatments. 

Lattice designs reasonably uses small block size in order to ensure that each block does not lose 

its homogeneity due to the large size. And also each block does not contain all treatments. The 

existing lattice designs can be classified according to: Number of treatments, t; Block size, k 

Number of different systems of confounding used; Number of restrictions imposed on 

randomization 

Based on the above criterion, the two most commonly used lattice designs are: Balanced Lattice 

Besign (BLD) and Partially Balanced Lattice Design (PBLD). 

 

3.2.1.3.1 Balanced Lattice Design (BLD) 

In BLD, the number of treatments must be a perfect square and the block size is equal to the 

square root of the number of treatments. The number of replications in this design is one more 
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than the block size. Incomplete blocks are combined in groups to form separate replication. The 

special feature of this design, as distinguished from other lattices, is that every pair of treatments 

occurs once in the same incomplete block. Consequently, all pairs of treatments are compared 

with the same degree of freedom. However, if there are k blocks, there must be k+1replications 

to achieve the balance. This restriction in the number of replications and treatments makes the 

design less practical and more restrictive.  

Computational Procedure of Balanced Lattice Design: 

For k number of blocks, k+1 replication df, SS and MS for each source of variation can be 

computed as: Replication = k= r-1, Treatment (Unadj.) = k
2
-1 , Block (adj) = k

2
-1 

Intra-block error = (k-1)*(k
2
-1) , Treatment (adj.) = k

2
-1, Effective error = (k-1)( k

2
-1)  

Correction factor =     Total sum of squared=  

Replication sum of square =    Treatment(Unadj.) Sum of square=  

Block(adj.)SS =  

Intrablock error SS = Total SS - [Replication SS+ Treatment (Unadj.) SS+ Block(adj.)SS] 

Compute mean squares for the treatment, block(adj.) and Intrablock error as: 

Treatment(unadj.)MS =  

Block(adj.)MS=  , Intrablock error MS=  

Having obtained the values for the mean squares, we are now in the right position to compute the 

adjusted treatment total ( ) 

=   , where  

But, this computation is necessary only if the Intrablock error mean square is less than the block 

(adj.) mean square. In such conditions, the adjusted treatment totals ( ) for all treatments and the 
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effective error mean square should be computed. They will in turn be used in performing the 

effective error mean square is as follows. 

Treatment (adj.)MS =  

Effective error MS = Intrablock error MS(1+k ) ; F =  

If the Intrablock error mean square, on the other hand, is greater than the block (adj.) mean 

square, the value of  is taken to be 0 and, therefore there are no further adjustments necessary to 

the treatments. The F-test of significance is computed as the ratio of treatment(unadj.) mean 

squares to the Intrablock error mean square.  

Comparing the F with tabular F value we can conclude that whether there is significant 

difference among the treatments or not. 

We can determine the degree of precision with which the treatments are compared by computing: 

CV =   

Relative efficiency to estimate the precision relative to RCBD is computed as: 

  

3.2.1.3.2 Partially Balanced Lattice Design 

Partially balanced lattice Design is developed by Bose and Nair (1939) to overcome the 

problems associated with the restrictive assumptions of the balanced lattice design [40].   

The number of replications required for balanced lattice becomes very large as the number of 

treatments increases. For this reason it is not usually practical to use balanced lattices for blocks 

with more than about seven units per block. In the interest of economy, then, the scientist is 

forced to accept a partially balanced design with fewer replications than would be required for 

full balance. 

In partially balanced lattice designs, the number of replications is not restricted, but the number 

of treatment must be a perfect square and the block size is equal to the square root of the number 

of treatments. However, not all treatments occur together in the same block. This leads to 
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differences in precision with which some comparisons are made relative to other comparisons. 

The names of the sub categories of partially balanced lattice design follow the number of 

replications. For example, the balanced lattice with two replications is called simple lattice, with 

three replication triple lattice, with four replications quadruple lattice and so on. The pattern of 

statistical analysis is the same for simple, triple, and quadruple lattices. 

Table 3: ANOVA table for Partially Balanced Lattice Design with r replications, k block 

size and t = k
2 
treatments 

Source of variation  Df  SS MS F 

Replication r-1 Replication SS Replication MS  

Block (adj.) r(k-1) Block (adj.) SS Block (adj.) MS  

Treatment (unadj.) k
2
-1 Treatment (unadj.) SS Treatment (unadj.) MS  

Intrablock error (k-1)(rk-k-1) Intrablock SS error Intrablock MS error -  

Total rk
2
-1 Total SS  -  

The sum of squares for total, replication, treatment and error are computed as in any other 

designs. The sum of squares due to block is a new statistic to be computed in lattice designs. 

Correction factor: C.F =  Total SS=   , SS of replication=   

SS of block(adj.) =   , SS of treatment =  

Intrablock error SS = Total SS – SS of replication- SS of block - SS of treatment 

The mean square of the block and error are computed as usual dividing the sum of squares of 

block and error by their respective degrees of freedom. 

Eb =  and Ee =  

Then, these two mean squares are compared either to go for adjustment factor or not. If Eb ≤ Ee, 

then adjustment for block has no effect. This will lead us to ignore the blocking restriction and 

analyze the data as if the design had been a randomized block design with replications as blocks. 

If Eb Ee, an adjustment factor , is computed for the design:  =   
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Finally, the effective error mean square that can be used in calculating t-test and interval 

estimates is calculated as: =  

Adjusted treatment mean square is computed to test whether there is significant difference 

among adjusted treatment means or not. In order to do that, it is necessary to compute first the 

unadjusted blocks within replications sum of squares ( ). 

