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ABSTRACT 

Background: Marriage to first birth interval is important incidence in the life of women with 

increasing responsibilities. It plays a significant role in the future life of each woman and has a 

direct relationship with fertility. Ethiopia is the second most populous countries in sub-Saharan 

Africa next to Nigeria along with scarcity of resources. This study aimed to investigate the 

potential risk factors affecting time-to-first birth among married women in Ethiopia using 

parametric shared frailty model where regional states of the women were used as a clustering 

effect in the model since. Time-to-first birth and First birth interval (FBI) are used 

interchangeably in this document.   

Methods: The data source for the analysis was the 2011 EDHS data.  The study considered 

7,925 women who went into marriage for the first time without a child or no pregnancy from 

eight regional states and two city administrations. The AFT and parametric gamma shared frailty 

models were employed with the help of R statistical package and STATA soft wares.    

Results: The median survival time of first birth interval and the median age of women at first 

marriage were 30 months and 16 years respectively. The clustering effect was significant and log-

normal gamma shared frailty model was preferred over weibull and log-logistic gamma shared 

frailty models based on AIC and graphical evidence. The result showed women’s educational, age 

of women at marriage, contraceptive, place of residence, and employment status of women were 

significantly affect timing of first birth interval. Women who used contraceptive had prolonged 

time-to-first birth by the factor of ϕ=1.116 and women lived in urban had prolonged by the factor 

of ϕ=1.292 from their counterpart. 

Conclusion: The result suggested that women from different region had different pattern in 

their timing of first birth interval. Women education, increasing age of women at marriage 

shorten timing of first birth but urban women, employed and contraceptive users had longer 

survival of time-to-first birth from their respective counterpart. Creating job opportunities, give 

awareness on family planning through use of contraceptive and the importance of elongating 

time-to-first birth for rural women are important avenues for rising time to first birth.  

Key Words: Survival Data Analysis, Frailty, Acceleration Factor, Censored, Time-to-First Birth 
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1. INTRODUCTION 

1.1 Background  

The first visible outcome of the fertility process is the birth of the first child. The first birth marks 

a woman’s transition into motherhood. It plays a significant role in the future life of each 

individual woman and has a direct relationship with fertility. The age at which child bearing 

begins influences the number of children a woman bears throughout her reproductive period in 

the absence of any active fertility control (Moultrie et al., 2012). For countries in sub-Saharan 

Africa, where contraceptive use is relatively low as compared with developed world, younger 

ages at first birth tend to boost the number of children a woman will have. However, even when 

family planning is widespread, the timing of first births can affect complete family size if 

contraception is used for spacing but not for limiting fertility (Ngalinda, 1998). Generally in the 

societies were the births are confined to marriage, reproduction starts from the onset of effective 

marriage and first birth interval following effective marriage depends on the demographic 

characteristic of women at the earlier stages of married life (Mukhlesur et al., 2013). 

Fertility patterns in the world have changed dramatically over the last two decades since the 

international conference on population and development (ICPD) in 1994, producing a world with 

very diverse child bearing patterns (United Nations, 2014). Many countries  in  Asia  were  able  

to  reduce  their  fertility  through  government  policies.  For instance, China and Vietnam have 

witnessed declines in their total fertility rate (TFR) due to stringent government policies that 

discourage early and arranged marriage (Lofstedt et al., 2005). However,  the  delayed  fertility  

transition  has been observed to be underway in the region with  remarkable  progress  in  African 

countries  like  South  Africa,  Botswana, and Zimbabwe (Bongaarts, 2008; Moultrie et al., 2012), 

fertility remains high in Africa by the standards of the rest of the world.  

Fertility rates in sub Saharan Africa have been identified to exhibit a very unique demographic 

scenario in the world that sets it apart from other regions in the world. Contrary to the case of 

most regions like Europe, South America and Asia that have for long entered the fertility 

transition marked by a declined in their fertility rates in the 1950s and 1960s, sub-Saharan Africa 

is the only region in the world, where fertility decline has been rather slow and late (Ekane, 

2013). According to Malmberg (2008), the current fertility rates in the sub-continent stand at the 
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same level as that of Asia and South America towards the end of the 1970s. Most countries in Sub 

Saharan Africa are still experiencing relatively higher fertility rates. What can be discern from the 

information so far provided, is that sub-Saharan Africa is the sole region in the world that has not 

so far experienced any significant decline in its fertility rates. According to United Nations (2014) 

report, 45 out of 66 high fertility countries (more than 3.2 children per woman) are increasingly 

concentrated in sub-Saharan Africa.  

 Ethiopia  is the second  most  populous  countries  in  sub-Saharan Africa  next  to  Nigeria with 

94,351,001 population size and 29 years of doubling time (CSA,2013) along with the scarcity of 

resources. Uncontrolled  fertility  has  adversely influenced  the  socio-economic,  demographic  

and  environmental  development  of  the  country. Poverty,  war  and  famine,  associated  with  

low  levels  of  education  and  health,  a  weak infrastructure,  and  low  agricultural  and  

industrial  production  have  aggravated  the  problem  of overpopulation (Ezra, 2001). When we 

look back at the history of Ethiopia population growth rate, there has been a steady increase since 

1960. Based on 1984 census information, population  growth rate was  estimated  at  about  2.3%  

for  the  1960-70  period,  2.5%  for  the  1970-80  period,  and  2.8%  for  the  1980-85  period.  

Population  projections compiled in 1988 by the CSA projected a 2.83  percent  growth  rate  for  

1985-90  and  a  2.96%t  growth  rate  for  1990-95. According  to  the  2007  Ethiopia  population  

census,  the  annual  population  growth rate  within  1994-2007  was  estimated  as  2.6%.    

For the formulation of effective policy to motivate people for longer first birth  interval after 

marriage,  it  is crucial to  study  the  effect  of  various  socio-economic  and demographic factors 

which affect time-to-first birth. Having these, this research examined factors associated to time-

to-first birth after marriage using parametric survival models. Survival analysis is a statistical 

method for data analysis where the response variable is the time to the occurrence of an event, 

time-to-first birth after marriage in this study.   

In this study time-to-first marriage was clustered by the region. Hence, the effect of the region 

was assessed by introducing the frailty term in the survival model. The study used parametric 

gamma shared frailty model in determining the factors which affect the time-to-first birth after 

marriage. And, accelerated failure time (AFT) models also fitted using weibull, log-logistic and 

log-normal baseline distributions to compare and get the best model which fits the time-to-first 

birth data appropriately.  
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1.2. Statement of Problem  

High fertility in Ethiopia remains the dominant factor dictating the future size, growth and 

composition of the population in the country. In order to reduce fertility and control population 

growth of the country, the factors that influence fertility should be clearly identified (Zhang, 

2007). Experience of fertility transition countries also emphasizes the role of its determinant in 

fertility change (Bongaarts, 2011). Human fertility is a function of a variety of factors. The factor 

varies from place to place, depending on the specific conditions of the given area (Lindstrom & 

Kiros, 2001; Yohannes et al., 2004). 

Total fertility rate can be lessened by increasing the age at marriage (Islam, 2009). But age at 

marriage is difficult to increase due to effect of strong social customs on it. The other option is to 

increase the length of time-to-first birth. If population control policies are formulated in a way 

that first birth interval is controlled, then higher order birth interval will be also controlled           

(Islam, 2009). For the formulation of effective policy to motivate people for longer time-to-first 

birth, it is necessary to study the effect of various socio-economic and demographic factors which 

affect time-to-first birth. A proper understanding of these factors are of paramount importance in 

tackling the problem of uncontrolled  fertility,  which  covers  the  way  for  the  improvement  of  

the  prevailing  socioeconomic problems of the country. 

Even though, several studies on time-to-first birth after marriage used different statistical models 

to explore its determinant factor, its evolution still needs to be studied. In the literature review, the 

use of survival analysis in the modeling the determinants of time-to-first birth were played 

important role. Kaplan-Meier, Cox proportional  hazard  model, and parametric survival models 

have been used which assumes  the  survival  data of  different observations   are  independent 

and  identical  of  each  other. This  assumption  does  not  hold  in  other  situations,  which  are  

not common  as  originally  thought. Yet, the  concept  of  this  model  allows  for  modeling  the  

risk  of different  groups;  it  does  not  control  the  risk  factor  for  some  relevant  covariates  

that  are  often unobservable, or difficult to measure  even  unknown (Wienke, 2010).  But the 

fertility rate is quite different and customs, culture and practice of people vary across regions.  

This implied that the existence of heterogeneity in the survival of time-to-first birth between 

different regions.   
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This research aimed to explore factors that affect time-to-first birth after marriage by using 

parametric shared frailty model. Frailty term was added to account the correlation which comes 

from the cluster, accounts unobservable random effect.  In general, the motivation behind this 

study is to address the following major research questions: 

 What are the key socio-economic and demographic predictors of time-to-first birth after 

marriage among women in Ethiopia?  

 Which baseline distributional assumption among the weibull, log-logistic, and log-normal 

describes well time-to-first birth after marriage?  

 Finally, the multivariable model will be fitted and interpreted using the selected 

appropriate model 

1.3. Objective of the Study 

1.3.1 General Objective 

Modeling time- to-first birth after marriage among women in Ethiopia using different parametric 

shared frailty model approaches.  

1.3.2 Specific Objectives  

The specific objectives are:  

 To identify factors associated with time-to-first birth after marriage for Ethiopian women. 

 To estimate the survival time and compare the survival curves of time-to-first birth among 

different levels of covariates 

 To assess the clustering (region) effect in determining the factors associated with time-to-

first birth after marriage among women in Ethiopia 

 To compare the performance of AFT and parametric frailty model in modeling time-to-

first birth dataset.  

1.4. Significance of the Study 

The result of this study will provide information on time- to- first birth among women in 

Ethiopian and its determinant factors.  Specifically; 

 To provide information about the covariates or risk factors of time- to-  first birth  

 Provide information to government and concerned bodies in setting policies and strategies. 

 Use as a stepping stone for further studies related to time-to- first birth. 
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2. LITERATURE REVIEW 

2.1. Description of Fertility  

Fertility refers to the actual reproductive performance of women and it is the most important 

component of population dynamics and plays a major role in changing the size and structure of 

the population of a given area over time (Ayanaw, 2008). Many theoretical approaches have been 

developed to explain variations in fertility. The most common measure of fertility is  the  total  

fertility  rate  that  is  defined  as  the average number of births that a  woman would have  if  she  

survived  to  the  end  of  her childbearing ages (Manda & Meyer, 2005). Each marriage increase 

the likelihood of more children as women in the right age of child bearing and this leads to high 

total fertility rate. Several indicators are used to measure fertility patterns, such as the first birth 

interval after marriage (Lloyd, 2005). 

2.2. Time-to-First Birth after Marriage 

The birth interval of the first child can be used as one of the indicators of fertility. Marriage to 

first birth is important incidence in the life of women with increasing responsibilities.  The 

waiting time of a woman to first birth after marriage,  can  determine  the  happiness  and  or  

survival  of  her  marriage.  While delayed births could lead to contention,  suspicions  and  even  

breakups  of  marriages,  very  early  births,  especially  the  unexpected  and unwanted ones, 

could do same or even worse (Logubayom & Luguterah, 2013). According to Singh et al. (2006), 

among the various types of fertility data used, data on first  birth  interval  have  an upper  hand  

over  all  other  types  of  birth interval due to certain reasons. First, being the earliest and first 

event of the married life of a female,  it  hardly  suffers  from  recall  lapse; second,  it  is  free 

from inconsistent fluctuation of breast feeding (Singh, 2007).  

2.2.1. Risk Factors of Time-to-First Birth  

Time-to-first birth after marriage is affected by a complex range of factors. Some of which are 

rooted  in  social  and  cultural  norms,  others  in  the  reproductive  histories  and behaviors of 

individual women, utilization of reproductive health services and other personal factors. Group 

differences in reproductive behavior are usually explained from the characteristics and socio-

cultural perspectives (United Nations, 1987). While  the  former  attributes  variations  in  fertility  

behavior  to  socio-economic  and demographic  differences  among  groups,  the  latter  assigns a  
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unique  role  to availabilities of required materials like contraceptive as key to making variations 

on birth intervals. 

Time-to-first birth is associated with couple’s personal characteristics like age at marriage, 

education, occupation, and place of residence but with the influence of social norms. Age of 

women at first birth is important determinant and it affects the growth of population. Early child 

bearing increases the women’s reproductive span as compared to those similarly fecund women 

who bear child later. It also reduces age gap between the two generations (Kumar & Danabalan, 

2006). 

Zhenzhen (2000) found the reason of delay in first live birth for women who married in between 

1980-92 for China. Urban women deliberately control the fertility by limiting the birth interval. 

Education, residence urban/rural, age at first marriage, marriage cohort played a significant role in 

the determination of marriage to first birth interval. The median of marriage to first birth interval 

for Chinese women is found to be two years. 

Education of both spouses had not shown any substantial effect on the first birth interval in 

Taiwan. The college educated Taiwanese women had two months long birth interval than women 

who had completed only school education.  Women with fifteen years marital duration had long 

birth interval than those who had less marital duration.  Urban residents had wider interval than 

rural. The difference of interval between urban and rural women was four months and family 

planning program had not attained the desired results and prevalence rate in rural areas was low 

than urban. Contraceptive use had shown insignificant relationship with birth spacing (Stokes & 

Hsieh, 1983). 

Islam (2009) had also investigated the determinants of first birth interval in rural Bangladesh. 

Respondent’s age, age of women at marriage, family income and quality of care at clinic were 

found as significant determinants. For the same country, using Cox PH Model based on the 

Bangladesh Demographic and health survey (Bdhs, 2004), place of residence, region, women’s 

education, husbands’ education, access to media, women’s work status, wealth index and 

contraceptive use were found to have significant effect on time-to-first birth while religion and 

husbands’ education were not. And also the mean and median of first birth interval were 33 and 

25 months respectively (Mukhlesur et al., 2013). And Rabbi et al. (2013) also used Multivariate 

approach to determine significant factors of age at first birth. Accordingly, age of women at 
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marriage, and place of residence (urban as reference) found to be negatively associated while 

mass media exposure, wealth index (poor as reference), work status of women were positively 

associated with first birth interval. 

Research conducted in Pakistan using Cox Regression Model by considering the covariates:  age 

of women at the first birth, age at  marriage,  ideal  number  of  children  (fertility  intention),  

ideal  number  of  boys (son  preference),  region  (Punjab, Sindh, KPK, Baluchistan), education  

of  both spouses, wealth index and occupation  of both spouses was conducted to identify the 

potential covariates that affect time-to-first birth after marriage. This research revealed that 

women’s age at marriage, education (illiterate) and wealth index (poorer) contribute significantly 

to first birth interval. But ideal number of children (fertility intention), ideal number of boys (son 

preference), and education status of both spouses were insignificant. The average value of 

marriage to first birth interval is found to be approximately 31 months or 2.7 years. (Kamal & 

Pervaiz, 2013). 

Shayan et al. (2014) in Iran investigated prognostic factors of first birth interval after marriage 

using Cox PH and Parametric Survival Models. The result showed that age at marriage, level of 

women’s education, and menstrual status had highly significant effects on the duration of birth 

interval after marriage but wealth index, both women’s and husband educational levels were not 

significant. The mean and median of the first birth interval after marriage for Iranian women were 

found to be 31.2 and 25.2 months, respectively.  

