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ABSTRACT 

Background: under-five child mortality indicates the probability of dying between birth and 

exactly five years of age, expressed per 1,000 live births. Under-five child mortality is 

considered to be one of the key health indicators in an economy. This study aimed to investigate 

the potential risk factors affecting time-to-death of under-five children in Ethiopia using 

parametric shared frailty models where region  were used as a clustering effect in the model. 

 

Methods: Parametric shared frailty models have been used with three baseline hazard function 

(Weibull, Log-logistic, Log-normal) and two frailty distributions (Gamma, Inverse-Gaussian). 

From 2011 Ethiopian Demographic Health Survey (EDHS) 9433 under-five children were 

included from nine regional states and two city administrations. Data were analyzed using 

statistical software such as: R version 3.2.5 and STATA version 12.0.  

 

Results: The median death time of under-five children in Ethiopia was 12 months. The 

clustering effect was significant and Log-normal-Inverse Gaussian shared frailty model was 

preferred over Weibull and Log-logistic Gamma shared frailty models based on Akaike 

Information Criterion (AIC) and graphical evidence. The result showed women’s educational 

level, wealth index, type of births, total children ever born, preceding birth intervals and place of 

delivery were significant, where as sex of household head and religion were not significant 

covariates for under-five child mortality in Ethiopia. 

 

Conclusion: The result suggested that the timing of death of under-five children from different 

region had different pattern, since there was a frailty (clustering) effect on the time-to-death of 

under-five children among regions of Ethiopia.  

 

Key Words: Survival data analysis, Parametric shared frailty models, Under-five mortality, 

Time-to-death, Clustering effect, Ethiopia. 
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1. INTRODUCTION 

1.1.  Background  

Under-five mortality is the probability that a child will die before reaching the age of five 

(IGME, 2015). Under-five mortality is a key indicator of child well-being, including health and 

nutrition status. It is also a key indicator of the coverage of child survival interventions, social 

and economic development (UNICEF, 2014). Bryce et al. (2006), Sewanyana and Younger 

(2008) observed that reducing under-five mortality is one of the Millennium Development 

Goals and in fact it is the fourth Millennium Development Goal (MDG4) which states that 

under-five mortality are to be reduced by two-thirds between 1990-2015. While birth history 

data have been widely used for estimating under-five mortality at a national level, there are 

relatively few instances (Bangha and Simelane, 2007; Storeygard et al., 2008; Singh et al., 

2011; Bauze et al., 2012) where they have been used to estimate mortality at a fine sub national 

level, due to primarily concerns about small sample sizes.  

 

Globally, under-five deaths have dropped from 12.7 million in 1990 to 5.9 million in 2015. 

This is the first year that the figure has gone below the 6 million mark. New estimates in 

Levels and Trends in Child Mortality Report 2015 released by UNICEF, the World Health 

Organization, the World Bank Group, and the Population Division of UNDESA, indicate that 

although the global progress has been substantial, 16,000 under-five children still die every day 

and 53 percent drop in under-five mortality is not enough to meet the Millennium 

Development Goal of a two-thirds reduction between 1990 and 2015.  Kyaddondo (2012) 

described the under-five child mortality rate in Sub-Saharan Africa as a high mortality rate and 

that of Southern Asia as moderate. The above mentioned concerns are some of the reasons why 

under-five mortality has attracted many researchers in order to identify the factors strongly 

associated with high under-five child mortality rate and to evaluate the various government 

interventions. 

 

In Ethiopia, under-five mortality rate has declined by two thirds from the 1990 figure of 

204/1,000 live births to 68/1,000 live births in 2012, thus meeting the target for Millennium 

Development Goal 4 (MDG 4) on child survival three years ahead of time. In absolute numbers 

the under-five deaths in Ethiopia has declined from nearly half a million 444,000 a year in 

1990, to about 196,000 in 2013.  



2 
 

About 44% of the childhood deaths occur within the first 28 days of life, thus increasingly 

accounting for a larger proportion of the under-five deaths. Over two-thirds of under-five 

deaths in Ethiopia are caused by few and easily preventable conditions; mainly infections, 

neonatal conditions and malnutrition. 

 

Kleinbaum DG. et al. (1996) and Hosmer, D., and Lemeshow et al. (1998), the origin of 

survival analysis goes back to mortality tables from centuries ago. Survival analysis is a 

statistical method for data analysis where the outcome variable of interest is the time to the 

occurrence of an event (Klembaum, 1996). Hence, survival analysis is also referred to as 

"time-to-event analysis", which is applied in a number of applied fields, such as Medicine, 

Public Health, Social Science, and Engineering. To measure heterogeneity caused by 

unobserved covariates it is necessary to include random effect term or frailty into the model. 

Thus the frailty model is a random effect model for time-to- event data which is an extension 

of the Cox proportional hazard model. Frailty models are substantially promoted by its 

applications to multivariate survival data in a seminal paper by (Clayton, 1978) without using 

the notion frailty. The term frailty was first coined by Vaupel et al. (1979). 

 

In this study, parametric shared frailty models used, by assuming that time-to-death of under-

five children within the same cluster (region) shares similar risk factors, which could be taken 

care of the frailty term at regional level. This model is a conditional independence model 

where the frailty is common to all individuals in a cluster and therefore responsible for creating 

dependence between event times. Also, parametric frailty models are used to investigate the 

relationship between different potential covariates and time-to-death of under-five children for 

clustered survival data with a random right censoring. And, accelerated failure time models 

also fit by using Weibull, Log-logistic and Log-normal baseline distributions to compare and 

get the best model which fits the time-to-death of under-five children data appropriately on 

2011 EDHS dataset . For the frailty distribution that have been assumed Gamma, Inverse-

Gaussian and the comparison of different distributions selected by using AIC. It also 

investigated the causes for the reduction of under-five child mortality and identifies the more 

important factors associated with the decrease of under-five mortality by using a survival 

analysis of parametric shared frailty models. 
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1.2.  Statement of the Problem 

The variation in under-five mortality rates between the developing and developed nations is more 

than 78-fold, from a high of 180 per 1,000 live births in Angola to only 2.31 per 1,000 live births 

in Singapore (World Fact book, 2011). Evidence shows that only about one-third of all countries 

in Africa show a decline of 30% or more in under-five mortality, while a number of countries 

sadly show a considerable increase (Becher, 2010). Sub-Saharan Africa has the world’s highest 

child mortality rate, which is 86 deaths per 1,000 live births in 2015 (UN, 2015). Mortality trends 

from EDHS surveys conducted in 2000, 2005, and 2011 shows that under-five mortality rates 

obtained by the surveys evidence was a continuous declining trend in under-five child mortality. 

Under-five mortality decreased from 166 deaths per 1,000 live births in the 2000 survey to 88 

deaths per 1,000 live births in 2011. Even there were a decline number of under-five child 

mortality, still the number in Ethiopia is 68 deaths per 1,000 live births. 

 

As the era of the MDGs comes to an end in 2015, a new framework for global development will 

be put in place. The Post-2015 Development Agenda will culminate in the formulation of a new 

set of goals and targets. One goal of sustainable development is reducing the under-five mortality 

rate to 25 or less deaths per 1,000 live births (UNICEF, 2015). So, Ethiopia is the one to meet the 

Post-2015 Development Agenda.  

 

Most researches were conducted by using the Cox PH model for time-to-death of under- five 

children. The model is used to show the effects of covariates with time. It does not control the risk 

factor for some relevant covariates that are often unobservable or difficult to measure even 

unknown (Wienke, 2010).  

 

This research aimed to explore factors that affect time-to-death of under-five children in Ethiopia 

using parametric shared frailty models. Frailty term was added to account the correlation which 

comes from the cluster, accounts unobservable random effect. Thus, the study aimed to address 

the following research questions: 

I. What are the important predictors of time-to-death of under-five children in Ethiopia? 

II. Is there any heterogeneity of under-five children mortality in regional states of Ethiopia?  

III. Which baseline distributional assumption among the Weibull, Log-normal and Log-

logistic; as well as frailty distributions, the Gamma and Inverse-Gaussian distributions 

well describe the time-to-death of under-five children in Ethiopia?  
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1.3. Objectives of the Study 

1.3.1. General Objective 

The main aim of this study is to model time-to-death of under-five children in Ethiopia using 

Parametric Shared Frailty Models. 

 

1.3.2. Specific Objectives 

I. To determine the impact of important demographic, socio-economic and environmental 

variables on time-to-death of under-five mortality in Ethiopia. 

II. To assess the clustering effect in determining the factors associated with time-to-death of 

under-five children in Ethiopia. 

III. To estimate the survival time and compare survival curves among the different covariates 

of under-five children in Ethiopia. 

 

1.4. Significance of the Study 

The significance of this study will provide information on under-five child mortality in Ethiopia 

and its determinant factors. Specifically; 

I. To provide information about the covariates or risk factors of under-five mortality and 

recommend the way for the government and stakeholders on which factor/s they give a 

better attention.     

II. To provide information to government and concerned bodies in setting policies and 

strategies. 

III. Useful for further studies related to under-five child mortality. 
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2. LITERATURE REVIEW 

2.1. Under-five mortality  

Child survival interventions were launched by the United Nations Children’s Fund (UNICEF) and 

WHO in the 1980s after the world economic meltdown. Globally, tremendous progress has been 

made on the reduction of under-5 mortality. However, this has been unequally distributed. At the 

regional level, the decline in under-five mortality rates between 1990 and 2012 were over 60% for 

three WHO regions: the Americas, European and the Western Pacific regions. Mortality rates 

among children under the age of five remain strikingly high throughout the majority of Sub- 

Saharan Africa. This means that the African region has increasing share of under-five deaths 

(WHO, 2012). 

 

By 2050, consequently, 37% of the world’s children under age five will live in Sub-Saharan 

Africa; while close to 40% of all live births will take place in that region. This is very hazardous 

if the risk and the exposure rates are not addressed. There is a possibility that the mortality 

numbers might stagnate or even increase if no much progress will take place in the African 

region. Despite Sub-Saharan Africa’s relatively high rates of under-five mortality, there are signs 

of progress in the region. The pace of decline in the under-five mortality rate has accelerated over 

time, with an increase from 0.8 % per year in 1990-1995 to 4.1% per year in 2000-2012. 

Currently, childhood mortality remains a big issue for these developing countries, especially as 

researchers attempt to distinguish what factors contribute to the high levels (WHO, 2012). 

 

2.2. Determinants of under-five mortality 

Mosley et al. (1984), an analytical framework for the study of child survival in developing 

countries proposed an analytical framework for the study of determinants of child survival in 

developing countries. The study incorporates both social and biological variables and integrates 

research methods used by social and medical scientists to study child survival. The frame work is 

based on the premise that all social and economic determinants of child mortality necessarily 

operate through a common set of biological mechanism or proximate determinants that exert an 

impact on mortality. 
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Mosley and Chen (1981) also viewed morbidity and mortality of the child as being influenced by 

underlying factors of both biological and socio-economic, operating through proximate 

determinants. Jinadu et al. (1991), in a study, found dirty feeding bottles and utensils, inadequate 

disposal of household refuse and poor storage of drinking water to be significantly related to the 

high incidence of diarrhea. Studies have also shown maternal education to be a significant factor 

influencing child survival (Caldwell, 1979; Orubuloye and Caldwell, 1975; Meegama, 1980; 

Tawiah, 1979; Adewuyi and Feyisetan, 1988). 

 

Hobcraft et al. (1984), identified five main social-economic factors that influence under the age of 

five survival and these include mother's education, mother's work status, husband's occupation, 

husband's education and type of place of residence. They used a simple tabular analysis followed 

by a multivariate approach in order to assess the relative importance of each of the five variables. 

The study used the World Fertility Survey data that was based on enquiries from 28 developing 

countries. In Asian countries, mother's level of education was seen to be strongly associated with 

mortality of the child during the first five years of their life. In America, results indicated that the 

husband's education was most important and in a few African countries, infant mortality was 

relatively strongly associated to husband's occupation and education. 

 

Sengonzi and Shannon (2002) examined the effect of female migration on the health and survival 

of the most vulnerable migrants (infants and children) in Uganda. He used the Log-logistic 

regression techniques to analyze the probability of a child surviving up to the age of five. Results 

showed that 10% of the children die before age five and within group difference in mortality 

exists in urban and rural children depending on their mother's migration status. Other variables 

like parent’s education, household size, household hardship, and mother’s age at first birth, 

duration of breast feeding and place of delivery were seen to be significant. 

 

In the Matlab area of Bangladesh, DaVanzo et al. (2008) in an in-press article find that shorter 

intervals are associated with higher mortality after controlling for other correlates of under-five 

mortality. The effects after the first month appear due to sibling competition since effects of short 

intervals are greater if the older sibling was still alive but many relationships are found to be 

consistent with maternal depletion. Effects were also greater if the interval began with a live birth 

than with a non-live birth. When compared with inter-outcome (pregnancy to conception) 

intervals, significant results were found for intervals shorter than 24 months for early neonatal 

mortality, for intervals shorter than 36 months for late neonatal mortality, post-neonatal mortality 
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and child (age one to four years) mortality. These effects persist when potentially confounding 

factors (prematurity, breastfeeding, and immunizations) and demographic and socioeconomic 

variables are controlled. Short subsequent inter pregnancy intervals are also associated with a 

significantly higher risk of mortality for the index child. This study used a large, high-quality 

longitudinal dataset of 145,000 pregnancy outcomes gathered over a period of more than 20 years 

in an experimental setting. 

 

The major causes of under-five mortality in Ethiopia were ARI/Pneumonia (21%), diarrhea 

(14%), complications of prematurity (12%), intra partum related events (birth asphyxia) (9%), 

meningitis (6%), and measles (4%). Other causes of death (including deaths due to severe 

malnutrition) accounted for 18% of under-five mortality (UNICEF, 2012).  

2.3. Survival Analysis 

Survival analysis is a statistical method or tool used to analyze time to events data. The most 

common event of interest in the earlier development of research was death; this therefore suggests 

the name of the research area Survival analysis. Survival analysis is a highly active area of 

research with application in many fields of study which include engineering, physical, biological 

and social sciences (Cleves et al., 2008, Klein and Goel, 1992). An event is an outcome on an 

individual unit that is a scientific interest in different studies like sociology, biology, demography, 

medicine, employment among other fields.  

 

2.3.1. Frailty Models  

The notion of frailty provides a convenient way to introduce random effects, association and 

unobserved heterogeneity into models for survival data. In its simplest form, a frailty is an 

unobserved random proportionality factor that modifies the hazard function of an individual, or 

related individuals. In essence, the frailty concept goes back to work of Greenwood and Yule 

(1920) on "accident proneness’’.   

 

The frailty distributions most often applied are the Gamma distribution (Clayton 1978; Vaupel et 

al. 1979), the positive stable distribution (Hougaard, 1986b), a three-parameter distribution 

(Hougaard, 1986a), the compound Poisson distribution (Aalen, 1988, 1992) and the Log-normal 

distribution (McGilchrist and Aisbett, 1991). Frailty models have been applied to the analysis of 

event history data, including the study of age at time of death for individuals in terms of 

population (Zelterman, 1992). Flinn and Heckman (1982) used a Log-normal distribution for 
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frailty, whereas Vaupel et al. (1979) assumed that frailty is distributed across individuals as a 

Gamma distribution. Recent research has addressed the problem of heterogeneity. Hougaard 

(1986) suggested the power variance function (PVF) distribution which includes Gamma, 

Inverse-Gaussian as frailty model. Hedeker et al. (1996) discussed a frailty regression model for 

the analysis of correlated grouped time survival data. 