 =  

Then the adjusted treatment sum of squares, ( ), is computed as 

 =  

Computing the mean square of treatment:   =   we can compute   F=   

To find the relative precision over RCBD:   =  

Effective  = +  

Relative efficiency (R.E) of lattice design over RCBD: R.E =   ,  

% Efficiency = (R.E)*100 

3.2.1.4 Alpha-Lattice Design 

These designs, called α-designs, were introduced by Patterson and Williams (1976) and further 

developed by John and Williams (1995) to be used mainly in the setting of variety trials in 

agronomy. Alpha lattice designs are available for many (r,k,s) combinations where r is the 

number of replicates, k is the block size and s is the number of blocks per replicate (the number 

of treatments t=ks). Efficient alpha designs exist for some combinations for which conventional 

lattices do not exist. It can also accommodate unequal block sizes. This design bridges the gap 

between RCBD and lattice designs. That is it has an additional feature in that the number of 

treatments should not necessarily be a perfect square. Thus, the development of alpha-lattice 

designs removed the restrictions on the number of treatments to be considered and its relation 

with block size required for lattice designs.  

The linear model of observations in alpha design is of the form:  
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yijk = μ + ti +rj + bjk + eijk  

Where yijk denotes the value of the observed trait for i
th
 treatment received in the k

th
 block within 

j
th

 replicate (superblock) 

ti is the fixed effect of the i
th

 treatment (i = 1,2,… ,t) 

rj is the effect of the j
th 

replicate (superblock) (j =1,2,…,r) 

bjk is the effect of the k
th
 incomplete block within the j

th
 replicate (k = 1,2,…s). 

eijk is an experimental error associated with the observation of the i
th
 treatment in the k

th
 

incomplete block within the j
th

 complete replicate. 

ANOVA for an alpha-lattice design with t number of treatments, b number of blocks within 

replication, and r number replications is given in the following table:  

Table 4    ANOVA for an Alpha-lattice Design 

Source of variation  Df  SS  MS F 

Replication r-1 Replication SS MS Replication  

Block(replication) rb-1 Block(replication) SS MS Block (Replication) 
 

Treatment (adj.) t-1 Treatment (adj.) SS Treatment (adj.) MS 
 

Error rt-rb-t+1 SS error MS Error  

Total rt-1 SS total   

The procedure to compute the SS and MS for the different source of variations in the alpha 

lattice designs is almost the same as of the lattice designs using their corresponding df. 

3.2.2 Estimating Missing Data in RCBD 

In RCBD, sometimes an observation in one of the blocks might be missing. This may happen 

due to carelessness or error for reasons beyond our control such as unavoidable damage to 
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experimental units by rodent, water lodging...etc. A missing observation introduces a new 

problem into the analysis since treatments are no longer orthogonal to blocks; that is, every 

treatment does not occur in every block. There are two general approaches to missing values 

analysis: Approximate analysis and exact analysis [BIBD] 

Approximate analysis 

Suppose one observation ( ) is missing and let 

= grand total with missed value,   = treatment total with missed value 

 Block total with missed value 

 is estimated by minimizing the contribution of   to sum of squares error (SSE) 

=  =   

Where is estimate of the missing observation, is the sum of the remaining observations on 

the treatment with the missing value, is the sum of the remaining values in the block with the 

missing observation and is the grand total of all available observations;  and  are the 

numbers of replicates and treatments respectively. 

When there are several missing values, for units x1, x2, x3, x4 . . ., we first assign initial values for 

x2, x3, x3,..., and use formula above to find an approximation for x1.  

Using this approximated value and the values previously assumed for x3, x4, x5, . . ., we again use 

formula to insert an approximation for x2. 

Exact analysis [BIBD] 

Model:  ,   

 Because of incompleteness, all  don’t exist. 

 Var( is constant or homogeneity of variance assumption 
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 Additive effect of block due to block, i.e. no interaction effect  

 Usual treatment and block restrictions  And  0 

 Non – Orthogonality of blocks and treatments 

Table 5: ANOVA of BIBD for RCBD 

Source of variation  df SS MS F 

Block(Unadj.) (b-1) SSBlock(unadj.) MSBlock  

Treatment(Unadj.) (t-1) SSTreatmentunadj. MSTreatment 
 

Block(adj.) (b-1) SSBlock(adj.)  
 

Treatment(adj.) (t-1) SSTreatment(adj.) MSTreatment(adj.) 
 

Error N-t-b+1 SSError MSError  

Total N-1 SSTotal   

3.2.3 Combined Analysis of Several Experiments 

Combined analysis is done for experiments repeated at several locations such as the case at hand 

in SARI dataset. The basic steps in the combined analysis of data and from experiments repeated 

in both time and space are similar for those designs discussed earlier. 

Individual analysis of variance is computed for each location in each season. The error variances 

across the locations are checked for their heterogeneity. 

Finally, an appropriate combined analysis is completed and interpreted. The error mean square in 

the ANOVA is the sample estimates S
2
 of the error variance for these trials. These estimates 

provide the data for examining the homogeneity of variance. 

The first approach is the quick test developed by Hartley (1950) used to test the homogeneity of 

variance is provided by the ratio of the largest to the smallest S
2
 in the set.  It is often possible to 

draw a conclusion regarding homogeneity of variance without further testing.  



34 
 

The test statistic is calculated as: F=  and this ratio statistic can be compared with the 

tabulated value of Fmax with  dfs. Then, the decision on null hypothesis of homogeneity 

of variance will be made [22]. 

