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                                                        Abstract 

Developing language applications or localizations of software is a resource intensive task that 

requires the active participation of stakeholders with various backgrounds. Spell checking is the 

one and significant application of computational linguistics. Spell checking is the process of 

detecting and sometimes providing spelling suggestions for incorrectly spelled words in a text. 

The text data in local languages is also increasing fast, requiring text-processing tools for text 

documents to be available in local languages. This application is vital to detect and correct 

spelling errors in under resource languages like Amharic. This thesis describes the development, 

implementation and testing of a model that have been developed to detect and correct non-word 

and real word typing errors made by writers for Amharic language. The aim of this study is to 

develop context based spell checker and corrector for Amharic depends on the spelling error 

patterns of language based on the sequence of words in in the input sentences contextually. 

Training and testing data sets were collected from various sources describes different issues to 

balance the inclusiveness of the corpus. The texts were prepared and cleaned manually from any 

kind of unnecessary errors which are not necessary for detection and correction like numbers and 

punctuations. Experimental research design was used to evaluate the performance of developed 

prototype system. To conduct experiment 10,000 and 500 sentences were used to learn and test the 

model respectively. According the experimental result, the spell checker can correctly classify 

Amharic words with prediction accuracy of 95.62%, lexical recall of 95.52% and lexical precision 

of 35.18% for non-word spelling errors. The performance of the context sensitive spell checker 

was measured and scored a value of prediction accuracy 64.93%, lexical recall 63.42% and error 

precision 5.49% to resolve real word errors. Finally, as a comprehensive spell checker system has 

to be capable of detection, resolving and ranking correction possibilities using complementary 

contextual and linguistic knowledge, we are planning to extend the coverage level of the system 

considering more syntactical and semantic knowledge to improve and complete the quality of the 

developed system through rule based approaches.  
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                                  OPERATIONAL TERMS 

Computational linguistics: is a branch of language technology leaning towards the linguistic 

aspects of the computational handling of language. 

Spelling Error Detection: is the process of detecting the spelling error during typing 

Natural language: is a language spoken, written or otherwise used by people as a means of 

communication. 

Non-word error: a spelling error where the mistyped string is not a valid word form in a 

dictionary of the language. 

Real-word error: a spelling error where the mistyped string is another valid word form in a 

dictionary of the language. 

Spell checker: is software capable of detecting and correcting spelling errors in word forms. 

Spell checking: is the task of verifying that the word forms of the text are correctly written word 

forms in the language of the spell checker. Spell checker can, however, refer to software capable 

of both spell checking and correction. 

Spelling correction: is the task of correcting misspelled word forms in the text by correct ones, or 

suggesting alternatives in an interactive application. 
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                                         CHAPTER ONE 

                                                      INTRODUCTION 

1. Background of the study 

One of the fundamental features of human behavior is the natural language. It is a vital component 

through which we communicate about the world that affects our daily lives. Most human knowledge 

is recorded using natural languages, therefore, only computers that have the capability to understand 

natural language can access the information contained in the natural language efficiently.  

Natural language processing (NLP) can be described as the ability of computers to generate and 

interpret natural languages. It is a major subfield of study in computer science. The applications that 

will be possible when NLP capabilities are fully realized are impressive as computers would be able 

to understand and process natural language, translate languages accurately in real time, or extract and 

summarize information from a variety of data sources, depending on the users' requests [29]. Natural 

Language Processing, as a field of scientific inquiry, plays an important role in increasing computer 

capability to understand natural languages, the language by which most human knowledge is 

recorded. NLP focuses on designing and implementing of tools, techniques, frameworks to enable 

computers communicate effectively as and with humans.  

Additionally, NLP encompasses a set of related disciplines like psycholinguistic, linguistic and 

computational linguistic and other related fields to study and design effective components like 

morphological analyzer, syntax parser, semantic analyzer, speech recognizer and many more 

applications that can help computers easily understand text, sounds, images and communication 

material as humans do. NLP has also many applications, which includes Automatic Summarization, 

Machine Translation, Part-of-Speech Tagging (POS), Speech Recognition (SR), Optical Character 

Recognition (OCR), grammar checker, spell correction and Information Retrieval (IR).  

In computing, spell checking is the process of detecting and sometimes providing spelling 

suggestions for incorrectly spelled words in a text. Spell checking is a significant application of 

computational linguistics whose research extends back to the early seventies when Ralph Gorin built 

the first spell checker for the mainframe computer at Stanford University [47]. By definition, a spell 

checker is a computer program that detects and often corrects misspelled words in a text document 
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[44]. It can be a standalone application or an add-on module integrated into an existing program such 

as a word processor, search engine or mobile application. 

Fundamentally, a spell checker is made out of three components: An error detector that detects 

misspelled words, a candidate spellings generator that provides spelling suggestions for the detected 

errors, and normally, choosing the correct word is done by humans rather than by computers.  This 

component may be required for auto correction systems which are commonly used in search engines 

and mobile systems. All these three basic components are usually connected underneath to an internal 

corpus or dictionary of words that they use to validate and look-up words present in the text to be 

spell checked. However, as human languages are complex and contain countless words and terms, as 

well as domain-specific idioms, proper names, technical terminologies, and special jargons, regular 

dictionaries are insufficient to cover all words in the vocabulary of the language. 

Word error is a major hindrance to the real world applications of natural language processing. In 

textual documents, word-error can be of two types. One is a non-word error which has no meaning 

and other is a real word error which is meaningful, but not the intended word in the context of the 

sentence. Of these, a non-word error has been widely studied and algorithms to detect and suggest the 

correct word for the error have been proposed. Errors, particularly spelling and typing errors are 

abundant in the human generated electronic text. Search engines like Google do spell checking and 

correction automatically. This would prevent wasted computational processing, prevent wasted user 

time and make any system more robust as spelling and typing errors can prevent the system 

identifying the required information.  

The idea of using context of a misspelled word to improve the performance of a spell checker is not 

new [46]. Moreover, recent years have seen the advance of context-aware spell checkers such as 

Google Suggest, offering reasonable corrections of search queries. Errors detected by such advanced 

spell checkers have a natural overlap with those of rule-based grammar checkers because 

grammatical errors are also manifested as unlikely n-grams. Methods used in such spell checkers 

usually employ the noisy-channel or winnow-based approach [26]. It makes extensive use of 

language models based on several morphological factors, exploiting the morphological richness of 

the target language. 
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Most word processors have a built-in spell checker that highlights misspelled words in some way and 

offers the facility to correct these misspellings by selecting an alternative from a list. To detect these 

misspellings in the first place, most spell checkers take each word in a text in isolation and check it 

against the words stored in a dictionary. If the word is found in this dictionary it is accepted as correct 

without regard to its context. Although this approach is adequate for detecting the majority of typos, 

there are many errors that cannot be detected in this way. These spelling errors are real-word errors 

which are correctly written that are not the word the user intended. Real-word spelling errors are 

errors that occur when a user mistakenly types a correctly spelled word when another was intended. 

Errors of this type generally go unnoticed by most spell checkers as they deal with words in isolation, 

accepting them as correct if they are found in the dictionary and flagging them as errors if they are 

not. The problem of real-word error is a more complex one. Usually, such error disturbs the syntax 

and semantics of the whole sentence, which requires human-being to detect it. 

Since spelling error detection and correction on word level cannot solve this problem, research into 

automatic context-sensitive spell checking is going on to develop spell checker and corrector based 

on the context of the text. Spelling error detection and correction now focuses on the development of 

spell checking algorithms that make use of context. Spelling error detection and correction techniques 

that aim at detecting and correcting interactive real-word errors are thus also referred to as context-

sensitive spell checking. In this research, we tried to create a context-sensitive spell checking method 

that is able to detect and correct human-generated real-word errors. The context-sensitive spell 

checker can be combined with corpus based spelling error detection and correction application in 

order to create an application that is able to detect and correct non-word errors as well as real-word 

errors.  

As per researchers knowledge the above mentioned spell checker and corrector techniques and many 

NLP tools have been developed for English language to more degree of acceptance, efficiency and 

correctness‟s than that of Amharic language. Regarding Amharic language, there are numerous 

numbers of researches being undergoing and done to improve the gap and alleviate the problem in 

different areas of NLP. Today, spelling checker of various kinds (e.g. Probabilistic, rule based) have 

been developed for different languages, which have relatively wider use nationally and or 

internationally (e .g. English, German, Chinese, Arabic etc.) [2]. The major goals of this research is 

finding out and develop a model of  interactive context-sensitive spell checking for Amharic 
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language using unsupervised n-gram probability information to provide a valid solution to the 

problem of real-word errors.  

1.1 Statement of Problem 

Problem of interactive and automatic spell checking is not new in the areas of information retrieval 

and language processing. The research started as early as the 1960s [16]. Many different techniques 

for detection and correction of spelling errors are proposed during last 40 years. Some of these 

techniques exploit general spelling error trends while others use the phonetics of misspelled word to 

find likely correct words. Spell checkers and correctors are either stand-alone application capable of 

processing a string of words or a text, or as an imbedded tool which is part of larger applications such 

as a word processor. 

Spell error and correction are closely related to exact and approximate pattern matching respectively. 

Checking words that are valid in some language is a difficult task since it has many vocabulary and 

morphology in one specific language. On the other hand, correcting errors with one or more 

alternative suggestions also considered when a misspelled word identified in the written text. Spell 

checking involves non-word error and real word error detection and spelling correction performed 

with respect to the writers need. So, to write and convey ideas language learners and native writers 

understand and recognize the language features if not the spell checker replayed valid words for them 

for missed words. 

One of the inevitable activities of any government or private office worker needs to edit a document 

that has been written by someone. Computers have considerably minimized this activity since they 

automatically detect and correct spelling as well as grammatical mistakes. Thanks to this, office 

workers not only save considerable amount of time and money but they have also started relatively 

producing better documents. 

 Unfortunately, Ethiopians do not benefit from this, unless they use English or one of the many 

foreign languages for which electronic spell checkers have been developed. This is because no 

software provides spell checker for Ethiopian languages. Everyone makes spelling mistakes at one 

time or another. Mistakes can be caused by not taking the time to proofread or lack of knowledge 

about what the correct spellings are, and other times it's from confusion about usage. 
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Quite a few of spelling correction techniques are being used with text editors and other text handling 

applications and are showing reasonably good performance. Nevertheless the problem of spell 

checking is still considered open for further research and improvements in Amharic language. There 

are many reasons for considering this problem still unsolved and the main question to be asked while 

developing a spell error detector and corrector has to improve and enhance the gap of spell checker 

with respect to the Amharic language. 

The first reason is that as the research in the area of natural language processing advanced over the 

years, the need of automated spell checking is being felt for many tasks other than simple proof 

reading of computer generated text. Many NLP applications like machines translation systems, Text 

to Speech Systems, information retrieval and Optical Character Recognizers require automated spell 

checking of text. Amharic language should have its own spell checker to those applications 

applicable and solving these problems by developing new models for spelling error and corrector is 

crucial. The demands that are implied by these applications are much more challenging than the ones 

implied by human users of spell checkers. The major difference is that, for a human user it is 

adequate if the errors are detected and for every error a small number of suggestions are proposed 

from which user can select the required one. Whereas, in automated spelling correction it becomes 

the spell checker‟s responsibility to decide on what is required, spell checker should be able to find 

one best correction for an error. 

The second reason for considering the spell checking problem unsolved is that most of the techniques 

proposed so far are based on English or some other Latin script based language. Since every language 

has its own writing system and alphabets, the techniques that perform well in one language may not 

perform that well for some other language, they may even totally fail. The writing system of a 

language also governs the types and trends of spelling errors of that language. Therefore, existing 

techniques which are designed mainly focusing English language are limited in their scope. 

Another challenge is really needs a spell checker that can detect and correct a given spelling error 

when the users write incorrect words that are not exist from the dictionary or corpus. Basically the 

spelling errors can be real word errors which exist in the corpus and non-real word error which are 

not exist in the corpus or dictionary. Non-native Amharic language writers cannot correct the spelling 

errors correctly since they are not familiar with languages and even does not now the semantic of the 

sentences. Hence, developing Amharic spell checker can assist those language users and learners 
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even if for native Amharic writers to correct misspelling without spending time and efforts to correct 

the misspelling during writing. 

Using word processors in Amharic writing is growing in a very fast pace. Currently, government 

ministries and departments, legal institutions, business offices, media channels, universities all use 

word processors in their daily work. This growth is expected to continue as computers and electronic 

devices become more and more prevalent in Amharic. Spelling is an important aspect of language 

writing. Poor spelling can interfere with communication between the writer and the reader. Word 

processer use spell checkers to suggest corrections to misspelled words. Unfortunately, existing word 

processors do not come with built-in spell checkers for every language. Individual nations create their 

own customized dictionaries and add them to the word processors for error correction. Currently, 

Amharic language lacks a reliable spell checker.  This limitation need to be resolved. Overcoming the 

lack of spell checker problem would flourish Amharic writing and helps word spelling 

standardization. Word recognition and automatic correction techniques have been studied in a large 

spectrum of computer applications. These include word processors, machine translation, search 

engines, and voice recognition. While almost all modern human spoken language has one or more 

spell checkers, Amharic language lacks even a very basic one. Hence, building an Amharic spell 

checker would have an outstanding effect on Amharic language processing applications. 

Furthermore, the Amharic spell checker is very important in learning environment. For example, 

children‟s can learn the spelling errors during writing by themselves without interacting teachers. But 

there is no spell Amharic spell checker that can detect and correct spelling errors. As per researchers 

knowledge there is no Amharic spell checker and corrector application that incorporate Amharic spell 

checker like search engines and mobile application that can detect and correct the misspellings during 

writing and the result after writing can be meaningless and users cannot understand what they wrote 

and the message can be changed.  