 

Multivariate frailty models have been used frequently for modeling dependence in multivariate 

time-to-event data (Clayton, 1978; Hougaard, 2000; Oakes, 1982a; Yashin et al., 1995). The aim 

of the frailty is to take into account the presence of the correlation between the multivariate 

survival times. Kazembe et al. (2012) and Omariba et al. (2007) used the Weibull unobserved 

heterogeneity (frailty) survival model on the 1998 Kenya DHS data to analyze the determinants of 

under-five mortality in Kenya. They compared the results of the standard Weibull survival model 

to the frailty Weibull model. They also mentioned that non-frailty models are biased due to the 

violation of the statistical assumption of independence.  The shared frailty model is relevant to 

event times of related individuals, similar organs and repeated measurements. Individuals in a 

cluster are assumed to share the same frailty, which is why this model is called shared frailty 

model. It was introduced by Clayton (1978) and extensively studied in Hougaard (2000).  

 

The Logistic-model is the most popularly used model because it assumes that child survival is a 

binary response: child is dead or alive, Kazembe et al. (2012) . But it ignores time to event and 

therefore fails to include the exposure to the risk of the event overtime. Other models like the Cox 

proportional hazard model by Cox (1972) are widely used to deal with time-to-event data and 

their relevancy on research in survival analysis in demography and related fields has increased 

over the years. The Cox model has several advantages and some of them are; (a) ability to include 

analysis of censored and truncated data (b) ability to include analysis of time varying covariate 

effects and lastly (c) the extensions of the Cox regression models with the inclusion of random 

effects and flexible modeling through semi-parametric and non-parametric approach. There is an 

advantage of these models over the ordinary generalized linear models as demonstrated by 

Kazembe et al. (2012). The random effects allows for the modeling of the unobserved covariates 

(and inherent heterogeneity) or frailty. These factors may be at a family, district, community, 

regional or national level and these cannot be ignored because they have an effect on the outcome. 
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3. DATA AND METHODS 

3.1. Study area 

 This study is conducted in the place where Ethiopia on under-five children surveyed in 2011 

EDHS. Ethiopia is situated in the horn of Africa covering about 1.1 million square kilometers 

area. The country shares border with Djibouti, Eritrea, Kenya, Somalia, South Sudan and Sudan. 

It has great geographical diversity, with high peaks ranging from 4,550 m above sea level to low 

depressions of 110 m below sea level.  

 

Ethiopia is the second most populous country in Africa with a total population of 90.1 million, of 

which more than 84% live in rural areas. It has a broad geographic spectrum and over 80 distinct 

ethnic groups. Ethiopia’s population is young with 45% being under the age of 15 and 14.6% 

(13.2 million) being under the age of five. The average household size is 4.8 people, with the 

urban population having a smaller mean household size (3.6) than the rural population (5.1) 

(CSA, 2014). Life expectancy at birth is 64 for both sexes with 65 years for women and 62 years 

for men (WHO, 2014). 

 

The country is divided into nine administrative regions, namely: Tigray, Affar, Amhara, Oromiya, 

Somali, Benishangul-Gumuz, Southern Nations Nationalities and Peoples (SNNP), Gambela and 

Harari regional states and two city administrations, namely: Addis Ababa and Dire Dawa. The 

regions are divided into zones, woredas and kebeles which are the lowest level of administration. 

The woreda is the most important local government structure, acting as the basis for most 

administration and management. Currently there are 956 woredas, representing around 100,000 

people each and 16,541 kebele (FMOH, 2014/15), with average catchment populations of 5,000 

people each. 
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Figure 3.1: The map of Ethiopia (Reinikka and Collier, 2001). 

3.2. Data Source 

 The source of the data used in this study was the 2011 Ethiopia Demographic and Health Survey 

(EDHS, 2011) conducted in Ethiopia as part of the worldwide demographic and health survey 

project. The 2011 Ethiopia Demographic and Health Survey were conducted by the Central 

Statistical Agency (CSA) with the support of the Ministry of Health. This was the third 
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Demographic and Health Survey DHS conducted in Ethiopia, under the worldwide measure DHS 

project, a USAID-funded project providing support and technical assistance in the 

implementation of population and health surveys in countries worldwide. The primary objectives 

of the 2011 EDHS were to provide up-to-date information for planning, policy formulation, 

monitoring, and evaluation of population and health programs in the country.  

3.3. Sampling Design  

The sample for the 2011 EDHS was designed to provide population and health indicators at the 

national (urban and rural) and regional levels. The 2007 Population and Housing Census, 

conducted by the CSA, provided the sampling frame from which the 2011 EDHS sample was 

drawn. During the 2007 census each kebele was subdivided into census enumeration areas (EAs), 

which were convenient for the implementation of the census. The 2011 EDHS sample was 

selected using a stratified, two-stage cluster design and EAs were the sampling units for the first 

stage. The sample included 624 EAs, 187 in urban areas and 437 in rural areas. Households 

comprised the second stage of sampling. A complete listing of households was carried out in each 

of the 624 selected EAs from September 2010 through January 2011.The sample size in this study 

is 9433 total under-five children. Information on under-five child mortality was found from the 

birth histories those were included in the survey. Since the interest of this study is about under-

five children. 

 

3.4. Variables in the study 

3.4.1. Dependant variable 

The dependent variable of the study is the duration of time from date of birth until date of death, 

which is measured in months. The censored observations denoted by 0 (under-five children who 

survived in the past 59 months), whereas event indicated by 1 (under-five children who died 

before reaching fifth birth day). 

3.4.2. Independent variables  

The independent variables considered in this study to investigated time-to-death of under-five 

children were: women’s education, wealth index, type of births, total children ever born, 

preceding birth intervals, place of delivery, sex of household head and religion. Table 3.1, 

describes these variables with their coding. 
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Table 3.1: Description of independent variables used in the analysis 

Variables Description Categories 

   
Women’s education Women’s educational level 0= No education;1= Primary; 

2= Secondary and above  

 

Wealth index Household wealth index 0= Poor; 1=Middle; 2=Rich 

Type of births Type of births 0= single birth, 1= multiple 

birth 

Total children ever born Total children ever born 0= 1-3 children ; 1= 4-6  

children  ; 2= 7-9  children ; 3= 

≥ 10  children 

 

Preceding birth intervals Preceding birth intervals < 24 months =0, 24-47 months 

=1,≥48 months =2 

 

Place of delivery  Place of delivery Health facility=0,elsewhere=1 

Sex of household head Sex of household head 0= male; 1=female  

Religion Religion 0= Muslim, 1= orthodox, 2= 

Protestant, 3= other  

NB: For this research Region is considered as a clustering effect in frailty model. 

 

3.5. Methods of Data Analysis 

3.5.1. Survival Analysis 

Survival analysis is used to describe the analysis of data in the form of times from a well-defined 

time origin until the occurrence of some particular event or end point. A survival time is censored 

if all  is known that is began or ended within some particular interval of time, and thus the total 

spell length (from entry time until transition) is not known exactly ( Klein and 

Moeschberger,2003). We may distinguish the following types of censoring: 

 

 Right censoring: at the time of observation, the relevant event (transition out of the 

current state) had not yet occurred (the spell end date is unknown), and so the total length 

of time between entry to and exit from the state is unknown. Given entry at time 0 and 

observation at time t, that the completed spell is of length T > t. 
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 Left censoring: left-censored data are those for which it is known that exit from the state 

occurred at some time before the observation date, but it is not known exactly when. 

 

 Interval censoring: Interval-censoring occurs when the event of interest is known only to 

occur within a given period of time. Both left-censored and right-censored data are special 

cases of interval-censored data, where the lower endpoint is 0 and the upper endpoint is ∞, 

respectively. 

There are generally three reasons why censoring may occur: 

(1) A person does not experience the event before the study ends. 

(2) A person is lost to follow-up during the study period. 

(3) A person withdraws from the study because of death (if death is not the event of interest). 

There are two basic functions that are very important in the whole theory of survival analysis. 

These are the survival and hazard function. 

 

3.5.1.1. Survival Functions 

Given a random variable T that denotes the survival time, the basic quantity employed to describe 

time-to-event phenomenon is the Survival Function S(t), and it is defined as: 

S(t) = P[T > t]  = the probability that an individual survives beyond time t.  

Since a unit either fails, or survives, and one of these two mutually exclusive alternatives must 

occur, the survival function is: 

S(t) = 1 - F(t)……………...…………………………………….…………………(1) 

Where, F(t) is CDF. If T is a continuous random variable, then S(t) is a continuous, strictly 

decreasing function. The survival function is the integral of Pdf, that is: 

S(t) =∫ 𝑓(𝑢)𝑑𝑢
∞

𝑡
 ……………………………………………..………………...… (2) 

f(t) = − 
𝑑𝑠(𝑡)

𝑑𝑡
  ……………………….…………….……….……………………...(3)    
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3.5.1.2. Hazard Function 

The hazard function is the probability that an individual will experience an event (like, death) 

within a small time interval, given that the individual has survived up to the beginning of the 

interval. It is proportional to the instantaneous “risk of failing” at any time t, given that an 

individual has lived at least to time t. The hazard function is denoted by h(t) and is defined by the 

following equation: 

h(t) =  lim
                            ℎ⟶0

𝑃[𝑡 ≤ 𝑇 ≤ 𝑡 + ℎ|𝑇 ≥ 𝑡]

ℎ
                        

 h(t) = f(t)/S(t)  ………………………………………………….………..…….(4) 

Since h(t) is also equal to the negative of the derivative of ln{S(t)}, we have the useful identity: 

S(t) = 𝑒−∫ ℎ(𝑡)𝑑𝑡
𝑡

0  …………………….……………………………...…..…..……(5) 

If we let  

H(t) = ∫ ℎ(𝑡)𝑑𝑡
𝑡

0
 ………………...…………………….………………………..…(6) 

be the CDF, we then have S(t) = 𝑒−𝐻(𝑡). Two other useful identities that follow from these 

formulas are: 

h(t) =  −(𝑑 ln 𝑆(𝑡))/𝑑𝑡 ……………………….………….…………...…..…… (7) 

H(t) = -ln S(t) ……………………………………….……...………...………..….(8) 
 

3.5.1.3. Non-parametric Methods 

Survival data are summarized through estimates of the hazard and survival function (Le and Le, 

1997, Miller Jr, 2011). The methods used to estimate these functions are known as non-parametric 

or distribution free methods. The aim of non-parametric estimation of the survival function is to 

come up with graphical summaries of the survival times for a given group of individuals 

considered in the study. These graphical summaries are for the hazard and the survival function. 

After estimating the survival function, the median and other percentiles can be obtained which 

help to give a more detailed analysis (Cleves et al., 2008, Hanagal, 2011). Among the various 

non-parametric tests one can find in the statistical literature, the (Mantel- Haenzel, 1959) test, 

currently called the “log-rank” test will be used. Nowadays the Kaplan- Meier method for 

estimating survival curves and the log-rank test for comparing two estimated survival curves are 

the most frequently used statistical tools in medical reports on survival data. 

 



15 
 

3.5.1.3.1. Kaplan-Meier estimator 

Kaplan and Meier (1958) proposed an estimator called as Kaplan-Meier or Product Limit 

estimator which provides quick, simple estimates of the survival function. It can be regarded as a 

point estimate of the survival function at any time t. The Kaplan-Meier estimator incorporates 

information from all of the observations available, both censored and uncensored, by considering 

any point in time as a series of steps defined by the observed survival and censored times. The 

survival curve describes the relationship between the probability of survival and time. 

 

A general expression for the KM estimates can be written. Assume that we have n individuals on 

test and order the observed lifetimes for these n individuals from 𝑡(1) to 𝑡(𝑛). Some of these are 

actual failure times and some are running times for individuals taken off test before they die. 

Suppose there are r deaths have occurred, and the ordered death times are t(1),…, t(r), where r≤ 𝑛 

.The number of individuals who are alive just before time t(j), including those who are about to die 

at this time, will be denoted by 𝑛𝑗  , j = 1,2,...,r, and 𝑑𝑗 will denote the number who die at this 

time. The probability that an individual dies during the interval from t(j)- 𝛿 to t(j) is estimated by 
𝑑𝑗

𝑛𝑗
 

where 𝛿 is an infinitesimal time interval. The corresponding estimated probability of survival 

through that interval is 
𝑛𝑗−𝑑𝑗

𝑛𝑗
. The probability of surviving through the interval from t(k) to t(k+1), 

and all preceding intervals, and leads to the Kaplan-Meier estimate of the survival function, which 

is given by: 

Ŝ(t) = ∏
nj−dj

nj

k
j=1 …………………………………………………………....……………..…..(9) 

for t(k) ≤ t < t(k+1);    k = 1,.., r. 

 The estimated variance of the estimate of S(t) and is given by: 

Var(�̂�(𝑡)) ≈  [�̂�(𝑡)]
2∑

𝑑𝑗

𝑛𝑗(𝑛𝑗−𝑑𝑗)

𝑘
𝑗=1  ……………………………………………….…..….(10) 

The standard error of the KM estimate of survival function is: 

s.e (�̂�(𝑡)) ≈ �̂�(𝑡){∑
𝑑𝑗

𝑛𝑗(𝑛𝑗−𝑑𝑗)

𝑘
𝑗=1 }1/2 …………………………..…...………..……(11) 

for t(k) ≤ t < t(k+1);    k = 1,.., r.  
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3.5.1.3.2. Log-rank test 

The log rank test, developed by Mantel and Haenszel, is a non-parametric test for comparing two 

or more independent survival curves. It involves the calculation of observed and expected 

frequencies of failures in separate time intervals. Since it is a non-parametric test, no assumptions 

about the distributional form of the data need to be made. This test is however most powerful 

when used for non-overlapping survival curves. It can be generalized to accommodate other tests 

that are equally used sometime in practice such as Generalized Wilcoxon test, Tarone-Ware test, 

and Peto-Peto Prentice test. Each of these tests uses different weight to adjust for censoring that is 

often encountered in survival data. The log rank test statistic for comparing two groups is given 

by: 

XLR =
(∑ d1i

m
i=1 −∑ ê1i

m
i=1 )

2

∑ v̂(ê1i)
m
i=1

………………………………………….…………..(12) 

Where: m is the number of rank ordered event (death) times,  𝑑𝑗𝑖   is the number of people 

experiencing the event at time 𝑡(𝑖) in Group j,  𝑛𝑗𝑖  is the number of people at risk in group j at 

time 𝑡(𝑖), di is the total number experiencing the event in both groups, êji =
dinji

ni
  is the 

estimated expected number of individuals experiencing the event at 𝑡(𝑖)  in group j, �̂�(�̂�𝑗𝑖) =

 
𝑛1𝑖𝑛2𝑖𝑑𝑖(𝑛𝑖−𝑑𝑖)

𝑛𝑖
2 (𝑛𝑖−1)

   is the estimated variance of �̂�𝑗𝑖 ,  𝑛𝑖   is the number of individuals at risk in both 

groups 1 and 2 just prior to event time 𝑡(𝑖). 