Hidayat et al. (2014) used Cox PH and Exponential distribution in modeling first birth interval 

after marriage and associated factors in Indonesia. The result showed that place of residence, 

mother’s education, and age at marriage significantly affects the interval. But knowledge about 

contraception and work status of women found to be insignificant.  

Nath et al. (2000) conduct study on the effect of status of women on first birth interval in Indian 

Urban society. Education of women, work status, participation in family decisions  and  age  at  

marriage  were  taken  as  status  variable  along  with  socioeconomic variables (family income, 

family status and caste system). Among these factors, age of women at marriage, education status 

of women, family income and participation in family decision found to have significant effect on 
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first birth interval. Caste system also had played insignificant contribution in the determination of 

time-to-first birth in India. 

According to Gayawan and Adebayo (2013), by using Semi-parametric Survival modeling for age 

at first birth in Nigeria, by using DHS data (2008), 31% of women who had their first child before 

age 15 years ended up having 7 or  more children,  only  8.3%  of those  who had first birth after 

age 25  years ended with this number. The corresponding mean numbers of children for these 

women are 6.62 and 2.62 respectively, a difference of 4.0. The risk of bearing the first child is 

lower for women who attend secondary and higher education than those who have no education. 

In addition, working status of women and use of contraceptive methods were found to be 

significant in determining first birth. 

Similar study in Nigeria using four parametric models whose various curves and estimates are 

compared with non-parametric values were considered, namely Inverse Gaussian, Log-logistic, 

Weibull and Burr Type XII. The best model appears to be Inverse Gaussian based on the Akaike 

Information Criterion. In this study the covariate, wealth index of the family, work status of 

women, education level of women and her partner, age at marriage of women and place of 

residence were considered. The risk of giving her first birth for women lived in rural, illiterate 

women, women without job was higher than their respective counterpart. But education level of 

husband had no contribution to the time of first birth after marriage. The  mean  and  median  

waiting  times  to  first birth  after  marriage  by  women  in  Nigeria  are 28.8  and  20.0  months 

respectively (Amusan and Mohd, 2014). 

Logubayom and Luguterah (2013) used Non-Parametric Survival Analysis technique and data 

from the 2008 Ghana Demographic and Health Survey (GDHS) to examine first birth interval 

after marriage. The study considered only women of childbearing age (15-49 years), who went 

into marriage without a child or a pregnancy. The result showed that region of residence, 

educational level of women, and wealth index of the family had significant effect while age at 

first marriage and age at first intercourse are not. And most women (74%) have their first birth 

within the first three years of marriage and some women have even after ten years in marriage and 

the estimated median time of first birth interval was 30 months. For the same country 

Gyimah(2003), using regression analysis, also reported that women who had short first birth 
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interval tend to have a higher number of births than those whose first birth occur late regardless of 

their birth cohort.  

Gurmu and Etana (2010), investigated Ethiopian Marriage  to  first  birth  interval Using Cox’s 

proportional hazards model, which is significantly  different  for  age  of  women  at marriage,  

region,  education  of  women,  and  marriage  cohort  in  Ethiopia. Of the nine regional states, the 

study showed that Amhara region, where child marriage is commonly practiced, exhibits longer 

interval between marriage and first birth. For the same country, Ethiopia, Wondiber and Eshetu 

(2011), using AFT model with 2011 EDHS, reported that the median survival time of first birth 

for rural women was 29 months. 

Wondiber and Eshetu (2012) also used AFT model to analyze the determinant of birth intervals in 

rural Ethiopia using 2011 EDHS. They reported that the time-to-first birth affected by region, 

educational level of the mother and wealth index of the family. According to their finding, the 

estimated median time of first birth was 29 months.  

2.3. Survival Models 

The  origin  of  survival  analysis  goes  back  to  the  time  when  life  tables  were  introduced.  

Life tables are one of the oldest statistical techniques and are extensively used by medical 

statisticians and by actuaries. Yet  relatively  little  has  been  written  about  their  formal  

statistical  theory. Kaplan and Meier (1958) gave a comprehensive review of earlier work and 

many new results. Cox (1972) was largely concerned with the extension of the results of Kaplan 

and Meier to the comparison of life tables and more generally to the incorporation of regression 

like arguments into life table analysis. 

Survival models have the capability of handling censored data. Cox (1972) and Cox and Oakes 

(1984) used survival analysis in modeling human lifetimes. Fergusson et al. (1984) used hazard 

functions to study the time to marital breakdown after the birth of child. Hazard functions had 

been also used in studies of time to shift in attentions in classroom (Felmlee et. al., 1983), in 

study of relapse of mental illness (Lavori et al., 1984), marital dissolutions (Morgan et al. 1988), 

and human lifetimes (Gross et al., 1975). 
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Proportional hazards modeling is the most frequently used type of the survival analysis modeling 

in  many  research  areas,  having  been  applied  to  topics  such  as  smoking  relapse  (Stevens  

& Hollis,1989), affective  disorders  childhood  family  breakdown  interruptions  in  conversation 

(Dress, 1986),  and  employee  turnover  (Morita et al.,  1989),  and  in  medical  areas  for 

identification  of  important  covariates  that  have  as  significant  impact  on  the  response  of  

the interested variables. 

Cox (1972) introduced a semi parametric survival model. This model is based on the assumption 

that  the  survival  times  of  distinct  individuals  are  independent  of  each  other.  This 

assumption holds in many experimental settings and widely applicable. However; there are 

instances in which this assumption may be violated. For example, in many epidemiological 

studies, survival times  are  clustered  into  groups  such  as  families  or  geographical  units:  

some  unmeasured /immeasurable characteristics shared by the members of that cluster, such as 

genetic information or common environmental exposures could influence time to the studied 

event. To account these factors, we should include the random effect terms in the standard Cox 

model (Clayton, 1978; Klein et al., 1992; Nielsen et al., 1992; Hastie & Tibshirani, 1993). 

Frailty models are extensions of the PHs model which is best known as the Cox model (Cox, 

1972), the most popular model in survival analysis.  Frailty models are substantially promoted by 

its applications to multivariate survival data in a seminar paper by Clayton (1978) without using 

the notion frailty. Hougaard (1986) used several distributions for frailty including gamma, inverse 

Gaussian, positive stable distributions and claimed that these two distributions are relevant and 

mathematically tractable as a frailty distribution for heterogeneous populations. Flinn and 

Heckman (1982) used a lognormal distribution for frailty, whereas Vaupel et al. (1979) assumed 

that frailty is distributed across individuals as a gamma distribution.  Recent research has 

addressed the problem of heterogeneity. Hougaard (1986)  suggested  the  power  variance 

function  (PVF)  distribution  which  includes  gamma,  inverse  Gaussian,  positive  stable 

distributions as frailty model.  Hedeker et al. (1996) discussed a frailty regression model for the 

analysis of correlated grouped time survival data.  Frailty models have been applied to the 

analysis of event history data, including the study of age at time of death for individuals in terms 

of population (Zelterman, 1992), unemployment duration (McCall, 1994), pregnancy in women 

(Aalen, 1987) and migration (Lindstorm, 1996). 



11 
 

3. DATA AND METHODS 

3.1. Data Source 

The  data  for  this  study was extracted  from  the  published  reports  of  Ethiopian Demographic 

and Health Survey (EDHS, 2011) which  is  obtained  from  Central  Statistical  Agency  (CSA) 

collected during rom 27 December 2010 to 3 June 2011. It is the third survey conducted in 

Ethiopia as part of the worldwide DHS project. The 2011 EDHS was designed to provide 

estimates for the health and demographic variables of interest for the following domains. Ethiopia 

as a whole; urban and rural areas (each as a separate domain); and 11 geographic administrative 

regions  (9  regions and 2 city administrations), namely: Tigray, Affar, Amhara, Oromiya Somali, 

Benishangul-Gumuz, Souther Nations Nationalities and Peoples (SNNP), Gambela and Harari 

regional states and two city administrations, that is, Addis Ababa and Dire Dawa. The principal 

objective of the 2011 EDHS is to provide current and reliable  data on fertility and  family  

planning  behavior,  child  mortality,  adult  and  maternal  mortality,  children’s nutritional status, 

use of maternal and  child health services, knowledge  of HIV/AIDS, and prevalence of 

HIV/AIDS and anemia. 

3.2. Sampling Design  

The  2007  Population  and  Housing  Census,  conducted  by  the  CSA,  provided  the  sampling 

frame from which the 2011 EDHS sample was drawn.  Administratively, regions in Ethiopia are 

divided into zones, and zones, into administrative units, called weredas. Each wereda is further 

subdivided into the lowest administrative unit, called Kebele. And  each  kebele  was  subdivided  

into  census  enumeration  areas  (EAs)  or  clusters. The 2011 EDHS sample was selected using a 

stratified, two-stage cluster sampling design (CSA, 2011). 

Clusters were the sampling units for the first stage. The sample included 624 clusters, 187 in 

urban areas and 437 in rural areas. Households comprised the second stage of sampling.  In the 

second stage, a fixed number of 30 households were selected for each cluster. The 2011 EDHS 

used three questionnaires: the Household Questionnaire, the Woman’s Questionnaire, and the 

Man’s Questionnaire. These questionnaires were adapted from model survey  instruments  

developed  for  the  measure  DHS  project  to  reflect  the  population  and health issues relevant 
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to Ethiopia.  In addition to English, the questionnaires were translated into three major local 

languages-Amharic, Oromiffa, and Tigrigna. 

All women aged 15-49 were eligible for interview. In the interviewed households 16,515 eligible 

women were identified for individual interview. This study considered only women who went 

into marriage for the first time without a child or no pregnancy and whose records were complete. 

Thus, less than nine months of waiting time for first birth after marriage and having negative birth 

interval were excluded. In all, a total of 7,925 women from eight regions and two city 

administration were included in the study. This research did not consider Somali region because 

the data for Somali may not be totally representative of the region as a whole since some EAs are 

not interviewed due to drought and security problems (CSA, 2011). And the data were analyzed 

using the R-statistical packages (version 3.2.1) and STATA (version 11.0) soft wares. 

 3.3. Variables in the study 

The response (dependent) and predictor variables used in the model for the estimation of 

parameters are defined as follows. 

3.3.1. The Response Variable 

The response variable is time-to-first birth among woman in Ethiopia, which is measured in 

months. For women who did not give birth the time was measured till the date of the interview 

(27 December 2010 to 3 June 2011). 

3.3.2. Explanatory Variables 

Several  predictors  were considered  in  this  study  to  investigate  the  determinant  factors of 

time- to- first birth. These are age of women at marriage, women education, husband’s education, 

contraceptive use, and wealth index, place of residence, media exposure, and women employment 

status. These covariates are described together with their coding scheme in Table 1. Among these 

covariates only age at marriage is continuous the rest of them are categorical.   
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Table3.1: Description of independent variables used in the analysis  

Variables Description Categories 

age  Age of women  at marriage Measured in years 

Women education Women’s level of education 
0= No education;1= Primary; 
2= Secondary & above 

Husband education Husband’s level of education 
0= No education;1= Primary; 
2= Secondary and above 

Wealth index Household wealth index  0= Poor; 1=Meddle; 2=Rich) 

Place of residence Place of residence  0=Rural; 1=Urban) 

Mass media  Access to mass media 0= No; 1= Yes 

 Employment status  Employment status of women 0= unemployed ; 1= Employed 

Contraceptive Use  of Contraceptive 0 = Non-User, 1=User 

Region of the women was considered as a clustering effect in frailty model. 

3.4. Survival Analysis 

Survival analysis is a collection of statistical procedures for data analysis for which the outcome 

variable of interest is time until an event occurs.  By time, we mean years, months, weeks, or days 

from the beginning of follow-up of an individual until an event occurs; alternatively, time can 

refer to the age of an individual when an event occurs. By event, we mean death, disease 

incidence, relapse from remission, recovery (e.g., return to work) or any designated experience of 

interest that may happen to an individual.  The problem of analyzing time-to-event data arises in 

several applied fields such as medicine, biology, public health, epidemiology, engineering, 

economics, sociology, demography and etc. The terms lifetime analysis, duration analysis, event-

history analysis, failure-time analysis, reliability analysis, and transition analysis refer essentially 

to the same group of techniques  although  the  emphases  in  certain  modeling  aspects  could  

differ  across disciplines (Aalen et al., 2008). 

The use of survival analysis, as opposed to the  use of other statistical  method, is  most  important 

when some subjects are lost to follow up  or when the period of observation is finite certain 
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patients may not experience the event of interest over the study period. In this  latter  case  one  

cannot  have  complete  information  for  such  individuals.  These incomplete observations are 

referred to as being censored. Most survival analyses consider a key analytical problem of 

censoring. In essence, censoring occurs when we have some information about individual survival 

time, but we do not know the survival time exactly. 

In reality such event can occur due to the following reasons:  

1.  A person does not experience the event before the study ends  

2.  A person is lost to follow-up during the study period and  

3.  A person withdraws from the study for unknown/known reasons 

There are three categories of censoring.  

i)  Right  censoring:  Survival  time  is  said  to  be  right  censored  when  it  is recorded  

from  its  beginning  to  a  defined  time  before  its  end  time.  This type  of  censoring  is  

commonly  recognized  survival  analysis  and  also considered in this study. Let C denote 

the  censoring  time,  that  is,  the  time  beyond  which  the  study  subject  cannot  be  

observed. The observed survival time is also referred to as follow up time. It starts at time 

0 and continues until the event T or a censoring time C, whichever comes first. Let C1, 

C2… Cn be a sample of censoring times. And T1, T2… Tn be event times. We observe a 

sample of couples, (y1, ��), (y2, ��), …, (yn, ��), where for i=1,2,….n. (Cox,1984) 

Yi = min (Ti, Ci) = �
��		,��	�� ≤ ��
��	,��			�� > ��

   

��	= 	I(�� ≤ ��) = �
1	,��	�� ≤ ��
0	,��			�� > ��

 

ii)  Left censoring: Survival time is said to be left censored if an individual develops an 

event of interest prior to the beginning of the study.  

iii)  Interval censoring: Survival time is said to be interval censored when it is only 

known that the event of interest occurs within an interval of time but the exact time of its 

occurrence is not known. 

The presence of censoring complicates research design and statistical analysis. Thus, censoring 

creates some unusual problem in the analysis of data because such data cannot be handled 
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properly by standard statistical methods. Researchers used different techniques to respond to the 

complication due to censoring unsatisfactorily. New developments in statistical theory 

accompanied by new development in statistical computing have changed how researchers can 

study such data.  

An important assumption for methods presented in survival analysis studies for the analysis of 

censored survival data is that the individuals who are censored are at the same risk of subsequent 

failure as those who are still alive and uncensored. i.e. a subject whose survival time is censored 

at time C must be representative of all other individuals who have survived to that time. If this is 

the case, the censoring process is called non-informative. Statistically, if the censoring process is 

independent of the survival time, then we will have non-informative censoring.  In  this  study,  

we  assumed  that  the  censoring  is  non-informative  right censoring. 