From above discussion, it can also be conjectured that in order to propose a new spell checking 

technique or fit an existing one in a language having a writing system significantly different from 

English, one has to clearly identify the language specific issues and deeply investigate general 

spelling error trends of the language, only then a reasonably effective spell checking approach can be 

proposed. The study described and developed the details of a study performed on Amharic language 
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to identify the problem areas of Amharic spell checking and to test the effectiveness of spell checking 

techniques on Amharic. 

Kukich [40] in a comprehensive survey of spell checking techniques claimed that "Developing 

context-based correction techniques has become the foremost challenge for error correction in text". 

The fact that her paper remains the definitive survey is perhaps indicative of the small amount of 

progress that has been made in the last decade or so. The research described in her work takes up this 

challenge to detect and correct errors. It considers both syntactic and semantic approaches to the 

problem and assesses their performance when applied to real-word errors produced by dyslexics. 

Interactive context sensitive spell checker and corrector were developed for Amharic language that 

can detect misspelling words based on the sequence of words in the sentences with in the given 

corpus. The context based spell checker mostly used for real word errors regard to the structure of the 

given sentences and non-word errors would be solved by providing word suggestion with respect to 

probabilistic information.  

Currently, there almost no software or web-services applications that are used for implementing 

language specific features for Amharic language [45]. Even if a lot of researches are going on, the 

language is not studied in detail manner to integrate with the computer technology. In addition, we 

strongly share the conclusion by Daniel Yacob [64] Amharic orthography reflects the spoken 

phonetic features to a large extent. So this can be lead to believe that there is no notion of “spelling” 

in Amharic. The rule generally followed is “if a word sounds right when read aloud then it was 

rightly written”. Upon closer inspection, we quickly realize that Amharic spelling rules are just very 

forgiving when compared to the strict, albeit irregular, conventions of English.  

Spell checking has been researched into a great depth in various development languages like English, 

Arabic and French while there are states of the art spell checker tools available for English language. 

Various documents, novels, newspapers are typed in Amharic and there is a need for development of 

spell checking tools for Amharic. These thesis aims at building a spell checker application for 

Amharic language. By doing so, we believe, our work gives yet another perspective for current 

research and strengthens the attempts already made on the NLP of Amharic. Therefore, the major 

concern of this research was to investigate an unsupervised machine learning approach for Amharic 
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spell checker and corrector, test the results in order to develop an interactive context sensitive spell 

checker and corrector for Amharic texts using the local context of the words.  

1.2 Objective of Study 

1.2.1 General Objective 

The general objective of the study is to develop an interactive context sensitive spelling checker that 

can detects and correct spelling errors for Amharic language.   

1.2.2 Specific Objectives  

To achieve the general objective, the study attempts to address the following specific objectives: 

 To review the concept of  spelling error detection and correction  

 To understand the basic characteristics of the Amharic spelling and its writing system 

 To  collect and prepare Amharic sentence  corpora for training and testing model  

 To design context  sensitive spell checker  model for Amharic text  

 To  develop prototype to demonstrate the effectiveness of designed model  

 To test  and evaluate  the  performance of spelling checker system 

 To draw conclusions and forward recommendation for further research 

1.3 Research Methodology 

Different methods were studied to get detail information for spelling checker application from 

various sources. To develop and design the model, the researcher would use different methods and 

techniques that are related to spelling error detector and corrector according to the features of the 

Amharic language. In order to achieve the objectives of this research, the following methods and 

techniques would be employed.  

1.3.1 Literature Review 

An extensive literature review was conducted to understand the general n-gram approach to spell 

checking and select a suitable n value type with a suitable n-gram generation and extraction to be 

used in the experiment. Evaluation techniques for testing the effectiveness of the method were also 

determined from this review. Printed materials like books, journal articles, and previous related 

research work as well as electronic materials on the web were consulted for this purpose. 
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Additionally, Materials concerning Amharic languages and other related languages spelling 

correction and candidate suggestion mechanisms were reviewed. Since there are several approaches 

used in spelling error detection and correction, the literature review was carried out on different 

aspects of spell checker techniques that are focused on different aspects. The writing system and 

structure of the Amharic sentences was reviewed to detect and correct the spelling errors. In addition 

to this we were identifying the types spelling error patterns to develop a better interactive context 

sensitive spell checker and corrector that correct the misspelled words in the corpus. 

 1.3.2 Proposed Model 

The approach to be followed in this work is unsupervised statistical approaches, since supervised 

machine learning requires laborious and costly manual preparation of tagged and annotated text 

which is not ideal for under resourced languages like Amharic. The proposed method does not 

require any human annotated knowledge resources. In this thesis the researcher has used 

unsupervised statistical approaches to detect and correct spelling errors efficiently in the written 

Amharic words and sentences. N-gram statistical methods were used for detecting and correcting the 

spelling errors contextually depend on the neighboring words sequentially in Amharic sentences 

within the corpus which are collected from various resources. The value of n value for n-gram is 

chosen depend on the size and collections of the corpus that have been collected. Since Amharic does 

not have sources to train and test the model, bigram were selected and uses for detection and 

correction purposes by bigram words rather than using other trigram and above.  

Multiple approaches that have been developed to solve the non-word spell checking and correcting 

problem include n-gram analysis and the dictionary lookup for identifying the errors and edit distance 

approach for suggestion generation. The lexicon based approach for identifying the errors combined 

with the shortest edit distance approach is used spell checker applications. Firstly, a dictionary words 

were constructed from a corpus and lexicon based spell checker build by a dictionary lookup from the 

available dictionary. A corpus based dictionary developed and used for identification of errors from a 

test corpus. Errors detected using dictionary lookup and corrections suggested on the basis of 

minimum edit distances. Levenshtein minimum edit distance was used for dictionary checking and 

candidate suggestions were sorted based on the edit distance operation.  
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Detection and correcting real-word errors is crucial in spell checking that are important to understand 

the context of the terms in the given sentences. Context based checking for real-word errors done 

using the n-gram approach. The n-gram approaches constructed from the given text to be checked 

searched for in a set of n-grams constructed from available corpus. The frequencies of these n-grams 

probability used to suggest possible corrections for real world errors. The method for context-

sensitive spelling error detection and correction that is used in this thesis considers a number of word 

sequences instead of single words.  

To accomplish a task of spell checker and corrector, one has to have probabilistic information such as 

the sequential probability of occurrence of words in the sentence. The suggestion words are ranked 

based on the sequential probability occurrence of words in the given corpus. This can be achieved by 

preparing training and testing a corpus. Since Amharic corpus, mostly not readily available, we are 

prepared comprehensive and balanced Amharic corpus in order to design and test the spell checker 

and corrector model. The corpus prepared from various sources that include newspapers, books 

covering wide domain areas such as agriculture, politics, religion, history, sports, love and others.  

1.3.3 Corpus Preparation 

For training and testing purpose sample Amharic sentences were important to measure the 

performance and accuracy of the interactive context sensitive spell checker during detecting and 

correcting both non-word and real word errors. The model was implemented, trained by 10,000 

Amharic sentences which are not annotated. 

This Amharic text data set collected from various resources to reflect the semantic and syntactic 

structure of the Amharic language features. Sample datasets were collected from different sources to 

make complete and balanced the coverage of words if the language. The corpus was collected from 

Walta Information center, ENA, Newspapers, blogs and books that are available in electronic format. 

Walta Information Center is a government information center that distributes news for broadcast over 

television and radio for local consumption. These were selected as sample to make it representative 

and balanced.  A corpus is said to be representative of a language variety if the content of the corpus 

can be generalized to that variety. Basically, if the content of the corpus, defined by the specifications 

of linguistic phenomena examined or studied, reflects that of the larger population from which it is 

taken, then we can say that it "represents that language variety." These are considered as consisting 
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different issues of the users like social, economic, technological, health, political and other issues. 

This could reduce the possibility of making the corpus biased toward some specific words that do not 

appear in everyday life [18]. 

1.3.4 Modeling and Tools 

The spell checker and corrector algorithms of Amharic were trained on the Amharic training corpus. 

The corpus is divided into training set and test set. The algorithms trained on the training sets 

evaluated on the other sets of test corpus. The results were analyzed to evaluate the impact and draw 

conclusions. Java NetBeans programing environment was used for implementing the model and 

algorithm prototype of spell checker. Java is used as a programming language in this study since it is 

a general purpose programming language. It is optimized for software quality, developer 

productivity, program portability, and component integration.  

1.4 Scope and Limitation of the study 

There is a supervised and unsupervised machine learning techniques for spell checking and 

correcting, due to time  and linguistics constraint to prepare and  train the model unsupervised  

machine learning algorithm were used to build and evaluate spelling checker and corrector  model. 

The study was limited to developing interactive spelling checker and corrector for Amharic language 

that can correct typographical and cognitive spelling errors .The prototype was developed based on 

the context of the sentences on the immediate surroundings of the words considering the local 

context. The non-real word misspelling errors were corrected based on dictionary lookup before 

checking and contextual spelling errors were corrected by considering n-gram extraction of words in 

the n-gram lists. This thesis focuses only local surrounding context of words in the sentences and it‟s 

dependent on the Amharic texts. The spell checker could not check and correct the errors 

automatically and errors weren‟t detected intelligently. 

1.5 Significance of Study 

The spelling checking and correcting have become a part of everyday life for today generation. Those 

are an inevitable part of the process such as text editing tools in various areas like word processor, 

search engines and mobile applications. In addition to being an academic exercise to fulfill the 

requirement of the program, this  research is believed to produce results that can indicate the 
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possibility for the  development of a general Amharic spelling checker software for both non-word  

and real word spelling  errors. The results of this study were expected to produce experimental 

evidences that demonstrate different application areas of unsupervised machine learning technique to 

spelling checker and corrector of Amharic texts.  

As researchers' knowledge, there numerous limitations to Amharic NLP and not much research is 

undergoing by researchers in this field as compared to the need for NLP tools in Amharic language. 

The significance of the study can be considered very important in the Amharic language, we don't 

really have this kind of context based spell checker and corrector developed so far, this study could 

provide a lot of possibilities to enhance error detection and correction capability of Amharic spelling 

checker in sentences and transform one step ahead to our Amharic spelling checking and correcting 

applications. This study assists easy and more accurate way of detecting and correcting spelling 

errors for Amharic texts. 

Since Amharic is an official language of Ethiopia a complete spell checker and corrector is vital to 

develop and promote the linguistic features of the language. So any one in country who writes 

spelling on the computer can detect and correct the typing errors during writing or inputting spells 

from the keyboard. The user can select appropriate, suggested words from the given suggested related 

terms based on the sequence of words in the sentences. This Amharic Spelling checking can be used 

in various applications like machine translation and information retrieval and recently it  be used to 

develop a context sensitive spell checker and corrector for mobile application for mobile users and 

search engine queries.  

On the other hand, the spelling checker can increase the speed and efficiency of checking spelling in 

the text and writers cannot spend more time correcting the word errors and gets appropriate terms that 

are depending on the context of the sentences. Developing the context dependent spelling checker 

model can facilitate to detect the non-real word spelling errors which do not exist in the dictionary 

which is not context sensitive and real word spelling errors which  are actually found in the dictionary  

and that are not contextually correct. The developed Amharic context spell checker and corrector  

would be used that detect typing errors both non-real word and real word spelling errors and suggest 

related terms based on the syntax or context of sentences in the corpus and dictionary by considering 

the distance similarity of terms among in the written text. 
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The development of the system was one way of formalizing linguistic knowledge and thus can be 

considered as a form of documentation for poorly investigated languages. Prevention of culture 

breakdown is necessary due to languages represent the culture and diversity of different people 

around the world. Unavailability of language resources eventually leads to extinction. Failing to 

salvage the language will lead to extinction of the culture and consequently the people. Reduction of 

the language technology divide created between the languages of the developed nations and those of 

the less developed. Languages must endeavor to keep up with and avail of language technology 

advances if they are to prosper in the modern world. 

Besides, the results of this study produce experimental evidences that demonstrate different 

application areas of machine learning technique to check and correct spelling in Amharic texts. The 

study contributed to future researches and development in the area of NLP specifically in machine 

translation, speech processing, text processing, information retrieval, grammatical analysis, content 

and thematic analysis as those areas require accurate spell checker and correction mechanisms.   

Therefore, the spell checker could be used as input for other NLP applications and can be integrated 

with them to resolve the challenges behind the applications.       

1.6 Thesis Organization  

This thesis is organized in six chapters. Chapter one, the present chapter, gives a general overview of 

the research with the research problem statement, objectives and methodology. Chapter two is 

devoted to a literature review. It discusses the concepts in spell checking and n-grams techniques in 

two sections. In the first section, concepts that underlie the experiment in this research are discussed 

in adequate detail. In the second, the n-gram approaches to interactive context sensitive spell 

checking and a review of works on n-gram related spell checking is presented.  In chapter three, the 

characteristics of the Amharic writing system that are applicable to the research area are discussed to 

represent and process the Amharic texts in electronic format. The modeling and text preprocessing 

procedures for spell checker including described in chapter four. The experimental settings, the 

process of the experimentation and the findings are presented in chapter five. Finally, in chapter six 

general conclusions and recommendations are made based on observations and results from the 

experiment.  
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                CHAPTER TWO 

                 LITERATURE REVIEW  

2. Introduction 

This chapter deals with the state of the art relating to context based spell checking and correcting with 

its spelling error types in the written texts. In order to complete this study, literature reviews are 

necessary to analyze and understand the previous researches that have been done in spelling checking 

and correcting techniques. It plays an important role as the early phase to develop this study. The 

literatures can be explained different aspects of information on spell correction techniques and 

algorithms from various resources that have been done before the current spelling checker. 