An alternative procedure which is more sensitive than the ratio test is the Bartlett’s test of 

homogeneity of variance (Bartlett, 1937). This test based on the natural logarithm of the sample 

variances, has been described by Snedecor and Cochran (1980). To perform this test, let: 

 Error degrees of freedom for the individual trial; : Error means square at location i 

: Number of locations Then, M = , =  and C = 1+   

The ratio  is a test statistic for the null hypothesis that each  with an estimate of . The ratio 

is distributed as  with  df. 

With this analysis we look at the magnitude of among-location variation, the variation among 

treatments, and in particular, the location X treatment interaction. The test of location X 

treatment interaction gives indication of whether or not the treatments behave the same from one 

location to another. A significant interaction means that the effects of treatment vary from 

location to location. But, in this case, the combined analysis of data from all observation has 

little meaning. 

A non-significant location X treatment interaction on the other hand doesn’t necessarily mean 

that all of the meaningful comparisons among treatments are independent of location. 

3.2.4 Design Efficiency  

In testing treatment differences, several alternative experimental designs may be used. However, 

the several designs that may be equally valid for testing treatment effects are rarely equally 

efficient. A commonly used index for comparing the efficiency of two different designs is the 

inverse ratio of the variance per unit, i.e., the MSE's. Since different designs may have different 
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degrees of freedom for error, a correction factor, suggested by Fisher (1937), which multiplies 

the inverse ratio of variances, will give a better measure of the R.E.  

The success of blocking is best measured by the relative efficiency of the RCBD as compared 

with that of the CRD. The most widely used measure of R.E is the relative precision defined as 

follows. The R.E of the CRD relative to a classical RCBD is computed as:  

R.E =       

The R.E of the PBLD relative to a comparable RCBD is computed as [17]  

R.E =     

Where SS = Sum of squares, MSE= Mean squared Error, r is number of replications and k is the 

block size. 

The R.E of an alpha lattice design compared with a RCBD is estimated [30] as: 

  R.E =   

If the resulting value of R.E is greater than 1.0, the later design is more precise than the former. 

And if the resulting value of R.E is less than 1.0, the former design is more precise than the later. 

3.2.5 ANOVA Model Diagnostic Tests 

The interpretation of data based on analysis of variance models is valid only when the 

assumptions of the models are satisfied. As a result, it is necessary to detect any assumption 

deviations and apply the appropriate remedial measures. 

3.2.5.1 Normality Assumption 

The normality assumption implies that the distribution of the response variable there by the 

residual and to be analyzed by ANOVA is normal in the population from which units are 

sampled. Shapiro-Wilk test and Kolmogorov-Smirnov test are the formal tests of normality. 

Since the Kolmogorov-Smirnov test is appropriate for only large data (sample), Shapiro-Wilk 

test will be used in this study. 



36 
 

The null-hypothesis of the Shapiro-Wilk test is that the residuals are normally distributed, 

therefore p-values that are larger than 0.05 indicate that values are normally distributed at the 5% 

level of significance. If the test is significant, the assumption of normality is violated. In this 

case, transforming the data will frequently correct the problem. Among such transformations are 

logarithmic, square root, inverse square root and reciprocal transformations will be appropriate 

depending on the nature of the data set. 

Also, the simplest check for normality involves plotting the empirical quantiles of the residuals 

against the expected quantiles. This is known as the normal QQ-plot. Thus, QQ-plots are useful 

for diagnosing violations of the normality assumption. In this method, observed value and 

expected value are plotted on a graph. If the scatter plots deviates from a straight line, then the 

data are not normally distributed. The normal, lognormal, exponential, and Weibull distributions 

can be used in the plot. 

But, if the data normality could not be stabilized by the transformation technique, still there is 

one approach which is to consider the non-parametric statistical methods. 

To test the assumption of normality, we have to look carefully at the error terms associated with 

each observation to determine whether they are randomly distributed or not.  

3.2.5.2 Homoscedasticity Assumption 

It is prudent to assess the equal variance assumption before conducting any ANOVA procedure. 

This is because ANOVA assumes the variability of observations (measured as the standard 

deviation or variance) is the same in all populations.  

There are several tests for heteroscedasticity. These include the F-ratio test (limited to testing the 

variances in two groups), Bartlett’s test and Levene’s test. The F-ratio test and Bartlett’s test 

required the populations being compared to be Normal, or approximately so. However, unlike t 

tests and ANOVA, they are not robust when conditions of non-Normality and are not aided by 
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Central Limit Theorem. Levene’s test is much less dependent on conditions of Normality in the 

population.  

Bartlett (1937) introduced the homogeneity of variance test that involves comparing a statistic 

whose sampling distribution is closely approximated by the Chi-square distribution with k-1 

degrees of freedom. The test is well established measure. However, it should be kept in mind that 

the test is a bit sensitive to non-normality, especially if the trials of the distribution are too long. 

When this occurs, the test tends to show significance too often. 

The test criterion, when k<2 independent estimate of variance , and all have the same number 

of degrees of freedom  using the logarithm to base e is: 

 =  where, M = , =  and C = 1+   

But, when the samples are unequal size, the test statistic is similar to the above one except 

computing M and C as: 

M =  and C = 1+  where,  

Hartley (1950) proposed another measure for testing the homogeneity of variance. 

This test is based on the ratio of the largest to the smallest within group variance. This is known 

as the test of homogeneity of variance.  

If the ratio is non-significant, variances are said to be homogeneous. On the other hand, if the 

ratio is significant, variances are said to be heterogeneous. 