The response variable in survival analysis is survival time and is no longer limited to only time to 

death. It is a non-negative random variable used loosely for the time period from a starting time 

point to the occurrence of any event. In this study context, survival time is the length of time of 

first birth after marriage which is measured in months. 

3.4.1. Survival Functions 

The survivor function is defined to be the probability that the survival time of a randomly selected  

subject  is  greater  than  or  equal  to  some  specified  time. Thus,  it  gives  the probability  that  

an  individual  surviving  beyond  a  specified  time.  Let T be a continuous random variable 

associated with the survival times,  t be the specified value of the  random  variable  T  and  f (t)  

be  the  underlying  probability  density  function  of the survival time T. The cumulative 

distribution function F(t), which represents the probability that a subject selected at random will 

have a survival time less than some stated value t, is given by (Cox,1984); 

F(t) = P(T < t) =  ∫ �(�)��
�

�
	,	 where; � ≥ 0                                                                            (1) 

The survivor function S(t), is given by; 

             S(t) = P(T≥ �) = 1- F(t),             where;    t ≥ 0                                                              (2) 

From equations (1) and (2) the relationship between f (t) and S(t) can be derived as 
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f(t) = 
�

��
�(�)= 

�

��
�1 − �(�)� = 	

��

��
 S(t) ≥ 0                                                              (3) 

Theoretically, as t ranges from 0 to infinity, the survivor function can be graphed as a smooth 

curve. Survivor functions have the characteristics that:  

1.  They are non-increasing  

2.  At time t = 0, S(0) = 1; that is, at the start of the study, since no one has experienced the 

event yet, the probability of surviving past time 0 is one and 

3.  At time t→∞, S(∞)→0; that is, theoretically, if the study period increased without  

limit,  eventually  nobody  would  survive,  so  the  survivor  curve  must eventually 

converge to zero. 

3.4.2. Hazard Function 

The hazard function h(t) gives the instantaneous potential for failing at time t, given the individual 

has survived up to time t. This is the conditional probability of experiencing the event of interest within 

a very small time interval of size ∆� having survived up to time t. It is  a  measure  of  the  probability  

of  failure  during  a  very  small  interval, assuming that the individual has survived at the 

beginning of the interval. In addition, it is not a probability as it does not lie between 0 and 1. The 

hazard function, h(t) ≥ 0 is given as (Cox, 1984); 

h(t) = lim∆�→�
�{��	����������	�����	��	���	����	��������	(�,��∆�)�����	��������	������	����	�}

∆�
 

 = lim
∆�→�

�(������∆�⃓���)

∆�
                                                                             

By applying the theory of conditional probability and the relationship in equation (3), the  hazard  

function  can  be  expressed  in  terms  of  the  underlying  probability  density function and the 

survivor function becomes: 

h(t) = 
�(�)

�(�)
 = −

�

��
ln �(�).                                                                                              (4) 

The corresponding cumulative hazard function, H(t), is defined as: 

H(t)=∫ ℎ(�)��
�

�
= 	-ln �(�),                                                                                        (5) 

Then; 

 S(t)= exp(-H(t))  and f(t) = h(t)S(t)                                                                            (6) 

The survival function is most useful for comparing the survival progress of two or more groups 

while the hazard function gives a more useful description of the risk of failure at any time point. 
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3.4.3. Non-parametric Survival Methods 
Nonparametric methods are often very easy and simple to understand as compared to parametric 

methods. Furthermore, nonparametric analyses are more widely used in situations where there is 

doubt about the exact form of distribution.  

Survival data are conveniently summarized through estimates of the survival function and hazard 

function.  The  estimation  of  the  survival  distribution  provides  estimates of  descriptive  

statistics such as the  median  survival time. These  methods are said to be  non-parametric  

methods since they  require  no  assumptions  about  the  distribution  of  survival  time. 

Preliminary analysis of the data using non-parametric methods provides insight into the shape of 

the  survival  function  for  each  group  and  get  an  idea  of  whether  or  not  the  groups   are 

proportional, i.e., if the estimated survival functions for two groups are approximately  parallel 

(do not cross). In order to compare the survival distribution of two or more groups, log-rank tests 

can be used 

3.4.3.1. The Kaplan-Meier Estimator of Survival Function 

The  Kaplan-Meier  (KM)  estimator  is  the  standard  non  parametric  estimator  of  the  survival 

function, S(t),  proposed  by  Kaplan  and  Meier  (1958) which is not based on the actual 

observed event and censoring times, but rather on the  ordered  in  which  events  occur.  It is also 

called the Product-Limit estimator.  KM  estimator  incorporates  information  from  all  of  the  

observations  available,  both censored and uncensored, by  considering any point in time as a 

series of steps defined by the observed survival and censored times. When there is no censoring, 

the estimator is simply the sample proportion of observations with event times greater than t. The 

technique becomes  a little more  complicated  but  still  manageable  when  censored  times  are  

included. Let ordered survival times are given by 0≤  t1≤ t2 ≤ tj	≤ ∞, then (Kaplan &Meier, 1958) 

 ��(�) =  �
1	,							��	� < ��

∏ �1−
��

��
��:����

 ,     if t≥ t1                                                                                                                   (7) 

Where;  �� is the observed number of events at time tj and rj is the number of individuals at risk at 

time tj.  
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The Kaplan-Meier estimator,	�� (t) is a step function with jumps at the observed event times. The 

size of the jump at a certain event time tj depends on the number of events observed at tj, as well 

as on the pattern of the censored event times  before tj. The variance of the Product-Limit 

estimator is estimated by Greenwood‟s formula (Greenwood, 1920), and is given by; 

Var(	�� (t)) = ���(t)	�
�
 ∑

��

��(���	��)
�:����

;  j= 1, 2, …, r                                                      (8) 

Since the distribution of survival time tends to be positively skewed, the median is preferred for a 

summary measure. The median survival time is the time beyond which 50% of the individuals 

under study are expected to survive, i.e., the value of t50 at ��(t50) = 0.5. The estimated median 

survival time is given by t50 = min{ti/	�� (t)< 0.5}, where ti is the observed survival time for the ith 

individual, i= 1,2,…, n. in general, the estimate of the pth percentile is: 

�̂(p) =min{ ti/	�� (t)< 1-
�

���
}                                                                                                (9) 

A confidence interval for the percentiles can be obtained using delta method (Hosmer & 

Lemeshaw, 1998). The variance estimator for the pth percetile is given by:  

Var[	�� (t(p))] =   �
�	��(�(�)

��(�)
�
�

var(t(p))  = (-f(t(p)))
2 var(t(p))                                                (10) 

The standard error of t(p) is given by: 

 SE(�̂(p)) = 
�

�(��(�))	
 SE�	��(t(p))� 

The standard error of ��(t(p)) can be obtained by using Greenwoods formula 

��((�̂(p)) = 
�����(�)�������(�)�	

��(�)�	��(�)
                                                                                           (11) 

where,                   

��(�) = max[S(tj) ≥ 1−	
�

���
+ �] 

��(�) = min�S(tj)	≤ 1−	
�

���
− �� 

Where, tj is the jth ordered event time, j= 1,2,…, r.  

Then, the 95% confidence interval for t(p) is given by: 

�̂(p)  ± 1.96* SE(�̂(p))                                                                                             (12) 
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3.4.3.2. Non parametric Comparison of Survival Functions 

The simplest way of comparing the survival times obtained from two or more groups is to plot the 

Kaplan-Meier curves for these groups on the same graph. However, this graph does not allow us 

to say, with any confidence, whether or not there is a real difference between the groups. The 

observed difference may be a true difference, but equally, it could also be due merely to chance 

variation. Assessing whether or not there is a real difference between groups can only be done, 

with any degree of confidence, by utilizing statistical tests. Among the various non-parametric 

tests one can find in the statistical literature, the Mantel-Haenzel test, currently called the “log-

rank”  is  the  one  commonly  used  non-parametric  tests  for  comparison  of  two  or  more 

survival distributions. The log rank test statistic for comparing two groups is given by (Cox, 

1984): 

 Q = 
�∑ ��(�����̂��)

�
� �

�

∑ ��
��

� ����
 ~ ����

� ,                                                                    (13) 

Where: �̂�� = 	
�����

��
  And  ���� = 	

��������(����	��)

��
�(����)

   

noi is the number at risk at observed survival time t(i)  in group 0 

n1i is the number at risk at observed survival time t(i)  in group 1 

ni  is the total number of individuals or risk before time t(i) 

d1i is the number of observed event in group 1 

di  is the total number of event at t(i) 

k is number of groups in each category  

3.4.4. Cox PH Regression Model 
The non-parametric method does not control for covariates and it requires categorical predictors. 

When we have several prognostic variables, we must use multivariate approaches. But we cannot 

use  multiple  linear  regression  or  logistic  regression  because  they  cannot  deal  with  

censored observations. We need another method to model survival data with the presence of 

censoring. One  very  popular  model  in  survival  data  is  the  Cox  proportional  hazards  model. 

The  Cox  proportional  hazards  (PH)  regression  model  (introduced  in  a  seminal  paper  by  

Cox, 1972),  a  broadly  applicable  and  the  most  widely  used  method  of  survival  analysis.  

Survival models are used to quantify the effect of one or more explanatory variables on failure 
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time. This involves specification of a linear -like model for the log hazard. A parametric model 

based on the exponential distribution may be parameterized as follows: 

 log ℎ�(�⃓�)=  � + �����+������ + ⋯+ ����� 

Equivalently; 

  ℎ�(�⃓�)=	exp(� + �����+������ + ⋯+ �����) = exp(�)exp(�′�) 

In this case the constant �  represents the log-baseline hazard since logℎ�(�)= � when all the x’s 

are zero.  The  Cox  PH  model  is  a  semi-parametric  model  where  the  baseline  hazard �(�) is 

allowed to vary with time. 

 log ℎ�(�⃓�)=		�(�)+	�1��1+������ + ⋯+ ����� 

ℎ�(�⃓�)=  ℎ�(�)exp(�����+������ + ⋯+ �����) 

ℎ�(�⃓�)= ℎ�(�) exp(��
��)                                                                                         (14) 

Where , ℎ�(�) is the baseline  hazard  function; Xi is a  vector of covariates and � is a  vector of 

parameters for fixed effects.  

The corresponding  survival function for Cox-PH model is given by: 

 S(t,X) = [��(�)]
���	{∑ ����

�
��� }                                                                       (15)                                       

where, ��(�) is the baseline survival function.  

In this model, no distributional assumption is made for the survival time; the only assumption is 

that the hazards ratio does not change over time (i.e., proportional hazards) that is why this model 

is also known as semi -parametric model. Even though the baseline hazard  is not specified, we 

can still get a good estimate for regression coefficients β, hazard ratio, and adjusted hazard 

curves. 

If all of the x’s are zero the second part of  equation(12) equals 1 so,	ℎ�(�)= ℎ�(�).  For this 

reason the term  ℎ�(�) is called the baseline hazard  function. With the Cox proportional  hazards 

model the outcome is described in terms of the hazard ratio.  
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The measure of effect is called hazard  ratio. The hazard ratio of two individuals with different 

covariates X  and �∗ is given by: 

��� =
��(�)���	(����)

��(�)���	(����
∗
)
=  exp�∑��′(� − �∗)�                                                               (16) 

This hazard ratio is time-independent, which is why this is called the proportional hazards model. 

The parameter of the Cox proportional hazard model refers to the hazard ratio of one group in 

comparison to the other groups for categorical covariates and change in hazard ratio with a unit 

change of the covariate for the continuous variables when other covariates are fixed.  

The change in hazard ratio for the continuous covariate is given by: 

 
����,��+1		�

����,��		�
 =  exp(��).                                                                                                               (17) 

Which represent change in the hazard when there is a unit change in the covarite while other 

covariates keeps constant.  

For catagorical explanatory variable X with a levels, the model containes (a-1) dummy variables 

defind as Di = 1, if x =i, and 0 otherwise for i= 1,2,…,a -1. Let ��,��,…,����	 denote the 

coefficient of the levels of dummy variables. The ratio of the hazard of two subjects, one with X 

at level j and other with k (j,k = 1,2,…, a-1), provided that the value of all other explanatory 

variables for this subject are the same, the hazard ratio between these two categories is given by: 

���⃓��		�

���⃓��		�
 =  

���	(��)

���	(��)
= 	exp(�

�
− �

�
).                                                                             (18)                                                                                              

The quantity exp(�� − ��)100% signifies the ratio of hazard function for subject at level j and k 

of covariates, given that the effect of other covariate keeps fixed. 

3.4.4.1. Partial Likelihood Estimation for Cox PH Model 

Fitting the Cox proportional hazards model, we estimate ℎ�(�) and β.  A  more  popular  approach  

is  proposed  by  Cox  (1972)  in  which  a  partial  likelihood function  that  does  not  depend  on  

ℎ�(�)  is  obtained  for  β.  Partial  likelihood  is  a  technique developed  to  make  inference  

about  the  regression  parameters  in  the  presence  of  nuisance parameters ( ℎ�(�))     in  the  
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Cox  PH  model.  In this part, we construct the partial likelihood function based on the 

proportional hazards model. 

The data in survival analysis based on the sample size n are denoted by the triplet (Ti,��, Xi), i= 1, 

2,…,n where Ti  is the time at which the ith  individual experience the event (in this research 

context; give birth), �� = 1 if the event has occurred, �� = 0 if censored, Xi is the vector of 

covariate or risk factors for the ith individual. 

We assume; 

 Given Xi the life time and the censoring times are independent (non-informative 

censoring). 

 �� <	��< … < �� be the D ordered distinct event times 

  We assume that there are no tied event times. 

Let us define by; 

 Ij is the identity of the individual who give birth at time �� 

 Vj the time of the jth failure at time �� and all information about censoring in [����,��] 

The observable data (Ti,��, Xi) is represented by {Ij} and {Vj}. Hence;  

          P(Data) = P({I1,V1,…,ID,VD}) 

                        = P({I1,V1}) x P({I2,V2}/ {I1,V1})x…x  P({ID,VD}/{ I1,V1,…,ID-1,VD-1 }) 

                       = ∏ �(��⃓	��,��,…,����,����,��)
�
���  x �(��⃓	{��,��,…,����,����}) 

Due to the non-informative censoring, the second term does not add much information about the 

parameters�. 

Hence, we de fine the partial likelihood as; 

         ��������(�) = ∏ �(��⃓{	��,��,…,����,����,��})
�
���  = ∏ �(��⃓��)

�
���  

Where, ��	is the "history" of the data, up to j th failure and including the failure time, but not the identity 

of the failing. 

At each failure, we note that the quantity �(��⃓��) is the conditional probability that a specific 

individual fails at time �� given all the individuals that had not fail before	��. 

We denote by R(t) the set of all the individuals under study just prior to time t. 

�(��⃓��)= P(individuals Ij fails⃓ one individual fails in R(	��) ) 
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              = 
�(�����������	��	�����⃓	��	����	��		��)

∑ �(����������	�	�����	⃓ 	��	����	��		��)�∈�(	��)	
 

             = 
�(	��⃓��)�	��

∑ �(	��⃓��)�	���∈�(	��)
 = 

��(	��)���	(�
���)

∑ ��(	��)�∈�(	��)
���	(����)

  = 
���	(����)

∑ ���	(����)�∈�(	��)
 

We get the partial likelihood; 

��������(�)=	 ∏
���	(����)

∑ ���	(����)�∈�(	��)

�
��� .                                                                               (19) 

This is the partial likelihood defined by Cox. Note that, it does not depend on the underlying 

hazard function ho(.). Cox  recommends  treating  this  is  as  an  ordinary  likelihood  for  making 

inferences about � in the presence of the nuisance parameter  ho(.). 