2.1 Spell Checking 

The main tasks of a spell-check module are tokenization, error detection and correction, and ranking 

the suggestions. Tokenization is a language specific task that splits a text into meaningful elements 

called tokens. Most methods use dictionary directly to detect and correct non-word errors, although 

there are methods that work without using a dictionary for detecting and correcting real word errors 

in the given text [15].  Methods that use dictionary directly can differ in the way of storing their 

dictionaries. From this point, the whole methods can either use minimal redundancy or full listing 

approaches [36]. There are some other ways of saving the word list like using a dictionary as bitmap 

[49] or Ternary search tree [8]. The patterns of the errors can be categorized into four groups, (1) 

multi-word token and split errors, (2) typographical errors, (3) cognitive errors, and (4) phonetic 

errors [10]. Multi-word token errors are those errors, which happen due to missing space between two 

distinct words like „ofthe‟ and split errors refer to having extra space between the letters of a word 

like „sp ent‟.  

Typographical errors deal with regular forms of mistyping like pressing a key on the keyboard twice 

or hitting the adjacent key mistakenly. Cognitive errors refer to those errors that happen because of 

misconception or lack of knowledge of the user like typing „recieve‟ instead of „receive‟. Phonetic 

errors are those errors that happen due to pronunciation similarities between the letters like typing the 

word „naturally‟ as „nacherly‟. There are many algorithms for correcting the errors such as Soundex, 
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SPEEDCOP described in [49] and Metaphone just deal with phonetic errors and do not rank the list 

of suggestions.  

There are also some other works that use n-gram models and neural networks [77] for error 

correction. Another method in spelling correction is finding minimum edit distance. Analysis of 

typographical errors in [16] states that about 80–95% of the errors in English texts are single errors 

that are caused by wrong insertion, deletion, substitution of one single letter, or transposition of two 

adjacent letters. The Damerau-Levenshtein distance refers to the minimum number of insertions, 

deletions, substitutions, or transpositions need to convert a word to the other word. In this model [16] 

after detecting the erroneous word, all the words that could be converted to this word with only single 

error are extracted from the lexicon.  

A language-independent approach based on finite-state automata is introduced in [30] for automatic 

correction of spelling mistakes, using a dictionary and text data. In [48] a comparison of different 

strategies for finding the best spelling correct, including ranking heuristics, various correction 

algorithms, and priority strategies by using error types, syntactic information, word frequency 

statistics, and character distance is demonstrated. 

2.2 Spelling Errors 

Spelling errors are a rich source of information. Systematic spelling failures are thought to reveal 

aspects of the cognitive mechanisms of spelling and learning to spell. Moreover, spelling errors may 

be strongly dependent on the language-specific orthographic system and on the individual level of 

competence.  

In the current research spelling errors are defined as human-generated writing errors. The term 

spelling error sometimes refers to both spelling errors and typing errors: automatic spelling error 

detection and correction aims at detecting and correcting both spelling errors and typing errors. In the 

current research this ambiguous denotation of the term spelling error is adopted. Also, the current 

research considers only human-generated spelling errors. While some techniques for detecting and 

correcting errors of optical character recognition (OCR) devices have been studied in the literature, 

most research has been done into techniques for detecting and correcting human-generated errors. 
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Detecting whether or not a word is correct seems simple, why not to look up the word in a set of all 

words. Unfortunately, there are some problems with this simple strategy. Firstly, a lexicon containing 

all correct words could be extremely large, which entails space and time inefficiency. Secondly, in 

some languages it is practically impossible to list all correct words, because they are highly 

productive. Thirdly, making a spelling error can sometimes result in a real word, which belongs to the 

lexicon such an error is called a real-word error. It is impossible to decide that this word is wrong 

without some contextual information. Fourthly, the bigger the lexicon, the more esoteric words it 

contains, making real-word errors more likely. Techniques for spelling error detection were designed 

on the basis of different spelling error trends these are also called error patterns. Studies were 

performed to analyze various trends in spelling errors. According to Damerau [16] spelling errors are 

generally divided into two types which are typographic errors and cognitive errors. 

Typographical errors could be occurred when the correct spelling of the word is known, but the word 

is mistyped by mistake. These errors are mostly related to the keyboard and therefore do not follow 

any linguistic criteria. Whereas, cognitive errors were produced when the correct spellings of the 

words are not known and lack of knowledge about correct spelling of the target language. In these 

types of errors, the pronunciation of the misspelled word is the intended as correct word. 

Phonetic errors were also a special class of cognitive errors in which the writer substitutes 

phonetically correct but orthographically incorrect sequences of letters for the intended word. This 

spelling errors mostly occurs when the language that have same pronunciation of alphabets with 

different orthographical writing system. 

According to Bhagat [10], large number of spelling errors commonly encountered in human generated 

text and these errors were categorized on of the following error types. The first errors are substitution 

error occurs when at least one character is substituted by other character and the maximum of 

misspellings contains substitution errors in Punjab texts. The second type of errors is deletion errors 

produced when at least on character is deleted in the desired word. Whereas, when at least on 

character is inserted in the desired word insertion error could be produced. Also two adjacent 

characters can be transposed and the desired word can be changed which produces transposition 

errors. On the other hand, spacing is very important to identify and separate one word with others 

during typing. Based on this run-on errors can be produced when there is missing space between two 
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or more words and split errors were occurred when there is extra space is inserted between parts of a 

word. All this errors were produce a real and non-word errors in the document writing which needs 

spell checker to detect and correct in desired language. 

Non-words errors are spelling errors resulting in words that do not appear in the reference dictionary 

and real-word errors are words that are in the reference dictionary but are actually erroneous spellings 

of some other words [79]. A spelling checker would detect a misspelled word and depending on the 

level error, fine tune the word to provide a set of suggestions. These suggestions are a set of words a 

user probably intended to type. Non-word errors are relatively easier to detect and eradicate. Real 

word errors are more intricate ones. Usually, such error affects the syntax and semantics of the whole 

sentence, which in some cases requires human-being involvement for detection [78]. The use of 

spelling correctors should be handled with care. 

2.3 Spelling Error Detection  

The first part consists of identifying the errors in the typed text. This part uses a language model 

which accounts for the words allowed in the language. Language models may vary from a simple list 

of permitted words to finite state graphs that accept words with valid spellings in the language. 

Error detection is the procedure of finding incorrectly spelled words in a text. A word that is 

considered incorrect is flagged by the spell checking application. Techniques to detect non-word 

spelling errors in a text can be divided into two categories: dictionary lookup and n-gram analysis. A 

non-word refers to a continuous string of characters and/or numbers that cannot be found in a given 

dictionary or that is not a valid orthographic word form. Dictionary lookup technique employs 

efficient dictionary lookup algorithms and/or pattern matching algorithms. N-Gram analysis makes 

use of frequency counts or probabilities of occurrence of N-Grams in text and in a dictionary or a 

corpus.  

For the real-word case, however, detection necessarily involves having some model of what we 

expect the text to be like, so that we can tell whether those expectations have been violated. Real 

word spelling errors includes those errors where the misspelled word fits into the language model but, 

occurs as a misspelling of some other correct word. In other words, the word does not fit into the 

context of the sentence.  
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2.3.1 Dictionary Lookup Technique 

The most popular mechanism of detecting errors in a text is simply to look up every word in a 

dictionary. Dictionary lookup is a straightforward task because it directly checks the presence of 

every input text in the dictionary. If that word present in the dictionary, then it is taken as a correct 

word. Otherwise, it puts into the list of error words. However, response time becomes a problem 

when dictionary size exceeds a few hundred words. In document processing and information retrieval 

the number of dictionary entries can range from 25000 to more than 250,000 words [10].  

The most significant dictionary lookup techniques are hashing, binary search trees and finite state 

automata. Hashing [33] is a technique used for searching an input string in a pre-compiled hash table 

via a key or a hash address associated with the word and retrieving the word stored at that particular 

address. In spell checking problem, if the word stored at the hash address is same as the input string 

there is a match. If the word stored in the hash table is null the input word is indicated as a 

misspelling. This technique eliminates the large number of comparisons required for lookups. The 

following the techniques were used for gaining fast access to a dictionary.  

Binary Search Trees are useful [33] for checking if a particular string, i.e. an input word exists within 

a large set of strings i.e. the dictionary. The main goal of binary search trees, particularly median split 

tree is to make access to high frequency words faster than to low frequency words. It is efficient 

compared to the lookup time of a linear search technique on a large data representation, although it is 

slower compared to the lookup time of hashing. 

Finite state automata also used as a basis for string matching or dictionary lookup algorithms that 

locate elements of a dictionary within an input text. One specific form of the FSA that has used for 

spell checking and correcting purposes is a tree data structure. Tries are also known as prefix trees 

[33]. Finite state approaches are used for spelling correction for agglutinating languages or languages 

with compound nouns. 

The most common technique for gaining fast access to a dictionary is the use of a HashMap data 

structure.to look up an input string one simply computes its hash address and retrieves the word 

stored at that address in the pre-constructed hash table. If the word stored at the hash address is 

different from the input string or is null, a misspelling is indicated. The main advantage is that the 
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random access nature of a hash code eliminates the large number of comparisons needed for 

sequential searches of the dictionary. Therefore, concerning these issues we have chosen HashMap 

structure for gaining access quickly from the dictionary lists.  

2.3.2 N-gram analysis 

N-gram analysis is used to detect incorrectly spelled words in a mass of text. Here instead of 

comparing the complete word in a text to a dictionary, only the n-grams are compared with a 

dictionary because comparing each single word with dictionary is a time consuming process. It uses 

n-dimensional matrix, where the actual n gram frequencies are toured is used for spell checking [51]. 

If a non-existent or rare n-gram is detected the word is flagged as an error or misspelled, otherwise 

not. An n-gram is a set of consecutive characters taken from a string with a length of n. If the value of 

n is set to one, then it is called unigram, if n is two, then it is a bigram, similarly if n is three then the 

term is trigram. Every string that is involved in the comparison process is split up into sets of adjacent 

n-grams. The major advantage of n-grams algorithms are that they require no knowledge of the 

language that it is used with and so it is often called language independent algorithm [51]. 

In general n-gram detection techniques work by examining each n-gram in an input string and 

looking it up in a precompiled table of n-gram statistics to ascertain either its existence or its 

frequency of words or strings that are found to contain nonexistent or highly infrequent n-grams are 

identified as either misspellings. N-gram techniques usually require either dictionary look up 

techniques or a large corpus of text in order to pre-compile an n-gram table. Dictionary lookup 

techniques work simply checking to see if an input string appears in the dictionary that is a list of 

acceptable words.  In this thesis bigrams were chosen and extracted from the input sentences at word 

level rather than character level during error detection. The nonexistent bigram words were detected 

as errors in the input sentences and needs a correction form the bigram list by considering the 

distance between each bigram errors with dictionary words. 

2.4 Non-word Error Correction  

This is the second spelling checker tasks consist of rectifying the spelling mistakes made by the user. 

Spelling error correction is the procedure of correcting an error once it has been detected. An error is 

corrected when the spell checking application or the user replaces an erroneous word by the word that 
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the user intended. Sometimes, the term error correction is used to refer to the processes of error 

detection and correction together. In this research, consistently adopt the distinction between error 

detection and correction. 

Spell correcting refers to finding the subset of dictionary or lexical entries that are similar to the 

misspelling in some way. Spell checking can be categorized by isolated word error correction and 

context dependent error correction. Isolated word error correction thus refers to spell correcting 

without taking into account any textual or linguistic information in which the misspelling occurs. 

Therefore, the corrections are based only on the misspelled word itself. A context dependent 

corrector would correct both real word errors and non-word errors involving textual or linguistic 

context. Real-Word errors are those spelling errors, which result in valid words of language that are 

not the actual intended words, for example writing “form” for “from”. Such errors can never be 

caught without using contextual information. Contextual information can be used for ranking the 

suggested corrections, especially when more than one suggestions otherwise seem equally likely for 

being the actual correction.  

Early work in the area of spell checking was more focused on isolated-word error correction, but with 

the passage of time, the number of such applications increased where auto-correction was a 

requirement, for example in applications like Text to Speech Synthesis systems, Machines 

Translation systems or other NLP related systems.  In such applications the spell checker should be 

capable of catching real word errors. Moreover it should also be capable of deciding one best 

correction, and this can be achieved only if the context information is also used for correction. 

Kukich [37] pointed out that 80% of spelling errors tend to be single-letter errors, such as insertions, 

deletions, substitutions and transpositions. Spelling error correction relies on some approximate string 

matching technique to find a set of correctly spelled words in the dictionary that satisfy a similarity 

relation. This involves the association of a misspelled word with one word or a set of correctly 

spelled words in the dictionary that satisfy a similarity relation [33]. 

According to [16] Error correction consists of two steps: the generation of candidate corrections and 

the ranking of candidate corrections. The candidate generation process usually makes use of a 

precompiled table of legal n-grams to locate one or more potential correction terms. The ranking 



 

21 
 

process usually invokes some lexical similarity measure between the misspelled string and the 

candidates or a probabilistic estimate of the likelihood of the correction to rank order the candidates. 

Error pattern analysis of each language helps in developing an efficient spell checker which includes 

analysis of various error types (insertion, deletion, substitution, transposition, run-on, and split word 

errors), positional analysis, word length effects, phonetic errors, and keyboard effects. Furthermore, 

there are many ways of writing the same word and all the ways could correct. So it may be necessary 

to collect the raw typed text as the data for analysis. Because of the raw texts does surly direct us to 

the typing and spelling mistake of that word. The main target of this thesis is to analyses the typing 

and spelling mistake since the study would be used to design a suggestion list for Amharic spell 

checker. 