The F-test for the homogeneity of variance is defined as: F=  Where,  - is the larger sample 

variance and  - is the smallest sample variance. The null and alternatives for Bartlett’s test is: 

H0: =   

H1: at least one population variance differs from another 
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3.2.5.3 Additivity Assumption 

Randomized block ANOVA models assume additive block and treatment effects. That is, there is 

no treatment by block interaction. Tukey's test for non additivity is a one degree of freedom test 

of the hypothesis that there is a linear treatment by linear block interaction. Our null hypothesis 

to be tested is the significance of the Additivity of the data. If the result of F-value is large, or the 

p-value is less than the level of significance 5%, we conclude that the test for Additivity of the 

data is statistically significant. As a result of this, the data are non-additive. Else, the test of non 

additivity will not be significant, that is, there is no indication of a treatment by block interaction. 

The assumption of additivity, which states that the block effects are approximately the same for 

all treatments, can be examined by using Tukey’s test. The test requires that we compute the sum 

of squares for non-additivity in the following manner: 

SSnon-additivity =   where, N: each cell of the table of raw data multiplied by the 

corresponding treatment and block effect and the sum of all the products N=  

 = sum of the treatment effect squared;  = sum of the block effect squared  

Equation of SSnon-additivity is basically, the contribution of non-additivity with one degree of 

freedom to the error sum of squares. This value is then tested against the remainder of the 

residual sum of squares to determine whether the hypothesis of additivity is correct or not. 
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CHAPTER FOUR: RESULTS AND DISCUSSION 

4.1  ANOVA Model Diagnostics Tests 

Before doing ANOVA for any designs, there are assumptions in which the response variable 

should follow among these assumptions: 

4.1.1 Normality Test 

In this study, for each data set in all research sites, the normality of the data was tested using the 

Shapiro-Wilks test and by QQ-plots. We tested the null hypothesis which states that the yield of 

variety is normally distributed against the alternative that the yield of variety is not normally 

distributed at 5% level of significance. The QQ plots of figure1 reveals that generally for the 

first dataset on soybean conducted using RCBD at the five sites in 2007, the dots in QQ plots are 

close to the line. Hence, it is reasonable to infer that the data at each location follow a normal 

distribution. 

 

Figure 1: QQ plot of the soybean trial data set at the five sites of SARI in 2007  
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The QQ plot at figure 2 shows that generally for the first dataset on maize variety trial dataset at 

five sites of SARI in 2008/9, the dots in QQ plots are close to the line. Hence, it is reasonable to 

infer that the data at each location follow a normal distribution. 
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Figure 2: QQ plot of the Maize variety trial data set at the five sites of SARI in 2001/02   

For the third dataset on maize variety trial conducted using alpha lattice design at Hawassa site 

of SARI in 2008/9, QQ plot at figure 3 shows that the dots in QQ plots are close to the line. 

Hence, it is reasonable to infer that the data at this location follows a normal distribution. 

 

Figure 3: QQ plot of residuals of the Maize trial data set at the Hawassa site of SARI in 

2008/9  
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The plot in figure 4 shows us that there is heterogeneity of variance across the five locations of 

SARI for the soybean variety trial dataset conducted using RCBD in 2007. 

 

Figure 4: Plot of the soybean variety trial data across the five locations in 2007 

From Table 6 for soybean variety data conducted using RCBD of all locations of 2007, the 

computed values of Shapiro-Wilks statistic (0.9667, 0.9487, 0.9587, 0.9430 and 0.9195) are not 

significant with their corresponding P-values (0.5888, 0.2542, 0.4131, 0.1903 and 0.0571) 

respectively. As a result, the normality assumption for Soybean variety trial data is satisfied. This 

shows that the soybean variety data in all the five locations was normally distributed.  

Table 6:  Normality test of the soybean variety trial data set in 2007 

Research sites Shapiro Normality test 

W-statistic P-value (Pr < W) 

Hawassa 0.9667 0.5888 

Areka 0.9487 0.2542 

Gofa 0.9587 0.4131 

Inseno 0.9430 0.1903 

Bonga 0.9195 0.0571 

From Table 7, we see that the computed values of the Shapiro-Wilk statistic (0.9762, 0.9897, 

0.9921, 0.9827 and 0.9816) of Maize variety data conducted using Partially Balanced Lattice 

Design in all the five sites of SARI  Hawassa, Areka, Bonga, Jinka and Arba Minch sub center 

are not significant with their corresponding  P-values (0.0679, 0.6478, 0.8287, 0.2162 and 
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0.1775),  respectively. Hence, the normality assumption of these data sets in all the five sites is 

satisfied. 

Table 7: Normality test of the Maize variety trial data set 2008/9 

Research sites Shapiro Normality test 

W-statistic P-value (Pr < W) 

Hawassa 0.976275 0.0679 

Areka 0.989792 0.6478 

Bonga 0.992104 0.8287 

Jinka 0.982745 0.2162 

Arba-Minch Sub center 0.981623 0.1775 

Table 8 shows that  the data set of the Maize variety trial conducted using Alpha lattice design at 

Hawassa site in 2008/9 the normality assumption is well satisfied having Shapiro-Wilk statistic 

and corresponding P-value (0.9861and 0.3104) respectively. 

Table 8: Normality test of two Maize variety trial data sets at Hawassa site in 2008/9 

Data set Shapiro Normality test 

W-statistic P-value (Pr < W) 

Maize data 0.9861 0.3104 

 

4.1.2 Homoscedasticity Test 

For the homogeneity of variance of each dataset in this study, Bartlett’s test was used as the all 

the datasets satisfied normality assumption.  