The likelihood function in equation (15) can be expressed by; 

										��������(�)= 	∏ �
���	(����)

∑ ���	(����)�∈�(	��)
�

��
�
���                                                                 (20) 

The partial likelihood given by equation (16), although it describes only part of the data, could be 

regarded as a likelihood function allowing the estimation of β with standard procedures.   

In  general,  large  sample  properties  like  normality  and  consistency  of  maximum  likelihood 

estimators  of  β  based  on  partial  likelihood  have  been  shown  to  be  the  same  as  those  of  

any estimator from complete likelihood (Hosmer & Lemeshow, 1999). 

3.4.5. Accelerated Failure Time Model 

Although parametric models are very applicable to analyze survival data, there are relatively few  

probability  distributions  for  the  survival  time  that  can  be  used  with  these  models.  In  these 

situations,  the  accelerated  failure  time  model  (AFT)  is  an  alternative  to  the  PH  model  for  

the analysis  of  survival  time  data.  Under  AFT  models  we  measured  the  direct  effect  of  

the explanatory  variables  on  the  survival  time  instead  of  hazard.  This characteristic allows 

for an easier interpretation of the results because the parameters measure the effect of the 

correspondent covariate on the mean survival time.  

The  AFT  model  states  that  the  survival  function  of  an  individual  with covariate X at time t 

is the same as the survival function of an individual with a baseline survival  function at a time 
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t*exp(�’X), where �’= (� 1, � 2,…, � p) is a vector of regression  coefficients. In other words, the 

accelerated failure-time model is defined by the relationship (Klein & Moeschberger, 2003): 

 S(t⃓ X) = ��{t ∗ exp(�’�)}, for all X.                                                                  (21) 

Hereby we can consider on a log-scale of the AFT model with respect to time is given analogous 

to the classical linear regression approach. In this approach, the natural logarithm of the survival 

time Y =log (T) is modeled. This is the natural transformation made in linear models to convert 

positive variables to observations on the entire real line. A linear model is assumed for Y; 

 Y = log(T)= � + ��� + ��  

            where:  �’ = (� 1, � 2… � p) is a vector of regression coefficients 

  � = intercept 

  �= is scale parameter and  

  � = is the error distribution assumed to have a particular parametric distribution. 

When we denote by S0 the survival function when X = 0 then we find that 

P(T> t⃓ X)= P(Y>log(t)⃓X) 

    = P{ � + �� > log(�)− ���⃓�} 

  = P{exp(� + ��) > t*exp(−���)⃓X} 

  = 	��{t*exp(−���)} 

The effect of the covariates on the survival function is that the time scale is changed by a factor 

exp(−���), and We call this an acceleration factor. 

We note that when  

 exp(−���) > 1→ the survival process accelerates. 

 exp(−���) < 1→ the survival process decelerates. 

If X is an indicator variable, this is equivalent to 

 � > 1 → Time shrinks 

 � < 1 → Time accelerates  

For each distribution of �  there is a corresponding distribution for T. The members of the AFT 

model considered in this study are the Weibull AFT, log- logistic AFT, and log-normal AFT 

models. The AFT models are named for the distribution of T rather than the distribution of log T.  
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This model can be related to the accelerated failure-time model representation (15) as in. The 

survival function of Ti can be expressed by (Klein & Moeschberger, 2003) 

    Si(t) = P(Ti ≥	t) 

= P(log(Ti) ≥ log(t)) 

= P(Yi ≥ log(t)) 

= P(� + ��� + �� ≥ 	log(t)) 

= P��� ≥	
����������

�
� = ��� �

�����(�����)

�
�                                                  (22) 

3.4.5.1. Weibull Accelerated Failure Time model 

The  Weibull  distribution  (including  the  exponential  distribution  as  a  special  case)  as  

shown above can also be parameterized as an AFT model, and they are the only family of 

distributions to have this property. The results of fitting a Weibull model can therefore be 

interpreted in either framework (Klein & Moeschberger, 2003). Then the Weibull distribution is 

very flexible model for time-to-event data. It has a hazard rate which is monotone increasing, 

decreasing, or constant.  

From equation (15), the AFT representation of the survival and hazard function of the Weibull 

model is given by: 

 ���(t) = exp�−��� �
�����(�����)

�
�� = exp�−��� �

�(�����)

�
�
�

���                                 (23) 

hi(t) =  
�

�
�
�

�
��	exp�

������

�
�                                                                                           (24)  

3.4.5.2. Log-logistic Accelerated Failure Time model  

The log-logistic distribution has a fairly flexible  functional  form, it is one of the parametric 

survival time models in which the hazard rate may be decreasing, increasing, as well as hump-

shaped  that  is  it  initially  increases  and  then  decreases.   In  cases  where  one  comes  across  

to censored  data,  using  log-logistic  distribution  is  mathematically  more  advantageous  than  

other distributions. According to the study of Gupta et al. (1999), the log-logistic distribution is 

proved to  be  suitable  in  analyzing  survival  data  conducted  by  Cox  (1972),  Cox  and  Oakes  

(1984), Bennet  (1983)  and  O'Quigley  and  Stare  (1982).  
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The  cumulative  distribution  function  can  be  written  in  closed  form  is  particularly  useful  

for analysis  of  survival  data  with  censoring  (Bennett,  1983).  The  log-logistic  distribution  is  

very similar  in  shape  to  the  log-normal  distribution,  but  is  more  suitable  for  use  in  the  

analysis  of survival  data. The  log-logistic  model  has  two  parameters �  and �,  where � is  the  

scale  parameter  and  �  is  the shape  parameter.  

Its pdf is given by  (Bennett,  1983); 

f(t) = 
������

(�����)�
                                                                                                                 (25) 

The corresponding survival and hazard functions are given by; 

S(t) = 
�

�����
                                                                                                                   (26) 

h(t) =  
������

�����
,                                                                                                                (27) 

Where;  � ∈ �,� > 0 

When � ≤  1, the hazard rate decreases monotonically and when � > 1, it increases from zero to its 

maximum point and then decreases to zero. Suppose that the survival times have lo-logistic 

distribution with parameter �  and	� , under the AFT model, the hazard function for the ith 

individual is  

ℎ�(�/�)= ℎ������(−�
���)�exp	(−�

���)=  
����((�)����(�����)

�����(�){����(�����}
�
                                (28) 

The log-logistic AFT model with a covariate x may be written as; 

 Y= logT= � + ����  + �� , where; �� =  ( ��,��,��,…,�� ); �	has standard logistic 

distribution. The survival with covariate x is given as follows: 

��(�/�) = 
�

������	(���)��
 = 

�

�����	(��������)
                                                                 (29) 

ℎ�(�/�)= 
���������	(���)

������	(���)��
 = 

���������	(���)

�����	(�����	���)
                                                                 (30) 

To interprete the factor exp(���) for log-logistic model, one can notice  that the odds of survival 

beyond time t for log-logistic model is given by 
��(�)	

����(�)	
. 

We can see that the log-logistic distribution has the proportional odds (PO) property. So this 

model is also a proportional odds model, in which the odds of an individual surviving beyond 

time t are expressed as 
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��(�)	

����(�)	
 = exp(-���)	

��(�)	

����(�)	
                                                                                              (31) 

The factor exp(-���) is an estimate of how much the baseline odds of survival at any time 

changes when individual has covariate x. And exp(���) is the relative odds of experiencing the 

event for an individual with covariate x relative to an individual with the baseline characteristics. 

As this representation of log-logistic regression is as accelerated failure time model with a log 

logistic baseline survival function, then the log logistic model is the only parametric model with 

both a proportional odds and an accelerated failure-time representation. If Ti has a log-logistic 

distribution, then ��  has a logistic distribution. The survival function of logistic distribution is 

given by (Collett, 2003) 

 ���(�) = 
�

�����	(�)
                                                                                                           (32) 

Then, the AFT representation of log-logistic survival function is given by  

 ��(�) =			�1 + �
�

�	exp	�
������

�
��

��

                                                                          (33) 

And the associated hazard function for the ith individual is given by 

 ℎ�(�) = 
�

��
�1 + �

��

� 	exp	�
������

�
��

��

                                                                            (34) 

If the plot of log�
���(�)

�(�)
� against log(t) is linear , the log-logistic distribution is appropriate for the 

given data set. 

3.4.5.3. Log-normal Accelerated Failure Time Model 

If the survival times are assumed to have a log-normal distribution, the baseline survival function 

and hazard function are given by (Collett, 2003): 

 ��(�)= 1-ϕ	�
������

�
� , 									ℎ�(�) = 

�	�
��� �

�
�

���∅�
����

�
����

,                                                           (35) 

Where �  and �  are parameters, ϕ(�) is the probability density function of and ϕ(�) is the 

cumulative density function of the standard distribution. The survival function for the ith 

individual is  

 ��(�) = ��(�/ƞ�) = ��(� ∗ exp	(�+ ����)) = 1- ϕ�
�����������

�
�                                    (36) 
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Where ƞ�= exp(����+ ����…+����). Therefore the log survival time for the ith individual has 

normal (�+ ����,	� ). The log normal distribution has the AFT propoerty. In a two group study: 

we can easily get 

ϕ��[1 − �(�)] =  
�

�
 (���� − ���� − �), where xi is the value of a categorical variable 

which takes the value 0 in one group and 1 in the other group. This implies that the plot   ϕ��[1 −

�(�)] against log (t) will be linear if the lo-normal distribution is appropriate for the given data 

set.   

3.4.5.4. Parameter Estimation  

Parameters of AFT models can be estimated by maximum likelihood method. The likelihood of n 

observed survival times, t1, t2, t3… tn, the likelihood function for right censored data is given by: 

 L(�,�,�) = ∏ ��(��)
���

���   *��(��)
����                                                                             (37) 

Where fj(tj) the density function of the ith individual at time ti , Si(ti) is the survival function of the 

ith individual at time ti, ��	 is indicator variable. The logarithm of the above equation yields; 

 log L(�,�,�) = ∑ {−�����(��� + �������(��)+ (1− ��)�����(��))}
�
���                   (38) 

Where, Wj =������ −
��������⋯�	������

�
� , Z= {zji} is vector of covariates for the jth subject. The 

maximum likelihood parameters estimates are found by using Newton-Raphson procedure which 

can be done by software. 

3.4.6. Shared Frailty Model  

Many  statistical  models  and  methods  proposed  to  model  failure  time  data  assume  that  the 

observations  are  statistically  independent  of  each  other.  However, this does not hold in many 

applications. The  concept  of  frailty  provides  a  suitable  way  to  introduce  random  effects  in  

the  model  to account  for  association  and  unobserved  heterogeneity. In its simplest form, a 

frailty is an unobserved random factor that modifies multiplicatively the hazard function of an 

individual or a group or cluster of individuals.  

An individual is said to be frail if he or she is much more susceptible (exposed or infected) to 

adverse events than others. Vaupel et al. (1979) introduced the term frailty to indicate that 

different individuals are at risk even though on the surface they may appear to be quite similar 
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with respect to the measurable such as age, gender, weight, etc. They used the term frailty to 

represent an unobservable random effect shared by subjects with similar (unmeasured) risks in the 

analysis of mortality rates. A random effect describes excess risk or frailty for distinct categories, 

such as individual or families, over and above any measured covariates. Thus random effect or 

frailty models have been introduced into the statistical literature in an attempt to account for the 

existence of unmeasured attributes such as genotype that do introduce heterogeneity into a study 

population. It is recognized that individuals in the in the same group (cluster) are more similar 

than individuals in different cluster because they share similar genes, environment, custom, and 

culture, etc. Thus, frailty or random effect model try to account for correlations within groups 

(Prentice et al., 1981) 

The assumption of a shared frailty model is that all individuals in cluster share the same frailty Zi, 

and this is why the model is called the shared frailty model. It was introduced by Clayton (1978) 

and extensively studied in Hougaard (2000), Therneau and Grambsch (2000), and Duchateau et 

al. (2007). Shared-frailty models are appropriate when we wish to model the frailties as being 

specific to groups of subjects, such as subjects within families, kebeles, regions, etc. Here a 

shared frailty  model  may  be  used  to  model  the  degree  of  correlation  within  groups;  i.e.,  

the  subjects within a group are correlated because they share the same common frailty.   

Conditional on the frailty, the survival times in cluster i (1 ≤ i ≤ n) are assumed to be independent. 

And the proportional hazard frailty model assumes (wienke, 2010); 

hij(t⃓Xij,Ui) = exp(�′Xij+ui)ho(t) =	��ℎ�(t)exp(�′��� )                                                 (39) 

An alternative when the proportional hazard assumption fails the accelerated failure time frailty 

model is used and given as:  

hij(t⃓Xij,Ui) = exp(�′Xij+ui)ho(exp(�′Xij+ui)t) =	��ℎ�(Ziexp(�′���)t)exp(�′���) 

Where, ℎ� (t) is the baseline hazard function, Zi = exp(ui), � is a vector of  parameters to be 

estimated, X is a vector of observed covariates. The frailties Zi are assumed to be identically and 

independently distributed random variables with common density function, f(z, θ),  where  θ  is  

the parameter of the frailty distribution. The variability of Zi determines the degree of 

heterogeneity among the groups. In empirical applications, the observed survival data are used to 
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estimate the parameters of the distribution of frailty f(z, θ), and to actually predict the individual 

frailties. Since Z multiplies the hazard function, it has to be non-negative. Another constraint is 

further needed for identifiability reasons, more  specifically;  the mean of Z is typically restricted 

to unity in order to separate the  baseline  hazard  from  the  overall  level  of  the  random  

frailties .   