2.4.1 Minimum Edit Distance 

Minimum edit distance is the most studied technique for spelling correction. The minimum number 

of editing operations (insertions, deletions, substitutions and transpositions) required to transform one 

string into another. This simplest method is based on the assumption that the person usually makes 

few errors if ones, therefore for each dictionary word the minimal number of the basic editing 

operations necessary to convert a dictionary word in to the non-word. The lower edit operation has 

higher the probability that the user has made such errors. Through the operation of adding, deleting 

and modifying, edit distance changes a word into the minimum operating frequency of another word. 

The dictionary word that is at the shortest distance from the misspelling is suggested as the most 

probable correct word. The words beyond a pre-specified threshold edit-distance are ignored. Wagner 

[62] introduced the notion of edit distance for spelling correction. Minimum edit distance has 

different algorithms like Levenshtein algorithm, Hamming, Longest Common Subsequence [54]. 

Levenshtein algorithm is a weighting approach to appoint a cost of 1 to every edit operations 

(Insertion, deletion and substitution). Levenshtein edit distance produces a similarity score for the 

query term against each lexicon word in turn. For instance, the Levenshtein edit distance between 

“dog” and “cat” is 3 (substituting d by c, o by a, g by t). Hamming algorithm also measure the 

distance between two strings of equal length. For instance, the hamming distance between “sing” and 

“song” is 1 (changing i to o). On the other hand, Longest Common Subsequence algorithm  is  a  
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popular  technique  to  find  out  the  difference  between  two  words.  The longest common 

subsequence of two strings is the mutual subsequence.  

2.4.2 Similarity Keys 

The essence of similarity key techniques is the mapping of every word in the key. The mapping is 

chosen so that similarly spelled words would either have similar or identical keys. When a key is 

computed for a misspelled word it would provide a pointer to all similarly spelled words in the 

dictionary and these dictionary entries would be returned as candidate correction. This is to say, all 

words in a dictionary having similar key values compared to the key of the current misspelled word, 

will be returned as possible correct words. Due to the fact that it is not necessary to compare the 

misspelled word with every dictionary entry, similarity techniques are fast. Similarity key 

mechanisms are based on transforming words into similarity keys that reflect the relations between 

the characters of the words such as positional similarity, material similarity and ordinal similarity 

[33] of words. 

A key is assigned to each dictionary word and only these keys are compared with the key computed 

for the non-word. The words for which the keys are most similar are listed as suggestions. Such an 

approach is speed effective only if the words with similar keys have to be processed with a good 

transformation algorithm. This method can handle keyboard errors. 

2.4.3 Rule-based Techniques 

Rule based techniques involve algorithms that attempt to represent knowledge of common spelling 

error patterns for transforming misspelled words into correct ones. The knowledge is presented as 

rules. These rules can contain general morphological information of words, lengths of words and 

more. The candidate suggestions are generated by applying all applicable rules to a misspelled word 

and retaining every valid word in the dictionary that results [33]. Ranking on the suggested words is 

based on a predefined estimate of the probability of occurrence of the error that the particular rule 

corrected.it is completely independent of any grammar or parsing formulation. It can be a mere 

lexical lookup routine. 

These techniques have a set of rules that collect common spelling and typographic errors and 

applying these rules to the misspelled word. Each correct word generated by this process is taken as a 
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correction suggestion. The rules also have probabilities, making it possible to rank the suggestions by 

calculating the probabilities for the applied rules. Edit distance can be viewed as a special case of a 

rule-based method with limitation on the possible rules [51]. 

2.4.4 N-gram Based Techniques 

N-gram based technique can be used in two ways, either together with a dictionary or without having 

a dictionary. N-grams used without a dictionary are employed to find in which position in the 

misspelled word the error occurs. The performance of this method is limited. Its main virtue is that it 

is simple and does not require any dictionary. Together with a dictionary, n-grams are used to define 

the distance between words, but the words are always checked against the dictionary. 

Therefore, in this work n-grams were integrated with dictionary to increase the performance of 

correcting the bigram errors in the input sentences. Any word can be checked for errors for errors by 

simply looking its corresponding entries in the bigram list to make sure that all are exist.  

2.4.5 Probabilistic Techniques 

N-gram based techniques led naturally to the probabilistic technique in both text recognition and 

spelling correction paradigms. This technique is based on some statistical features of the language. 

Two common methods are confusion probabilities and transition probabilities. Transition 

probabilities are similar to n-grams. This give the probability that a given letter or sequence of letters 

is followed by another given letter. Transition probabilities are not very useful when we have access 

to a dictionary or index. Given a sentence which has to be checked, the system decomposes each 

string in the sentence into letter n-grams and retrieves word candidates from the lexicon by 

comparing string n-grams with lexicon entry n-grams. The retrieved candidates are ranked by the 

conditional probability of matches with the string, given character confusion probabilities. And, a 

word-bigram model and a certain algorithm are used to determine the best scoring word sequence for 

the sentence [54]. 

2.4.6 Neural Networks 

Neural networks are also an interesting and promising technique. The current methods are based on 

back propagation networks, it uses one output node for each word in the dictionary and an input node 
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for every possible n-gram in every position of the word, and where n is one or two. Only one of the 

outputs should be active, indicating which dictionary words the network suggests as a correction. 

This method works for small dictionaries, but it does not scale well. In the learning phase the time 

requirements are too big on traditional hardware.  

According to [33] neural networks are potential candidates for spelling correction due to their ability 

do associative recall based on incomplete or noisy input. Neural networks have that ability to adapt to 

the specific errors patterns of a certain users domain they can be trained on actual spelling errors. For 

training a neural net Back Propagation Algorithm is the most widely used one. 

2.5 Context Based Error Correction 

Context-sensitive spelling error correction is the task of detecting and correcting spelling errors that 

result in valid words, i.e. real-word errors. For instance, in the sentence “you should constantly 

backup your computer flies”, the word “flies” is a real-word error mostly caused by a typographical 

mistake. Obviously, the writer didn‟t intend to mean that computer flies like planes, but he most 

probably meant “computer files”. This slight confusion produced a real-word error that is actually 

valid in the English dictionary, however invalid with respect to the sentence in which it has occurred. 

Context-sensitive spelling error correction tries to detect and correct such real-word errors by 

inspecting their grammatical and semantic contexts.  

Error correction based on grammatical context or syntactic context, attempts to apply grammatical 

rules to detect misspellings, for instance, asserting that the word “play” in the sentence “he play” is a 

grammatical error is true since in the English language, a third person verb in the present tense must 

always ends with a “s”. In contrast, error correction based on semantic context can correct the word 

“peace” into “piece” in the sentence “peace of cake”. Since the words “peace” and “piece” are valid 

nouns in the English language, they are hard to be flagged by traditional non-context-sensitive spell 

checkers. 

According to Kukich [40], the problem of spell checking can be classified in three categories of 

increasing difficulty: non-word error detection, isolated-word error correction, and context-dependent 

word correction. The real-word errors detection and correction task, the focus of this paper, belongs 
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to the third category. Such errors are the most difficult to detect and correct, because they cannot be 

revealed just by a dictionary lookup, but can be discovered only taking context into account. 

Mays, Damerau and Mercer [46] proposed using the n-gram model to predict the actual correction of 

a real-word error. The idea centers on generating candidate spellings for every misspelled word by 

only applying simple edit operations such as insertion, deletion, and substitution, and then using n-

gram statistics derived from a corpus to compute P (wn|wn-1). Church and Gale [22] also suggested 

that the use of a noisy channel to predict the actual correction of a real-word error. The technique 

harnesses a 100 million word corpus and n-gram statistics to correct errors according to their 

contextual information.  

Apart from Mays et al. [46] and Church et al. [14], several other methods have been proposed to 

handle real word spelling error problem. They are mainly based on either semantic information or 

machine learning and statistical method. Different approaches to tackle the issue of real-word spell 

checking have been presented in the literature. Symbolic approaches [31] try to detect errors by 

parsing each sentence and checking for grammatical anomalies. More recently, some statistical 

methods have been tried, including the usage of the word n-gram models [46, 8], POS tagging [23, 

27, 76], Bayesian classifiers [22, 65], decision lists [65], Bayesian hybrid methods [28], a 

combination of POS and Bayesian methods [27], and Latent Semantic Analysis [35]. 

The main problem with word n-grams are data sparseness, even with a fairly large amount of training 

data. In fact, a recent study [27] reported better performances using word bigrams rather than word 

trigrams, most likely because of the data sparseness problem. POS based methods suffer less of 

sparseness problem, but such approaches are unable to detect misspelled words that are of the same 

part of speech. Bayesian methods, on the other hand, are better able to detect this case, but have 

worse general performance. These last two methods give better results when combined together. 

Additionally, different researchers proposed statistical method based on a language model that is a 

combination of the word-trigrams model and the POS-trigrams model which is a mixed trigram 

model. The main linguistic motivation behind this model is to represent fine-grained lexical 

information at a local level, and summarize the context with syntactic categories. The main advantage 

of this model is a great reduction of the data sparsity problem. A slightly different application area in 

which statistical contextual spell checking have been also studied is Optical Character Recognition 
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(OCR). For this application, Markov Model based approaches using letter n-grams have been shown 

to be quite successful [59]. 

On the other hand, Golding and Schabes [27] introduced a hybrid approach called 'Tribayes' 

combining Trigram and Bayes' method. Trigram method uses part-of-speech trigrams to encode the 

context, whereas Bayes' is a feature-based method. They use two types of features: context word and 

collocations. Their method worked better than MS-Word on a predefined confusion set. Another 

approach was proposed by Demetriou, Atwell and Souter [19], based on semantic knowledge and 

large vocabulary to correct spelling errors. A semantic model was built based on semantic association 

between words in a text to largely decrease the semantic ambiguities in natural languages. 

Later Golding with Roth [26] proposed a Winnow-based method for real word detection and 

correction. They modified the previous method [65] by applying a winnow multiplicative algorithm 

combining variants of winnow and weighted majority voting and achieve better accuracy. However, 

they used a small data set in their experiment. Liu and Curran [42] also employed n-gram statistics to 

correct real-word errors using a big corpus of text collected from crawling the web. As a result, huge 

improvements were achieved due to the large volume and generality of web corpuses. 

Hodge and Austin [77] proposed a supervised learning spell checking methodology based on a 

Hamming distance algorithm and on an n-gram model for detecting isolated word errors. The 

generated candidate spellings are ranked based on their Hamming distance and n-gram statistics. In 

due course, candidates having the highest score are selected as correct for the detected real-word 

errors. 

Carlson and Fette [12] employed the same previous technique, but instead a memory-based learner 

was used to correct cross domain errors. The system was trained using n-gram data tokens extracted 

from the web. The experiments yielded high precision real-word and non-word error correction. 

All real word error correction techniques either require matured knowledge of the syntax of the 

language or extensive balanced corpus of the language. The languages, for which neither of the two is 

available, cannot reach the goal of real word error correction. 
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2.6 Candidate Corrections   

Once a string has been detected as an error, an error correction technique aims at finding candidate 

corrections for the erroneous word. Several algorithms for finding candidate corrections have been 

explored. The most popular method by far is computing the minimum edit distance between the 

detected string and a lexicon entry. The minimum edit distance has been defined as the minimum 

number of editing operations (i.e. insertions, deletions and substitutions) that is required for 

transforming one string into another. The first minimum edit distance spelling correction algorithm 

based on these three types of character transformation was implemented by Damerau [19]. 

Levenshtein [41] developed a similar algorithm for correcting deletions, insertions and transpositions. 

Other researchers developed variants of the algorithms that were developed by Damerau and 

Levenshtein. Wagner and Fischer [62] generalized it to cover also multi-error misspellings and 

Lowrance and Wagner [43] extended the algorithm to account for some additional transformations, 

such as the exchange of nonadjacent characters. Some minimum edit distance algorithms that have 

been explored do not only use orthographic distance scores, but also phonetic similarities.  

Veronis [61] devised an algorithm that calculates weights for the orthographic edit distance based on 

phonetic similarity. These weights are important to be able to find phonetic misspellings, because 

often, phonetic misspellings are a large number of editing operations removed from the intended 

word. If only orthographic information is taken into account, the intended word will most probably 

not be among the candidate corrections. Minimum edit distance techniques have been applied to 

virtually all spelling correction tasks. An advantage of using a minimum edit distance measure is the 

fact that ranking can be performed easily.  

Dictionary and context dependent spelling checker have a better performance and accuracy to detect 

and correct spelling errors in proper manner. For this research dictionary and context based spelling 

checker were integrated to suggest candidate alternatives using the Levenshtein minimum edit 

distance and ngram probabilities for non-word and real word errors respectively. 
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                                                  CHAPTER THREE 

                                       AMHARIC WRITING SYSTEM 

3. Introduction 

This chapter gives a brief description of the Amharic writing system by focusing mainly on the 

electronic representation of Amharic characters, punctuation and numbers. Amharic uses its own 

alphabets, numbers, punctuation marks, etc., for its writing system.    

Amharic was the national language of Ethiopia until 1983 E.C. Currently it is the official language of 

the Federal Government of Ethiopia. Moreover, it is the working language of different governmental 

and non-governmental organizations throughout the country. Mass Media like radio, television 

broadcasts and the press are also using it for disseminating information to the public.  

As a result of its wide application, large Amharic documents are compiled both in hard copy and 

electronic forms. Like any documents of another language, the contents or meanings of these 

documents are represented using important features of the language.  For the purpose of this research 

since Amharic spells are considered, it is important to investigate these potential features are the 

capability of representing the contents of the texts, which in turn demands one to understand the 

characteristics of the language in particular. Hence, under this section, important features of the 

Amharic spells that are believed to be pertinent to the current research will be reviewed. 