Looking for the results of the Bartlett’s test at table 9, for Soybean trial dataset conducted using 

RCBD in 2007 the homogeneity of variance assumption at the five sites Hawassa, Areka, Gofa, 

Inseno and Bonga was satisfied having Bartlett’s K-squared (3.8421, 0.9134, 1.638, 2.8627 and 

5.3102) with corresponding P-values (0.1465, 0.6334, 0.4409, 0.239 and 0.07029) respectively.  
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Table 9:  Homogeneity of variance test for Soybean trial dataset conducted using RCBD in 

2007 

Research Sites Test for homogeneity of variance 

 Bartlett's K-squared P value 

Hawassa  Block 3.8421 0.1465 

Treatment 3.6754 0.8163 

Areka  Block 0.9134 0.6334 

Treatment 4.1999 0.7565 

Gofa  Block 1.638 0.4409 

Treatment 9.5311 0.2167 

Inseno  Block 2.8627 0.239 

Treatment 4.9972 0.6603 

Bonga  Block 5.3102 0.07029 

Treatment 5.1609 0.6403 

From table 10, for the Maize variety trial dataset conducted using Lattice design in 2008/9 the 

homogeneity of variance assumption for the dataset of the five sites Hawassa, Areka, Bonga, 

Jinka and Arba Minch sub center is satisfied having   Bartlett’s K-squared (5.4493, 3.7744, 

14.7715, 9.252 and 3.9258) and their corresponding P-values (0.2442, 0.2869, 0.05199, 0.0551 

and 0.4161),  respectively. 

Table 10: Homogeneity of variance test for Maize variety trial dataset conducted using 

Lattice design in 2008/9 

Research Sites Test for homogeneity of variance 

  Bartlett's K-squared P value 

Hawassa  

 

Block  5.4493 0.2442 

Treatment  32.5507 0.1139 

Areka  

 

Block  3.7744 0.2869 

Treatment  13.074 0.9649 

Bonga  

 

Block  14.7715 0.05199 

Treatment  23.9068 0.4669 

Jinka  

 

Block  9.252 0.0551 

Treatment  26.5343 0.3266 

Arba Minch Sub Center Block  3.9258 0.4161 

Treatment  29.3742 0.2064 

 For the third dataset of Maize variety trial conducted using Alpha Lattice design in 2008/9 at 

Hawassa site of SARI, the homogeneity of variance assumption is satisfied having Bartlett’s K-

squared 85.4416 and its corresponding P-value (0.8722) respectively as of the table 11. 
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Table 11: Homogeneity of variance test for Maize variety trial dataset conducted using 

Alpha Lattice design in 2008/9 

Datasets  Test for homogeneity of variance 

 Bartlett's K-squared P value 

Maize data  

 

Block  85.4416 0.8722 

Treatment  64.3705 0.8985 

 

4.1.3 Additivity test 

From the analysis of Tukey’s additivity test for the datasets discussed so far, looking for the 

corresponding one df Tukey’s P-value, we will infer whether there is an interaction between 

blocks and treatments. For the soybean variety trial data set at the five sites Hawassa, Areka, 

Gofa, Inseno and Bonga the additivity assumption  is well satisfied having the corresponding P-

value (0.07345,0.3292, 0.9686, 0.8181 and 0.2808) respectively (Table 12). 

Table 12 Additivity test for Soybean trial dataset conducted using RCBD in 2007 

Research Sites Test for Additivity 

F value P value 

Hawassa  3.7914 0.0734 

Areka  1.0279 0.3292 

Gofa  0.0016 0.9686 

Inseno  0.0551 0.8181 

Bonga  1.2666 0.2808 

 

For this dataset, there is no evidence of interaction between blocks and treatments, so this model 

assumption is satisfied.  

For the Maize variety trial dataset conducted using lattice design at five sites Hawassa, Areka, 

Bonga, Jinka and Arba Minch sub center the additivity assumption is well satisfied having the 

corresponding P-value (0.3613, 0.0731, 0.3042, 0.7076 and 0.06355) respectively as shown in 

the table 13. Again for this data, there is no evidence of interaction between blocks and 

treatments.  
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Table 13: Additivity test for Maize variety trial dataset conducted using Lattice design in 

2008/9 

Research Sites Test for Additivity 

F-value  P value 

Hawassa  

 

0.8441 0.3613 

Areka  

 

5.9395 0.0731 

Bonga  

 

1.0712 0.3042 

Jinka  

 

0.1418 0.7076 

Arba Minch Sub Center 6.4125 0.06355 

Looking table 14, for the last dataset on Maize variety trial at Hawassa site, the Additivity 

assumption is well satisfied having P-value (0.09541). 

Table 14: Additivity test for Maize variety trial dataset conducted using Alpha Lattice 

design in 2008/9 

Datasets   Test for Additivity 

F-value P value 

Maize data  6.8847 0.09541 

 

4.1.4 Combined analysis for CRD and RCBD analysis 

4.1.4.1 Combined analysis of RCBD for soybean trial dataset at five locations 

Hypothesis test for the variance homogeneity at five locations: 

H0:  =   Vs H1: at least one of the variance is different 

Table 15: The MSEs of RCBD of the soybean variety trial data in five locations 

Location  ln( ) 

1 196.524 5.280 

2 159.271 5.070 

3 25.562 3.241 

4 116.074 4.754 

5 96.749 4.572 

Using the Ratio test: 

A quick test of homogeneity of variance is provided by the ratio of the largest to the smallest S
2
 

in the set as: 
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 = = 7.688, the upper 5% point for a=k=5,  is 2.6399 

The critical value is less than the test statistic; we reject the null hypothesis and conclude that 

there is heterogeneity of variance across the five locations. 