3.4.6.1. The Gamma Frailty Distribution 

The  gamma  distribution  has  been  widely  applied  as  a  mixture  distribution  for  example 

(Greenwood &Yule, 1920; Hougaard, 2000). From a computational point of view, it fit very well 

into survival models, because it is easy to derive the formulas for any number of events. This is 

due to the simplicity of the derivatives of the Laplace transform. The  gamma  frailty  distribution  

has  been  widely  used  in  parametric  modeling  of intra-cluster  dependency  because  of  its  

simple  interpretation, flexibility  and  mathematical  tractability (Vaupel et al., 1979; Clayton, 

1978; Oakes, 1982). To make the model identifiable, we restrict that expectation of the frailty 

equals one and variance be finite, so that only one parameter needs to be estimated. Thus, the 

distribution of frailty Z is the one parameter gamma distribution. Under the restriction, the 

corresponding density function and Laplace transformation of gamma distribution is given by 

(Gutierrez, 2002):  

fz(z) = 
�
�

�
�
�
���

�
�
�Г(

�

�
)

exp	(
���

�
) , � > 0                                                                                      (40) 

Where Г(.) is the gamma function, it corresponds to a Gamma distribution Gam( µ, θ) with µ 

fixed to 1 for identifyability and its variance is  θ. The associated Laplace transform is:- 

L(u) = �1 +
�

�
�
��

 , � > 0                                                                                            (41) 

Note that if θ > 0, there is heterogeneity.  So the  large  values  of  θ  reflect  a  greater  degree  of 

heterogeneity among groups and a stronger association within groups. The conditional survival   

and hazard function of the gamma frailty distribution is given by (Gutierrez, 2002): 

 ��(t) = [1 − 	� ln(�(�))]�
�

�                                                                                       (42) 

ℎ�(t) = ℎ(�)[1 − 	� ln(�(�))]��                                                                               (43) 

Where S(t) and h(t) are the survival and the hazard functions of the baseline distributions. For  the  

Gamma  distribution,  the  Kendall's  Tau  (Hougaard, 2000),  which  measures  the association  
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between  any  two  event times  from  the  same  cluster  in  the  multivariate  case. It  is  an  

overall  measure  of  dependence  and independent  of  transformations  on  the  time  scale  and  

the  frailty  model  used. The associations within group members are measured by Kendall's, 

which is given by:- 

 � = 	
�

���
∈ (0,1)                                                                                                          (44) 

3.4.6.2. Parameter Estimation 

Estimation of the frailty model can be parametric or semi-parametric. In the former case, a 

parametric density is assumed for the event times, resulting in a parametric baseline hazard 

function. Estimation is then conducted by maximizing the marginal log-likelihood (Munda et al., 

2012). In the second case, the baseline hazard is left unspecified and more complex techniques are 

available to approach that situation (Abrahantes & Duchateau, 2007).  Even though semi-

parametric estimation offers more flexibility, the parametric estimation will be more powerful if 

the form of the baseline hazard is somehow known in advance (Munda et al., 2012). 

For  right-censored  clustered  survival  data, the observation  for  subject  j ∈	Ji = {1,  …,  ni} 

from cluster  i  I = {1, …,s} is the couple  (yij δij), where  yij = min(tij , cij) is the minimum 

between the survival time  tij  and the censoring time  cij  , and where δij =  I(tij  ≤  cij)  is the event 

indicator. When covariate information are been collected the  observation will be (yij, δij ,  Xij),  

where  Xij  denote  the  vector  of  covariates  for  the  jth  observation in the ith cluster.  In  the 

parametric  setting,  estimation  is  based  on  the  marginal  likelihood  in  which  the  frailties 

have been integrated out by averaging the conditional likelihood with respect to the frailty 

distribution.  Under assumptions of non-informative  right -censoring  and  of  independence 

between  the  censoring  time  and  the  survival  time  random  variables,  given  the  covariate 

information, the marginal log-likelihood of the observed data can be written as (Gutierrez, 2002): 

�����(ѱ,�,�; �,�)  

				= 	∏ ��∏ �ℎ�(���)exp	(���
��))������

��� �� ∫ ��
���

�
����−�� ∑ ℎ�

��
��� (���exp	(���

��))��(��)����
�
���   

    =  ∏ ��∏ �ℎ�(���)exp	(���
��))������

��� ��(−1)���(��)�∑ ��
��
�= 1 (�

��
)exp(���

��)]���
���                   

Taking the logarithm, the marginal likelihood is: 
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�����(ѱ,�,�; �,�)=  		∑ {�
��� [∑ ���

��
��� (log(ℎ�(���))                

                                       +���
�  �)]+log[(−1)�� �(�)([∑ ��

��
��� (���)exp(���

��)]}                        (45) 

Where: ��= ∑ ���
��
���    is the number of events in the i-th cluster, and  L(q)(.)  is the qth derivative of 

the Laplace transform of the frailty distribution defined as: 

L(s) =E[exp(−Zs)] = ∫ exp(−���)
�

�
�(��)���,    s≥ 0,                                            (46)                                   

Where ѱ represents  a  vector  of parameters of  the  baseline  hazard  function,  β the  vector of  

regression coefficients  and  θ the variance of the random effect. Estimates of ѱ, β, θ are obtained 

by maximizing the marginal log-likelihood (31); this can  be  done  if  one  is  able  to  compute  

higher  order  derivatives  L(q)(.) of the  Laplace transform up to q = max{d1, …, ds}.  

3.4.7. Model Development 

The methods of selecting a subset of covariates in a PHs regression model are essentially similar 

to those used in any other regression models. The most common methods are purposeful 

selection, step-wise (forward selection and backward elimination) and best sub-set selections.  

Survival analysis using  Cox regression method  begins with a thorough  univariate analysis of  

the association  between  survival  time  and  all  important  covariates  (Hosmer  and  Lemeshow, 

1999). 

Recommendable procedure in selecting variables in the study  

According to Hosmer and Lemeshow (1998), it is recommended to follow the steps given below. 

1. Include all variables that are significant in the univariate analysis at relaxed level and also 

any other variables which are presumed to be clinically important to fit the initial 

multivariable model. 

2. The variables that appear to be important from step one are then fitted together in a model. 

In  the  presence  of  certain  variables  others  may  cease  to  be  important.  As a result, 

backward elimination is used to omit non-significant variables from the model. Once a 

variable has been dropped, the effect of omitting  each  of  the  remaining  variables  in  

turn  should  be  examined.   

3. Variables, that were not important on their own, and so were not under consideration in 

step 2, may become important in the presence of others. These variables are therefore 

added to the model from step 2, with forward selection method. This  process  may  result  

in  terms  in  the  model  determined  at  step  2 ceasing to be significant. 
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3.4.8. Model Selection  

For comparing models that are not nested, the Akaike’s information criterion (AIC) is used which 

is defined as: 

AIC = −2LogL+2(k+c+1),                                                                                         (47) 

Where k is the number of covariates and c the number of model specific distributional parameters. 

This thesis used the AIC to compare various candidates of non- nested parametric models.  The 

preferred model is the one with the lowest value of the AIC.  

3.4.9. Model Diagnosis  

3.4.9.1. Checking the Adequacy of Parametric Baselines 

The graphical methods can be used to check if a parametric distribution fits the observed data. 

Model with the weibull baseline has a property that the log (-log(S(t)) is linear with the log of  

time,  where  S(t)  =  exp(-λtρ).  Hence, log(-log(S(t)))  =  log(λ)  + ρlog(t). This property allows a 

graphical evaluation of the appropriateness of  a Weibull model by plotting  log(–log(��(t)))  

versus  log(t)  where ��(t) is  Kaplan-Meier  survival  estimate (Datwyler and Stucki, 2009).  The 

log-failure odd versus log time of the log-logistic model is linear.  Where the failure odds of log-

logistic survival model can be computed as: 

���(�)

�(�)
	= 

���

�����

�

�����

 = ���.                                                                                                       (48) 

Therefore, the log-failure odds can be written as: 

Log (
���(�)

�(�)
) = log (���) = log (�) +�log (t).                                                                   (49) 

Therefore, the  appropriateness  of  model  with  the  log-logistic  baseline  can  graphically  be 

evaluated  by  plotting  log(
��(�)

����(�)
) versus  log(time)  where  ��(�) is  Kaplan-Meier survival 

estimate (Datwyler and Stucki, 2009). If the plot is straight line, log-logistic distribution fitted the 

given dataset well.  If the plot   ϕ��[1 − �(�)] against log (t) is linear, the lo-normal distribution 

is appropriate for the given data set.   



34 
 

3.4.9.2. The Quantile - Quantile Plot 

A  quantile-quantile  or  q-q  plot  is  made  to  check  if  the  accelerated  failure  time  model 

provides an adequate fit to the data.  The plot is based on the fact that, for  the accelerated failure-

time model, 

S1(t) = S0(ϕt)                                                                                                                 (50) 

Where  S0  and  S1  are  the  survival  functions  in  the  two  groups and ϕ  is  the  acceleration 

factor. Let top and t1p be the pth percentiles of groups 0 and 1, respectively, that is: 

tkp=sk
-1(1-p), k=0,1.                                                                           (51) 

Using the relation S1(t) = S0(ϕ t), we must have so(top) = 1-p = s1(t1p) = so(ϕ t1p) for all t. If the 

accelerated failure time model holds,  top = ϕ t1p. To check this assumption we compute the  

Kaplan–Meier  estimators  of  the  two  groups  and  estimate  the  percentiles  t1p,  t0p,  for various  

values  of  p.  If  we  plot  the  estimated  percentile  in  group  0  versus  the  estimated percentile 

in group 1 (i.e., plot the points  t1p, t0p  for various values of  p), the graph should be a straight line 

through the origin, if the accelerated failure time model holds. If the curve is  linear,  a  crude  

estimate  of  the  acceleration  factor  ϕ  is  given  by  the  slope  of  the  line (Klein, 1992). 

3.4.9.3. Using Residual Plots 

For the parametric regression problem, analogs of the semi parametric residual plots can be made 

with a redefinition of the various residuals to incorporate the parametric  form of the baseline 

hazard rates (Klein, 2003). The first such residual  is the Cox–Snell residual that provides a check 

of the overall fit of the model. The Cox–Snell residual, rj, is defined by:   

rj  = ��(��⃓	��)                                                                                                             (52) 

where �� is  the  cumulative  hazard  function  of  the  fitted  model.  If  the model fits the data, 

then the rj’s should have a standard (λ =1) exponential distribution, so that a hazard plot of  rj  

versus the Nelson–Aalen estimator of the cumulative hazard of the rj’s should be a straight line 

with slope 1.  
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4. RESULTS AND DISCUSSION 

4.1. Descriptive Statistics 

A total of 7925 women who got the first marriage were included in this study from eight regional 

states and two cities administrative. The time interval between the first marriage and first birth 

was an interest of this research paper. Of total women, 5,966 (75.3%) of them gave birth while 

1959 (24.7%) of them did not give birth until the end of the interview. Different covariates 

characteristics are displayed in Table 4.1. Out of 7925 women, 5969(75.3 %) were lived in rural 

while 1956 (24.7%) of them lived in urban. Wealth index of the family was categorized as poor, 

middle income and rich. It is reported that 3310 (41.8%), 1260 (15.9%) and 3355 (42.3%) of 

women were poor, middle, and rich households respectively. More than half of the women (63%) 

have not had job.  8.3% of the total women attained secondary and above education while 64.4% 

of them were uneducated. Of the total women, 3220 (40.6%) were Orthodox, 2925 (36.9%) 

Muslim, 1535 (19.4 %) Protestant, and 245 (3.1%) of them were from other religion followers. 

Furthermore, 5901 (74.5%) of the women had the experience of using contraceptive methods 

while 2024 (25.5%) of them had no any experience of using contraceptive. With regard to 

exposure to mass media, 4585 (57.9%) of the women had no any access of mass media and 3340 

(42.1%) of them had access of mass media.     

Table 4.1: Baseline covariates characteristics with their time-to-event status  

Variable Categories Frequency 

Status 

Censored Event 

Place of Residence 

Rural 5969 (75.3%) 1155 (19.4%) 4814 (80.6%) 

Urban 1956 (24.7%) 804 (41.1%) 1152 (58.9%) 

Wealth Index of 

Family 

Poor 3310 (41.8%) 608 (18.4%) 2702 (81.6%) 

Middle 1260 (15.9%) 244 (19.4%) 1016 (80.6%) 

Rich 3355 (42.3%) 1107 (33%) 2248 (67%) 

Contraceptive Use 

Use 5901(74.5%) 1514 (25.7%) 4387 (74.3%) 

Not Use 2024 (25.5%) 445 (22%) 1579 (78%) 

Employment status 

of Women 

Yes 2935 (37.0%) 966 (32.9%) 1969 (67.1%) 

No 4990 (63%) 993 (19.9%) 3997 (80.1%) 

Religion Muslim 2925 (36.9%) 579 (19.8%) 2346 (80.2%) 
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Orthodox 3220 (40.6%) 1017 (31.6%) 2203 (64.4%) 

Protestant 1535 (19.4%) 312 (20.3%) 1223 (70.7%) 

Other 245 (3.1%) 51 (20.8) 194 (79.2%) 

Mass Media   

No 4585(57.9%) 986 (21.5%) 3599 (78.5%) 

Yes 3340 (42.1%) 973 (29.1%) 2367 (70.9%) 

Women’s’ 

Education level  

No education 5108 (64.4%) 1169 (22.9%) 3939 (77.1%) 

Primary 2159(27.2%) 507 (23.5%) 1652 (76.5%) 

Seco& above 658 (8.3%) 283 (43%) 375 (57%) 

Husband’s 

Education level 

No education 3857 (48.7%) 939 (24.3%) 2918 (75.6%) 

Primary 2855(36.0%) 569 (19.9%) 2286 (80.1%) 

Seco& above 1213(15.3%) 451 (37.2%) 762 (62.8%) 

Over All 1,959(24.7%) 5,966 (75.3%) 

Of women who were included in the study, 3857 (48.7%) of them were illiterate (no education), 

2855(36.0%)of  the  husbands  had  attended  primary  education  and  the remaining 

1213(15.3%)  were  secondary and  higher education level. The minimum age of women at first 

marriage was 7 years old and the maximum of 41 years with mean and standard deviations 17.14 

years and 3.825 respectively. The median age of women at first marriage was 16 years.  

As shown in figure 4.1, about 548(6.9%) of them were from the capital city  Addis Ababa and 

718 (9.1%) from Affar, 1166 (14.7%) from Amhara, 684 (8.6%) from Benishangul-Gumuz, 

516(6.5%) from Dire Dawa, 636 (8.0%) from Gambela, 543 (6.9%) from Harari. 1203 (15.2%) 

from Oromiya, 1092 (13.8%) from SNNP and the rest 819 (10.3%) of them were from Tigray 

region. According to table 4.3, the maximum percentage of women having their secondary and 

above education were from Addis Ababa (36.5% of them) while only 2.3% of women from 

Amhara region attained secondary and above education.  Only 9.3% of women from Affar region 

and 40% of women from Addis Ababa attained primary education and most of the women (82.6% 

of them) from Affar region have no educational background.  
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Figure 4.1:  Bar chart of frequencies and Percentages of respondent by region  

 

 4.2. Non-parametric Survival Analysis 

4.2.1. The Kaplan- Meier Estimate of Time-to-First Birth 

Non-parametric survival analysis is very important to visualize the survival of time-to-first birth 

of women in Ethiopia under different levels of the covariate. Moreover, it gives information on 

the shape of the survival and hazard functions of first birth interval data set. Survival time 

distributions for time-to-first birth is estimated for each group using the K-M method and in order 

to compare the survival curves of two or more groups, log-rank test has been employed. The 

estimated median time and 95% confidence interval for time-to-first birth with different 

covariates characteristics are summarized in Table 4.3 in the appendix.   

The median survival time of time- to-first birth for women from rural, 29 months ( with 95% CI, 

[28.08, 29.92] ) is less than that of from urban, 35 months with its 95%  CI [32.67, 37.33]. The 

median survival time of time- to- first birth for contraceptive user was greater than non-users with 

31 and 28 months respectively. Women who had job have the median survival time of 33 months 

which was greater than jobless women (29 months). The median time of FBI for illiterate (no 

education) women was 33 months which is greater than women having primary (25 months) and 

secondary and above education (30 months). The overall median survival time of first birth after 

marriage for Ethiopian women is 30 months (with 95% CI; 29.16, 30.84). The median survival 
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time and the corresponding 95% confidence interval for the rest categorical variables are listed in 

Table 4.3 in the appendix.  