Since  the Amharic  language  is phonetic,  it  is really  important  to deal with  the spelling and 

phonology of  the  language. This  provides  us  a  better  insight  to  explore  ideas  that  are  directly  

related  to  this.  Despite  the  large  number  of  speakers,  the  language  has  very  few  

computational  linguistic  resources. This has a direct impact specially to implement research works 

that are done so far and to be done also in the future. Spell checker for Amharic language is one of 

those areas that are not well explored.  Even  if  this  thesis  targets  on  Amharic spelling checker and 

corrector for Amharic  words,  it would  discuss  related  issues  which  are  important  for  the  

research  work.  We looked at the Amharic alphabets and the spelling of the language in the coming 

sections. 
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3.1 History of Amharic language  

Amharic  is  a  Semitic  language  and  the  official  language  of  the  Federal  Government  of  

Ethiopia. It  is  the  second  most  spoken  Semitic  language  in  the  world,  next  to  Arabic  and  is  

estimated  to  be spoken  by  over  20  million  people  as  their  first  or  second  language  [71]. The 

current Amharic writing system was adopted from the Ge'ez writing system, which was the classical 

language of the Axum Empire of Northern Ethiopia [6]. It existed between the 1st Century AD and 

the 6th Century AD that the ancient Sabaean script is in turn attributed as the source of the Ge'ez 

script. As the Sabean script descended into Ge‟ez and later into Amharic, the numbers of symbols in 

its original Sabean script and their shapes have been changed [67].  

When the power base of Ethiopia shifted from Axum to Lalibela between the 10th and 12th Century 

AD, the use of the Amharic language spread its influence, hence became the national language of the 

country until 1983 E.C.  A wide variety of Amharic literatures including books, religious writings, 

fiction, poetry, plays, and magazines are available both in printed and machine readable format. 

Ethiopia is a linguistically diverse country where more than 80 languages are used in day-to-day 

communication. Amharic is the working language of the Federal Government of Ethiopia and is 

spoken and written as a first or second language in many parts of the country [6]. Amharic, like other 

languages that use the Geez script (Gurage, Harari, Tigre, and Tigrinya), use characters derived 

mainly from Geez. It is the second most spoken Semitic language in the World (after Arabic) and 

today probably one of the five largest on the African continent (albeit difficult to determine, given the 

dramatic population size changes in many African countries in recent years) [63].  

Amharic  uses  a  unique  script,  which  has  originated  from  ancient  language,  the  Ge‟ez  

alphabet,  which  is  the  liturgical  language  of  the Ethiopian Orthodox Church. Manuscripts in 

Amharic are known from the 14th century and the language has been used as a general medium for 

literature, journalism, education, and so on [25]. Amharic language script has 33 core characters and 

of each 32 of them are consonants having seven orders to show the seven vowels. Out of  the seven 

derivatives six of  them are CV  (Consonant vowel) combinations  while  the  sixth  is  the  consonant  

itself  [7].  Other symbols representing labialization, numerals, and punctuation marks are also 

available.    
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3.2 Amharic Writing System 

Today, Ge‟ez is no longer the mother tongue of any living person in Ethiopia. Ge‟ez is classified as a 

sacred language that is still used in the culture of highland Ethiopia as the traditional language of 

literature and religion. Today, people speak Amharic in their daily life. Amharic is born from original 

Ge‟ez script and has further evolved to include more characters in the character set [68]. 

The present Amharic writing system was adopted from the Ge‟ez writing system.  Ge‟ez, which 

belongs to the class of Semitic languages, was the language of literature in Ethiopia in earlier times 

[6]. According to Bender et al. [6], three writing systems are in use in Ethiopia, the Ethiopic (Ge‟ez) 

syllabary, the Roman alphabet, and Arabic script. The widely used Ethiopic syllabary, which is 

derived from the writing system of ancient South Arabian alphabet, is used for Ge‟ez, Amharic, 

Tigrigna and other semantic languages. The writing system has a similarity with some Semitic 

languages like Arabic in having vowel marks added to basically consonant letters.  

Moreover, some new symbols have been added to Amharic. Amharic did not discriminate in adopting 

the Ge‟ez fidel; it took all of the symbols [1] and added some of its own. Although Sabaean is not 

used currently, Ge‟ez is still used especially as a language of liturgy (mass) in the Ethiopian 

Orthodox and Catholic churches and in church literature. When Ge‟ez became the spoken and written 

language, it took over only twenty-four of the twenty-nine symbols from Sabaean script [25]. In 

Ge‟ez, two new symbols were created to represent sounds of Greek and Latin loan words, ጰ/p‟/ and ፏ 

/p/ (e.g. ጳጰስ and ፕሉስ Baye) [1].  

Ge‟ez in turn took its script from the South Arabian mainly attested in inscriptions in the Sabaean 

dialect [6]. The original Sabaean alphabet is said to have had 29 symbols. When Ge‟ez became the 

spoken and written language in common use in northern Ethiopia, it took only 24 of the 29 Sabaean 

symbols, modify most of them and add two new symbols to represent sounds of Greek and Latin loan 

words not found in Ge‟ez, these symbols are ጸ and ፏ. The style of the writing was also modified to 

left to right. By the time Ge‟ez ceased to be a living spoken and written language and replaced by 

Amharic and other languages, further changes took place. Amharic did not discriminate in adopting 

the Ge‟ez fidel; it took all of the symbols and added some new ones that represent sounds not found 

in Ge‟ez. The added alphabetic characters are ቸ, ጨ, ጀ, ኔ, ቨ, ሸ, ኰ, and ዞ.   
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One of the results in the development from Ge‟ez is redundancy in the number of symbols with the 

same pronunciation.  For example, the three different symbols ሀ, ሏ and ኀ (all with the same 

pronunciation; h) are used interchangeably in text written in Amharic although they gave different 

meanings to words in the Ge‟ez language.  Likewise, ሰ and ሠ, and ኜ and ዏ have the same 

pronuounstion which have different symbols. This redundancy has been recognized in literature as a 

problem of the language [25]. 

Currently, the language‟s writing system contains 33 base characters each of which occur in a basic 

form and six other forms known as orders. The seven orders represent syllable combinations 

consisting of a consonant following vowel. This is why the Amharic writing system is often called 

syllabic rather than alphabetic, even if there is some opposition. The 33 basic characters and their 

orders give 231 distinct symbols. In addition, there are forty others that contain a special feature 

usually representing labialization e.g. ቿ, ቉. In Amharic there is no Capital-Lower case distinction. 

There are also punctuation marks and numeration system. 

Unlike other Semitic scripts such as Arabic and Hebrew, Amharic is written from left to right, there 

are also no systematic variations in the form of the symbol according to its position in the word [58]. 

3.3 Amharic Alphabets 

The transformation of the base form into the non-basic forms indicates that the Amharic writing 

system does not use independent symbols for vowels in representing a syllable. As Bender [6] 

explains, this is a characterization known as syllabic. However, currently there is a debate whether 

the language is actually syllabic or alphabetic [1, 34]. Alphabetic writing systems are systems that 

present the consonants and the vowels separately such as the English and Greek language. 

 On the other hand, syllabic writing systems are systems that combine both the consonant and the 

vowel together (e.g. Amharic writing system). However, [1] argues that Amharic is alphabetic on the 

grounds that each symbol can be broken down into consonant and vowel phonemes which can be 

independently represented by separate symbols. In fact, he describes the Amharic script in terms of 

27 consonant and 7 vowel phonemes.   

The current Amharic writing system consists of a core of 33 base characters (ፉይሌ, FIDEL) each of 

which occurs in a basic form and in six other forms known as orders [25]. The non-basic forms are 
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derived from the basic forms by more-or-less regular modifications. Thus there are 33 core characters 

which give 231 distinct characters. Therefore, the FIDEL has 275 characters (letters) to be used in the 

writing system. The seven orders represent syllable combinations consisting of consonant and 

following vowel. This characteristic according to [6] makes the Amharic writing system a syllabic 

writing system. The seven orders (the first basic order and the other six orders) of the Ethiopic script 

represent the different sounds of a consonant-vowel combination (a characterization known as 

syllabic). In addition to the 231 basic characters, there are also four labio-vellars (like ቇ ኇ ካ ጏ) each 

having five orders and twenty additional labialized consonants. (Refer Appendix 1 for a complete list 

of Amharic character) 

Amharic has borrowed most of its characters from Geez and thus the Amharic writing uses characters 

created by a CV fusion. Out of the 33 basic forms, two of them represent vowels in isolation (ኜ and 

ዏ) [73].  In this thesis we  consider  the  Alfa-A/ኜ/  and  its  variation  while  considering  the  

Amharic  vowels.  Seven vowels are used in Amharic each of which comes in seven different forms 

(orders) reflecting the seven vowels sounds (ኜ ኝ ኞ ኟ አ ኡ ኢ).  A character or a symbol is used to 

represent a phoneme, which is a combination of a vowel and a consonant.  Six of them have this CV 

combination while the seventh is the consonant itself [72]. 

                                  C/e/    C/u/   C/ii/    C/a/    C/ie/   C   C/o/  

From  the  above  representation,  we  can  see  that  the  sixth  order  in  the  orthographic  symbols, 

which  do  not  have  any  vowel  unit  associated  to  it  in  the  written  form  (CV  transcription  of  

the orthographic  form),  may  associate  the  vowel  /ix/  in  its  spoken  form,  which  has  important  

role during syllabification of the word in the language which allows splitting impermissible 

consonant clusters. Even if it may have different representation in some other literatures [74], in this 

work we preferably follow the transliteration presented in [31].   

Order 1
st
 2

nd 
3

rd 
4

th 
5

th 
6

th 
7

th 

V 

C 

E U Ii A ie ix o 

/m/ መ ሙ ሚ ማ ሜ ም ሞ 

/b/ በ ቡ ቢ ባ ቤ ብ ቦ 

                     Table 3.1:  Amharic constants /በ/and/መ/ with their associated vowels [70] 
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The  IPA  (International  Phonetic  Association-  responsible  for  standardizing  representation  of  

the sounds of spoken language) defines a vowel as a sound, which occurs at a syllable center. A chart 

depicting  the  Amharic  vowels  in  the  IPA  representation  is  shown  Figure  3.1  [72].  The  IPA  

maps the  vowels  according  to  the  position  of  the  tongue.  The vertical axis of the chart is 

mapped by vowel height.  Vowels  pronounced  with  the  tongue  lowered  are  at  the  bottom,  and  

vowels pronounced with the tongue raised are at the top. For example, / ኜ /-[a] (as the [a] in „Beal"/ 

በኜሌ /)is  at  the  bottom  because  the  tongue  is  lowered  in  this  position.  However,  [ix]  (said  as  

the  vowel in  "Enat"/ ኡ኏ት /)  is  at  the  top  because  the  sound  is  said  with  the  tongue  raised  to  

the  roof  of  the mouth. 

In  a  similar  fashion,  the  horizontal  axis  of  the  chart  is  determined  by  vowel  backness.    the 

tongue moved towards the front of the  mouth (such as the [ie] vowel in  "Bet")  are to the left  in  the  

chart,  while  those  in  which  it  is  moved  to  the  back  (such  as    the  vowel  [o]  in "Sost" / ሶስት 

/)  are  placed  to  the  right  in  the  chart. As mentioned  earlier,  in  places  where  vowels are  

paired,  the  right  represents  a  rounded  vowel  (in  which  the  lips  are  rounded)  while  the  left  is 

its unrounded counterpart. The central vowels are also considered to be unrounded.     

 

Figure 3.1: IPA maps of the Amharic vowels [72] 
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3.4 Amharic Number 

Numbers in Amharic consist of single characters for one to ten, for multiples of ten (twenty to 

ninety), hundred, and thousand. According to [6] these characters are derived from Greek letters, and 

some were modified to look like Amharic character. Each of the symbols has a horizontal stroke 

above and below. There is no symbol for zero in the Amharic script. Also it is widely applied in the 

environment of Ethiopian Orthodox Church. Thus, arithmetical computations using the symbols are 

very difficult, if ever done. As a result, people generally use the Hindu-Arabic numerals.  Ethiopic 

numbers are used mostly in writing dates and page numbers in text.  

፩ ፪ ፫ ፬ ፭ ፮ ፯ ፰ ፱ ፲ 

1 2 3 4 5 6 7 8 9 10 

፳ ፴ ፵ ፶ ፷ ፸ ፹ ፺ ፻ ፼ 

20 30 40 50 60 70 80 90 100 1000 

                               Table 3.2:  Amharic number system 

3.5 Amharic Punctuation Marks 

Analysis of Amharic texts reveals that different Amharic punctuation marks are used for different 

purposes. The Amharic writing system uses some indigenous and foreign punctuation marks (signs) 

in addition to the Amharic characters [20]. There are a number of symbols for punctuation in 

Amharic. According to Beletu [4] (as quoted in Zelalem [66]) there are about 17 punctuation marks. 

Only some of them are commonly used and have representations in Amharic software. The following 

are the most commonly used both in handwritten and computer written text.  

The word-separator (hulet Neteb), two square dots arranged like colon (:), and sentence-separator 

(arat netb), four square dots arranged in a square pattern (: :), are the basic punctuation marks in 

Amharic writing system that are used consistently. Lists in Amharic text are separated by an 

equivalent of comma, „netela serez (፣) followed by ASCII space and „derib serez‟ (፤), which is the 

equivalent of semi-colon. The use of „...‟ for question mark is not used rather a „?‟ which is borrowed 

from English is used. Table 3.1 lists the most commonly used Amharic punctuation with their 

equivalent in English which is adopted from [63]. Others include borrowed symbols like?,!, ", ", ', / 

and  \.    
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As far as the application of these punctuation marks is concerned, the word delimiter (two dots) is 

mostly used in handwritten text but it is becoming a common practice to exclude it from computer 

written text. Hulet Neteb (:) is no longer used and space is being used as word separator. In case of 

sentence delimiter, the four dots continue to be used. The remaining punctuation marks are used 

where appropriate.  