Using the Bartlett’s test: 

Here,  23, , = = 118.836,  = 594.18,   =  

M = = 22.9188, C = 1+  = 1.0174 and  = 21.8399 

(5-1) = 9.49 

As we see the tabulated Chi-square value and comparing to the Statistic ratio  , the test statistic 

is significantly greater than the critical value. Consequently, we reject the null hypothesis and 

conclude that there is heterogeneity of variance across locations. 

So, for RCBD of the soybean variety trial dataset, as we observed so far, the results using the 

two approaches reveal us there is heterogeneity of variance across the locations. 

4.1.4.2 Combined analysis of CRD for soybean trial dataset at five locations 

Hypothesis test for the variance homogeneity at five locations: 

H0:  =   Vs H1: at least one of the variance is different 

Table 16: The MSEs of CRD of the soybean variety trial data in five locations 

Location  ln( ) 

1 258.621 5.555 

2 165.526 5.109 

3 39.111 3.666 

4 112.613 4.723 

5 108.961 4.690 

Using the Ratio test: 

 = = 6.612, the upper 5% point for a=k=5,  is 2.639 

The critical value is less than the test statistic; we reject the null hypothesis and conclude that 

there is heterogeneity of variance across the locations. 

Using the Bartlett’s test 

Here, 23, , = = 136.9664  = 684.832, = 23.7458  
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M = 23.74584 = 19.6162 and C = 1+  = 1.0174, 

Hence,    = 19.2807 (5-1) = 9.49 

Looking for the tabulated Chi-square value and comparing with ratio , as the test statistic is 

greater than the critical value, we reject the null hypothesis and conclude that there is 

heterogeneity of variance across locations. 

Since there is heterogeneity of variance across the five locations, we will be forced to do the 

analysis independently for each location of the two designs CRD and RCBD. 

4.2 Randomized Complete Block Design (RCBD) 

From Table 17, for the soybean variety trial data set conducted using RCBD at the five different 

sites of SARI, the block effects are significant for the four sites namely Hawassa, Areka, Gofa and 

Bonga having corresponding p-values (0.0377, 0.0270, 0.0491 and 0.0494) respectively. But, for 

the Inseno site there is not significant block effect with P-value (0.7248). 

Table 17: ANOVA table for soybean variety trial data set conducted using RCBD in 2007 

Location Source Degree  of freedom Mean square F value P >F 

Hawassa Block 2 786.4432 4.002 0.0377 

Treatment 23 4.8758 0.0247 0.8767 

Areka Block 2 895.1737 4.555 0.027 

Treatment 23 7.21540 0.05 0.8345 

Gofa Block 2 497.9182 2.53 0.0491 

Treatment 23 4.5989 0.18 0.6779 

Inseno Block 2 14.9769 0.13 0.7248 

Treatment 23 127.9942 1.10 0.3115 

Bonga Block 2 647.6100 3.296 0.0494 

Treatment 23 554.7767 5.73 0.0312 

Table 18 shows that the relative efficiency of RCBD compared to CRD for the soybean data set in 

sites Hawassa, Areka, Gofa, Inseno and Bonga were 1.311597, 1.039272, 1.530044, 0.970182 and 

1.126223 respectively. 
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Table 18:  Summary for CRD and RCBD analysis of Soybean variety trial data in 2007 

Sites  

 

No of 

plots 

No of 

varieties 

No of blocks/ 

Replication 

Mean square error CV Relative 

 Efficiency 
CRD RCBD CRD RCBD 

Hawassa 24 8 3 258.621 196.524 25.922 22.597 1.3115 

Areka 24 8 3 165.526 159.271 19.138 18.772 1.0392 

Gofa 24 8 3 39.111 25.562 7.2739 5.880 1.5300 

Inseno 24 8 3 112.613 116.074 12.719 12.913 0.9701 

Bonga 24 8 3 108.961 96.749 12.986 12.236 1.1262 

This indicates that the use of RCBD for the sites Hawassa, Areka, Gofa and Bonga of soybean variety 

trial instead of a CRD increased experimental precision by 31, 3, 53, and 13 percent respectively. The 

relative efficiency of the RCBD compared to CRD for Inseno site is nearly one. This indicates that the 

efficiency of RCBD and CRD for this site is almost the same. Thus, blocking seems insignificant and 

unnecessary rather requiring extra cost. 

For the sites Hawassa, Areka, Gofa and Bonga the MSE under RCBD (196.524, 159.271, 25.562 and 

96.749) was smaller as compared to MSE of CRD (258.621, 165.526, 39.111 and 108.961) 

respectively. And moreover, it can also be noted that the CV of RCBD (22.597, 18.772, 5.880 and 

12.236) was low as compared to CV of CRD (25.922, 19.138, 7.2739 and 12.986) respectively. But, for 

the Inseno site, there is slight increase in MSE and as well as at the CV in the RCBD which tells us 

there is no block effect in increasing the precision of design. 

4.3  Partially Balanced Lattice Design 

Table 19 shows the results of the ANOVA of RCBD and Lattice design with their corresponding 

Mean square error and Coefficient of variation for the maize variety trial data set in 2008/9 at five sites 

of SARI. 
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Table 19: Summary table for RCBD and Partially Balanced Lattice design analysis of Maize 

variety trials data in 2008/9 

Sites No 

of plots 

No of 

Varieties 

No of blocks 

Replication 

Mean square error CV R.E 

RCBD Lattice RCBD Lattice 

Hawassa 100 25 4 352.18 350.64 28.2200 26.4 1.0043 

Areka 100 25 4 266.6 251.0 25.0006 20.9 1.0621 

Bonga 100 25 4 165.47 143.79 21.8115 15.7 1.1507 

Jinka 100 25 4 262.89 262.44 26.2911 21.7 1.0017 

Arba Minch sub 

center 

100 25 4 287.74 260.91 20.5045 18.9 1.1028 

For the Maize variety trial data set, ANOVA for RCBD and Lattice design was performed. From the 

results of the two analysis, at the five sites of SARI in 2008/9 (Hawassa, Areka, Bonga, Jinka and 

Arba Minch Sub center), the MSE under lattice design (350.64, 251.0, 143.79, 262.44 and 260.91) 

was smaller as compared to MSE of RCBD (352.18, 266.6, 165.47, 262.89 and 287.74) respectively. 