 

3.5.1.4.    Semi-parametric models 

3.5.1.4.1. The Cox-proportional hazard model  

A Cox model is a statistical technique for exploring the relationship between the survival time and 

several explanatory variables. The most commonly used regression model is the Cox-proportional 

hazard model. With this model the distribution for the baseline hazard function is not specified 

implies vary with time and that is why it is called a semi-parametric model. The Cox-proportional 

hazard model is a more general model in modeling the hazard and survival function because it 

does not place distributional assumptions on the baseline hazard.  The Cox model was introduced 

by Cox (1972). It has the from: 
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ℎ𝑖(𝑡 𝑥)= ℎ𝑜(𝑡) exp(𝑋𝑖
𝑇𝛽)………………………….……………….…………..(13) 

Where , ho(t) is the baseline  hazard  function; Xi is a  vector of covariates and β is a  vector of 

parameters for fixed effects. The corresponding  survival function for Cox-PH model is given by: 

S(t,X) = [𝑆𝑜(𝑡)]
exp {∑ 𝛽𝑖𝑋𝑖

𝑝
𝑖=1 }  ……………………………………………..……(14)                                                                     

where, So(t) is the baseline survival function.  The measure of the effect of the given covariates 

on survival time is given by the hazard ratio. Consider a categorical variable with two levels say 

X = 1 and X = 0, then the hazard ratio for the two groups is defined as: 

𝐻𝑅 =
ℎ(𝑡|𝑋=1)

ℎ(𝑡|𝑋=0)
= exp ( β)…………………………………………...…….……(15) 

When HR = 1, it implies that the individuals in the two categories are at the same risk of getting 

the event, when HR > 1, it implies that the individuals in the first category (X = 1) are at a high 

risk of getting the event and if HR < 1, the individuals in the second category (X = 0) are at a high 

risk of getting the event. 

 

3.5.1.4.1.1. Parameter Estimation in Cox PH Model 

The regression coefficients in the proportional hazards Cox model, which are the unknown 

parameters in the model, can be estimated using the method of maximum likelihood. In Cox 

proportional hazards model the vector of parameters β can be estimated without having any 

assumptions about the baseline hazard h0(t). Consider n independent individuals, the data that we 

need for the Cox proportional hazard model is represented by triplet (𝑡𝑖, 𝛿𝑖 , 𝑥𝑖), i=1, 2, . . . n 

Where: ti is the survival time for ith  individual, δi an indicator of censoring for the ith individual 

given by 0 for censored and 1 for event/death, xi a vector of covariates for individual i. Then, the 

full maximum likelihood is defined as: 

𝐿(𝛽) =  ∏ ℎ(𝑡𝑖 , 𝑥𝑖 , 𝛽)
𝛿𝑖𝑆(𝑛

𝑖=1 𝑡𝑖 , 𝑥𝑖 , 𝛽) .…………………………..…...…………(16) 

Where: ℎ(𝑡𝑖 , 𝑥𝑖 , 𝛽) = ℎ𝑜(𝑡𝑖)𝑒
𝛽′𝑋𝑖  is the hazard function for individual i, 𝑆(𝑡𝑖 , 𝑥𝑖 , 𝛽) =

𝑆𝑜(𝑡𝑜 )𝑒
𝛽′𝑋𝑖  is the survival function for individual i. The maximum likelihood becomes: 

𝐿(𝛽) =  ∏ (ℎ𝑜(𝑡𝑖)𝑒
𝛽′𝑋𝑖)𝑛

𝑖=1  ………………………………………………...……….…….(17) 
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Full maximum likelihood requires that by maximize (17) with respect to the unknown parameter 

of interest 𝛽 and unspecified baseline hazard and survival functions. This indicates that unless 

explicitly specify the baseline hazard h0(t). One cannot obtain the maximum likelihood 

estimators for the full likelihood. But, Cox (1972) proposed using an expression he called “partial 

likelihood function” that depends only on the parameter of interest. 

3.5.1.4.1.2. Partial Likelihood 

The general methodology used for proportional hazards which cancels out the baseline function is 

also used in determining the partial likelihood. To illustrate, the partial likelihood of an event 

occurring at time t for an individual can be written as: 

P (individual i has experienced an event at time t(i ) / one event at time t(i )) = L 

L= 
h(t,xi)

∑ jϵRt(i)h(t,xi)
 = 

ho(t)e
β′Xi

∑ jϵRt(t)ho(t)e
β′Xj

……………………...………………………. (18) 

When there are no tied times assumed, the partial likelihood is defined over all failure time t(i) that 

i=1,2,. . ., m & given as: 

𝐿𝑝(𝛽) =  ∏
𝛽′𝑋𝑖

∑𝑗𝜖𝑅𝑡(𝑖)𝑒
𝛽′𝑋𝑗

𝑚
𝑖=1  ………………………………………………….… (19) 

Where the product is over m distinct ordered failure times and X(i) denotes the value of the 

covariate for the subject with ordered survival time t(i). The log partial likelihood function is: 

𝑙𝑝(𝛽) =  ∑ [𝛽′𝑋𝑖  – ln(∑ 𝑗𝜖𝑅𝑡(𝑖)𝑒
𝛽

′𝑋𝑗
)]𝑚

𝑖=1 ……….…………….………...………(20) 

The maximum partial likelihood estimator can be obtained by differentiating the right hand side 

of (20) with respect to the component of 𝛽, setting the derivative equal to zero and solving for the 

unknown parameters. However, this partial likelihood function methods are based on the 

assumption that there are no tied values among the observed survival times. But, in most real 

situations tied survival times are more likely to occur. In addition to the possibility of more than 

one death at a time, there might also be more than one censored observations at a time of death. 
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3.5.1.4.1.3. The Breslow approximation 

This approximation is proposed by Breslow and Peto to modify the partial likelihood and has the 

form: 

𝑙𝐵(𝛽) = ∏
𝑒𝑥𝑝(𝛽′𝑆𝑖)

[∑ 𝑙𝜖𝑅𝑡(𝑖)𝑒
𝛽′𝑋𝑖]

𝑑𝑖

𝑚
𝑖=1 ……………..……………………………..…..(21) 

Where: d the number of deaths occurred at time ti, S the sum of covariates over di subjects at time 

ti, then  the partial log of (21) is given as: 

𝑙𝐵(𝛽) =  ∑ [𝛽′𝑆𝑖  – diln(∑ 𝑗𝜖𝑅𝑡(𝑖)𝑒
𝛽

′𝑋𝑗
)]𝑚

𝑖=1 ………….…………………….…..(22) 

Breslow maximum partial likelihood estimator, adjusted for tied observation is obtained by 

differentiating equation (22) with respect to the components of β and setting the derivative equal 

to zero and solving for the unknown parameters. 

 

A number of approaches to handle tied data have been suggested and, of these, three are used by 

software packages: an exact expression that is derived in Kalbfleisch and Prentice (1980) and 

approximations due to Breslow (1974) and Efron (1977). However, approximations derived by 

Breslow (1974) and Efron (1977) are designed to provide expressions that are more easily 

computed than the exact partial likelihood, yet that still account for the fact that ties are among the 

observed values of survival time. In many applied settings there is little or no practical difference 

between the estimators obtained from the two approximations. Because of this and since the 

Breslow approximation is more commonly available and popular it is used mostly (Hosmer and 

Lemeshow, 1999). 

 

Checking the assumption of proportional hazards 

An important assumption of Cox PH is proportional hazard which means the hazard ratio is 

constant over time. To check it the estimated survival curves cross, if they do, then this an 

evidence that the hazards are not proportional. 

 

3.5.1.4.2. Accelerated Failure Time Model  

The second important regression model in survival analysis is the accelerated failure time (AFT) 

model (Lawless 1982, Kalbfleisch and Prentice 2002). It is an alternative if the proportional 
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hazards assumption does not hold. Denote the survival functions of two groups by S1(t) and S2(t), 

respectively, then the AFT model is given by: 

𝑆1(𝑡) =  𝑆2(𝜙𝑡) ………………………………………….………..…….….…..(23) 

Where, t≥ 0 and 𝜙 is acceleration factor. This model implies that rate of group 1 is 𝜙 times as 

much as that of group 2. The hazard function of the ith individuals at time t of the AFT regression 

model can be written in the form: 

ℎ𝑖(𝑡) =  𝑒
−𝜂𝑖ℎ𝑜(𝑡 𝑒𝜂𝑖⁄ ) ……………………………………….…….………..…(24) 

Where, 𝜂𝑖 = 𝛼1𝑥1𝑖 + 𝛼2𝑥2𝑖+,… , 𝛼𝑝𝑥𝑝𝑖  is the linear component of the model, in which 

𝑥𝑗𝑖  𝑖𝑠 the value of the jth explanatory variable. 𝑋𝑗, j = 1,2,…,p, for the ith individual, i = 1,2,…,n. 

The baseline hazard function, ℎ𝑜(𝑡) is the hazard of death at time t for an individual for whom the 

value of the p explanatory variables are all equal to zero.  

The corresponding survivor function for the ith individual is given by: 

𝑆𝑖(𝑡) =  𝑆𝑜(𝑡 𝑒𝜂𝑖⁄ ) =  …………………….….….……………………..………...(25) 

Where, 𝑆𝑜(𝑡) is the baseline survival function.  Let  𝜂𝑖 =  𝛼′𝑥𝑖 , then 𝑒−𝛼′𝑥𝑖  is the acceleration 

factor. 

Notice that: 

𝑒−𝛼′𝑥𝑖 > 1 implies that there is an acceleration of endpoint (death). 

𝑒−𝛼′𝑥𝑖 < 1 implies that there is a stretching or delay in endpoint (death). 

The log-linear model for a random variable Ti associated with the lifetime of the ith individual 

study, is given by; 

logTi= 𝜇 + 𝛼1𝑥1𝑖 + 𝛼2𝑥2𝑖+,… ,+ 𝛼𝑝𝑥𝑝𝑖 + 𝛿𝜖𝑖  ………………………..……….( 26) 

The survival function of the random variable ϵi is given by: 

𝑆𝑖(𝑡) =  𝑆𝜖𝑖  (
𝑙𝑜𝑔𝑡−𝜇−𝛼1𝑥1𝑖−𝛼2𝑥2𝑖−,…,− 𝛼𝑝𝑥𝑝𝑖

𝛿
) ………..………………..…… (27) 

Where, μ is intercept, δ is scale parameter and ϵ  is the error distribution assumed to have a 

particular parametric distribution. 
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Similarly, the hazard function of the random variable ϵi is given by: 

hi(t) =  
1

δt
hϵi(

logt−μ−α1x1i−α2x2i−,…,− αpxpi

δ
)……………………..…......……( 28) 

Where hϵi(ϵ) is the hazard function of the distribution of 𝜖𝑖. 

 

 

3.5.1.4.2.1. Parametric accelerated failure time models  

Parametric accelerated failure time models based on Weibull, Log-logistic and Log-normal 

distributions for survival time are the most commonly used. 

 

3.5.1.4.2.1.1 Weibull Accelerated Failure Time model  

The Weibull is a very flexible life distribution model. It has a hazard rate which is monotone 

increasing, decreasing, or constant. It is the only parametric regression model which has both a 

proportional hazards representation and an accelerated failure-time representation. The only 

difference between the Weibull model and the exponential model is that the scale parameter δ is 

estimated rather than being set to be one (Klein & Moeschberger, 2003). When Ti  in (26) has a 

Weibull distribution then the survival function of the  𝜖𝑖 is given by: 

Sϵi(ϵ) =  e
(−eϵ) ……………………………………………………………...….. (29) 

Where, h∈i(∈) =  eϵ. The survival function of the random variable Ti is given by: 

Si(t) =  e
(−λit

1
δ) ……………………………………...…………………………. (30) 

With   λi  = e(
−μ−α1x1i−α2x2i−,…,− αpxpi

δ
)
 and where λi is scale parameter, δ

−1
 is shape 

parameter. The hazard function of  Ti is given by: 

hi(t) =  
1

δt
(
logt−μ−α1x1i−α2x2i−,…,− αpxpi

δ
)…………..…………………………(31) 

 

3.5.1.4.2.1.2. Log-logistic Accelerated Failure Time model 

When Ti  in (26) has a Log-logistic distribution then the survival function of the  ϵi is given by: 

Sϵi(ϵ) = 
1

1+ eϵ
…………………………………………………………...….(32) 
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Where  ℎ𝜖𝑖(𝜖) = (1 + 𝑒−𝜖)−1. The survival function for 𝑇𝑖 is given by: 

𝑆𝑖(𝑡) = {1 + 𝑒(
𝑙𝑜𝑔𝑡−𝜇−𝛼1𝑥1𝑖−𝛼2𝑥2𝑖−,…,− 𝛼𝑝𝑥𝑝𝑖

𝛿
)−1

………………………….…(33) 

The hazard function of 𝑇𝑖 for the ith individuals is given by:  

 

ℎ𝑖(𝑡) =  
1

𝛿𝑡
{1 + [𝑒−(

𝑙𝑜𝑔𝑡−𝜇−𝛼1𝑥1𝑖−𝛼2𝑥2𝑖−,…,− 𝛼𝑝𝑥𝑝𝑖

𝛿
)]}−1…………...……..…(34) 

3.5.1.4.2 .1 .3. Log-normal Accelerated Failure Time model 

When 𝑇𝑖  in (26) has a Log-normal distribution then the survival function of the  𝜖𝑖  is given by: 

𝑆𝜖𝑖(𝜖) =  1 −Φ(𝜖)………………………..…..……………………….………….(35)  

Where, ℎ𝜖𝑖(𝜖) =  
𝑒(
−𝜖2

2⁄ )

(1−Φ(𝜖))√2𝜋
. The survival function of 𝑇𝑖 for the ith individuals is given by: 

𝑆𝑖(𝑡) =  1 −  Φ(
𝑙𝑜𝑔𝑡−𝜂𝑖−𝜇

𝛿
) ………………………..…………………………….(36) 

Where, with parameters 𝜂𝑖 − 𝜇 and 𝛿. The hazard function of 𝑇𝑖 for the ith individuals is given by 

(28). 

 

3.5.1.4.2.1.4. Parameter Estimation 

Accelerated failure time models are fitted using maximum likelihood estimation. The likelihood 

of the n observed survival time 𝑡1,𝑡2, … , 𝑡𝑛 is given by: 

𝐿(𝛼, 𝜇, 𝛿) =  ∏ [𝑓𝑖(𝑡𝑖)]
𝛿𝑖[𝑆𝑖(𝑡𝑖)]

1−𝛿𝑖𝑛
𝑖=1 …………...………………..………..…..(37) 

The log likelihood function is then: 

𝑙𝑜𝑔𝐿(𝛼, 𝜇, 𝛿) =  ∑ {−𝛿𝑖𝑙𝑜𝑔(𝛿𝑡𝑖) + 𝛿𝑖𝑙𝑜𝑔𝑓𝜖𝑖(𝑧𝑖) + (1 − 𝛿𝑖)𝑙𝑜𝑔𝑆𝜖𝑖(𝑧𝑖))}
𝑛
𝑖=1 …....(38) 

Where, 𝑧𝑖 = 
𝑙𝑜𝑔𝑡−𝜇−𝛼1𝑥1𝑖−𝛼2𝑥2𝑖−,…,− 𝛼𝑝𝑥𝑝𝑖

𝛿
, 𝑆𝑖(𝑡𝑖) =  𝑆𝜖𝑖(𝑧𝑖). 