Amharic English 

፡ White space 

፡፡ . 

፤ ; 

፣ , 

… ? 

                     Table 3.3: Commonly used Amharic punctuation marks corresponding English marks 

However, Amharic words in a text are separated by above punctuation marks, there punctuation 

symbols that are important to connect and separate words in the sentences. Consequently, In Amharic 

texts the punctuation mark „-„ the equivalent of hyphen in  English, is used to form compound words. 

However, in the test collection this punctuation mark was not used consistently. The same compound 

words were found written both as separate words without the hyphen mark and as compound words 

with hyphen (example, ጸረ ሙስ኏ and ጸረ-ሙስ኏).  To keep consistency throughout the test collection, a 

decision was made to replace the one character space with hyphen mark and split compound words 

into their constituent terms.  

3.6 Processing Amharic Texts 

This research uses the unsupervised approach to detect and correct spelling errors foe Amharic texts. 

In order to check and correct spelling mistakes identification of word features is neccecery to 

represent the texts.  As there can be millions of words in text datasets storage and processing time 

costs require document processing for efficient and reliable spell checking and correction. Text 

processing is therefore an important task to get features that adequately represent a document without 

being redundant and irrelevant. In this research the nature and characteristics of the Amharic writing 

system are considered during the processing of the Amharic texts of the source dataset. 
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3.7 Characteristics of Amharic Spelling 

As it was discussed in many literatures, the Amharic writing system has many features, which may 

cause some problem from the perspective of computation [1, 6]. The characteristics of the Amharic 

writing system considered in this section are limited to those that are common to the dataset. 

Character Redundancy: Amharic took the whole Geez alphabet (all seven orders of the 26 symbols 

of Geez) without considering whether all the 26 characters have meaning in the Amharic writing 

system. It then added some more symbols for some other sounds that it has and that could not be 

represented by the symbols of the Geez alphabet. This unsystematic borrowing from Geez has 

resulted in redundant characters in the Amharic FIDEL.  

The different symbols with the same pronunciation also pose a problem in making words appear 

different (not in meaning, but in spelling.) Although in the Ge‟ez language, these different symbols 

give each word different meanings, in the Amharic language they have been used [1, 6]. As a result, 

in Amharic writing system, there has been found different symbols with the same pronunciation and 

meaning (i.e., in Geez those symbols are different in meaning as well as in spelling, which is not the 

case for Amharic) and they have been used interchangeably [1, 6]. As [1] noted, however, for the 

case of Amharic there is no defined rule that differentiates their proper usage.   

In Amharic, these consonants with the same sound falls into two categories: (1) the first and the 

fourth order alphabets of the same base form having the same sound and (2) different alphabets with 

the same sound.   

For the first case, for instance, it is not clear whether one should write "ሀያማኒት" (`religion) and 

"ሃያማኒት” since both "ሀ" and "ሃ" have the same sounds. Those alphabets that exhibit such 

characteristics are listed in table 3.4. 

First order Fourth order 

ሀ ሃ 
ሏ ሒ 

ኀ ኃ 

ኜ ኟ 

ዏ ዒ 

       Table 3.4፡ Amharic different alphabets with same sound at first and forth order 
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Similarly, table 3.5 shows lists of different alphabets that have the same meaning and sound. Here, 

not only the base forms listed have the same sound, but also all the corresponding orders (6 orders) of 

them have the same sound too. For example, writing "ሰሊም" and “ሠሊም" to mean "Peace" does not 

make a difference in meaning even though "ሰ" and "ሠ” are used interchangeably. The same holds 

true for "ኜጥኑት" (Bone) and "ዏጥኑት” although "ኜ" and "ዏ" are two different alphabets with the same 

sound.  

Alphabet Other alphabet with same sound 

ሀ ሏ , ኀ 

ሰ ሠ 

ኜ ዏ 

ጸ ፀ 

                                        Table 3.5:  Different alphabets having the same sound 

Spelling variations of a word would unnecessarily increase the number of words representing a 

document which could reduce the efficiency and accuracy of the spelling checker. Moreover, a 

complex case comes when the same word appears to be in many forms (more than two forms) by 

using interchangeably these alphabets having the same sound. We can take "ፀሀያ", "ጸሀያ", "ጸኀያ", 

"ፀሏያ", "and "ፀኀያ" as a good example, which refers to the name of a sun (tsehay). As all the above 

discussion indicates, there arise some confusion and inconsistencies in Amharic alphabet and as a 

result these redundant consonants add their contribution to make the vocabulary to be large. Even if 

the size of dictionary and corpus size increases the spell checker of Amharic should consider to all 

this variation of word. In this research the character redundancy is included in the text that indicates 

the canonical and common Amharic forms of a language. In the case of canonical Amharic the word 

writing systems for redundancy characters were taken from Geez language. For example, for 

example, the word “Alem” which means world is written as ዒሇም taken from Geez vocabulary and 

which is a canonical Amharic. But ኜሇም is a common Amharic in which most Amharic writer was 

used to write this word. Furthermore, the above word has a possibility to be written as in different 

forma like ዏሇም and ኟሇም which is an improbable Amharic.  

According to Bethlehem [9]Uniform substitutions may be made for similar sound letters in worlds to 

group words by shared strings since such substitutions do not make any changes in meaning in the 

Amharic language, unlike the Ge‟ez in which they have significance for the meaning (e.g.  ሰረቀ and 
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ሠረቀ) ` meaning “he stole” and “it penetrated, or rose (as in the rise of the sun)” respectively in Ge‟ez, 

and both meanings either of the two in Amharic).   

Compound Words: In the Amharic writing system, inconsistency is often observed regarding the 

representation of compound words. The writing system there is no agreed upon standard in spelling 

compound words. There are different ways of writing compound words without affecting their 

meaning [5]. That means, at one time the compound words can be written as two separate words and 

at another time as single words (either by fusing the two words or by inserting a hyphen between 

them). For instance, it makes no difference in meaning at all while writing the compound word  "ወጥ 

ቤት" as one word "ወጥቤት" which is to mean that "Kitchen”. Additional examples of such Nouns are 

mentioned in table 3.6. 

Compound word as 

Single word 

Compound words used as 

Separate words 
Literal English meaning 

ብረትዲስት          ብረት ዲስት Metal cooking pot 

ኜዯስኜበባ           ኜዯስ ኜበባ          Addis Abeba 

ቤተመቅይስ           ቤተ መቅይስ          Temple 

 ትምህርትቤት ትምህርት ቤት          School 

        ማዔዲቤት           ማዔዲ ቤት          Dining room 

                               Table 3.6: Writing compound words in Amharic texts 

Occasionally, the constituent terms may have completely different meaning from the compound word 

formed from them. For example, the word 'hode-sefee‟ (ሆይ-ሰፉ) which means „tolerant‟ has a 

different meaning from the constituent terms  „hode‟ which means „stomach‟ and „sefee‟ which  

means „wide‟. 

The inconsistent usage of compound words could result in redundant word features by creating more 

words when a compound word (example ኜዯስ-ኜበባ) is treated as two separate words ኜዯስ and ኜበባ.  It 

may also result in a semantic loss by confusing a document about the city, Addis Ababa (ኜዯስ-ኜበባ) 

with the one talking about the floral industry. 

Variations of Pronunciation: usage of foreign language words in Amharic (transliteration) is also 

found to be another source of word spelling variations. The Transliteration of foreign words into 

Amharic writing system is one of the main causes of this irregular spelling of words. Amharic 
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language lacks some basic English sounds. When foreign terms are transliterated in Amharic, 

different spellings may be used as varied as the number of possible pronunciations [5]. As [6] stated, 

about six vowels and three consonant sounds common to English are absent in Amharic. Due to this a 

native Amharic speaker may fail to correctly pronounce some English words. The situation is similar 

to other foreign languages. Hence, each writer has a tendency to write a foreign word the way he/she 

pronounces it. The cause of the difference in the Amharic spellings of these foreign language words 

seems to be the difference in the pronunciations of these words. The following table shows examples 

of spelling variation in the writing of foreign words in Amharic.  

Foreign word Equivalent word in Amharic 

Meteorology 
ሚትሪዬልጂ ,ሚትዎሮልጂ ,ሚትዬሮልጂ ,ሚቲዎሮልጂ, ሚቲዎሮልጅ ,ሚቲዎሮሉጂ , 

ሜትዎሮልጂ , ሜትሮዎልጂ 

Electricity አላኩትሪኩ,  አላትሪኩ 

Computer ኪምፑውተር,  ኪምቲዧተር,  ኪምፑተር 

Airplane ኜውሮፔሊኑ,  ኜያሮፔሊኑ 

Director ደያሬኩተር,  ዯሬኩተር 

                     Table 3.7: Spelling variation of words translated from foreign words 

Different ways of writing (spelling) the same Amharic word are also exercised. Regional and dialect 

variations can also impact word formation in the basic level where the words are more likely to be 

written following their spoken form. Moreover, there are word spelling variations that could be 

attributed to variations in pronunciations at different parts of the country, like for example using the 

two words  ጠባያ  and  ፀባያ  to mean temperament or using the three words ጢኑዘዙ, ጢኑዛዙ and ጥኑዘዙ to 

mean beetle.   

This is a problem also exists when the language has some words having different forms of writing 

system. In Amharic disjoint labiovelars words the ጡዋት word “tuwate" (morning) may be spelled as 

"ጥዋት, ጠዋት, ጧት" which are different variants of the same word.  

In addition to the phonetic redundancy of characters, Amharic suffers slightly from visual 

redundancy in a few cases. Most prominently the vowel markers of; „ው‟ and „ዉ‟ , „ፔ‟ and „ኔ‟, „ፕ‟ 

and „ፒ‟, „የ‟ and „ዧ‟, „ጓ‟ and „ጐ‟ are similar enough that the former characters are often interchanged 

in words with the latter. This problem is exacerbated at small print sizes and with the lack of visual 
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clarity often found on computer screens. Additionally, the letter „ቁ‟ is often used in place of „ቍ‟ (e.g. 

“ቍጥር” vs “ቁጥር”) which may owe more to phonetic proximity and decay than to visual. Often times 

the writer may simply be choosing the form that is easiest to write by hand or type into a computer. 

Assimilation and Alternations of Character: There are a number of common cases where 

phonology clashes with Amharic orthography. For instance, „ም‟ may be exchanged for „ኑ‟ before „በ‟, 

as in “ኜኑበሳ” vs “ኜምበሳ”. Likewise „ም‟ may also replace „ኑ‟ before forms in „ፇ‟ (e.g. “ሊኑፊ” vs 

“ሊምፊ”). On the other hand „ሀ‟ may replace  „ኜ‟  at the beginning of the word like  „ሀገር‟ vs „ኜገር‟ 

Spoken Amharic has a great many alternations, whole and partial assimilations. Not all spoken 

occurrences will also manifest themselves in written form. This alteration can produce a spelling 

error during writing the words by confusing the writers and creates inconsistency due to alter and 

replace the character by other character.  

Orthography Elisions: Difference in word affixing has also been observed to cause word spelling 

variations. For example difference in suffixing would result in the two writings ኞትዬጵዩኜዊ and 

ኞትዬጵዩዊ to refer to Ethiopia while differences in prefixing would give the two writings በኜገር and ባገር 

to mean „for country‟. 

Amharic Abbreviation: In Amharic, it is also found that there is no consistency while spelling 

abbreviations. For instance, the phrase "ዒመተ ምህረት" can be abbreviated as "ዒም", "ዒ.ም" and “ዒ/ም". 

Similarly, the use of the hyphen is also not consistent. The same word "ዒመተ ምህረት" can also be 

written as "ዒመተ-ምህረት". Hence there should be a mechanism to handle these problems while 

representing Amharic documents. 

3.8 Amharic Spelling Errors 

Techniques for spelling error detection were designed on the basis of different spelling error trends 

these are also called error patterns. Spelling and typing errors are common in documentation made by 

human. The problem of detecting error in words and automatically correcting them is a great research 

challenge. The word error can be divided in two types i.e., non-word error and real-word error [40]. 

Errors may be of missing letters, extra letters or disordered letters.  

Real word error produced where the word in question is valid yet in appropriate in the context, and 

hence not giving the intended meaning. The word found in the desired language and hold by the 
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corpus but during sentence formation it does not fit to provide a complete meaningful ideas for the 

user either semantically, syntactically and structurally. It is kind of errors occurring by the cause of 

semantic, syntactic, typographic, improper spaces, cognitive and phonetics of the linguistic context 

which are the reasons to generate real word errors. Real word errors can change the complete 

meaning sentences and makes an ambiguity to recognize the input sentences.  

Typographical errors are occurring when the correct spelling of the word is known but the word is 

mistyped by mistake. These errors are mostly related to the keyboard adjacencies and therefore do 

not follow any linguistic criteria. The most common of these typographic errors is the substitution 

error substitution error is mainly caused by replacement of a letter by some other letter whose key on 

the keyboard is adjacent to the originally intended letter‟s key. There are large numbers of errors 

commonly encountered in human generated Amharic text and this error mostly belongs to one of the 

following error types based on Bhagat [10] spelling error classification. 

Insertion error occurs when one or more extra letters are inserted in the required word. For example: 

መሳት to መኌሳት.In the above examples, መኌሳት is also valid word but it is not required word. These types 

of errors can give rise to real word errors which means words are valid but not required for instance 

ቁጥር to ቁጥጥር. In addition to this, adding an extra letters to the intended word can produce non-real 

word errors such as, ይራሲ to ይራሲያ. This errors are not found in the word list in Amharic texts which 

is no required in the document.  