Figure 4.2: The K-M plots of Survival and hazard functions of FBI after marriage. 

Plots of the KM curves to the survival and hazard experience of time- to- first birth is shown in 

figure 4.1. The survival plot decreases at increasing rate at the beginning and decreases at 

decreasing rate latter. This implies that most of the women gave first birth soon after marriage.  

4.2.2. Survival of Time-to-First Birth for Different Groups of Women 

4.2.2.1. Survival of Time- to-First Birth by Place of Residence  

The survival plot for time-to-first birth by place of residence is shown in figure 4.2. The plot 

indicates that the risk of giving first birth after marriage is similar for both women lived in rural 

and urban at the beginning of the marriage. However, the difference becomes visible at the middle 

of the curve and comes closer at the end. At the middle point of the curve, the survival plot birth 

of first child for women those lived in rural is below that of urban women. This implied that the 

risk of giving first birth after marriage for rural women is higher than urban women. The result of 

the log rank test (Table 4.5 in Appendix) also revealed the some idea (p= 2.78e-11) means this 

difference is statistically significant.  
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Figure 4.3:  K-M plot of survival of time-to-first birth by place of residence 

4.2.2.2. Survival of Time-to-First Birth by Access to Media 

The survival plot of time- to- first birth by access to mass media is shown by figure 4.3 (in the 

appendix).  As it can be observed from the plot, the survival curve for both groups is overlapped 

from the beginning to the end. This implied that the risk of giving first birth for women who had 

access to mass media and who didn’t have access is the same. The log rank test (Table 4.6 in 

Appendix II) also revealed that mass media had no significant association to time- to- first birth 

after marriage (p = 0.25).   

4.2.2.3. Survival of Time- to-First Birth by Contraceptive Use 

The survival plot of time- to- first birth contraceptive is given in figure 4.4. This plot showed that 

the risk of giving first birth after marriage is similar for both groups (contraceptive user and non-

user) at the first few months after marriage. But the difference becomes visible at the middle of 

the curve and becomes similar at the end of the curve. At the middle point of the curve, the 

survival plot birth of first child for women who did not use contraceptive is below that of the 

users. This implied that the risk of giving birth for contraceptive user is lower than that of who 

didn’t use contraceptive. The result of the log rank test (Table 4.7 in Appendix II) also support the 

significance of this difference (p= 5.74e-09). 
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Figure 4.4: K-M plot of survival of time-to-first birth by contraceptive use 

4.2.2.4. Survival of Time-to-First Birth by Wealth Index of the Family 

The survival plot of time- to- first birth by wealth index of the family is shown in figure 4.5 (in 

the appendix).  This plot suggested that the risk of giving first birth after marriage is similar for all 

groups (poor, middle, and rich) at the beginning and at the end of the plot. But a little beat 

difference is observed at the middle of the curve. At the middle point of the curve, the survival 

plot birth of first child for middle income family is below that of the poor and rich family. This 

implied that the risk of giving birth for middle income family higher than poor and rich family. 

The result of the log rank test (Table 4.8 in Appendix II) also significant (p= 0.048) means this 

difference is significant at 5% level of significance. 

4.2.2.5. Survival of Time- to-First Birth by Level of Women Education  

Figure (4.6, in the appendix) shows the K-M plot of time-to-first birth by level of women’s 

education. From this plot we can observe that the risk of giving first birth after marriage is similar 

for all groups at the beginning and at the end of the plot. But the difference becomes visible at the 

middle of the curve. At the middle point of the curve, the survival plot birth of first child for 

women having primary education is below others. The differences that are displayed in survival 

curve emphasize that the survival of time-to-first birth for educated women is shorter than 

uneducated. The result of the log rank test (Table 4.9 in Appendix II) revealed the difference is 

significant (p= 0.000) at 5% level of significance.  

0
.0

0
 

0
.2

5
 

0
.5

0
 

0
.7

5
 

1
.0

0
 

0 100 200 300 Time in months

Non- user User 

Survival plot of FBI by contraceptive use



41 
 

4.2.2.6. Survival of Time-to-First Birth by Husband’s Education Level   

Figure (4.7, in the appendix) showed the K-M plot of time- to first birth by level of Husband’s 

level education. From this plot we can observe that the risk of giving first birth after marriage is 

similar at the beginning and at the end of the plot. This implied that the risk of giving first birth 

after marriage for women who have husband with primary education is higher than the others. 

The result of the log rank test (Table 4.10 in Appendix II) also revealed that difference is 

significant at 5% level of significance (p= 0.036).  

4.2.2.7. Survival of Time-to-First Birth by Women’s Employment Status   

The survival plot of time-to-first birth by women’s employment status is given above (figure 4.6). 

From this plot we can observe that the risk of giving first birth after marriage is similar for both 

groups (jobless women & women having job) at the two extremes. But the difference becomes 

visible at the middle of the curve. At the middle point of the curve, the survival plot birth of first 

child for unemployed women below that its counterpart. This implied that the risk of giving first 

birth among jobless women was higher than that of employee women. The result of the log rank 

test (Table 4.11 in Appendix II) also supported the existence of significant difference (p= 2.59e-

10).   

      
Figure 4.8: K-M plot of survival of time-to-first birth by employment status of women 
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4.3. Accelerated Failure Time Model Results 

4.3.1. Univariable Analysis 

This study used univariate analysis in order to see the effect of each covariate on time-to-first 

birth before proceeding to the multivariable analysis. The univariate analyses was fitted for every 

covariate by AFT models using different baseline distributions i.e. weibull, log-logistic, and log-

normal. In all univariate analysis of AFT models, age of women at ffirst marriage, place of 

residence, wealth index of the family, education level of both spouses, contraceptive, and 

employment status of women  were significantly associated with first birth interval after marriage 

while access to media was not significant at 10% level of significance. The summary of univariate 

analysis is given in Table 4.12 in the appendix. Hence, based on the univariate analysis, except 

access to mass media all explanatory variables are candidate predictors for further analysis.   

4.3.2. Multivariable AFT Analysis 

For time-to-first birth data, multivariable AFT models of weibull, log-logistic, and log-normal 

distribution were fitted by including all the covariates those are significant in the univariate 

analysis at 10% level of significance. To compare the efficiency of different models, the AIC was 

used. It is the most common applicable criterion to select model. Based on AIC, a model having 

the minimum AIC value was preferred. Accordingly, Log-normal AFT model (AIC = 24485.05) 

found to be the best for the time-to-first birth data set from the given alternatives when we include 

all the covariate those are significant in the univariate analysis.  

Covariates which become insignificant in the multivariate analysis were removed from the model 

by using backward elimination technique. Accordingly, wealth index of the family and husband 

level of education were excluded. And finally, the effect of interactions terms were also tested and 

found to be statistically insignificant in multivariable log-normal AFT model at 5% level of 

significance. The final model kept the main effect of the covariate age of women at first marriage, 

place of residence, use of contraceptive, women’s level of education and employment status of 

women. All AFT models and the corresponding AIC values are displayed in Table 4.13.  

 



43 
 

Table 4.13: Comparison of AFT models using AIC criteria for Time-to-First Birth data 

Baseline Distribution AIC 

Weibull  25,656.12 

Log- logistic  24,502.30 

Log- normal  24,485.05 

                      AIC=Akaike’s information criteria 

The output of the final log-normal AFT model is presented in Table 4.14. Increasing age of 

women at marriage and women’s level of education (uneducated as reference) statistically 

significantly shorten time-to-first birth and place of residence (rural as reference category), use of 

contraceptive (Non-users as reference), and employment status of women (unemployed women as 

reference) prolong the survival time for time-to-first birth after marriage among married women  

in Ethiopian.   

Table 4.14: Summary result the final Log-Normal AFT model 

Covariate Categories Estimate(��) ϕ 95%CI SE(��) P-value 

Age  -0.07 0.93 [0.925, 0.934] 0.002 2.22e-204* 

Place of  Rural Ref     

Residence Urban 0.26 1.30 [1.201, 1.373] 0. 030 
2.14e-13* 

Employment  Not employed Ref     

Status Employed 0.09 1.09 [1.057, 1.134] 0.018 8.71e-07* 

Contraceptive Non-Use Ref     

 User 0.17 1.19 [1.139, 1.346] 0.021 2.66e-14* 

Women  No education Ref     

Education Primary -0.20 0.81 [0.779, 0.848] 0.022 2.69e-13* 

 Seco& above -0.02 0.98 [0.89,  1.070] 0.045 0.0570 

Scale= 0.73        

	� Indicates Acceleration factor;* significant at 5% level; 95%CI: 95% confidence interval for 

acceleration factor; SE(��): standard error for ��; Ref.  Reference  

Under the log-normal AFT model, when the effect of other factor keep fixed, the estimated 

acceleration factor for women from urban is estimated to be 1.30 with 95% confidence interval 

[1.201, 1.373]. The confidence interval for the acceleration factor did not include one and P-value 
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is very small (P= 2.14e-13). This indicates women from urban have prolonged survival of time-

to-first birth than rural women. The acceleration factor for age at marriage was 0.93 (with 95% 

CI: 0.925, 0.934 and P= 2.22e-204) which indicates that as women’s age at marriage increases the 

survival of time-to-first birth decreased. In other word, a one year increase in women’s age at 

marriage decreases time-to-first birth by 7%. The acceleration factor for employed women was 

1.09 (with 95% CI: 1.057, 1.134) by using unemployed women as reference category. This result 

suggested that employed women had longer survival of time-to-first birth than unemployed 

women (P=8.71e-07). The acceleration factors for women attending primary education and 

secondary & above are estimated to be 0.81 and 0.98 (with 95% CI: 0.779, 0.848; 0.89, 1.070) 

respectively by using uneducated women as reference category. This implied that uneducated 

women have longer survival of time-to-first birth, however the difference is not significant for 

women attending secondary & above level education and uneducated women (P=0.057). And the 

use of contraceptive prolong the survival of time-to-first birth by the factor of 1.19 (with 95% CI: 

1.139, 1.346 and P=2.66e-14) when the non-users are used as reference category at 5% level of 

significance.     

4.4. Parametric Shared Frailty Model Results 

In the previous section (section 4.3), three AFT models were fitted and compared to analyze the 

survival of time-to-first birth after marriage to identify baseline distribution and associated risk 

factors. And the log-normal AFT model was selected based on AIC value.  The main focus of this 

study is to investigate risk factors associated with the survival of time-to-first birth using 

parametric shared frailty model.   

For  the  data  on  time-to-first birth,  the three  parametric  baseline  distribution  with  Gamma  

frailty distribution were fitted by using regional states of the women as frailty term. The effect of 

random component (frailty) was significant for both log-normal gamma shared frailty and log-

logistic gamma shared frailty models but it was not significant for weibull-gamma shared frailty 

model. The AIC value for all parametric frailty models is summarized in table 4.15. The log-

normal gamma shared frailty model had the smallest AIC value (13641.69) than weibull-gamma 

and log-logistic gamma shared frailty models. This indicates log-normal gamma shared frailty 

model is more efficient model to describe time-to-first birth dataset.   
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 Table4.15: Comparison of shared gamma frailty model with different baseline  

Baseline Distribution  Frailty Distribution  AIC Value 

Weibull Gamma 14587.83 

Log-logistic  Gamma  13981.74 

Log-normal  Gamma 13641.69 

  AIC=Akaike’s information criteria  

4.4.1. Log-normal Gamma Frailty Model Result 

This model  is  the  same  as  the  log-normal AFT model  discussed  in  the  previous  section,  

except that a frailty component has been included. The frailty in this model is assumed to follow a 

gamma distribution with mean 1 and variance equal to theta (θ).  The estimated value of theta (θ) 

is 0.78. A variance of zero (θ = 0) would indicate that the frailty component does not contribute to 

the model. A likelihood ratio test for the hypothesis θ = 0 is shown in at the bottom of table 4.16 

below and indicates a chi-square value of 1307.52 with one degree of freedom resulted a highly 

significant P-value of 0.000. This implied that the frailty component had significant contribution 

to the model.  And the associated Kendall’s tau (τ), which measures dependence within clusters 

(region), is estimated to be 0.28. The estimated value of the shape parameter in the log-normal-

gamma frailty model is 3.185 (ρ =3.185). This value showed the shape of hazard function is uni-

modal because the value is greater than unity implies it increases up to its maximum point and 

then decreases.  

From table 4.16 the confidence intervals of the acceleration factor for all significant categorical 

covariates do not include one at 5% level of significance. This showed that they are significant 

factors for determining the survival of time-to-first birth among women in Ethiopian. However, 

from the covariate women’s level of education secondary and above education is not significant 

by taking no education as reference (P-value = 0.259, ϕ = 0.956, 95% CI= 0.885, 1.033). The 

estimated coefficient of the parameters for women’s age at marriage, women’s educational levels 

are negative. The  negative sign implies  that  decreasing  logged  of  survival  time  and  hence,  

shorter  expected  survival of time-to-first birth after marriage. 

The age of women at marriage was statistically significant to determine time-to-first birth after 

marriage of Ethiopian women.  The acceleration factor and its 95% Confidence interval was 0.927 
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and (0.922, 0.932) respectively yielding significant P-value of 0.000. Additionally, confidence 

interval did not include one which indicates age of women at first marriage was statistically 

significantly important factors for the survival of time-to-first birth. Accordingly, as age of 

women at first marriage increases, the survival of time-to-first birth becomes short. The  

acceleration  factor  for  women  who  are  lived  in  urban  area  was  1.292 times  greater than 

those who are lived in  rural  area (rural as reference; ϕ: 1.292, 95%CI: 1.231, 1.357; P-value= 

0.000),  this indicates  urban women have prolonged  time-to-first birth than rural women. The 

acceleration factor and its 95% confidence interval of employed women was 1.080 and (1.042, 

1.120) respectively (unemployed as reference category). The confidence interval did not include 

one and p-value was very small (P= 0.000) indicating that employment status of women was 

significant factor to determine the survival time of time-to-first birth at 5% level of significance. 

This showed that the timing of first birth for employed women was longer than unemployed 

women. The acceleration factor and its 95% confidence interval for women who use contraceptive 

were 1.116 and (1.072, 1.162) respectively. This showed that use of contraceptive prolong the 

survival of time-to-first birth when non-users taken as reference category at 5% level of 

significance. The acceleration factor of women’s primary education level was estimated to be 

0.828 with 95% confidence interval (0.796, 0.862) and secondary and above 0.956 with 95% 

confidence interval (0.885, 1.033) when the uneducated women taken as reference. This indicates 

educated women had short survival of time-to-first birth than uneducated women even if there is 

no significant difference between women attends secondary and above level of education and 

uneducated women. 
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      Table 4.16: Results of final log- normal gamma frailty model  

Covariate Category  Estimate(��) SE(��) ϕ 95% CI P-value 

Age  -0.08 0.0027 0.927 [0.922,    0.932] 0.000* 

Place of  Rural Ref.     

Residence  Urban 0.26 0.0250 1.292 [1.231, 1.357] 0.000* 

Employment  Unemployed Ref.     

Status  Employed  0. 08 0.0180 1.080 [1.042,  1.120] 0.000* 

Contraceptive Non- User Ref.     