The maximum likelihood was manipulated by Newton-Raphson procedures using software. 
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3.5.1.5. The Frailty Concept 

The concept of frailty provides a suitable way to introduce random effects in the model to account 

for association and unobserved heterogeneity. A random effect describes excess risk or frailty for 

distinct categories, such as individuals or families, over and above any measured covariates. Thus 

frailty or random effect models try to account for correlations within groups. Frailties are useful 

in modeling correlations in multivariate survival and event history data. A frailty model is a 

multiplicative hazard model consisting of three components: a frailty (random effect), a baseline 

hazard function (parametric or non-parametric), and a term modeling the influence of observed 

covariates (fixed effects). Frailty models provide a nice way to capture and to describe the 

dependence of observations within a cluster and/or the heterogeneity between clusters. Frailty 

models are hazard models having a multiplicative frailty factor (David D. Hanagal, 2011). 

 

3.5.1.5.1. Shared Frailty Models 

The shared frailty model is a mixture model because the common risk in each cluster (the frailty 

Z) is assumed to be random. The model assumes that all event times in a cluster are independent 

given the frailty variables. In other words, it is a conditional independence model where the frailty 

is common to all individuals in a cluster and therefore responsible for creating dependence 

between event times. This is the reason for the concept of shared frailty. A shared frailty model 

can be considered as a mixed (random effects) model in survival analysis with group variation 

(frailty) and individual variation described by the hazard function. Thus the frailty variable is 

associated with groups of individuals rather than individuals as such.  

 

The shared frailty approach assumes that all failure times in a cluster are conditionally 

independent given the frailties. The value of the frailty term is constant over time and common to 

all individuals in the cluster, and thus it is responsible for creating dependence between event 

times in a cluster. This dependence is always positive in shared frailty models. Originally, the 

model was introduced to the literature by David Clayton and was considered in the bivariate case 

without using the notion of frailty (Clayton 1978), modeling the event times of sons and their 

fathers. The shared frailty model dominates the literature on multivariate frailty models and was 

extensively studied in the monographs by Hougaard (2000), Therneau and Grambsch (2000), and 

Duchateau and Janssen (2008). 
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For n clusters and that cluster i has 𝑛𝑖 observations and associates with the unobserved frailty 𝑍𝑖 

(1 ≤ i ≤ n). The vector 𝑋𝑖𝑗 (1 ≤ i ≤ n, 1 ≤ j ≤  𝑛𝑖) contains the covariate information of the event 

time 𝑇𝑖𝑗 of the jth observation in the ith cluster. Conditional on the frailty term 𝑍𝑖, the survival 

times in cluster i (1 ≤ i ≤ n) are assumed to be independent and their hazard functions to be of the 

form: 

 ℎ(𝑡|𝑋𝑖𝑗 , 𝑍𝑖) = 𝑍𝑖ℎ𝑜(t)𝑒𝛽′𝑋𝑖𝑗……………………………………….…….………(39) 

Where ℎ𝑜(t) denotes the baseline hazard function and β is a vector of fixed effect parameters to be 

estimated. The frailties 𝑍𝑖 (i = 1, . . . , n) are independently and identically distributed random 

variables with density function f(z).  

 

The main assumption of a shared frailty model is that all individuals in cluster i share the same 

value of frailty 𝑍𝑖 (i = 1, . . . , n), and this is why the model is called the shared frailty model. It 

was introduced by Clayton (1978) and extensively studied in Hougaard (2000), Therneau and 

Grambsch (2000), and Duchateau et al. (2007). Shared-frailty models are appropriate when we 

wish to model the frailties as being specific to groups of subjects, such as subjects within families, 

kebeles, regions, etc. Conditional on frailty Zi which is shared by all individuals in cluster i, it 

holds that: 

𝑆(𝑡𝑖1, … , 𝑡𝑖𝑛𝑖|𝑋𝑖 , 𝑍𝑖) =  S(𝑡𝑖1|𝑋𝑖1, 𝑍𝑖),…S(𝑡𝑖𝑛𝑖 |𝑋𝑖𝑛𝑖 , 𝑍𝑖) 

 𝑆(𝑡𝑖1, … , 𝑡𝑖𝑛𝑖|𝑋𝑖 , 𝑍𝑖)  = 𝑒
(−𝑧𝑖 ∑ 𝑀𝑜(𝑡𝑖𝑗)𝑒

𝛽′𝑋𝑖𝑗𝑛𝑖
𝑗=1 )

………………………..….…….(40)  

Where 𝑀𝑜(t) = ∫ ℎ𝑜(s)𝑑𝑠
𝑡

0
 denotes the cumulative baseline hazard function and 𝑋𝑖= (𝑋𝑖1, . . . 

,𝑋𝑖𝑛𝑖 ) is the covariate matrix of the individuals in the ith clusters. Averaging expression (40) with 

respect to the frailty Zi gives the marginal survival function: 

𝑆(𝑡𝑖1, … , 𝑡𝑖𝑛𝑖|𝑋𝑖) = L(∑ 𝑀𝑜𝑡𝑖𝑗
𝑛𝑖
𝑗=1 ) 𝑒𝛽′𝑋𝑖𝑗………………….……….....……..…. (41) 

Where L denotes the Laplace transform of the frailty variable. Thus, the multivariate survival 

function is expressed as the Laplace transform of the frailty distribution, evaluated at the 

cumulative baseline hazard. The joint survival function for all event-time data is now the product 

of the survival functions of all the clusters because of the assumption about independence 

between clusters: 
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S(𝑡11, … , 𝑡𝑛𝑛𝑛)|𝑋1, … , 𝑋𝑛) = ∏ 𝐿𝑛
𝑖=1 (∑ 𝑀𝑜(𝑡𝑖𝑗)𝑒

𝛽′𝑋𝑖𝑗𝑛𝑖
𝑗=1 )……………………..……….(42) 

Where, L denotes the Laplace transform of the frailty variable.  

Hougaard (1986) used several distributions for frailty including Gamma, Inverse Gaussian, and 

claimed that these two distributions are relevant and mathematically tractable as a frailty 

distribution for heterogeneous populations. Flinn and Heckman (1982) used a Log-normal 

distribution for frailty, whereas Vaupel et al. (1979) assumed that frailty is distributed across 

individuals as a Gamma distribution. 

3.5.1.5.1.1. Shared Gamma Frailty Model 

The standard assumption about frailty in shared frailty models is that it follows a Gamma 

distribution. The main reason for the popularity of the Gamma distribution is their nice 

mathematical properties, especially the simple form of the Laplace transform. In the shared frailty 

model, another aspect has to be considered additionally with respect to frailty distribution. Each 

frailty distribution implies a specific form of dependence between event times in clusters. 

 

To make the model identifiable, it is better to restrict that expectation of the frailty equals one and 

variance be finite, so that only one parameter needs to be estimated. Thus, the distribution of 

frailty Z is the one parameter Gamma distribution. Under the restriction, the corresponding 

density function and Laplace transformation of Gamma distribution: 

𝑓𝑧(𝑧𝑖) =
𝑧𝑖
(1 𝜃⁄ )−1

𝑒𝑥𝑝(−𝑧𝑖 𝜃⁄ )

Γ(1 𝜃⁄ )𝜃1 𝜃⁄
……………………………………………..…………….………...…(43) 

Where,𝜃 > 0, Γ(. ) is Gamma function. It corresponds to a Gamma distribution Gamma (μ, θ) 

with mean 1 which is μ and its variance is finite which is θ. The associated Laplace 

transformation is: 

𝐿(𝑠) = (1 + 𝑠
𝜃⁄ )−𝜃, 𝜃 > 0,……………………………………………………………………….……….…………(44) 

Note that if θ > 0, there is heterogeneity. So the large values of θ reflect a greater degree of 

heterogeneity among groups and a stronger association within groups.  The conditional survival 

function of the Gamma frailty distribution is given by: (Gutierrez, 2002). 

𝑆𝜃(𝑡) = [(1 − 𝜃𝑙𝑛{𝑆(𝑡)})]
−1

𝜃⁄ ……………....................….………………………………..….(45) 
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Where 𝜃 > 0. The conditional hazard function of the Gamma frailty distribution is given by: 

(Gutierrez, 2002)   

ℎ𝜃(𝑡) = ℎ(𝑡)[1 − θln{S(t)}]−1……………………………………………………...…..………(46) 

where S (t) and h(t) are the survival and the hazard functions of the baseline distributions. Larger 

variance indicates a stronger association within groups. For the Gamma distribution, the Kendall's 

Tau (Hougaard, 2000), which measures the association between any two event times from the 

same cluster in the multivariate case. It is an overall measure of dependence .The associations 

within group members are measured by Kendall's, which is given by:               

 𝜏 =
𝜃

(𝜃+2)
  …………………………………………...…………………………………………………(47) 

 Where 𝜏𝜖(0,1).  
 

3.5.1.5.1.2. Shared Inverse Gaussian Frailty Model 

The Inverse Gaussian (inverse normal) distribution was introduced as a frailty distribution 

alternative to the Gamma distribution by Hougaard (1984) and was used, by Manton et al. (1986), 

Klein et al. (1992), Keiding et al. (1997), Price and Manatunga (2001), Economou and Caroni 

(2005), Kheiri et al. (2007), and Duchateau and Janssen (2008).  Similar to the Gamma frailty 

model, simple closed-form expressions exist for the unconditional survival and hazard functions, 

this makes the model attractive. The probability density function of an Inverse Gaussian shared 

distributed random variable with parameter θ > 0 and z > 0 is given by: 

𝑓𝑧(𝑧𝑖) = (
1

2𝜋𝜃
)
1
2⁄
𝑧𝑖
−3

2⁄ 𝑒𝑥𝑝 (
−(𝑧𝑖−1)

2

2𝜃𝑧𝑖
)………………………………….…..…..…………..(48) 

With z has mean one and variance θ. The Laplace transformation of the inverse Gaussian 

distribution is:        

𝐿(𝑠) =  𝑒𝑥𝑝 [ 
1−(1+2𝜃𝑠)

1
2⁄

𝜃
 ]…………………………….……………………...……….………… (49) 

Where 𝜃 > 0, 𝑠 > 0. For the inverse Gaussian frailty distribution the conditional survival 

function is given by:  (Gutierrez, 2002).                      
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𝑆𝜃(𝑡) = 𝑒𝑥𝑝 {
1

𝜃
(1 − [1 − 2𝜃𝑙𝑛{𝑆(𝑡)}]

1
2⁄ )}…………………...…………………...………(50) 

Where 𝜃 > 0. For the inverse Gaussian frailty distribution the conditional hazard function is 

given by:  (Gutierrez, 2002). 

ℎ𝜃(𝑡) = ℎ(𝑡)[1 − 2𝜃𝑙𝑛{𝑆(𝑡)}]
−1

2⁄ ……………………………..………………..….…………(51) 

Where 𝜃 > 0, S(t) and h(t) are the survival and the hazard functions of the baseline distributions. 

With multivariate data, an Inverse Gaussian distributed frailty yields a Kendall's Tau given by: 

𝜏 =
1

2
−

1

𝜃
+ 2

exp (2 𝜃⁄ )

𝜃2
 ∫

exp (−𝑢)

𝑢

∞
2
𝜃⁄

𝑑𝑢……………………………….………………...……..(52) 

Where  𝜏𝜖(0, 1/2). 
 

3.5.1.5.1.3. Parameter Estimation 

Estimation of the frailty model can be parametric or semi-parametric. In the former case, a 

parametric density is assumed for the event times, resulting in a parametric baseline hazard 

function. Estimation is then conducted by maximizing the marginal log-likelihood (Munda et al, 

2012). Frailty models account for the clustering present in grouped event time data. For a right-

censored clustered survival data, the observation for subject j 𝜖 J(i) = {1, …, n(i)} from cluster i 𝜖  I 

= {1, …, s} is the couple (yij, 𝛿ij), where yij = min (tij, cij) is the minimum between the survival 

time tij and the censoring time cij, and the indicator 𝛿ij = I(tij ≤ cij) is one for a subject where the 

event has taken place, while 𝛿𝑖𝑗 = 0  for a censored observation. When covariate information's 

been collected, the observation will be (yij, 𝛿ij, Xij), where Xij denote the vector of covariates for 

the 𝑖𝑗𝑡ℎ observation. In the parametric setting, estimation is based on the marginal likelihood in 

which the frailties have been integrated out by averaging the conditional likelihood with respect 

to the frailty distribution. 

 

Under the assumption of right-censoring, of independence between the censoring time and the 

survival time of random variables, given the covariate information, the marginal log-likelihood of 

the observed data can be: 
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𝑙𝑚𝑎𝑟𝑔(ℎ𝑜 , 𝛽, 𝜃; 𝑍, 𝑋)

=∏[(∏(ℎ𝑜(𝑦𝑖𝑗)𝑒𝑥𝑝(𝑥𝑖𝑗
𝑇𝛽))𝛿𝑖𝑗

𝑛𝑖

𝑗=1

)𝑋∫ 𝑍𝑖𝑑𝑖
∞

0

𝑒𝑥𝑝(−𝑍𝑖∑𝐻𝑜(𝑦𝑖𝑗)𝑒𝑥𝑝(𝑋𝑖𝑗
𝑇𝛽)

𝑛𝑖

𝑗=1

)𝑓(𝑧𝑖)𝑑𝑧𝑖]

𝑠

𝑖=1

 

=∏[(∏(ℎ𝑜(𝑦𝑖𝑗)𝑒𝑥𝑝(𝑋𝑖𝑗
𝑇𝛽))𝛿𝑖𝑗

𝑛𝑖

𝑗=1

)𝑋(−1)𝑑𝑖𝐿(𝑑𝑖) (∑𝐻0(𝑦𝑖𝑗)𝑒𝑥𝑝(𝑥𝑖𝑗
𝑇𝛽

𝑛𝑖

𝑗=1

)]

𝑠

𝑖=1

 

Taking the logarithm, the marginal likelihood is: 

𝑙𝑚𝑎𝑟𝑔(ℎ𝑜(. ), 𝛽, 𝜃; 𝑍, 𝑋) = ∑ {[∑ 𝛿𝑖𝑗(𝑙𝑜𝑔(ℎ𝑜(𝑦𝑖𝑗)) + 𝑋𝑖𝑗
𝑇𝛽)𝑛𝑖

𝑗=1 ] +𝑠
𝑖

𝑙𝑜𝑔[(−1)𝑑𝑖𝐿(𝑑𝑖)([∑ 𝐻𝑜(𝑦𝑖𝑗)𝑒𝑥𝑝(𝑥𝑖𝑗
𝑇𝛽)𝑛𝑖

𝑗=1 ])]}……(53) 

Here, di = ∑ δijni
j=1  is the number of events in the 𝑖𝑡ℎ clusters and 𝐿 (𝑞)(. ) is the 𝑞𝑡ℎderivative. 

The Laplace transformation of the frailty distribution Z is defined as: 

 𝐿(𝑠) = 𝐸[𝑒𝑥𝑝(−𝑍𝑠)] = ∫ 𝑒𝑥𝑝(𝑍𝑖𝑠)𝑓(𝑍𝑖)𝑑𝑧𝑖 
∞

0
…………...……………………….....…(54) 

Where, 𝑠 > 0  and, 

𝐿 (𝑞)(𝑠) = (−1)𝑞 ∫ 𝑍𝑞𝑒𝑥𝑝(−𝑍𝑠)𝑓(𝑧)𝑑𝑧   
∞

0
……………………………..…………………(55) 

Where 𝑞 ≥ 0 and ℎ𝑜(. ) represents a vector of parameters of the baseline hazard function, 𝛽 the 

vector of regression coefficients and θ the variance of the random effect. The estimates of  ℎ𝑜(. ) 

, β, θ are obtained by maximizing the marginal log-likelihood of the above. This can be done if 

one is able to compute higher order derivatives 𝐿(𝑞)(.) of the Laplace transform up to q = max 

{d1, ---, ds}.  Symbolic differentiation is performed in R, but is impractical here, mainly because 

this is very time consuming Munda et al. (2012).  
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3.6. Variable Selection   

The methods of selecting a subset of covariates in a PHs regression model are essentially similar 

to those used in any other regression models. The most common methods are purposeful 

selection, step-wise (forward selection and backward elimination) and best sub-set selections. 