Moreover, it is noted that the CV of Lattice design (26.4, 20.9, 15.7, 21.7 and 18.9) was low as 

compared to CV of RCBD (28.2200, 25.0006, 21.8114, 26.2911 and 20.5045) for all the five sites 

mentioned above. The relative efficiency of the RCBD relative to Lattice design is 1.0043, 1.0621, 

1.1507, 1.0017 and 1.1028 for Hawassa, Areka, Bonga, Jinka and Arba Minch sub center 

respectively. Hence, the use of Lattice for the sites Hawassa, Areka, Bonga, Jinka and Arba Minch 

sub center of Maize variety trial data in 2008/9 instead of RCBD increased experimental precision by 

0.44, 6.2, 15.07, 0.17 and 10.31 percent, respectively (Table 19).  

4.4  Alpha Lattice Design 

The significance of blocking within replication (group) in both designs for these data set indicates 

that blocking was effective in reducing experimental error and furthermore, increasing precision of 

design (Table 20, 21). 
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Table 20: ANOVA for RCBD of the Maize variety trial data at Hawassa site in 2008/9 

Data set  Source Df SS MS F value P>F C.V 

Maize data  Block 2   4595.7   2297.85   15.69 5.767e-11 *** 22.914 

Treatment  80 1467.1    18.334    0.1252     0.7047 

Residuals 160 23429.2    146.43      

Table 21: ANOVA for Alpha lattice design of the Maize variety trial data at Hawassa site in 2008/9 

Data set  Source of variation  Df SS MS F value P>F C.V 

Maize data Replication 2 4388.8 2194.42 26.7225 1.629e-10 ** 21.1 % 

trt.unadj 80 7345.0 91.81 1.1180 0.2814 

replication:block.adj 24 5137.0 214.04 2.6065 0.0002 ** 

Residuals 136 11168.2 82.12   

Table 22 shows that the relative efficiency for Maize dataset was 118.851% implying that the use of 

alpha lattice design increased experimental precision by 18.851% compared to RCBD. The 

CV(21.1%) and MSE(82.12%) of alpha lattice design is low as compared to RCBD having 

CV=22.9136 and MSE = 97.6) respectively. 

Table 22: Summary table for RCBD and alpha lattice design analysis of Maize variety trial data 

set at Hawassa site in 2008/9 

Data set No of 

plots 

No of 

entries 

No of  

blocks/ 

replication  

Mean square error              CV R.E 

RCBD Alpha 

Lattice 

RCBD Alpha 

Lattice 

Maize data 243 81 3 97.6 82.12 22.913% 21.1% 1.1885 

 

4.5 RCBD with Missing Values 

Table 23 shows that the analysis of RCBD for the soybean variety trial data at Areka site with two 

missing values. This has been done in two approaches first using approximate analysis and replacing 

the estimated value then performing the usual ANOVA. The second approach is applying the concept 

of IBD. The MSE of RCBD with two missing values for missing estimate approach (197.044) is 

greater than the MSE of RCBD using IBD approach (176.641). Furthermore, the CV of RCBD with 

missing estimate approach (21.235%) is greater than the CV of RCBD using IBD approach (15.762%). 
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Table 23: ANOVA the soybean variety trial for the Areka data set with two missing values 

Analysis of variance with estimated missing value 

Source Df SS MS F value P>F CV 

Block 2 798.2745 114.0392 0.58 0.7609 21.235 

 Treatment 7 445.8454 222.9227 1.13 0.3547 

Residual 12 2364.5294 197.0441   

Analysis of variance for Incomplete Block  

Block 2 590.16 295.08 1.6705  15.763 

Treatment 7 1236.9 176.70 1.0003 0.3799 

Residual 12 2119.7 176.641   

Table 24 shows the results of the second analysis for RCBD of the soybean variety trial data at Bonga 

site with three missing values. This again has been done using the two approaches first using 

approximate analysis and replacing the estimated value then performing the usual Two-way ANOVA. 

The second approach is applying the concept of IBD for RCBD. Using the two approaches, for the 

IBD approach, the block effect is significant with p-values (0.0346). The MSE of RCBD using 

missing estimate approach (113.074) is greater than to the MSE of RCBD using IBD (91.68).  

Additionally, the CV of RCBD with estimated missing values approach (15.51659%) is greater than 

the CV of RCBD using IBD approach (13.0228%). 