 User 0.11 0.0206 1.116 [1.072, 1.162] 0.000* 

Women  Noeducation Ref     

education Primary -0.19 0.0204 0.828 [0.796,  0.862] 0.000* 

 Sec&above -0.05 0.0395 0.956 [0.885, 1.033] 0.259 

�=   0.78 � =   2.541    likelihood=-6813.8  

� =   0.28            � =   3.185    AIC =  13641.69  

Likelihood-ratio test of � = 0: chi-square = 1307.52   P-value = 0.000* 

SE(��)= standard error of �� ;  ϕ=acceleration factor ; 95 % CI= 95% confidence interval for 
acceleration factor; * = significant at 5% level; Ref. =Reference.  AIC= Akaike’s Information 
Criteria 

4.5. Comparison of Log-normal AFT and Log-normal- Gamma Frailty Model  

From table 4.19,  we can observe that the  results  from  the  Log-normal AFT and Log-normal-

Gamma frailty model are  quite  similar but  not  identical. In this study, in order to compare the 

efficiency of the models the AIC was used.  From the Table 4.19, we can see that the log-normal- 

gamma shared frailty model has a minimum AIC (13641.69) than log-normal AFT (AIC = 

24,485.05), indicating that log- normal- gamma frailty model fitted the survival of time-to-first 

birth data  better than the log-normal AFT model which did not take in to  account the  clustering 

effect. When we look at the estimated value of coefficients of the covariate, they are altered with 

the inclusion of the frailty component and the confidence interval for the acceleration factor is a 

little beat narrower for log-normal gamma frailty model. Furthermore, the variance of random 

effect (frailty) was significant at 5% level of significance which indicates that the parametric 

shared frailty model fit the given dataset better than AFT model. In general log-normal gamma 

shared frailty model is preferred over Log-normal AFT for modeling of time-to-first birth dataset.  
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Table 4.19: Comparison of Log-normal AFT and Log-normal- Gamma Frailty   model 

  Log- normal AFT  Lognormal–Gamma Frailty  

Covariate Category  �� ϕ 95%CI �� ϕ 95%CI 

Age  -0.07 0.93 [0.92, 0.94] -0.08 0.92 [0.91,    0.93] 

Place of  Rural  Ref.   Ref.   

Residence  Urban  0.26 1.30 [1.20, 1.37] 0.26 1.29 [1.23, 1.36] 

Employment Unemployed  Ref.   Ref.   

Status  Employed  0.09 1.09 [1.06, 1.13] 0. 08 1.08 [1.04,  1.12] 

Contraceptive Not Use Ref.      

 User 0.17 1.19 [1.14, 1.35] 0.11 1.12 [1.07, 1.16] 

Women  No education Ref.      

Education  Primary  -0.21 0.81 [0.78, 0.85] -0.19 0.83 [0.80,  0.86] 

 Sec & above -0.02 0.98 [0.89,  1.07] -0.05 0.96 [0.89, 1.03] 

AIC=24,485.05 AIC =13641.69 

Log-likelihood= -12235.525 Log-likelihood = -6813.845 

Estimate (��) = estimated value of  ��; ϕ= acceleration factor; 95 % CI= 95% confidence interval 
for acceleration factor; Ref. = Reference;  AIC= Akake’s Information Criteria.  

4.6. Model Diagnostics 

4.6.1. Checking Adequacy of Parametric Baselines using Graphical Methods 

After the  model  has  been  fitted,  it  is  desirable  to  determine  whether  a  fitted  parametric  

model adequately  describes  the  data  or  not. Therefore, the  appropriateness  of  model  with  

weibull baseline can be graphically evaluated by plotting log (-log(S(t)) versus log(time), the  log  

logistic  baseline  by  plotting  log(
��(�)

����(�)
) versus  log(time) and the log-normal baseline by 

plotting ϕ��[1 − �(�)]  against log (t). If the plot is linear, the given baseline distribution is 

appropriate for the given dataset. Accordingly, their respective plots are given in figure 4.7 below 

and the plot for the log-normal baseline distribution make straight line better than weibull and 

log-logistic baseline distribution. This evidence also strengthens the decision made by AIC value 

that log-normal baseline distribution is appropriate for the given dataset.  
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Figure 4.9: Graphs of Weibull, Log-logistic, and Log-normal baseline distributions for time-to-

first birth data set. 

   4.6.2. Cox- Snell residuals plots 

The Cox-Snell residuals are one way to investigate how well the model fits the data. The plot for 

fitted model of residuals for log-normal to our data via maximum likelihood estimation with 

cumulative hazard functions is given in figure 4.8 below. If the model fit s  the data,  the  plot  of  

cumulative  hazard  function  of  residuals  against  Cox-Snell  residuals  should be approximately  

a  straight  line  with  slope  1. The plot makes straight lines through the origin for log-normal 

baseline distribution suggesting that it is appropriate for time-to-first birth data set.  

 

Figure 4.10: Cox- Snell residuals plots of log-normal baseline distributon for time- to- first birth 
data. 
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4.6.3. Quantile-Quantile Plot   

A quantile-quantile or q-q plot is made to check if the AFT provided an adequate fit to the data 

using by two different groups of population.   We shall graphically check the adequacy of the 

model by comparing the significantly different groups of women by place of residence, 

contraceptive use and employment status.  The figures appear to be approximately linear for all 

covariates place of residence, contraceptive and employment status of women as shown in figure 

4.9. Therefore the accelerated failure time appears to be the best to describe time-to-first birth 

data set.  

 

 
Figure 4.11: Quantile- Quantile plot to check the adequacy of the accelerated failure time model 

4.7. Discussion 

The main goal of the study was modeling the determinants of time-to-first birth after marriage 

among women in Ethiopia using AFT and parametric shared frailty models by considering three 

baseline distributions: Weibull, log-logistic, and log-normal distributions and gamma frailty. 

Covariate which were included in the study were  woman's  educational  level, wealth index of the 

family, access to mass media, place  of  residence,  husband’s educational  level, employment 
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status of women, contraceptive, and age of women at first marriage and the outcome variable of 

interest was the survival of time-to-first birth after marriage measured in months.  

The univariate analysis (in Appendix, Table 4.6) revealed that woman's  educational  level, wealth 

index of the family, place  of  residence,  husband’s educational level, employment status of 

women, contraceptive, and age of women at marriage were significantly associated with time to 

first birth after marriage but access to mass media was not significant at 10% level of 

significance. All significant covariates in univariate analysis were included in all multivariable 

analysis of AFT model and comparison was done within the models using AIC criteria where the 

model having minimum AIC value is selected to be the best (Munda, 2012).  Log-normal AFT 

model was found to be the best over Weibull and Log-logistic AFT models based on AIC value 

and graphical evidence (figure 4.7). wealth index of the family and husband’s educational level 

had no significant association to the survival of time-to-first birth while  the covariates women’s 

educational level, place of residence, employment status of women, contraceptive, and age of 

women at marriage were significantly associated with timing of first birth interval after marriage.  

After analyzing the given data set by using log-normal AFT model, parametric shared frailty 

models by assuming gamma distribution for the frailty term were fitted by considering weibull, 

log-logistic and log-normal baseline distributions. Log-normal gamma shared frailty model was 

selected over weibull-gamma and log-logistic gamma shared frailty models based on AIC values.  

The aim of frailty model is not only to account heterogeneity subjects among different regions but 

also to measure the dependence or correlation within the same region. Gamma distribution is 

selected for the frailty term due to its mathematical tractability and flexibility of hazard function 

(Vaupel et al., 1979; Clayton & Cuzick, 1978). The clustering effect were significant (p-value= 

0.000) in log-normal-gamma shared frailty model. This showed that there was heterogeneity 

between the regions on the timing of first birth after marriage. Finally the two models, log-normal 

AFT and log-normal gamma shared frailty, were  compared,  the  results  from  the  AFT and 

frailty model were quite  similar  to  each  other but some improvement was observed on the 

parameter estimates due to the inclusion of frailty term. Log-normal-gamma frailty model fitted 

the survival of time-to-first birth data better than log-normal AFT model (Table 4.19).  
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The findings of this study revealed that increasing age of women at marriage and women’s 

education level significantly shorten the time-to-first birth while place of residence, contraceptive, 

and employment status of women accelerates time-to-first birth after marriage among women in 

Ethiopian. The estimated median age of women at marriage was 16 years. Which is almost similar 

with the Bedasa et al. (2015) reported that about 60.6% of Ethiopian women were married before 

the age of 18 years using 2011 EDHS.  

The estimated median survival time of first birth after marriage of Ethiopian women is found to 

be 30 months with 95% confidence interval [29.16, 30.84]. This finding is almost similar with 

Wondiber and Eshetu (2011) using 2005 EDHS. They reported that the median time of first birth 

interval for rural women was 29 months. This estimate is exactly identical to Ghanaian women 

(Logubayom & Luguterah, 2013). But the median time of first birth interval for countries were 20 

months for Nigerian (Amusan and Mohd, 2014), 25.2 months for Iranian (Shayan et al., 2014) 

and 25 months for Bangladesh women (Mukhlesure et al., 2013) which is shorter than the medina 

time of first birth interval in Ethiopia. This difference may be due to the practice of early marriage 

in Ethiopia which had potential to elongate timing of first birth.  

Marriage at older age significantly associated to short time interval for the first birth. This result is 

consistent with Gurmu and Etana (2010) in Ethiopia, Yang (2001 as cited in Woldemicael, 2008) 

in China, Rabbi et al. (2013) in Bangladesh, and Shayan et al. (2014) in Iran. They reported that 

women whose marriage  was  delayed  had  shown  short  first birth  interval  as compared  to  

those  who  married  early. The reason may be older women need to give birth soon after 

marriage to have the desired number of children before the end of their reproductive life and 

women who gets early marriage use contraceptive to elongate time-to-first birth until it becomes 

physically mentally matured. In addition, Sub fecundity due to immature age of women at 

marriage is another cause of long first birth interval (Dommaraju, 2008). But some contradictory 

results were also observed such as in Pakistan, younger   women had shorter FBI as compared to 

older women (Kamal & Pervaiz, 2013) 

The results of this study suggested that place of residences was significant predictive factor for 

time-to-first birth after marriage of Ethiopian women. Women who lived in urban areas had 

longer first birth interval than women who lived in rural areas. Rural inhabitants  have  usually  no  
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access  for  maternal  health  and  family  planning programs as compared to  urban  residents 

(Woldemicael, 2008) which may result in short interval for rural women as compared to urban. 

This finding is supported by Rabbi et al. (2013) in Bangladesh, Amusan and Mohd (2014) in 

Nigeria, Stokes & Hsieh (1983) in Taiwanese women. They reported that rural women had short 

first birth interval than urban women when the effect of other covariate held fixed.  Another 

important finding of this study was that employment status of the women had a significant effect 

on time-to-first birth after marriage where time-to-first birth for employed women is longer than 

unemployed women. This is due to that employed women are busy to give child at early age of 

marriage. This is consistent with Islam (2009) in Bangladesh and Hidayat et al. (2014) in 

Indonesia.   

The use of contraceptive also had significant association to time-to-first birth where women those 

used contraceptive had long first birth interval than the non-users. This is due to contraceptive 

service which helped them to protect early and unwanted pregnancy in marriage life of the 

couples. This result is consistent with Amusan and Mohd (2014) and Gayawan and Adebayo 

(2013) in Nigeria. But contradicting result is also obtained by Hidayat et al. (2014) in Indonesian 

and Islam (2009) in Bangladesh. They reported that contraceptive users have distinctly short time-

to-first birth than non-users.  

This study also showed that women with primary, secondary and above education have faster 

transition to first birth than illiterate women. Women's education is considered to be an essential 

component of reproductive behavior. When women  spend a longer  time  at  school,  this  is  

likely  to significantly  affect  both  age  at  marriage  and the  duration  between  marriage  and  

the  first birth. According to Bedasa et al. (2015) age at marriage for educated women was greater 

than uneducated in Ethiopia which has a direct effect on time-to-first birth. Moreover, education 

increases marital stability through secured financial resources (Ikamari, 2005). This is also 

believed to shorten time-to-first birth. At the time of entry to marital life, they are emotionally 

prepared, biologically mature, and financially secured to have a child. This finding is consistent 

with Wondiber and Eshetu (2012) in Ethiopia, Suwal (2001) in Nepal, Logubayom and Luguterah 

(2013) and Gayawan and Adebayo (2013) in Ghana, Gurmu & Etana (2010) in Ethiopia.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

This study was used a time-to-first birth dataset among married woman in Ethiopia which was   

obtained from central statistics agency with an aim of modeling the determinant of time-to-fist 

birth after marriage by using parametric shared frailty model. Out of the total 7925 women, about 

75.3% were gave their first birth after marriage while 24.7% of them were not gave first birth 

until the end of interview. The estimated median time of first birth interval and the median age of 

women at first marriage were 30 months and 16 years respectively.  

To model the determinants of time-to-first birth, different parametric shared frailty and AFT 

models by using different baseline distributions were applied.  Among this using AIC, log-normal 

gamma shared frailty model is better fitted to time-to-first birth dataset than other parametric 

shared frailty and AFT models. There was a frailty (clustering) effect on the time-to-first birth 

that arises due to differences in distribution of timing of first birth interval among regions of 

Ethiopia. This indicates the presence of heterogeneity and necessitates the frailty models. 

The result of Log-normal AFT and Log-normal-gamma frailty models showed that place of 

residence, age of women at marriage, use of contraceptive, level of women’s education, and 

employment status of women were found significant predictors to time-to-first birth among 

married women in Ethiopia. Among these significant predictors, level of women’s education and 

increasing age of women at first marriage shorten time-to-first birth while place of residence, use 

of contraceptive, and employment status of women prolong timing of first birth interval after 

marriage. From the category of women’s level of education, secondary and above was not 

statistically significant.  

Goodness of  the  fit  of  baseline  distribution  by  means  of  graphical  method  and  Cox-Snell  

residuals plots in figure 4.9 and 4.10 revealed that log-normal distribution is better when  

compared to Weibull and log-logistic baseline distributions to explain time-to-first birth dataset.   
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5.2. Recommendations 

 Based on the study findings, the following recommendations are made for policy makers and the 

community at large. 

 Delay  in  marriage  cannot  be effective  unless  it  follows  delay  in  marriage  to  first  

birth  interval. It is crucial to continue familiarizing couples with the concept of using 

family planning methods (contraceptives) to increase length of time to first birth. 

 Awareness about the importance of elongating time-to-first birth after marriage should be 

given for rural women through health workers, health extensions or any other concerned 

bodies.  

 Creating job opportunities for women contributes a lot to fertility reduction through 

elongating timing of first birth.   

 Further studies should be conducted in each region of Ethiopia and identify other factors 

that are not identified in this study. Based on that study, regional governments should take 

actions to elongate time-to-first birth after marriage to reduce TFR. 