Survival analysis using Cox regression method begins with a thorough univariate analysis of the 

association between survival time and all important covariates (Hosmer and Lemeshow, 1999). 

Recommendable procedure in selecting variables in the study Hosmer and Lemeshow (1999) and 

Collett (2003) recommended the following procedure in variable selection. 

I. Include all variables that are significant in the univariable analysis and also any other 

variables which are presumed to be important to fit the initial multivariable model. 

 

II. The variables that appear to be important from step (I) are then fitted together in 

multivariable model. In the presence of certain variables others may cease to be 

important. Consequently, backward elimination is used to omit non-significant 

variables from the model. Once a variable has been dropped, the effect of omitting 

each of the remaining variables in turn should be examined. 

 

III. Variables, that were not important on their own, and so were not under consideration 

in step (II), may become important in the presence of others. These variables are 

therefore added to the model from step (II), with forward selection method. This 

process may result in terms in the model determined at step (II) ceasing to be 

significant.  

 

IV.  A final check is made to ensure that neither significant variable is eliminated from the 

model nor non-significant variable is included in the model. At this stage the 

interactions between any of the main effects currently in the model can be considered 

for inclusion if the inclusion significantly modifies the model. 
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3.7. Model Selection 

Akaike’s Information Criterion (AIC): can be used to compare models that are not nested. The 

minimum AIC indicates the model is the best.  

AIC = -2 log(L) + kp   

Where, p is the number of parameters in the model, L is the likelihood, K is the number of 

covariates. 

 

3.8. Model Diagnosis 

3.8.1. Asses the adequacy plots of Parametric Baselines 

Weibull:          plot the log-cumulative hazard versus log(t). 

Log-logistic:    plot logarithm of the failure odds versus log(t). 

Log-normal:    plot Φ-1(1-S(t)) versus log(t). 

 

3.8.2. Asses the Cox Snell Residual plot 

Cox–Snell residuals are useful for checking the overall fit of the final model (Klein and 

Moeschberger, 2003). The Cox-Snell residual for the individual with observed survival time is 

given by: 𝑟𝑗 = �̂�(𝑇𝑗 𝑋𝑗⁄ ), where �̂� is the cumulative hazard function of the fitted model. If the 

model fits the data, then 𝑟𝑗’s should have a standard (λ =1) exponential distribution, so that a 

hazard plot of 𝑟𝑗 versus the estimated cumulative hazard rate of 𝑟𝑗 should be a straight line with 

slope 1. 
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4. RESULTS AND DISCUSSION 

4.1. Descriptive Statistics 

The response variable in this study is survival time measured in month from the date of birth to 

the date of death which is continuous. The censoring indicator (status) is 0 for censored 

observations and 1 for event occurred. The study included 9433 children under the age of five 

years, who were born during the five years preceding the date of the survey in Ethiopia. From the 

total number of under-five children 8591 (91.07%) were censored whereas 842 (8.93%) were 

event. Summary results of covariates of time-to-death for under-five children in Ethiopia dataset 

presented in Table 4.1 below. 

Table 4.1: Summary results of covariates of time-to-death for under-five children in Ethiopia. 

Covariates  Category                                  Status 

Censored              Event Total 

   
Frequency % Frequency % Frequency % 

  
      

 No 

education 

6459 68.47 618 6.55 7077 75.02 

Women’s 

education 

Primary 

education 

1878 19.91 203 2.15 2081 22.06 

 Secondary& 

above  

254 2.69 21 0.22 275 2.92 

        

 Poor 4396 46.6 653 6.92 5049 53.52 

Wealth index Middle 1433 15.19 134 1.42 1567 16.61 

 Rich 2762 29.28 55 0.58 2817 29.86 

 
Types of 

births 

single births 8358 88.6 743 7.88 9101 96.48 

multiple 

births 

233 2.47 99 1.05 332 3.52 
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 1-3 children 2785 29.52 333 3.53 3118 33.05 

Total children 

ever born 

4-6  

children   

3655 38.75 304 3.22 3959 41.97 

 7-9  

children 

1724 18.28 156 1.65 1880 19.93 

 ≥ 10  

children 

427 4.53 49 0.52 476 5.05 

 
        

Preceding 

birth intervals 

< 24 

months 

2083 22.08 457 4.84 2540 26.93 

24-47 

months 

4611 48.88 289 3.06 4900 51.95 

 ≥48 months 1897 20.11 96 1.02 1993 21.13 

  

 

Place of 

delivery 

Health 

facility 

832 8.82 97 1.03 929 9.85 

elsewhere 7759 82.25 745 7.9 8504 90.15 

 
       

Sex of 

household 

head 

Male 7080 75.06 679 7.2 7759 82.25 

Female 1511 16.02 163 1.73 1674 17.75 

 Muslim 4103 43.5 399 4.23 4502 47.73 

Religion Orthodox 2531 26.83 251 2.66 2782 29.49 

 Protestant 1690 17.92 157 1.66 1847 19.58 

 Other 267 2.83 35 0.37 302 3.20 

                             Grand Total       8591           91.07           842           8.93            9433          100 

 

From the above summary table 4.1: 7077 (75.02%), 2081(22.06%), 275(2.92%) children under 

age of five born from women with their educational level were: no education, primary education 

and secondary& above respectively. Under-five children born from poor, middle and rich 
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economical status of women’s were 5049(53.52%), 1567(16.61%) and 2817(29.86%) 

respectively. From the total of under-five children 9101(96.48%) births were single births, 

whereas 332(3.52%) births were twin. The total children ever born between (1 to 3) were 3118 

(33.05%), between (4 to 6) were 3959(41.97%), between (7 to 9) were 1880( 19.93%) and 10 and 

more were 476(5.05%) per household. The preceding birth intervals of under-five children were 

born less than 24 months, between (24 to 47) months and 48 months and more were 2540 

(26.93%), 4900 (51.95%) and 1993 (21.13%) respectively. Under-five children born in the health 

facility were 929(9.85%) while 8504 (90.15%) were born out of the health facility. Under-five 

children were born from male house hold head 7759 (82.25%), whereas 1674 (17.75%) were born 

from female household head. Under-five children were born from Muslim, Orthodox, Protestant 

and other religion of women were 4502 (47.73%), 2782 (29.49%), 1847 (19.58%) and 302 

(3.20%) respectively.  

4.2. Non-parametric Survival Analysis 

It is also imperative to do some basic descriptive analysis that will be used as initiation to our 

subsequent finding. The log-rank test and Kaplan-Meier survival estimates that have been used to 

glance the significance of the difference among the different groups of covariates. 

4.2.1. Log rank test for under-five children 

The result summarized in Table 4.2, the log-rank test was used at 5% level of significance to 

validate the differences in the survival time of each factor. There is no difference between the 

probabilities of an event occurring at any time point was the null hypothesis that has been tested. 

Table 4.2: Log rank test of survival time among the different groups of covariates for under-five   

                  children in Ethiopia. 

Groups    Chi-square         DF           Pr>Chi-square 

Women’s education 7.8 2 0.020 

Wealth index 131 1 0.000 

Types of births 160 1 0.000 

Total children ever born  34.1 3                  0.000 

Preceding birth intervals 113 2 0.000 

Place of delivery 17.2 1                  0.000 

Sex of household head 0  1  0.968 
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Religion 4.9 3 0.182 

 

According to Table 4.2, women’s educational level, wealth index, types of births, total children 

ever born, preceding birth intervals and place of delivery had statistically significant difference in 

experiencing death event, whereas sex of household head and religion had not statistically 

significant in experiencing death event. 

 

4.2.2. The Kaplan- Meier Estimate for under-five children  

Survival time distributions of time-to-death for under-five children were estimated for each group 

using the KM method in order to compare the survival curves of two or more groups. From figure 

4.1 of KM curve, the horizontal axis shows that the time-to-death of under-five children, whereas 

the vertical axis shows the probability of survival. At the beginning, the survival curve is 

increasing, implies that during the time of post-neonatal, neonatal and infancy period there were 

high numbers of death, whereas at the end the survival curve is decreasing, implies that the death 

of under-five children decreases when age increases. For hazard plot of under-five children, the 

horizontal axis shows the time-to-death of under-five children, whereas the vertical axis shows 

the cumulative hazard. The curve implied that, the survival rate of under-five children were longer 

when the age of under-five children increases. 

 

Figure 4.1: The K-M curve for survival and hazard functions of under-five children.  
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4.2.2.1. Kaplan-Meier curves of time-to-death for different groups 

4.2.2.1.1. Kaplan-Meier curves of time-to-death for under-five children by   

                women’s educational   level 

The Kaplan-Meier curves of time-to-death for under-five children by women’s educational level 

are shown by in Appendix 3 (figure 4.2). As it can be observed from the plot, under-five children 

from a better educated mother have a better survival rate. Also, from Table 4.2, the chi-square 

with 2 DF is 7.8 and p-value is 0.0204, implies that there is significance difference between the 

survival curves of three educational categories/groups. 

 

4.2.2.1.2. Kaplan-Meier curves of time-to-death for under-five children by   

                 wealth index 

The Kaplan-Meier curves of time-to-death for under-five children by wealth index shown by in 

Appendix 3 (figure 4.3). As it can be shown from the curves, that a mother those who have a 

better economical status had a better survivable rate of under-five children. Also, from Table 4.2, 

the chi-square with 2 DF is 131 and p-value is 0, implies that there is very high significance 

difference between the survival curves of three wealth index categories/groups.  

 

4.2.2.1.3. Kaplan-Meier curves of time-to-death for under-five children by type   

                 of births 

The Kaplan-Meier curves in figure 4.4: it has a clear difference in the way they lay. The above 

curve is for single births have a better survival rate than those twin births of under-five children. 

Also, from Table 4.2, the chi-square with 1 DF is 160 and p-value is 0, implies that there is very 

high significance difference between the survival curves of two types of births categories/groups. 
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Figure 4.4: KM curves for survival of time-to-death for under-five children by type of births. 

4.2.2.1.4. Kaplan-Meier curves of time-to-death for under-five children by total   

                children ever born 

The Kaplan-Meier curves by total children ever born in Appendix 3 (figure 4.5), as it can be 

observed from the curves, when the total children ever born increases the survival rate of under- 

five children decreases. Also, from Table 4.2, the chi-square with 3 DF is 34.1 and p-value is 0, 

implies that there is very high significance difference between the survival curves of four total 

children ever born categories/groups. 

 

4.2.2.1.5. Kaplan-Meier curves of time-to-death for under-five children by   

                 preceding birth intervals 

As it has been observed from appendix 3 (figure 4.6) Kaplan-Meier curves, under-five children 

who have longer preceding birth intervals had a better survival rate. Also, from Table 4.2, the chi-

square with 2 DF is 113 and p-value is 0, implies that there is very high significance difference 

between the survival curves of three total preceding birth interval categories/groups. 

4.2.2.1.6. Kaplan-Meier curves of time-to-death for under-five children by   

                 place of delivery 

The Kaplan-Meier curves by place of delivery in Appendix 3 (figure 4.7), as it can be observed 

from the curves those under-five children born in health facility had a better survival rate. Also, 

from Table 4.2, the chi-square with 1 DF is 17.2 and p-value is 0, implies that there is very high 

significance difference between the survival curves of two places of delivery categories/groups. 
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4.2.2.1.7. Kaplan-Meier curves of time-to-death for  under-five children by sex     

                 of household head 

The Kaplan-Meier curves by sex of household head in Appendix 3 (figure 4.8), the survival 

curves overlaid one with other, implies that sex of household head is not significant factor of 

time-to-death for under-five children. Also, from Table 4.2, the chi-square with 1 DF is 0 and p-

value is 0.968, implies that there is no significance difference between the survival curves of two 

sex of household head categories/groups.  

 

4.2.2.1.8. Kaplan-Meier curves of time-to-death of under-five children by   

                 religion 

The Kaplan-Meier curves by religion in Appendix 3 (figure 4.9), the survival curve have been 

observed that being Muslim, Orthodox, Protestant and other, one was not had better survival rate 

than others, implies religion was not significant factor for under-five children. Also, from table 

4.2, the chi-square with 3 DF is 4.9 and p-value is 0.182, implies that there is no significance 

difference between the survival curves of four religion categories/groups. 

 

The median survival time of time-to-death for under-five children from women those who had no 

education, primary education, and secondary& above were 12 months with 95% CI [12, 13], 11 

months with 95% CI [9, 14] and 12 months with 95% CI [12, 13] respectively. The median 

survival time of time-to-death for under-five children from poor, middle and rich women were 12 

months with 95% CI [11, 12] , 12 months with 95% CI [8, 24] and 12 months with 95% CI [7, 19] 

respectively. The median survival time of time-to-death for under-five children from single births 

was 12 months with 95% CI [12, 13], whereas from twin births was 7 months with 95% CI [6, 

11]. In Appendix 4 (Table 4.3) shows the median survival time and the corresponding 95% 

confidence interval for the rest categorical variables. 

 

4.3. Univariable Analysis 

From the summary of univariate analysis given in appendix 1, we used univariate analysis in 

order to see the effect of each covariate on time-to-death of under-five children before proceeding 

to the multivariable analysis. The univariate analysis was fitted for every covariate by using 

different baseline distributions i.e. Weibull, Log-logistic, and Log-normal. In univariate analysis, 

women’s educational level, wealth index, type of births, total children ever born, preceding birth 
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intervals and place of delivery were significantly associated with under-five children, whereas sex 

of household head and religion were not significant at 10% level of significance. 

 

4.4. Multivariable Analysis 

Under multivariable survival analysis the study was done by considering the three baseline hazard 

function such as Weibull, Log-logistic, Log-normal and two frailty distributions such as Gamma 

and Inverse-Gaussian using the six significant covariates in the univariable analysis. 

 

Model comparisons were presented in Table 4.4:  To compare the efficiency of different models, 

the AIC was used. It is the most common applicable criterion to select model. Based on AIC, a 

model having the minimum AIC value was preferred. Accordingly, Log-normal baseline (AIC = 

6863.021) found to be the best model for the time-to-death of under-five children in Ethiopia 

dataset.  

Table 4.4: Comparison of models with AIC.      

Baseline                     Frailty 

 
 Gamma invGau 

Weibull 6893.074 6893.047 

Log logistic 7103.410 7102.410 

Lognormal 6864.724 6863.021 

 

The variance of the frailty were significant for all baseline hazard function with an inverse 

Gaussian shared frailty distribution in the models, whereas it was not significant in the Gamma 

shared frailty distribution using the same baseline as inverse Gaussian models at 5% level of 

significance. This indicates the presence of heterogeneity and necessitates the frailty models. The 

estimate for the variance parameter θ in a shared frailty models can be thought as a measure of the 

degree of correlation and provides information on the variability (the heterogeneity) in the 

population of clusters. The value of shared frailty distribution (θ) are 0.026, 0.030 and 0.025 for 

Weibull-Inverse Gaussian, Log-logistic-Inverse Gaussian and Log-normal-Inverse Gaussian 

respectively (see under Appendix 2 and table 4.5 E).The corresponding Kendall’s tau (τ) values of 

shared frailty distribution are 0.223, 0.399 and 0.361 respectively. The   Kendall’s tau (τ) value is 

used to measure the dependence within the clusters (region).  
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Table 4.5: Results of the Multivariable Log-normal-Inverse Gaussian Shared Frailty Model for 

time-to-death dataset. 