A deletion error occurs when one or more letter is removed from the required word. For example: 

ሥርዒት to ሥርት, መምህር to መምር, ሥርት and መምር are non-word errors that are not required. These types 

of errors can also give rise to real word errors. For example: ምስኩር to ምኩር 

Substitution error occurs when one or more letters are substituted by some another letter. For 

example: ኜገር to ሀገር, ኜኑበሳ to ኜምበሳ, ብልኜቸው to ብልዋቸው. In the above given examples, ኜ to ሀ, ኑ to ም, 

ኜ to ዋ are the various substitution pairs. In addition to tis this kind of errors can be produced by the 

characters that have same pronunciation but different writing system such as ሥጋ to ስጋ, ጸባያ to ፀባያ, 

ታኅሣሥ to ታህሳስ, ዒያኑ to ኜያኑ, ሔግ to ህግ.  

 Transposition error occurs when two adjacent letters are written in swapped way. For example: መሰሇ 

to መሇሰ, ኩምር to ምኩር, ትደር to ትርደ. In the above explained examples, ሰ to ሇ, ደ to ር, ብስ to ስብ are 
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transposed .Transposition errors also give rise to real word errors (the word which are valid but not 

required).  

Not only real word errors, non-word errors are produced by swapping the letters in the written texts 

which are no required in the texts. For instance, በመጠቅ to መጠበቅ, ማሚረዩ to ማረሚዩ in which ማሚረዩ 

and በመጠቅ invalid words that does not exist in the language that generates an error through swapping 

the letters in the words.  

The splitting or run-ons words, keyboard effect, copy, paste and space might induce word repetitions, 

omission, splitting and run-on error words the input text. Writing repeated words and giving space 

between words can produce errors that cannot require in the document texts. 

A run-on error detected relating to word boundary and occurs when two or more valid words are 

erroneously typed side by side without a space in the middle of the word. For example: መይበኗ ተማሪ to 

መይበኗተማሪ, ዔውኑ መሆኑ to ዔውኑመሆኑ. In the above explained examples, መይበኗ, ተማሪ, ዔውኑ, መሆኑ are 

four different words, and መይበኗተማሪ and ዔውኑመሆኑ are non-word errors that does not include in the 

language and it‟s considered as one word. In some cases these words can also give rise to real word 

errors. For example: in ኜሇ መመሇስ to ኜሇመመሇስ, the word ኜሇመመሇስ created which is a real word that 

does not require.  

Split word error is opposite of run-on error. These types of errors occur when there is some additional 

space is embedded between the parts of the word. It can be simply removed by deleting the additional 

space such as ወያኑ ሸት to ወያኑሸት. In some cases, split word errors can also give rise to real word 

errors in addition to real word errors. For instance, from ኜሇ መመሇስ to ኜሇመመሇስ real words ኜሇ and 

መመሇስ are two valid words and from ወያኑ ሸት to ወያኑሸት, the first is real word and the second one is 

non-word.  

Cognitive error also occurs when the correct spellings of the word are not known. In these types of 

errors, the pronunciation of misspelled word is the intended as correct word. Cognitive errors are 

orthographic errors occur when writer does not know or has forgotten the correct spelling of a word 

in the language. It is assumed that in the case of cognitive errors, the pronunciation of misspelled 

word is the same or similar to the pronunciation of intended correct word.  These errors are occurring 

when the correct spelling of the word is known but the word is mistyped by mistake due to same 

pronunciation which is a phonetic error.  
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Phonetic errors are that type of errors in which the writer substitutes a phonetically correct but 

orthographically incorrect sequence of characters for the required word. For example, the word ፀባያ 

can be written as ጠባያ. In the case of Amharic language there are alphabets that have same sound 

with different spelling which makes an error in the documents by changing and modifying the 

semantic and syntactic of the texts. Basically, real word errors are produced when the sequence of 

words in the input sentences are not convey the meaningful sentences. Since Amharic has various 

ways of writing the same word there is no mechanism to handle such kind of errors without 

developing and integrating a rule based approaches into the model. 

In our case the phonetic errors were detected and corrected by incorporating words in the corpus that 

have different writing systems with the same language. Because the user may be writing the same 

words in different ways and the corpus were prepared by considering those types of errors. For 

example, ሰዒት can be written ሠኜት, ሠዒት, ሰኜት, ሰዏት, and ሠዏት.  

Non-word error can generally produce in different ways that have been discussed in above, in which 

the intended words are not in exist in the text documents even in the Amharic language vocabulary 

and users cannot recognize and understand the words to describe their documents and texts in 

different applications. In this research the words that does not included in the dictionary is considered 

as non-word errors and this kind of errors are corrected without considering the linguistic context like 

semantic and grammatical aspects of the given text. Therefore, if the required words not found, the 

spell checker model can detect words as an error and can provide suggestion alternatives by 

comparing the Amharic dictionary lists with distance similarity between words. 

To sum up, Typographic errors are the typos, when people know the correct spelling, but makes a 

motor coordination slip when typing. The cognitive errors are those caused by a lack of knowledge of 

the person. Finally, phonetic errors are a special case of cognitive errors that are words that sound 

correctly but are orthographically incorrect. 

4.9 Amharic Fonts 

As reported in [66], Amharic alphabets do not have a representation in the ASCII (American 

Standard Code for Information Interchange) code table. As a result, font developers have tried to 

develop their own keyboard driver programs that make use of the existing English keyboard (ASCII 

codes) for writing Amharic. The English QWERTY keyboard were used in various combinations to 
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produce Amharic characters. ECoSA (Ethiopian Computer Standards Association) is a professional 

association established in 1998 to solve problems that result from the disparity in the available 

different Amharic software. In order to solve the problem, ECoSA is currently working on 

standardization issues on Ethiopic including character definition, keyboard layout, character encoding 

and transliteration. This standardization projects are sponsored by the Ethiopian Quality and 

Standards Authority. Each one of the projects is handled by a sub-committee consisting of members 

from various professions (linguists, software developers, etc) from various governmental and non-

governmental organizations (EcoSA Newsletter, 2000).  

 Different Amharic fonts have been produced over the years (e.g. Alpas, Brana I, Brana II, Power 

Ge‟ez, Geez, Agafari, Alxethiopian, Visual Ge‟ez …) but they all use the existing symbol sets 

differently so that an Amharic text written in Ge‟ez font cannot be read in another one of the fonts. 

The need for standardization has been felt and as a result an association has been established in order 

to undertake the task. The Amharic text used for this research is written in the Nyala font. The UTF-8 

Unicode standard was used for Amharic texts and saved in Notepad by file extension text (.txt) 

format.  In this thesis we were used a Sabaean script directly which is not necessary to convert 

Amharic script to Latin script.         
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.                                                   CHAPTER FOUR 

                                  MODEL OF AMHARIC SPELL CHECKER 

4.  Introduction 

The  decreasing  cost,  increasing  capacity, pervasive  feature and  the  increasing availability of 

applications are  the major factors  that  initiated us  to  think a Amharic spell checker and corrector 

system is a requirement in Ethiopia. The usage of  increasing  applications  and  usage  of  handheld 

computers  and mobile devices  of  demands  a spell checker was one of  the major  input methods. 

Taking this initiative, we started our work by investigating the existing systems developed for other 

characters such as Latin, Chinese and Arabic. 

In  the previous two chapters we describe  some  of  the  related works on spell error detecting and 

correcting   mechanisms for different languages and  basic  features  of  the Amharic  language  to  be  

taken  into consideration before designing the model of the Amharic spell checker and corrector are 

discussed. This chapter gives the detail description of the model designed for this thesis work. As 

discussed in the previous chapter, unsupervised machine learning was selected for this study and the 

procedures to develop and design the model was explained in this section. The brief description of 

techniques to detect spelling mistakes for context sensitive spelling error detection and corrections 

are discussed with respect to dictionary lookup techniques and n-gram statistical analysis. Dictionary 

lookup and n-gram statistical probabilities are used to detect and correct the non-real word and real 

word spelling errors by considering its dictionary and probabilities of the word in the corpus. 

Furthermore, the method to detect and correct the spelling errors and the algorithm that have been 

used to give appropriate word suggestion for spelling errors are described in a brief manner. The 

detail description of the Amharic spell detection and correction model is described as follows. 

4.1 Spell Checking Model 

The present disclosure addresses the problem of real-word errors using context words and n-gram 

language models. An unsupervised machine learning model was applied for real-word error detection 

and correction for Amharic text in which n-gram language models was implemented. N-gram 

language models detect real-word errors by examining the sequences of n words. The same language 

models are also used to choose the best correction for the detected errors. Conventional spell 

checking systems detect typing errors by simply comparing each token (word) in a text against a 
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dictionary that contains correctly spelled words. The tokens that match elements of the dictionary are 

considered as correctly spelled words; other tokens are flagged as errors and corrections are 

suggested. A correctly spelled token that is not the one that the user intended cannot be detected by 

such systems. 

In this research developing and designing a context based Amharic spelling checker is crucial issue to 

detect and correct real word errors using the Amharic sentences at sentence level. Since non-word 

errors are detected and corrected by dictionary lookup, real word errors in the sentences are detected 

and corrected by considering the preceding and following of words. Context-sensitive error detection 

and correction aims at detecting and correcting real-word errors, which cannot be detected by 

isolated-word detection and correction techniques. As described in the previous section, modern 

lexicon-based spelling error detection and correction systems correct approximately 50% of all errors. 

As 25% to 40% of all errors are real-word errors, a method for detecting and correcting real-word 

errors would be useful [56]. 

The model that developed is an interactive spelling checker for spelling mistakes that suggest a 

number of possible corrections and allow the user to choose the word that should replace the 

erroneous word. The problem of real-word errors for spelling error detection and correction was 

described as isolated word (lexicon-based) detection and correction techniques cannot detect and 

correct real-word errors. Spelling error detection and correction methods that aim at detecting and 

correcting real-word errors are referred to as context-sensitive error detection and correction methods. 

A context-sensitive spell checking method should aim at detecting and correcting all of these real-

word error types and creating an interactive system for detecting and correcting human-generated 

real-word errors. 

AMharic SPELLing checker and corrector (AMSPELL) model was developed to detect and correct 

non-word errors and contextual word errors using dictionary words and bigram lists respectively. The 

non-word errors are checked and corrected by Levenshtein minimum edit distance between strings of 

error words in the sentences and dictionary candidates and the minimum distance between was 

selected and suggested as suggestion of correct words. Simple dictionary words are constructed from 

the corpus and used as candidate for suggestion for spelling errors in the sentences. Whereas, real 

word errors are detected by the bigram sequence in the sentences and each bigram are generated from 
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the corpus that have statistical probability. The errors are detected by considering the bigram list in 

the sequence of words in the sentences and the suggestion lists for errors are provided by the highest 

probability that each bigram has and the left and right side of the words are considered during 

suggestion. 

A method for context-sensitive spell checking should aim at detecting and correcting all types of real-

word error relayed the word category without tagging of the words. The developed spelling checker 

and corrector model can detect and correct real word errors using the bigram lists. This means that 

sequences of two words are considered instead of words in isolation. To check whether a specific 

bigram in the text contains a real-word error, the information of that bigram is determined from the 

input sentences.  

First, the model detects the non-word spelling errors from the input words and correct by providing a 

list of candidate suggestions before checking contextual real words errors of bigram words. But if the 

sentences free from non-word errors, it starts to detect and correct the real word errors by splitting the 

sentences into list of bigrams. The overall context based spelling checker and corrector model is 

designed as follows. 
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      Figure 4.1: Amharic context based spell checker model 

As described above, the context-sensitive spell checking model uses probability information to 

determine whether a specific word bigram contains a real-word error. The context-sensitive spell 

checking performs detection and correction.  

The detection model performs three main steps. First, the input sentences that has to be spell checked 

is split up in bigrams. At every word a new bigram starts, resulting in a number of bigrams equal to 
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the number of words in the sentences minus one. For example, the five-word sentence “ቅዲሚዩ መስጠት 

ሊሇብኑ ቅዲሚዩውኑ ኡኑስጥ።” split up in the four bigrams ቅዲሚዩ መስጠት, መስጠት ሊሇብኑ, ሊሇብኑ ቅዲሚዩውኑ and 

ቅዲሚዩውኑ ኡኑስጥ.   

Second, for each bigram it is checked whether all two words are in the dictionary spell checker 

lexicon. This check would not have to be executed when the lexicon-based spell checker and the 

context-sensitive spell checker would have been combined into one spell checking application. In that 

case, the lexicon-based spell checker would perform non-word error detection and correction before 

the context-sensitive spell checker would perform real-word error detection. Then the input of the 

context-sensitive spell checker couldn‟t contain any kind of non-word errors and this second step 

would not have to be executed. In this research, a stand-alone context-sensitive spell checker is built 

in order to be able to test with lexicon-based spell checker. Thus, the lexicon check is performed, if 

one or more words from the bigram are not in the spell checker lexicon, the bigram contains a non-

word error and is it not considered further, because non-word errors are not in the scope of context-

sensitive spell checking. This means that in this research, there are still non-word errors in the text 

after the context-sensitive spell checker checked it for real-word errors. Looking up each word of 

every bigram in the lexicon implicates that most words from the text are checked three times (once 

for every bigram it is part of). This way, the program does not have to remember which word is 

correct and which one is not. This is done to save memory space. In the developed model, the 

memory of the system is restricted to the bigram and dictionary under consideration.   

Third, every bigram is looked up in a precompiled database containing a list of bigrams and their 

number of occurrence in the corpus used for compiling the database. If the bigram is in the bigram 

database, the bigram is regarded correct and it is not considered further. If the bigram is not in the 

bigram list, then the bigram is considered too unlikely and therefore detected as an erroneous bigram 

containing a real-word error.   