Table 24: ANOVA the soybean variety trial for the Bonga site with three missing values 

Analysis of variance with estimated missing value 

Source Df SS MS F value P>F CV 

Block 2 717.3 358.65 3.1718   0.0413 * 15.5166 

Treatment 7 2247.0 321.00 2.8388   0.0195 * 
Residual 11 1243.8 113.074   

Analysis of variance for Incomplete Block  

Block 2  796.71   398.36 4.3451    0.0346 * 13.0228 

 Treatment 7  1672.9   238.98   2.6067 0.0754 
Residual 11  1008.5    91.68   
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4.6  DISCUSSION 

For the analysis of RCBD on soybean variety trial datasets, in the year 2007 the block effect was 

significant for four sites Hawassa, Areka, Gofa and Bonga. But, for the Inseno site, the blocking 

effect was not significant due to many reasons. Moreover, the relative efficiency of RCBD over 

CRD for these sites, Hawassa, Areka, Gofa and Bonga was greater than one. The use of the 

RCBD for the sites Hawassa, Areka, Gofa and Bonga of soybean variety trial data instead of a 

CRD increased experimental precision by 31, 3, 53, and 13 percent respectively. But for the 

Inseno site, the relative efficiency of RCBD relative to CRD is approximately one. This means 

among these four sites, we would have required approximately about two times as many 

replicates with CRD to obtain the same efficiency as is obtained by RCBD for Hawassa, Gofa 

and Bonga. Therefore, RCBD is more efficient than CRD for the soybean variety trial datasets at 

the four sites, Hawassa, Areka, Gofa and Bonga. But, for the Inseno site, because of many 

factors, blocking doesn’t seem to be appropriate. That is, experimental units seems to be 

homogeneous than the expected heterogeneous. Looking for the MSE and CV, for the sites 

Hawassa, Areka, Gofa and Bonga the MSE under RCBD was smaller as compared to CRD and it 

can also be noted that the CV of RCBD was low as compared to CRD.  

But, for the Inseno site, there was slight increase in MSE in the RCBD as well as in CV, there 

was slight increase. This tells us there is no blocking effect in increasing the precision for this 

site. This may be due to technical problems like wrong block orientation and direction which 

render blocking ineffective (Girma, 2005).   

It was also tried to see analysis of RCBD when there are missing values. Using the two 

approaches for the analysis of RCBD, the IBD approach revealed to be better approach with less 

MSE and lower CV as compared to the missing estimate approach. As a result using IBD is more 

efficient than the estimated missing approach of RCBD for the SARI field condition. 

Results from the analysis of lattice design indicates that the CV and the MSE of Maize variety 

trial was calculated for Hawassa, Areka, Bonga, Jinka, and Arba Minch research centers and CV 

and MSE of RCBD were greater than that of lattice design. The efficiency of lattice design 

relative to RCBD shows that in those five sites considered, lattice design was more efficient than 

RCBD. The significance of blocking within replication (group) in both designs for the maize trial 
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dataset indicates that blocking was effective in reducing experimental error and furthermore, 

increasing precision of design.  

For the Maize variety trial data at Hawassa site in 2008/9, the MSE for alpha lattice design was 

smaller as compared to RCBD. Moreover, it can be noted that the CV of Alpha Lattice design 

was lower as compared to RCBD. 

The relative efficiency of Alpha Lattice design relative to RCBD is 1.1885 for the Maize data at 

Hawassa site. This implies that the use of Alpha Lattice for the Maize variety trial data set at 

Hawassa site in 2008/9 instead of RCBD increased experimental precision by 18.8504 percent. 

From the experiment in the Maize data set (Table 22) smaller MSE was observed for alpha 

lattice design than RCBD. The CV of alpha lattice design is low as compared to RCBD. Lower 

CV for the alpha lattice design indicates a good index of reliability. The relative efficiency of 

greater than one indicates how much efficient alpha lattice design is as compared to RCBD. 

Because of the value of relative efficiency is greater than one, alpha lattice design results in 

smaller error variance. Alpha lattice design provided better control of within replicate variation 

and also better control to experimental error than RCBD. This study showed that alpha lattice 

design is more efficient than RCBD. This was similar with the findings of Patterson and Hunter 

(1983), Yau (1997), and Masood et al. (2008). 
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CHAPTER FIVE: CONCLUSION AND RECOMMENDATION 

5.1   CONCLUSION 

The primary objective of this study was to compare and identify the more efficient experimental 

design for agricultural trials under SARI field condition. Accordingly, we came up with the 

following conclusions:     

For the first data set on soybean variety trial at the five sites of SARI in 2007, on average RCBD 

was found to be more efficient than CRD for four of the sites. Perhaps, due to technical problem 

on the proper orientation of blocks or any other potential reasons, blocking effect was low or 

insignificant at the Inseno site. It is therefore important to consider RCBD in the SARI trials. 

However, block orientation and direction should be carefully made according to the gradient of 

the field experiment.  

For the Maize variety trial, lattice design was found to be more efficient than RCBD in 

increasing the precision of the field experiments under the SARI condition.  

Also, for another Maize variety trail dataset, alpha lattice design was found being more efficient 

design than RCBD improving the precision of field experiments. Under heterogeneity of 

experimental units and in a situation where there are large number of varieties to be tested, the 

chance that family of incomplete block designs being used is quite high. 

 

 

 

 

 

 

 



56 
 

5.2 RECOMMENDATIONS 

Based on the results of the analysis of CRD, RCBD, Lattice and Alpha-lattice designs under 

the field conditions of SARI, the following possible recommendations are given: 

 To control variability in field experiments, it is suggested that an experiment with an RCBD 

could be replaced with family of incomplete designs like lattice or alpha lattice design 

whenever the number of treatments in the experiment is quite large. This is mainly because, 

in such situation finding a homogeneous block is quite difficult and sometimes it is 

impossible. 

 For a large number of missing values in RCBD, we recommend that agricultural researchers 

should opt for incomplete block design analysis approach instead of using missing-estimated 

approach. 

 For some locations used in this study, may be blocking is not necessary.  This can be due to 

technical issues such as orientation and direction of blocking. So, we recommend that further 

studies should be done in this area so that appropriate design will be recommended for future 

use. 
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