F. Multivariable analysis using the Log-normal -Inverse Gaussian frailty model 

 Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

        

 

Women’s Education 

      (Intercept)  1.386 0.0126 1.115 120.85 1.090 1.140 * 

No education Ref 

      Primary -0.2279 0.0066 1.066 12.00 1.053 1.078 * 

Secondary&above -0.0679 0.0188 1.188 0.13 1.151 1.224 * 

Wealth Index 

       (Intercept)  1.386 0.0126 1.115 120.85 1.090 1.140 * 

Poor Ref 

      Middle 0.2512 0.0070 1.070 12.79 1.056 1.084 * 

Rich 1.2524 0.0092 1.091 186.73 1.073 1.109 * 

Type of births 

       (Intercept)  1.386 0.0126 1.115 120.85 1.090 1.140 * 

Single Ref 

      Multiple -1.0981 0.0098 1.098 126.26 1.078 1.117 * 

Total children ever born  

       (Intercept)  1.386 0.0126 1.115 120.85 1.090 1.140 * 

1-3 children  Ref 

      4-6  children   0.3924 0.0061 1.061 40.89 1.049 1.073 * 

7-9  children  0.462 0.0077 1.076 36.50 1.061 1.091 * 

 ≥ 10  children 0.2643 0.0117 1.117 5.12 1.094 1.140 * 

Preceding birth intervals  

       (Intercept)  1.386 0.0126 1.115 120.85 1.090 1.140 * 

< 24 months  Ref 

      24-47 months  0.5134 0.0058 1.058 77.33 1.047 1.070 * 

≥48 months  0.5779 0.0082 1.082 50.05 1.066 1.098 * 

Place of delivery 
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(Intercept)  1.386 0.0126 1.115 120.85 1.090 1.140 * 

Health facility Ref 

      Elsewhere 0.6331 0.0099 1.098 40.90 1.079 1.118 * 

Frailty                                                                                          19.47                                         * 

                         τ=  0.361  θ= 0.0252   δ = 4.760     λ= 1.832 

 
 

Likelihood ratio test=625, df= 21.4, p=0.000 

 

Coef= coefficient, S.e= standard error, ϕ = acceleration factor, 95% CI=Confidence Interval for 

acceleration factor, LCL=lower class limit, UCL= upper class limit, Chi-sq= Chi-square, 

Ref=Reference, θ = variance of the random effect, λ = scale parameter, δ= shape parameter, τ =  

Kendall's Tau., * = p-value < 0.05. 
 

 The most important thing in the interpretation of acceleration factor is, if 1 is not included in the 

acceleration confidence interval then, the factors are statistically significant else insignificant. 

Hence, from Table 4.5 F, the acceleration factors and its 95% confidence interval for women’s 

educational level for a group of primary and secondary & above are 1.066 (1.053, 1.078) and 

1.1876 (1.151, 1.224) respectively, when compared to no education as reference category. In the 

confidence interval of acceleration factors 1 is not included, implies that women’s educational 

level was statistically significant for time-to-death of under-five children in Ethiopia. The 

corresponding p-values are less than 0.05 which supports that women’s educational level was 

significant. 

 

The acceleration factors and its 95% confidence interval for wealth index are 1.070 (1.056, 1.084) 

and 1.091 (1.073, 1.109). In the 95% confidence interval of the acceleration factors 1 is not 

included, implies that wealth index or economical status of women’s were determines the time-to-

death of under-five children in Ethiopia. The p-values also support this, which are less than 0.05 

for middle and rich wealth index, when compared to poor as reference category. 

 

The types of births were statistically significant, which determines the time-to-death of under-five 

children in Ethiopia. The acceleration factors and its 95% confidence interval for a group of 

multiple births 1.098 (1.078, 1.117) when compared to single births as reference category with p-

value is significant. The estimated coefficient of the parameters multiple births was -1.0981. The 

sign of the coefficient is negative which implies that decreasing logged of survival time and 

hence, shorter expected duration of time-to-death of under-five children. 
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Total children ever born were statistically significant factor for time-to-death of under-five 

children in Ethiopia, since 1 is not included in the 95% confidence interval of acceleration factors 

which are (1.049, 1.073), (1.061, 1.091) and (1.094, 1.140) for 4-6 children, 7-9 children and 10 

and more  children respectively, when compared to 1-3 children as reference category. The 

corresponding p-values are less than 0.05 which are significant and acceleration factors are 1.061, 

1.076, 1.117 respectively. 

 

Preceding birth intervals were significantly important factors for time-to-death of under-five 

children in Ethiopia. Accordingly, 1.058(1.047, 1.070) and 1.082(1.066, 1.098) are the 

acceleration factors and its 95% confidence interval in between (24 to 47) months and 48 and 

more months when compared to less than 24 months as reference category. 

 

Place of delivery out of health facility were statistically determines the time-to-death of under-

five children in Ethiopia. The 95% confidence interval of acceleration factors for a group of 

elsewhere (1.079, 1.118) when compared to health facility as reference category. The p-values are 

less than 0.05 which also supports this significance difference. 

 

The estimate of shape parameter in the Log-normal-Inverse Gaussian shared frailty model is (δ= 

4.760). This value shows the shape of hazard function is unimodal because the value is greater 

than unity i.e., it increases up to some time and then decreases. The heterogeneity in the 

population of the region which is used as a clusters are estimated by our selected model is θ= 

0.0252 and the dependence within the clusters (region) is measured by Kendall's tau is τ= 0.361. 
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4.5. Model Diagnostics 

4.5.1. Checking adequacy of parametric baselines using graphical methods 

After the model has been fitted, it is desirable to determine whether a fitted parametric model 

adequately describes the data or not. Therefore, the appropriateness of model with Weibull 

baseline can be graphically evaluated by plotting log (-log(S(t)) versus log(time), the Log-logistic 

baseline by plotting log(
�̂�(𝑡)

1−�̂�(𝑡)
) versus log(time) and the Log-normal baseline by plotting 

(ϕ−1[1 − 𝑆(𝑡)] against log (t). If the plot is linear, the given baseline distribution is appropriate 

for the given dataset. Accordingly, their respective plots are given in figure 4.9 below and the plot 

for the Log-normal baseline distribution make straight line better than Weibull and Log-logistic 

baseline distribution. This evidence also strengthens the decision made by AIC value that Log-

normal baseline distribution is appropriate for the given dataset. 

  

 

Fig 4.9: Graphs of Weibull, Log-logistic, and Log-normal baseline distributions for time-to-death 

of under-five children dataset. 
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4.5.2. Cox- Snell residuals plots 

The Cox-Snell residuals are one way to investigate how well the model fits the data. The plot for 

fitted model of residuals for Log-normal to our data via maximum likelihood estimation with 

cumulative hazard functions given in figure 4.10 below. If the model fits the data, the plot of 

cumulative hazard function of residuals against Cox-Snell residuals should be approximately a 

straight line with slope 1. The plot makes straight lines through the origin for Log-normal 

baseline distribution suggesting that, it is appropriate for time-to-death of under-five children 

dataset. 

 

Figure 4.10: Cox- Snell residuals plots of Log-normal baseline distribution for time-to-death of 

under-five children in Ethiopia. 

 

 4.6. Discussion of the results  

The main purpose of the study was modeling the determinants of time-to-death of under-five 

children in Ethiopia on EDHS 2011 using three baselines hazard function (Weibull, Log-logistic, 

Log-normal) and two parametric shared frailty distributions (Gamma, Inverse-Gaussian) in which 

the outcome variables measured in months. The study estimate and compare the survival time and 

the factors that have statistical significant by using univariable and multivariable shared frailty 

analysis. Factors that are concerned for our study were women's educational level, wealth index, 

type of births, total children ever born, preceding birth intervals, place of delivery, sex of 

household head and religion.  
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The univariate analysis (in Appendix 1) revealed that women's educational level, wealth index, 

type of births, total children ever born, preceding birth intervals and place of delivery were 

significantly associated with time-to-death of under-five children, whereas sex of household head 

and religion were not significant at 10% level of significance. All significant covariates in 

univariate analysis were included in all multivariable analysis and comparison was done within 

the models using Akaike Information Criteria (AIC), Introduced by Hitrotugu Akaike (1971), 

AIC measures the relative goodness of fit of statistical model ("Book Reviews," 1988). Boco 

(2010) noted that the lower value of AIC indicates a better fit. Log-normal-Inverse Gaussian 

shared frailty model was found to be the best model based on AIC value and graphical evidence 

(figure 4.9 and figure 10) to describe time-to-death of under-five children in Ethiopia.  

 

From the R output the clustering effect were significant (p-value=0.000) in shared frailty models. 

This showed that there was heterogeneity between the regions on the time-to-death of under-five 

children in Ethiopia. The estimated median survival time of time-to-death of under-five children 

found to be 12 months with 95% confidence interval [11, 13]. 

 

The findings of this study revealed that mother’s education level is an important factor for under-

five child mortality reduction, as more education is associated with lower risk of under-five child 

death, implies that under-five children born from educated mothers had a lower mortality risk. A 

study conducted by (Woldemiceal, 2001) investigated morbidity being significantly lower among 

under-five children of more educated mothers (secondary or higher) than among under-five 

children of mothers with no or primary education. Similar study conducted by Goro (2007) used 

data from 1993, 1998, and 2003 DHS surveys in Ghana to examine the determinants of under-five 

child mortality and found that education of mothers is powerful significant determinants for 

under-five child mortality. Twum-Baah et al (1994) also indicated that children born to mothers 

with higher educational level associated with lower risk of under-five child mortality as compared 

to children born to mothers with primary education level or none educated. Other study in Kenya 

by Hill (2000) found that mother’s educational levels have a significant impact on under-five 

child mortality. Children of mothers with primary (and secondary) education have a significant 

decreased mortality risk compared to those of mothers with no education EI-Zanaty F, (2001). 

Nath DC, Land KC, Singh KK, Worku Z, Deribew A, Tessema F, Girma B, Houweling TA, 

Kunst AE, Moser K, Mackenbach JP studies showed  that child mortality rates are higher among 

less educated mothers compared with mothers who have higher levels of education. The 
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importance of maternal education is based on the fact that education increases a mother’s level of 

knowledge and skills, thus enabling her to effectively understand and utilize available information 

and resources critical for child health and survival. 

 

The results of this finding suggested that wealth index had a significant effect on under-five child 

mortality in Ethiopia. The study revealed higher deaths of under-five children were observed from 

a lowest household economical status. Children born to mothers in the lowest wealth index are at 

higher risk of dying than children born to mothers in the middle and highest wealth index (World 

Bank, 2007b). A study conducted by Doctor HV (2014) using Nigeria Demographic Health 

Survey for 2008 and found that the highest household’s economical status was less likely to 

experience under five-child death than the poorest household’s economical status in rural Nigeria. 

 

The result of this finding suggested that type of births had a significant effect on under-five child 

mortality in Ethiopia. The study showed that those under-five children with multiple births had a 

higher risk of death than single births. A similar research which supports the result of this study 

conducted by Rathavuth Hong (2006) on 2004 Bangladesh DHS data suggested that multiple 

births have higher risk of mortality than singleton births. A similar study also conducted by 

Kembo and Ginneken (2009) address some important issues in under-five mortality in Zimbabwe 

in their study. They found that births of order 6+ with a short preceding interval had the highest 

risk of under-five mortality. The under-five mortality risk associated with multiple births was 2.08 

times higher relative to singleton births. 

 

The result of this finding suggested that high number of total children ever born in the household 

were more likely to die before their fifth birth day. A similar study was conducted by Aristide 

Romaric and Sathiya Susmuman (2015), in West African countries, the result showed that the 

probability of dying before the age of five year increased with household size.  

 

The result of this finding suggested that place of delivery had a significant effect on under-five 

child mortality in Ethiopia. The study showed that those under-five children born out of health 

facility had a higher risk of death than born in health facility. A similar study conducted by Ettarh 

RR, Kimani J, (2014)  women who deliver at health facilities have a lower chance of under-five 

child death as compared to those who deliver out of health facilities. A study conducted by 

Mwangi Reuben Wambugu (2014), place of delivery with children whose mothers delivered in 

their homes compared to those who deliver in the public and private health facilities was 
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significant in KDHS 2008/9 data and conclude that increased use of both public and health 

facilities turn down under-five mortality.  Jones G, Steketee RW, Black RE, Bhutta ZA, Morris 

SS conducted a study and  suggest that women who deliver at health facilities have a lower 

chance of child death as compared to those who deliver at home due to the use of skilled delivery 

at health facilities and the none existence of such at home.  Doctor HV (2014) conducted a study 

and suggested that the likelihood of under-five mortality has also been linked to place of delivery, 

with evidence indicating that women who deliver at health facilities have a lower probability of 

reporting child death compared with those delivering in home settings. These differences have 

largely been driven by the use of skilled delivery care at health facilities compared with the 

deliveries that occur at home, which in most cases are not attended to by skilled birth attendants. 

 

The result of this finding suggested that the preceding birth intervals had a significant effect on 

under-five children in Ethiopia. Shea O. Rutstein (2008) conducted a similar study and suggested 

that the shorter the duration of the interval for intervals less than 24 months, the higher is the risk 

of dying of under-five children. Mohammad, Khwaja, Bashir, Iqbal, Fred, Pav, Shea and Rebecca 

(July 2013) were conducted a similar study in Afghanistan and suggested that, a higher proportion 

of children who died had a short birth interval of 0-23 months, at 42% compared with 33% among 

all children. For children who died, just over one-fifth of the preceding birth intervals were 24-35 

months, and 18% had a previous birth interval of 36 or more months. 
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5. CONCLUSION AND RECOMMENDATION 

5.1. Conclusion  

This study was used under-five children dataset from Ethiopian Demographic Health Survey 

(EDHS 2011) with the main purpose of modeling time-to-death of under-five children in Ethiopia 

using parametric shared frailty models. Out of the total 9433 under-five children 8.93% were 

experienced an event (death) and 91.07% were not experienced an event (live). The estimated 

median death time of under-five children was 12 months. 

 

To model the determinants of time-to-death of under-five children, three baseline hazard function 

(Weibull, Log-logistic, Log-normal) and two well known frailty distribution (Gamma, Inverse 

Gaussian) were used. By using AIC, Log-normal Inverse Gaussian shared frailty model is better 

fitted to time-to-death of under-five children dataset than other parametric shared frailty models. 

There was a frailty (clustering) effect on the time-to-death of under-five children among regions 

of Ethiopia. This indicates the presence of heterogeneity and necessitates the frailty models. 

 

The result of Log-normal-Inverse Gaussian frailty models showed that women’s educational 

level, wealth index, type of births, total children ever born, preceding birth intervals and place of 

delivery were found significant predictors to time-to-death of under-five children in Ethiopia, 

whereas sex of household head and religion were not statistically significant. 

 

The graphical plots (Fig 4.9 and Fig 4.10) also showed that Log-normal distribution is better 

when compared to Weibull and Log-logistic baseline distributions to explain time-to-death of 

under-five children dataset. 

 

5.2. Recommendation  

From the study women’s educational level, wealth index, type of births, total children ever born, 

preceding birth interval and place of delivery were the causes for the death of under-five children 

in Ethiopia on 2011 EDHS data set, so the government and other stakeholders take an action: 

 On improving the women’s educational level. 