Limitations of the Study 

This thesis is not done without limitation. It did not consider Somali region because the data for 

Somali may not be totally representative of the region as a whole since some EAs are not 

interviewed due to drought and security problems.  
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APPENDIX 

Table 4.3: Frequencies and Percentages of women’s education level by region  

Region  Women’s Level of Education Total  
No Education  Primary  Secondary & 

above 
Addis Ababa 129(23.5%) 219 (40%) 200 (36.5%) 548 

Affar  629 (87.6%) 65 (9.1%) 24(3.3%) 718 

Amhara  961 (82.4%) 178 (15.3%) 27 (2.3%) 1166 

Benishangul Gumuz 501 (732%) 160 (23.4%) 23 (3.4%) 684 

Dire Dawa 303 (58.7%) 147 (28.5%) 66 (12.8%) 516 

Gambela  308 (48.4%) 280 (44.0%) 48(7.5%) 636 

Harrari  257 (47.3%) 165 (30.4%) 121 (22.3%) 543 

Oromiya  778 (64.7%) 366 (30.4%) 59 (4.9%) 1203 

SNNP 689 (63.1%) 365 (33.4%) 38 (3.5%) 1092 

Tigray  553 (67.5%) 214 (26.1%) 52 (6.3%) 819 

Total   5108 (64.5%)    2159 (27.2%)   658 (8.3%) 7925 (100%) 

 
    

Table 4.2: Summary of quantitative variables  

Variable         Minimum       Maximum          Mean    median    Std.Deviation 

Age                       7                      41                     17.14       16                  3.825 

FBI                       9                      318                   35.91        30                31.812 

            Std.Deviation: standard deviation, Age measured in years and FBI measured in months  

Table 4.3: Median time of first birth after marriage and confidence interval by levels of 

covariates  

Variables                    category                First Birth Interval 

                       Median (in months)           95% CI  

Place of Residence         Rural         29    [28.08, 29.92]   

                   Urban               35   [32.67, 37.33] 

Wealth Index                 Poor        30   [28.78, 31.22] 

      Middle             28   [26.10, 29.90] 

      Rich                       32              [30.53, 33.47] 
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Contraceptive              User                       31              [29.95, 32.65] 

     Non-User               28   [26.53, 29.47] 

Employment Status     Employed                             33                         [31.46, 34.54] 

     Unemployed                         29   [28.01, 29.10] 

Mass Media       No                          29   [27.76, 30.24] 

     Yes                          31   [29.85, 32.25] 

Women Education      No education                        33   [31.80, 34.22] 

    Primary                    25                [23.78, 26.22] 

    Secondary&above                         31   [27.82, 34.18] 

Husband Education   No Education                        35   [33.50, 36.50] 

    Primary                     26             [24.10, 27.01] 

     Secondary & above                       30   [27.90, 32.10] 

  95% CI: 95% Confidence interval for Median 

  Table 4.5: The log rank test for of survival curves of FBI after marriage by place of    residence. 
Covariate       N         Observed      Expected           (O-E)^2/E       (O-E)^2/V 

Place of residence  
                 Rural                5969 4814  4601     9.83                     44.3 
                 Urban              1956 1152  1365   33.15                   44.3 

  Chisq= 44.3  on 1 degrees of freedom,           p= 2.78e-11 
 

Table 4.6: The log rank test for of survival curves of FBI after marriage by mass 

media 
Covariate                      N         Observed      Expected           (O-E)^2/E       (O-E)^2/V 

Mass Media  
                  No              4585 3599  3643   0.521                   1.38 
                 Yes             3340 2367  2323   0.817              1.38 

 Chisq= 1.4   on 1 degrees of freedom,        p= 0.24 

Table 4.7: The log rank test for of survival curves of FBI after marriage by 

contraceptive use 

Covariate       N         Observed      Expected           (O-E)^2/E       (O-E)^2/V 

contraceptive    Status  
                  Non- User     2024 1579              1392   25.19                   33.9 
                           User      5901 4387  4574   7.66                  33.9 

 Chisq= 33.9  on 1 degrees of freedom, p= 5.74e-09 
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Table 4.8: The log rank test for of survival curves of FBI after marriage by wealth index. 

Covariate       N         Observed      Expected           (O-E)^2/E       (O-E)^2/V 

Wealth index  
                 Poor               3310 2702  2639     1.49                      2.76 
                 Middle           1260 1016  926   8.72                     10.62 
                      Rich                  3355              2248                   2401   9.70                    16.72 

 Chisq= 20.5  on 2 degrees of freedom, p= 3.53e-05 
 

Table 4.9: The log rank test for of survival curves of FBI after marriage by women education 

level. 

Covariate       N         Observed      Expected           (O-E)^2/E       (O-E)^2/V 

Women education  
             No education       5108 3939  4248   22.47                   81.46 
                 Primary           2159 1652  1342   71.54              95.87 
Secondary& above  658             375                    376   0.002                  0.002 

 Chisq= 97.8   on 2 degrees of freedom,      p= 0 
 

Table 4.10: The log rank test for of survival curves of FBI after marriage by Husband education 

level. 

Covariate       N         Observed      Expected           (O-E)^2/E       (O-E)^2/V 

Women education  
          No education          3857 2918  3332   51.54                121.93 
                 Primary           2855 2286  1887   84.47              128.04 
Secondary& above  1213            762                    747 0.31                     0.37 

 Chisq= 142  on 2 degrees of freedom, p= 0 
 

Table 4.11: The log rank test for of survival curves of FBI after marriage Employment status of 

women. 

Covariate       N         Observed      Expected           (O-E)^2/E       (O-E)^2/V 

Employment    Status  
                  Employment     2935 1969 2201 24.5                        40 
            Not Employment     4990 3997 3765 14.3                 40 

          Chisq= 40               on 1 degrees of freedom,              p= 2.59e-10 
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Table 4.12: Univariate AFT analysis for time to first birth modeling using different baseline 

hazard functions   

  Covariates  Baseline Distributions 

 Weibull    Log- logistic    Log-normal 

 	��       (95% CI  ϕ)  	��     (95% CI ϕ)  �� (95% CI ϕ) 

 Age  -0.07*   (0.93, 0.94)   -0.08*  (0.91, 0.93)  -0.07*   (0.93, 0.94 ) 

 Mass Media 

  No  

  Yes  

 

 Ref  

-0.04     (0.93, 1.04) 

 

  Ref  

 -0.04   (0.93, 1.04 ) 

 

  Ref  

 -0.04   ( 0.93, 1.04) 

 Place of Residence  

 Rural  

 Urban  

 

 Ref  

  0.15*  (1.16, 1.21) 

 

 Ref  

   0.14*  (1.10, 1.20) 

 

 Ref  

    0.13*  ( 1.09, 1.19)  

 Wealth Index  

Middle  

 Poor  

 Rich  

 

 Ref  

 0.06* (1.00,  1.13) 

 0.12* (1.13, 1.23 ) 

 

 Ref  

 0.07* ( 1.01, 1.14) 

 0.10* (1.04, 1.17) 

 

 Ref  

 0.06* (1.00,  1.13 ) 

 0.10* (1.04, 1.17 ) 

 Employment Status 

 Unemployed  

 Employed  

 

 Ref  

  0.14* ( 1.19, 1.26) 

 

 Ref  

 0.11* (1.12, 1.21  ) 

 

 Ref  

  0.10* (1.11, 1.19 ) 

 Women Education 

 No education  

 Primary 

 Secondary&above 

 

 Ref  

 -0.26* (0.75, 0.78 ) 

 -0.11* ( 0.76, 0.98) 

 

 Ref  

-0.24*  (0.74, 0.81 ) 

-0.08*  (0.85, 1.00)   

 

 Ref  

-0.22* ( 0.77, 0.83) 

 -0.08* ( 0.85, 1.00) 

 Husband education 

 No education  

 

 Ref  

 

 Ref  

 

 Ref  
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 Primary 

 Secondary&above 

-0.29*  (0.70, 0.76) 

-0.17*  (0.76, 0.83) 

-0.26* (0.74, 0.78) 

-0.16* (0.80, 0.89) 

-0.25* (0.75, 0.80) 

-0.15* (0.81, 0.91) 

 Contraceptive 

 Non- User  

 User   

 

 Ref  

   0.16*  (1.12, 1.30)  

 

 Ref  

   0.12*   (1.18, 1.16)  

 

 Ref  

   0.11 * (1.07, 1.16) 
     95% CI  ϕ: 95% confidence interval for acceleration factor, *Indicates significant at 10% 

level of significance, Ref= reference  

 

Table 4.17: Results of multivariate Weibull-Gamma frailty model  

Covariate Category  Estimate(��) SE(��) ϕ  P-value 

Age  -0.07     0.31690   0.93  3.93e-208* 

Place of  Rural Ref.     

Residence  Urban 0.31 0.03161   1.36  1.55e-22* 

Employment  Unemployed Ref.     

Status  Employed  0.14     0.02004   1.15  1.16e-12* 

Contraceptive Non- User Ref.     

 User 0.23 0.02182   1.26  6.53e-26* 

Women  Noeducation Ref     

education Primary -0.26 0.02211 0.77  1.56e-32* 

 Sec&above -0.07 0.04532   0.93  0.108 

�=   0.985 AIC =  14587.83      

� =   0.329       

Likelihood-ratio test of � = 0: chi-square = 1.63         P-value = 0.89 

     SE(��)=standard error of ��; ϕ=acceleration factor;*=significant at5% level;Ref. =Reference.   
AIC= Akaike’s Information Criteria 
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Table 4.18: Results of multivariate log-logistic Gamma frailty model  

Covariate Category  Estimate(��) SE(��) ϕ  P-value 

Age  0.07    0.31690   0.93  2.14e-47* 

Place of  Rural Ref.     

Residence  Urban 0.26     0.02854   1.30  1.64e-20* 

Employment  Unemployed Ref.     

Status  Employed  0.11    0.01890   1.12  1.67e-09* 

Contraceptive Non- User Ref.     

 User 0.17     0.02080   1.19  1.50e-15* 

Women  Noeducation Ref     

education Primary -0.20     0.02101   0.82  1.20e-21* 

 Sec&above -0.01     0.04101   0.99  0.927 

�=   0.416 AIC = 13981.74      

� =   0.134       

Likelihood-ratio test of � = 0: chi-square = 1013         P-value = 0.000* 

SE(��)=standard error of ��; ϕ=acceleration factor; * = significant at 5% level; Ref. =Reference.  
AIC= Akaike’s Information Criteria 

Table: summary of test of pairwise interaction effect 

Covariate  -2LL2 – (-2LL1) Decision  

Age*pr 0.48 Do not reject Ho 

Age*employmentstat 1.89 Do not reject Ho 

Age*contracep 1.07 Do not reject Ho 

Age*womeneduc 2.01 Do not reject Ho 

Pr*employmentsttat 2.83 Do not reject Ho 

Pr*contracep 2.05 Do not reject Ho 

Pr*womeneduc 1.96 Do not reject Ho 

Employmentstat*womeneduc 2.67 Do not reject Ho 
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Employmentstat*contracep 0.75 Do not reject Ho 

Womeneduc*contracep 2.12 Do not reject Ho 

-2LL2 = with main effect only; -2LL1 = main and interaction effect; Ho= the coefficient of 
interaction effect is zero. 

Figure 4.5: K-M plots for survival of time- to- first birth after marriage by access to mass media 

and By wealth index of the family 

  

Figure 4.6: K-M plots for survival of time- to- first birth after marriage by women and Husband 

education level 
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	The estimated median survival time of first birth after marriage of Ethiopian women is found to be 30 months with 95% confidence interval [29.16, 30.84]. This finding is almost similar with Wondiber and Eshetu (2011) using 2005 EDHS. They reported that the median time of first birth interval for rural women was 29 months. This estimate is exactly identical to Ghanaian women (Logubayom & Luguterah, 2013). But the median time of first birth interval for countries were 20 months for Nigerian (Amusan and Mohd, 2014), 25.2 months for Iranian (Shayan et al., 2014) and 25 months for Bangladesh women (Mukhlesure et al., 2013) which is shorter than the medina time of first birth interval in Ethiopia. This difference may be due to the practice of early marriage in Ethiopia which had potential to elongate timing of first birth. 
	Marriage at older age significantly associated to short time interval for the first birth. This result is consistent with Gurmu and Etana (2010) in Ethiopia, Yang (2001 as cited in Woldemicael, 2008) in China, Rabbi et al. (2013) in Bangladesh, and Shayan et al. (2014) in Iran. They reported that women whose marriage  was  delayed  had  shown  short  first birth  interval  as compared  to  those  who  married  early. The reason may be older women need to give birth soon after marriage to have the desired number of children before the end of their reproductive life and women who gets early marriage use contraceptive to elongate time-to-first birth until it becomes physically mentally matured. In addition, Sub fecundity due to immature age of women at marriage is another cause of long first birth interval (Dommaraju, 2008). But some contradictory results were also observed such as in Pakistan, younger   women had shorter FBI as compared to older women (Kamal & Pervaiz, 2013)
	5. CONCLUSIONS AND RECOMMENDATIONS
	5.1. Conclusions

	This study was used a time-to-first birth dataset among married woman in Ethiopia which was   obtained from central statistics agency with an aim of modeling the determinant of time-to-fist birth after marriage by using parametric shared frailty model. Out of the total 7925 women, about 75.3% were gave their first birth after marriage while 24.7% of them were not gave first birth until the end of interview. The estimated median time of first birth interval and the median age of women at first marriage were 30 months and 16 years respectively. 
	To model the determinants of time-to-first birth, different parametric shared frailty and AFT models by using different baseline distributions were applied.  Among this using AIC, log-normal gamma shared frailty model is better fitted to time-to-first birth dataset than other parametric shared frailty and AFT models. There was a frailty (clustering) effect on the time-to-first birth that arises due to differences in distribution of timing of first birth interval among regions of Ethiopia. This indicates the presence of heterogeneity and necessitates the frailty models.
	The result of Log-normal AFT and Log-normal-gamma frailty models showed that place of residence, age of women at marriage, use of contraceptive, level of women’s education, and employment status of women were found significant predictors to time-to-first birth among married women in Ethiopia. Among these significant predictors, level of women’s education and increasing age of women at first marriage shorten time-to-first birth while place of residence, use of contraceptive, and employment status of women prolong timing of first birth interval after marriage. From the category of women’s level of education, secondary and above was not statistically significant. 
	Goodness of  the  fit  of  baseline  distribution  by  means  of  graphical  method  and  Cox-Snell  residuals plots in figure 4.9 and 4.10 revealed that log-normal distribution is better when  compared to Weibull and log-logistic baseline distributions to explain time-to-first birth dataset.  
	5.2. Recommendations

	 Based on the study findings, the following recommendations are made for policy makers and the community at large.
	 Delay  in  marriage  cannot  be effective  unless  it  follows  delay  in  marriage  to  first  birth  interval. It is crucial to continue familiarizing couples with the concept of using family planning methods (contraceptives) to increase length of time to first birth.
	 Awareness about the importance of elongating time-to-first birth after marriage should be given for rural women through health workers, health extensions or any other concerned bodies. 
	 Creating job opportunities for women contributes a lot to fertility reduction through elongating timing of first birth.  
	 Further studies should be conducted in each region of Ethiopia and identify other factors that are not identified in this study. Based on that study, regional governments should take actions to elongate time-to-first birth after marriage to reduce TFR.
	Limitations of the Study
	This thesis is not done without limitation. It did not consider Somali region because the data for Somali may not be totally representative of the region as a whole since some EAs are not interviewed due to drought and security problems. 
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