 On improving the economical status of women’s. 

 For women with twin children needs a special cares than women with one child. 

 By minimizing the total number of children in the household. 

 By increasing the gap of birth interval. 
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 By encouraging the women born in the health facility and discouraging the women 

born in out of the health facility. 

 Giving an attention for children are a critical issues for one’s own country. So, further 

research should be conduct on the area. 

Ethical Considerations  

Ethical issue (Including plagiarism, informed consent, misconduct, data fabrication and/or 

falsification, double publication and/or redundancy, etc.) have been completely observed by the 

author. 

 

Limitation of the Study  

 Somalia region is not included in the study because in the EDHS it was not included. 

 

Software 

Data were analyzed using R version 3.2.5 and STATA version 12.0 Software.  
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APPENDIX 1 

Univariable analysis using Gamma and Inverse Gaussian parametric shared frailty models for 

time-to-death of under-five children in Ethiopia. 

A. Weibull-Gamma Univariable Analysis 

  Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 Women’s Education 

       (Intercept)  2.939 0.0042 1.037 5027.7 1.029 1.045 * 

No education Ref 

      Primary -0.160 0.0060 1.060 7.02 1.048 1.072 * 

Secondary&above -0.213 0.0165 1.164 1.68 1.132 1.196 * 

Wealth Index 

       (Intercept)  2.730 0.0023 1.038 139.70 1.033 1.042 * 

Poor Ref 

      Middle 0.260 0.0076 1.076 11.68 1.061 1.091 * 

Rich 1.250 0.0120 1.120 109.13 1.096 1.144 * 

Type of births 

       (Intercept)  2.990 0.0018 1.041 268.31 1.037 1.044 * 

Single Ref 

      Multiple -0.973 0.0082 1.082 139.86 1.066 1.098 * 

Total children ever born  

       (Intercept)  2.673 0.0097 1.046 754.40 1.027 1.065 * 

1-3 children  Ref 

      4-6  children   0.386 0.0059 1.059 42.70 1.047 1.071 * 

7-9  children  0.375 0.0072 1.072 27.28 1.058 1.086 * 

≥ 10  children 0.229 0.0114 1.114 4.06 1.091 1.136 * 

Preceding birth intervals  

       (Intercept)  2.672 0.0175 1.042 234.37 1.008 1.077 * 

< 24 months  Ref 

      24-47 months  0.536 0.0063 1.063 73.39 1.050 1.075 * 

≥48 months  0.594 0.0091 1.091 42.26 1.073 1.109 * 
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Place of delivery 

       (Intercept)  2.591 0.0081 1.078 1018.36 1.062 1.094 * 

Health facility Ref 

      Elsewhere 0.343 0.0081 1.080 17.85 1.064 1.096 * 

Sex of household head 

       (Intercept)  2.900 0.0362 1.036 6425.07 0.965 1.107 * 

Male Ref 

      Female  0.004 0.0346 1.065 0.00 0.997 1.132 

 Religion 

       (Intercept)  2.934 0.0466 1.043 3965.63 0.951 1.134 * 

Muslim Ref 

      Orthodox -0.102 0.0641 1.060 2.55 0.935 1.186 

 Protestant -0.026 0.0749 1.071 0.12 0.924 1.217 

 Other  -0.018 0.1327 1.131 0.02 0.871 1.391 

 Where: coef=coefficient, s.e=standard error, ϕ=Acceleration Factor, Chi-sq=Chi-square, 95% 

CI=Confidence Interval for acceleration factor, LCL=lower class limit, UCL= upper class limit, 

Ref=Reference, *= p-value < 0.05. 

 

B. Weibull- Inverse-Gaussian Univariable Analysis 

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 
        Women’s Education 

       (Intercept)  2.938 0.0039 1.037 5820.84 1.029 1.044 * 

No education Ref 

      Primary -0.160 0.0060 1.060 7.09 1.048 1.071 * 

Secondary&above -0.208 0.0641 1.164 1.61 1.038 1.289 * 

Wealth Index 

       (Intercept)  2.753 0.0046 1.036 3579.87 1.026 1.045 * 

Poor Ref 

      Middle 0.234 0.0075 1.075 9.75 1.060 1.089 * 

Rich 1.184 0.0160 1.115 104.23 1.084 1.147 * 
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Type of births 

       (Intercept)  2.965 0.0037 1.035 6345.15 1.028 1.043 * 

Single Ref 

      Multiple -0.944 0.0081 1.081 135.74 1.065 1.097 * 

Total children ever born  

       (Intercept)  2.656 0.0455 1.044 3406.80 0.955 1.133 * 

1-3 children  Ref 

      4-6  children   0.381 0.0059 1.059 42.06 1.047 1.070 * 

7-9  children  0.374 0.0072 1.072 27.26 1.058 1.086 * 

≥ 10  children 0.223 0.0113 1.113 3.92 1.091 1.135 * 

Preceding birth intervals  

       (Intercept)  2.663 0.0046 1.038 3361.20 1.029 1.047 * 

< 24 months  Ref 

      24-47 months  0.517 0.0062 1.062 69.60 1.050 1.074 * 

≥48 months  0.574 0.0091 1.090 40.20 1.072 1.108 * 

Place of delivery 

       (Intercept)  2.601 0.0079 1.078 1098.10 1.062 1.093 * 

Health facility Ref 

      Elsewhere 0.327 0.0080 1.079 16.69 1.064 1.095 * 

Sex of household head 

       (Intercept)  2.900 0.0377 1.036 5926.53 0.962 1.110 * 

Male Ref 

      Female  0.002 0.0648 1.065 0.00 0.937 1.192 

 Religion 

       (Intercept)  2.935 0.0447 1.043 4306.76 0.955 1.130 * 

Muslim Ref 

      Orthodox -0.102 0.0621 1.060 2.69 0.938 1.181 

 Protestant -0.031 0.0726 1.070 0.19 0.928 1.212 

 Other  -0.026 0.1316 1.130 0.04 0.872 1.388 

 Where: coef=coefficient, s.e=standard error, ϕ=Acceleration Factor, Chi-sq=Chi-square, 95% 

CI=Confidence Interval for acceleration factor, LCL=lower class limit, UCL= upper class limit, 

Ref=Reference, * =p-value < 0.05. 
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C. Log-logistic- Gamma Univariable Analysis  

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 
        Women’s Education 

       (Intercept)  2.662 0.0005 1.044 2825.00 1.043 1.045 * 

No education 

       Primary -0.187 0.0062 1.061 9.23 1.049 1.073 * 

Secondary&above -0.212 0.0159 1.158 1.78 1.127 1.189 * 

Wealth Index 

       (Intercept)  2.354 0.0025 1.044 89.10 1.039 1.048 * 

Poor Ref 

      Middle 0.286 0.0075 1.075 14.40 1.060 1.090 * 

Rich 1.254 0.0110 1.110 129.60 1.088 1.131 * 

Type of births 

       (Intercept)  2.700 0.0202 1.047 179.77 1.007 1.086 * 

Single Ref 

      Multiple -1.090 0.0091 1.091 143.17 1.073 1.109 * 

Total children ever born  

       (Intercept)  2.344 0.0132 1.052 316.24 1.026 1.078 * 

1-3 children  Ref 

      4-6  children   0.439 0.0059 1.059 54.56 1.048 1.071 * 

7-9  children  0.422 0.0073 1.073 33.46 1.059 1.087 * 

≥ 10  children 0.258 0.0115 1.115 5.05 1.092 1.137 * 

Preceding birth intervals  

       (Intercept)  2.293 0.0207 1.049 123.18 1.008 1.089 * 

< 24 months  Ref 

   

0.000 0.000 

 24-47 months  0.606 0.0061 1.061 98.23 1.049 1.073 * 

≥48 months  0.662 0.0087 1.087 58.20 1.070 1.104 * 

Place of delivery 

       (Intercept)  2.275 0.0085 1.079 714.56 1.063 1.096 * 

Health facility Ref 
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Elsewhere 0.383 0.0081 1.079 22.42 1.064 1.095 * 

Sex of household head 

       (Intercept)  2.616 0.0503 1.043 2706.27 0.944 1.142 * 

Male Ref 

      Female  0.009 0.0671 1.067 0.02 0.935 1.198 

 Religion 

       (Intercept)  2.659 0.0556 1.050 2283.15 0.941 1.159 * 

Muslim 

       Orthodox -0.131 0.0682 1.062 3.70 0.929 1.196 

 Protestant -0.017 0.0793 1.073 0.05 0.917 1.228 

 Other  -0.020 0.1475 1.144 0.02 0.855 1.434 

 Where: coef=coefficient, s.e=standard error, ϕ=Acceleration Factor, Chi-sq=Chi-square, 95% 

CI=Confidence Interval for acceleration factor, LCL=lower class limit, UCL= upper class limit, 

Ref=Reference, * =p-value < 0.05. 

 

D. Log-logistic- Inverse-Gaussian Univariable Analysis 

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 Women’s Education 

       (Intercept)  2.662 0.0047 1.044 3261.02 1.034 1.053 * 

No education Ref 

      Primary -0.187 0.0061 1.061 9.38 1.049 1.073 * 

Secondary&above -0.209 0.0158 1.158 1.75 1.127 1.189 * 

Wealth Index 

       (Intercept)  2.364 0.0076 1.044 981.30 1.029 1.058 * 

Poor Ref 

      Middle 0.274 0.0075 1.075 13.40 1.060 1.089 * 

Rich 1.176 0.0104 1.103 128.00 1.082 1.123 * 

Type of births 

       (Intercept)  2.680 0.0050 1.042 2922.20 1.032 1.052 * 

Single Ref 

      Multiple -1.070 0.0091 1.091 140.23 1.073 1.108 * 
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Total children ever born  

       (Intercept)  2.325 0.0051 1.050 2050.66 1.040 1.060 * 

1-3 children  

       4-6  children   0.437 0.0059 1.059 54.53 1.047 1.071 *  

7-9  children  0.422 0.0073 1.073 33.78 1.058 1.087 * 

≥ 10  children 0.263 0.0114 1.114 5.29 1.092 1.137 * 

Preceding birth intervals  

       (Intercept)  2.289 0.0060 1.046 1454.50 1.034 1.058 * 

< 24 months  

       24-47 months  0.593 0.0061 1.061 95.30 1.049 1.072 * 

≥48 months  0.641 0.0086 1.086 55.70 1.069 1.102 * 

Place of delivery 

       (Intercept)  2.277 0.0083 1.079 754.43 1.063 1.095 * 

Health facility 

       Elsewhere 0.376 0.0080 1.079 21.93 1.063 1.095 * 

Sex of household head 

       (Intercept)  2.616 0.0463 1.043 3195.59 0.952 1.134 * 

Male Ref 

      Female  0.012 0.0669 1.067 0.03 0.935 1.198 

 Religion 

       (Intercept)  2.663 0.0510 1.049 2727.04 0.949 1.149 * 

Muslim 

       Orthodox -0.133 0.0630 1.061 4.45 0.937 1.184 

 Protestant -0.032 0.0733 1.070 0.19 0.927 1.214 

 Other  -0.039 0.1445 1.143 0.07 0.860 1.426 

  

Where: coef=coefficient, s.e=standard error, ϕ=Acceleration Factor, Chi-sq=Chi-square, 95% 

CI=Confidence Interval for acceleration factor, LCL=lower class limit, UCL= upper class limit, 

Ref=Reference,* =p-value < 0.05. 
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E. Log-normal- Gamma Univariable Analysis 

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 
        Women’s Education 

       (Intercept)  2.777 0.0058 1.050 2275.19 1.038 1.061 * 

No education 

       Primary -0.179 0.0060 1.059 9.06 1.047 1.071 * 

Secondary&above -0.215 0.0150 1.148 2.07 1.119 1.178 * 

Wealth Index 

       (Intercept)  2.443 0.0257 1.048 90.26 0.998 1.099 * 

Poor Ref 

      Middle 0.287 0.0070 1.070 16.67 1.057 1.084 * 

Rich 1.161 0.0089 1.089 170.45 1.071 1.106 * 

Type of births 

       (Intercept)  2.800 0.0205 1.052 186.23 1.011 1.092 * 

Single 

       Multiple -1.070 0.0095 1.095 126.16 1.077 1.114 * 

Total children ever born  

       (Intercept)  2.473 0.0137 1.057 327.31 1.030 1.083 * 

1-3 children  Ref 

      4-6  children   0.408 0.0057 1.057 51.38 1.046 1.068 * 

7-9  children  0.405 0.0070 1.070 33.09 1.057 1.084 * 

≥ 10  children 0.243 0.0112 1.112 4.76 1.090 1.133 * 

Preceding birth intervals  

       (Intercept)  2.389 0.0220 1.053 117.58 1.010 1.096 * 

< 24 months  Ref 

      24-47 months  0.609 0.0059 1.059 108.22 1.047 1.070 * 

≥48 months  0.680 0.0081 1.081 70.66 1.065 1.097 * 

Place of delivery 

       (Intercept)  2.406 0.0097 1.082 613.80 1.063 1.101 * 

Health facility Ref 
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Elsewhere 0.379 0.0081 1.079 22.00 1.063 1.095 * 

Sex of household head 

       (Intercept)  2.737 0.0597 1.049 2098.75 0.932 1.166 * 

Male Ref 

      Female  -0.007 0.0650 1.065 0.01 0.937 1.192 

 Religion 

       (Intercept)  2.773 0.0627 1.055 1954.34 0.932 1.178 * 

Muslim 

       Orthodox -0.130 0.0678 1.062 3.67 0.929 1.194 

 Protestant 0.008 0.0796 1.072 0.01 0.916 1.228 

 Other  -0.084 0.1414 1.138 0.35 0.861 1.415 

 Where: coef=coefficient, s.e=standard error, ϕ=Acceleration Factor, Chi-sq=Chi-square, 95% 

CI=Confidence Interval for acceleration factor, LCL=lower class limit, UCL= upper class limit, 

Ref=Reference, *= p-value < 0.05. 

 

F. Log-normal - Inverse-Gaussian Univariable Analysis 

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 Women’s Education 

       (Intercept)  2.775 0.0055 1.050 2558.63 1.039 1.060 * 

No education Ref 

      Primary -0.180 0.0059 1.059 9.19 1.047 1.070 * 

Secondary&above -0.212 0.0149 1.148 2.03 1.119 1.177 * 

Wealth Index 

       (Intercept)  2.450 0.0073 1.048 1136.50 1.034 1.062 * 

Poor Ref 

      Middle 0.276 0.0070 1.070 15.60 1.056 1.083 * 

Rich 1.111 0.0086 1.085 168.40 1.068 1.102 * 

Type of births 

       (Intercept)  2.780 0.0056 1.048 2454.00 1.037 1.059 * 

Single Ref 

      Multiple -1.060 0.0095 1.095 125.00 1.076 1.113 * 
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Total children ever born  

       (Intercept)  2.452 0.0059 1.055 1750.19 1.043 1.066 * 

1-3 children  Ref 

      4-6  children   0.407 0.0057 1.057 51.49 1.046 1.068 * 

7-9  children  0.405 0.0070 1.070 33.41 1.056 1.084 * 

≥ 10  children 0.244 0.0111 1.111 4.84 1.089 1.133 * 

Preceding birth intervals  

       (Intercept)  2.380 0.0066 1.051 1290.20 1.038 1.064 * 

< 24 months  

       24-47 months  0.597 0.0058 1.058 105.70 1.047 1.069 * 

≥48 months  0.660 0.0080 1.080 68.40 1.064 1.095 * 

Place of delivery 

       (Intercept)  2.410 0.0087 1.082 759.70 1.065 1.099 * 

Health facility Ref 

      Elsewhere 0.360 0.0079 1.078 20.70 1.062 1.093 * 

Sex of household head 

       (Intercept)  2.733 0.0550 1.049 2468.61 0.941 1.157 * 

Male Ref 

      Female  -0.003 0.0648 1.065 0.00 0.937 1.192 

 Religion 

       (Intercept)  2.775 0.0597 1.055 2163.42 0.938 1.172 * 

Muslim 

       Orthodox -0.133 0.0648 1.060 4.21 0.932 1.187 

 Protestant -0.002 0.0760 1.070 0.00 0.921 1.219 

 Other  -0.096 0.1397 1.137 0.47 0.863 1.411 

 Where: coef=coefficient, s.e=standard error, ϕ=Acceleration Factor, Chi-sq=Chi-square, 95% 

CI=Confidence Interval for acceleration factor, LCL=lower class limit, UCL= upper class limit, 

Ref=Reference, * =p-value < 0.05. 
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APPENDIX 2 

Multivariate analysis using Gamma and Inverse Gaussian parametric shared frailty models for 

time-to-death of under five children in Ethiopia. 

A. Weibull- Gamma Multivariate Analysis 

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 Women’s Education 

       (Intercept)  1.797 0.0306 1.122 34.39 1.062 1.182 * 

No education Ref 

      Primary -0.238 0.0071 1.071 11.35 1.057 1.084 * 

Secondary&above -0.367 0.0204 1.204 3.22 1.164 1.244 * 

Wealth Index 

       (Intercept)  1.797 0.0306 1.122 34.39 1.062 1.182 * 

Poor Ref 

      Middle 0.249 0.0079 1.079 10.03 1.063 1.094 * 

Rich 1.490 0.0131 1.131 129.71 1.105 1.156 * 

Type of births 

       (Intercept)  1.797 0.0306 1.122 34.39 1.062 1.182 * 

Single Ref 

      Multiple -1.095 0.0094 1.094 136.82 1.075 1.112 * 

Total children ever born  

       (Intercept)  1.797 0.0306 1.122 34.39 1.062 1.182 * 

1-3 children  Ref 

      4-6  children   0.371 0.0067 1.067 30.56 1.054 1.080 * 

7-9  children  0.498 0.0083 1.083 35.93 1.067 1.099 * 

≥ 10  children 0.181 0.0125 1.125 2.08 1.101 1.150 * 

Preceding birth intervals  

       (Intercept)  1.797 0.0306 1.122 34.39 1.062 1.182 * 

< 24 months  Ref 

      24-47 months  0.458 0.0066 1.066 48.81 1.053 1.078 * 

≥48 months  0.551 0.0096 1.096 32.92 1.077 1.115 * 
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Place of delivery 

       (Intercept)  1.797 0.0306 1.122 34.39 1.062 1.182 * 

Health facility Ref 

      Elsewhere 0.657 0.0106 1.106 38.69 1.085 1.126 * 

Frailty 

   

4.38 

  

* 

        

 

θ = 0.868 τ= 0.333 δ= 1.250 λ=  0.098  

   

 

Likelihood ratio test of  θ = 507 ,df= 24, p-value=0.00 

Coef= coefficient, Se= standard error, ϕ = acceleration factor, 95% CI=Confidence Interval for 

acceleration factor, LCL=lower class limit, UCL= upper class limit, Chi-sq=Chi-square, 

Ref=Reference, θ = variance of the random effect, λ = scale parameter, δ = shape parameter, τ = 

Kendall's Tau, * =p-value < 0.05. 

 

B. Weibull-Inverse Gaussian Multivariate Analysis 

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 Women’s Education 

       (Intercept)  1.799 0.0130 1.118 192.49 1.092 1.143 * 

No education Ref 

      Primary -0.244 0.0070 1.070 12.14 1.056 1.083 * 

Secondary&above -0.361 0.0204 1.203 3.14 1.163 1.243 * 

Wealth Index 

       (Intercept)  1.799 0.0130 1.118 192.49 1.092 1.143 * 

Poor Ref 

      Middle 0.233 0.0078 1.078 8.89 1.062 1.093 * 

Rich 1.475 0.0130 1.129 129.00 1.104 1.155 * 

Type of births 

       (Intercept)  1.799 0.0130 1.118 192.49 1.092 1.143 * 

Single Ref 

      Multiple -1.083 0.0092 1.092 137.26 1.074 1.110 * 

Total children ever born  

       (Intercept)  1.799 0.0130 1.118 192.49 1.092 1.143 * 

1-3 children  Ref 
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4-6  children   0.373 0.0067 1.067 30.90 1.054 1.080 * 

7-9  children  0.500 0.0083 1.082 36.60 1.066 1.098 * 

≥ 10  children 0.177 0.0125 1.125 2.00 1.100 1.149 * 

Preceding birth intervals  

       (Intercept)  1.799 0.0130 1.118 192.49 1.092 1.143 * 

< 24 months  Ref 

      24-47 months  0.444 0.0065 1.065 46.35 1.052 1.078 * 

≥48 months  0.537 0.0096 1.095 31.53 1.077 1.114 * 

Place of delivery 

       (Intercept)  1.799 0.0130 1.118 192.49 1.092 1.143 * 

Health facility Ref 

      Elsewhere 0.642 0.0103 1.101 39.09 1.081 1.121 * 

Frailty 

   

17.12 

  

* 

 

 θ = 0.0264 τ=  0.223  δ=1.250 λ=0.098 

   

 

Likelihood ratio test of  θ = 504,df= 21.2 , p-value=0.00 

Coef= coefficient, Se= standard error, ϕ = acceleration factor, 95% CI=Confidence Interval for 

acceleration factor, LCL=lower class limit, UCL= upper class limit, Chi-sq=Chi-square, 

Ref=Reference, θ = variance of the random effect, λ = scale parameter, δ = shape parameter, τ = 

Kendall's Tau, *= p-value < 0.05. 

 

C. Log-logistic-Gamma Multivariate Analysis  

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 Women’s Education 

       (Intercept)  1.217 0.0311 1.125 15.29 1.064 1.186 * 

No education Ref 

      Primary -0.248 0.0071 1.071 12.39 1.057 1.084 * 

Secondary&above -0.0916 0.0201 1.201 -1.57 1.162 1.241 * 

Wealth Index 

       (Intercept)  1.217 0.0311 1.125 15.29 1.064 1.186 * 

Poor Ref 

      Middle 0.274 0.0076 1.076 13.00 1.061 1.091 * 
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Rich 1.4347 0.0116 1.116 152.87 1.093 1.139 * 

Type of births 

       (Intercept)  1.217 0.0311 1.125 15.29 1.064 1.186 * 

Single Ref 

      Multiple -1.1436 0.0098 1.098 136.05 1.079 1.117 * 

Total children ever born  

       (Intercept)  1.217 0.0311 1.125 15.29 1.064 1.186 * 

1-3 children  Ref 

      4-6  children   0.4538 0.0066 1.066 47.64 1.053 1.079 * 

7-9  children  0.4995 0.0081 1.081 37.67 1.065 1.097 * 

≥ 10  children 0.2901 0.0122 1.122 5.69 1.098 1.145 * 

Preceding birth intervals  

       (Intercept)  1.217 0.0311 1.125 15.29 1.064 1.186 * 

< 24 months  Ref 

      24-47 months  0.5337 0.0062 1.062 74.17 1.050 1.074 * 

≥48 months  0.595 0.0089 1.089 44.42 1.072 1.107 * 

Place of delivery 

       (Intercept)  1.217 0.0311 1.125 15.29 1.064 1.186 * 

Health facility Ref 

      Elsewhere 0.7077 0.0108 1.108 42.98 1.087 1.129 * 

Frailty 

   

4.39 

  

* 

                                                            θ = 0.893 τ= 0.395 δ = -4.194  λ= 1.461 

  

 

Likelihood ratio test of  θ = 604,df=  24, p-value=0.00 

Coef= coefficient, Se= standard error, ϕ = acceleration factor, 95% CI=Confidence Interval for 

acceleration factor, LCL=lower class limit, UCL= upper class limit, Chi-sq=Chi-square, 

Ref=Reference, θ = variance of the random effect, λ = scale parameter, δ = shape parameter, τ = 

Kendall's Tau, * =p-value < 0.05. 
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D. Log-logistic- Inverse Gaussian Multivariate Analysis 

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

 Women’s Education 

       (Intercept)  1.2191 0.0134 1.121 83.30 1.095 1.147 * 

No education Ref 

      Primary -0.2536 0.0070 1.070 13.09 1.056 1.084 * 

Secondary&above -0.1031 0.0200 1.200 0.27 1.160 1.239 * 

Wealth Index 

       (Intercept)  1.2191 0.0134 1.121 83.30 1.095 1.147 * 

Poor Ref 

      Middle 0.2603 0.0076 1.075 11.88 1.060 1.090 * 

Rich 1.4083 0.0113 1.112 154.98 1.090 1.134 * 

Type of births 

       (Intercept)  1.2191 0.0134 1.121 83.30 1.095 1.147 * 

Single Ref 

      Multiple -1.132 0.0098 1.097 134.69 1.078 1.117 * 

Total children ever born  

       (Intercept)  1.2191 0.0134 1.121 83.30 1.095 1.147 * 

1-3 children  Ref 

      4-6  children   0.4519 0.0066 1.066 47.39 1.053 1.078 * 

7-9  children  0.498 0.0081 1.081 37.59 1.065 1.097 * 

≥ 10  children 0.2873 0.0121 1.121 5.61 1.098 1.145 * 

Preceding birth intervals  

       (Intercept)  1.2191 0.0134 1.121 83.30 1.095 1.147 * 

< 24 months  Ref 

      24-47 months  0.5259 0.0062 1.062 72.60 1.050 1.074 * 

≥48 months  0.5845 0.0089 1.089 43.33 1.071 1.106 * 

Place of delivery 

       (Intercept)  1.2191 0.0134 1.121 83.30 1.095 1.147 * 

Health facility Ref 
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Elsewhere 0.7092 0.0106 1.106 44.55 1.085 1.126 * 

Frailty 

   

19.84 

  

* 

 

θ= 0.03 τ=0.399 δ = -6.032 λ= 1.270  

   

 

Likelihood ratio test of  θ = 602,df= 21.4 , p-value=0.00 

Coef= coefficient, Se= standard error, ϕ = acceleration factor, 95% CI=Confidence Interval for 

acceleration factor, LCL=lower class limit, UCL= upper class limit, Chi-sq=Chi-square, 

Ref=Reference, θ = variance of the random effect, λ = scale parameter, δ = shape parameter, τ = 

Kendall's Tau, * =p-value < 0.05. 

 

E. Log-normal-Gamma Multivariate Analysis 

Variable Coef S.e(coef) Φ Chi-sq 95%CI P-value 

     

LCL UCL 

         Women Education 

       (Intercept)  1.3829 0.0309 1.118 19.99 1.058 1.179 * 

No education Ref 

      Primary -0.222 0.0066 1.066 11.25 1.053 1.079 * 

Secondary&above -0.0562 0.0190 1.190 0.09 1.153 1.227 * 

Wealth Index 

       (Intercept)  1.3829 0.0309 1.118 19.99 1.058 1.179 * 

Poor Ref 

      Middle 0.2655 0.0071 1.071 14.08 1.057 1.085 * 

Rich 1.2704 0.0093 1.093 185.95 1.075 1.111 * 

Type of births 

       (Intercept)  1.3829 0.0309 1.118 19.99 1.058 1.179 * 

Single Ref 

      Multiple -1.1085 0.0098 1.098 127.44 1.079 1.117 * 

Total children ever born  

       (Intercept)  1.3829 0.0309 1.118 19.99 1.058 1.179 * 

1-3 children  Ref 

      4-6  children   0.3943 0.0062 1.062 41.08 1.049 1.074 * 

7-9  children  0.4644 0.0077 1.077 36.66 1.062 1.092 * 

≥ 10  children 0.2651 0.0117 1.117 5.13 1.094 1.140 * 
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Preceding birth intervals  

       (Intercept)  1.3829 0.0309 1.118 19.99 1.058 1.179 * 

< 24 months  Ref 

      24-47 months  0.5199 0.0059 1.059 78.52 1.047 1.070 * 

≥48 months  0.5845 0.0082 1.082 50.60 1.066 1.098 * 

Place of delivery 

       (Intercept)  1.3829 0.0309 1.118 19.99 1.058 1.179 * 

Health facility Ref 

      Elsewhere 0.6347 0.0101 1.101 39.64 1.081 1.120 * 

Frailty 

   

3.80 

  

* 

                                              θ= 0.898 τ=  0.739 δ = 6.491 λ= 2.187   

   

 

Likelihood ratio test of  θ = 625 ,df=21.4 , p-value=0.00 

Coef= coefficient, Se= standard error, ϕ = acceleration factor, 95% CI=Confidence Interval for 

acceleration factor, LCL=lower class limit, UCL= upper class limit, Chi-sq=Chi-square, 

Ref=Reference, θ = variance of the random effect, λ = scale parameter, δ = shape parameter, τ = 

Kendall's Tau, * =p-value < 0.05. 
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APPENDIX 3 

 Kaplan-Meier curves of time-to-death for different groups.  

 

Figure 4.2: KM curves of time-to-death for under-five children by women’s educational level. 
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Figure 4.3: KM curves of time-to-death for under-five children by wealth index 

 

 

Figure 4.5: KM curves of time-to-death for under-five children by total children ever born 

 

Figure 4.6: KM curves of time-to-death for under-five children by preceding birth intervals. 

0.00 

0.25 

0.50 

0.75 

1.00 

Survival function 

0 20 40 60 
Time in month 

< 24 months 24-47 months 
>=48 months 

KM curves by preceding birth intervals  

0.00 

0.25 

0.50 

0.75 

1.00 

Survival function 

0 20 40 60 
Time in month 

1-3 children 4-6 children 
7-9 children >= 10 children 

KM curves by total children ever born 



72 
 

 

Figure 4.7: KM curves of time-to-death for under-five children by Place of delivery. 

 

Figure 4.8: KM plot for survival of time-to-death for under-five children by sex of household 

head 
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Figure 4.9: KM plot for survival of time-to-death for under-five children by sex of religion 
 

APPENDIX 4 

Table 4.3: Median time-to-death for under-five children and confidence interval by levels of 

Covariates 

Category 

Time-to-death 

 

 

95% CI 

Median (in months) LCL UCL 

No education 12 12 13 

Primary education  11 9 14 

Secondary& above  12 12 13 

Poor 12 11 12 

Middle  12 8 24 

Rich 12 7 19 

Single 12 12 13 

Multiple 7 6 11 

1-3 children 12 8 12 
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4-6 children 12 12 15 

7-9 children 12 11 17 

>= 10 children 11 7 24 

<24 months 11 9 12 

24-47 months 12 12 17 

>=48 months 12 6 17 

Health facility  9 6 15 

Elsewhere  12 12 13 

Male 12 11 12 

Female 12 12 18 

Orthodox  12 12 13 

Muslim  12 9 17 

Protestant  11 8 12 

Other 24 12 24 

 

 

Table 4.6: Summary of quantitative variables 

      

       95% CI 

 

 Variable Minimum Maximum Mean median Std.Deviation LCL UCL 

time-to-death 1 58 11.5 12 3.62 11 13 

 

 