The correction performs an additional three steps. When a bigram has been detected, one or more of 

the words is considered erroneous, but which of the two is not known. Therefore, candidate 

corrections for all words are sought. The dictionary spell checker lexicon is used to find candidate 

corrections for all words of the bigram. This is the first step of the correction mechanism. When all 

possible candidate corrections for all two words have been found, these are all put together resulting 

in candidate corrections for the bigram as a whole. The third step is looking up each of these 
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candidate correction bigrams in the bigram list. The bigrams that are in the bigram lists are 

considered more likely to be intended by the user than the detected bigram and suggested to the user. 

4.2 Error Detection 

Text enhancement systems are used in the area of human language technology where manual 

correction of text is time consuming and creates a bottleneck in human language technology 

applications. Systems in human language technology like document understanding systems and 

speech recognition systems depend on reliable automatic misspelling correction capabilities. 

Although spell checkers are widely available for a number of languages, most spell checkers only 

detect errors and propose corrections regardless of their context, which increases ambiguity and 

incorrect suggestions for misspelled words. Also, the available systems are not able to detect and 

correct all kinds of errors, in addition to having other constraints. Conventional spell checking 

systems detect typing errors by simply comparing each token in a text against a dictionary that 

contains correctly spelled words. The tokens that match elements of the dictionary are considered as 

correctly spelled words; other tokens are flagged as errors and corrections are suggested. A correctly 

spelled token that is not the one that the user intended cannot be detected by such systems. 

Dictionary look up techniques were employed to compare and locate input strings in a dictionary. 

There is standards string mechanism with the aim of reducing dictionary search time. In order to 

serve the purpose of spelling error detection exact pattern matching techniques are used. If strings are 

not present in the chosen dictionary it is considered as a misspelled or invalid word. In this research 

we assumed that all words are included in the corpus and dictionary which are complete and 

balanced. Hashing data structure is the most significant and efficient lookup strategy relies on input 

string to detect where a matching pattern found. More specifically, hashing is used for this research to 

search an input string in a pre-compiled hashing via a key or a hash address associated with word and 

retrieving word stored in the hash function. 

In spell checking context if the words stored at hash address is the same as the input string which is 

the value of hash address. However, if the input string/word and retrieved word are not the same or 

the word stored in the hash address is null, the input word is indicated as a misspelling. The random 

access match of a hash eliminates a large number of comparisons retrieved for lookups and faster 
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than other searching methods in large data representation. Therefore, hashing mechanism is used to 

detect spelling errors by matching hash address and the input string that are retrieved. 

The majority of undetected errors are real-word errors where the word produced is in the computer‟s 

dictionary but is not the word the user intended.  This type of error is largely ignored by most 

computer spell checkers as they rely on isolated word look-up to detect misspellings. Real-word 

spelling errors may be caused by the writer‟s ignorance of the correct spelling of the intended word or 

by typing mistakes. Such errors generally go unnoticed by most spell checkers as they deal with 

words in isolation, accepting them as correct if they are found in the dictionary, and flagging them as 

errors if they are not [69]. Therefore, the detection of real-word errors requires the spell checker to 

make some use of the surrounding local context. 

In this research contextual spelling errors were developed to detect real word errors using the 

sequence of words in the given sentences. Bigram probabilistic information was used to detect the 

spelling errors during the formulation of complete sentences that should be semantically meaningful 

for users. Even if words existed in the dictionary some words are embedded in without considering 

the syntax and semantics information which change the meaning of sentences. Bigram words are not 

goes together in the given sentences the errors are detected as real word errors. Bigram model were 

used to detect words that are found in the dictionary but which doesn‟t co-occur and misspelled with 

other words. So if the words that does not combine and allocate together to form a complete full 

sentences words are checked as spelling errors based on n-gram words. Dictionary lookup and n-

gram probabilistic models are integrated to detect non-word errors and real word errors that increase 

the accuracy and performance of the spelling checker. The method tries to detect an error by noting 

bigrams constituted by immediate left and right neighbor of candidate word and then generate some 

suggestions according to probability calculated for the correction set of words. 

4.3 Error Correction and Suggestion 

Spelling error correction attempts to endow the spell checkers to correct detected words to find the 

subset of dictionary or bigram entries that are similar to the misspelling in some way. As we have 

seen in the above, the spell correcting tasks can be described by a function that maps a misspelled 

word to a set of possible correct spellings. Spelling correction can be involving a dictionary or bigram 

lists, since the set of possible corrections are defined in terms of membership in the chosen dictionary 
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or bigram lists. Spelling error corrections can be interactive or automatic based on the user 

intervention to generate suggestions for erroneous words. The simplest spelling corrector is 

interactive which provides the user with a list of candidate corrections and leaves to retrieve predicted 

word choice to the user. Whereas, the automatic approaches of spelling correction needs a significant 

level of machine intelligence as it is expected to correct spelling errors automatically without user 

involvement. In this thesis, we develop and design an interactive spelling corrector that the user could 

retrieve and select the best candidate correction from the suggestion lists by interacting prototype 

user interface and replace spelling errors with selected valid words. 

On the other hand, spelling error correction could be isolated word error correction and context 

sensitive correction depend on the types of spelling errors. Isolated word error correction is a spell 

correcting mechanism without taking account any textual or linguistic information in which the 

erroneous word occurs. Similarly, a context sensitive word error corrector would correct both real 

word and non-word errors involving textual or linguistic context. In this paper both isolated and 

context sensitive correction are used to correct misspellings in the given sentences. 

To achieve isolate error correction task Levenshtein minimum edit distance is used to transform one 

string to another. Levenshtein edit distance used in the current research is applied to find the 

minimum operation which includes insertion, deletion, substitution and transpostions to modify one 

word to other. Insertion occurs when a letter needs to be inserted a misspelled word resulting in a 

correctly spelled word. But deletion occurs when a letter needs to be deleted from a misspelled word 

in order to result in a correctly spelled word. Substitution indicates to the replacement of a letter in 

the erroneous word by a correct letter, thus the resulting in the correctly spelled word. The last one is 

transposition which takes place when the positions of the two adjacent letters are reversed and need 

to be swopped in order to result in a correctly spelled word.  

Therefore, Levenshtein edit distance between two spellings words w1 and another w2 is the smallest 

number of edit operation that needs to take place in order to transform w1 to w2. The distance is used 

to search appropriate candidate corrections for misspelled word and the distance measured between a 

misspelled words in the sentences to a word in the dictionary. The smallest distance between them is 

taken as a valid word and replaces error words in the given sequences of sentences. Candidate 

suggestion lists replied to the user based on the smallest edit distance operation and ranked based on 

the distance found between errors and dictionary words. The word with smallest distance is ranked at 
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the top as best suggestions because it has small distance between words to edit and replace the error 

words in the sentences. Additionally, word frequency could be taken into consideration in order to 

rank suggestion lists if the two words have same distance measurement. After the list of suggestions 

is composed, it should be ordered so that the user doesn‟t have to scroll through it, searching for a 

perfect match. The implemented solution makes use of the Levenshtein minimum edit distance 

algorithm to calculate the word distance. This distance becomes a parameter for list ordering. The 

user makes his/her choice from the list of suggestions. The misspelled word can be replaced with a 

word from the suggestion list, ignored, or edited by the user. 

On the other hand, context sensitive spelling errors could be corrected using bigram language model. 

In this research bigram model was applied for error detection and correction of real word errors in the 

constructed sentences. In context based error correction the semantic and syntactic features of 

sentences were not considered for spelling error suggestion and correction that checks and corrects 

typing mistakes from simple n-grams depend on the sequence of words in the sentences. Real words 

errors corrected by bigram similarity relied on the probability information of words. The highest 

probabilities of bigrams were more useful to correct the misspelled word and each individual word 

generates its own candidate suggestion that consist at least one bigram words. The candidate 

corrections could be ranked depend on the probability value of each bigram and substituted by correct 

bigram words.   

Furthermore, deciding the number of candidate suggestion generated for each word errors were basic 

to save searching time and space to view all possible suggestion in the list. The numbers of 

suggestion lists were different based on the types of errors detected and corrected in the texts. For 

dictionary based correction, the maximum numbers of suggestion lists display for users were limited 

only up to ten suggestions for each word errors that are flagged as non-word errors in the sentences 

based on the smallest distance between words. In the case of contextual error corrections only ten 

candidate lists were suggested as correct word that had highest probability of bigrams to replace 

misspelled words. Spell checker system generated up to ten candidate suggestions for one word in the 

bigrams lists that comes with the second bigram level word and the second word generates at most 

ten candidates in the popup menu that comes with the preceding words in the bigram which is 

suggested for users and the users could select the best top to correct misspelled words. 
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4.4 Tokenization  

Word boundaries in most spelling error detection and correction techniques are often defined by 

inter-word separation such as spaces and punctuation marks. The input of a spell checker is words. 

When a document is to be spell checked it is tokenized in order to separate words. This tokenization 

is generally done on word delimiters which are considered as an identifier of individual words in the 

texts of the sentences. Identification of word is different from language to language and most are used 

white spaces to separate words which depend on language features. Amharic language has different 

delimiters to bound words in the text in addition to white spaces. Word boundary issues are the basic 

challenge to identify the words which are allowed in the language. The Amharic word separators are 

described in (Amharic Punctuation marks 3.6).  

Defining the word boundaries between tokens is crucial to detect and correct the word boundary 

errors particularly if the texts separated by white spaces. There are incorrect splits and run-ons are the 

most basic word boundary problems which affects the process of detection and correction 

mechanisms. Incorrect splits and run-ons therefore yield a deviant number of words in the resulting 

sentence. This difference in number of words can give problems for error detection and correction. 

Run-ons are mostly a problem for correcting errors, whereas incorrect splits are a problem for both 

detecting and correcting. 

Incorrectly putting two words together, like mistyping ኜሇ መመሇስ as ኜሇመመሇስ or misspelling ፌርዲቤት 

as ፌርዲ ቤት, often yields a string that is not a lexicon entry. Therefore, the word is detected as an 

error. In order to correct this error the spell checking application should be able to add white spaces at 

any position within the incorrect string. If adding a white space yields two lexicon entries, a valid 

suggestion has been found. Unfortunately, adding white spaces at any position within the incorrect 

string results in many possible combinations of words that have to be checked against the spell 

checker lexicon. This decreases the speed of the application.  

If a word has incorrectly been split up and results in two strings, detecting and correcting the error is 

more difficult. Incorrectly splitting a word often results in one or more strings that are lexicon entries 

themselves. Suppose an incorrect split results in two words of which one is a lexicon entry. Then this 

string is not detected, but the other string which was not a lexicon entry is. However, it is very 

difficult to correct this erroneous string, since neighboring words are not taken into consideration for 
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finding suggestions. For example, suppose መታሰቢዩ had been written as መታ ሰቢዩ. Since ሰቢዩ is not a 

lexicon entry, the string is detected as an error. But when searching suggestions the preceding word 

መታ is normally not taken into account, as a result of which መታሰቢዩ probably is not found as a 

suggestion because its penalty is too high. A solution could perhaps be found in taking into 

consideration adjacent words when searching suggestions. Unfortunately, this can also yield incorrect 

suggestions. More research investigation needs to be done in order to find out how big this problem 

is. Moreover, taking into account adjacent words will decrease the speed of the application. When an 

incorrect split yields two lexicon entries instead of one, the error cannot be detected by dictionary 

based spell checking techniques at all. 

A tokenizes can generally remove punctuation characters attached to the start or end of each word 

and store them as separate text tokens in Amharic; it is also found that there is no consistency while 

spelling abbreviations and compound words. Identifying abbreviation and compound words were 

important to recognize the spelling errors in the detection and correction process. Amharic 

abbreviations words are mostly written using the full stop (.), forward slash (/) and without any 

punctuations. To make consistency throughout the text common and formal abbreviation words are 

written without any punctuation marks and white spaces.  For instance ዒመተ ምህረት was written as 

ዒም. In addition to this compound words were the other issue in spell checking operation. Compound 

words were written using white space and hyphen marks like ጸረ ሙስ኏ and ስኌ-ስርኜት.  Therefore, 

compound words were converted into only using happen marks to consider as one word in the 

sentences. The accuracy and effectiveness of spell checkers increases by identifying the abbreviations 

and compound words in the sentences and those words were processed and separated manually 

depend on language features. 

4.5 Sentence Segmentation 

Special care needs to be taken at the time of selecting well-formed sentences due to formal and 

informal day to day communication and most of the sentences were simple and representative for 

writers. We assumed that the syntax and semantics of the collected sentences are correct as they are 

mostly collected from different sources which are normally edited and proofread. 

This is the process of segmenting texts into sentences using sentence markers of a language that are 

useful to obtain a meaningful and well grouped sentences. Once the sentence tokenizer split the text 
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into sentences, it needs to group these texts into sentences. The sequence of input words were ended 

by word delimiters and the end of sentence was delimited by sentence markers. The sentences of 

Amharic texts are delimited by Arat netb (::), question mark (?) and exclamation mark (!) depend on 

the linguistic features of the language. 

4.6 Dictionary Construction 

The first step of developing a spell checker is construction of a dictionary and the important issue is 

the size of the dictionary. If the size of the dictionary is very small, it will annoy the user with many 

false alarms, and if it is too large, it will skip the mistyped errors that have been converted to rare 

words in the language. The popularity of dependent spell checking methods grew in tandem with the 

increase in available computer memory. While increasing accuracy, they are not infallible. The 

accuracy of a spell checking method based on a dictionary look-up program is directly related to the 

accuracy of the dictionary; it must be both valid and contemporary. 

A simple dictionary list of words is adequate for non-word error detection and can also be used to 

produce suggestions for correction by finding words that closely resemble the misspelling. The most 

straightforward and widely used method for a computer spell checker to detect non-word errors is 

dictionary look-up.  For a simple implementation the dictionary need be no more than a word list.  

The spell checker then looks up each word in the text to be checked in its list and flags as misspelled 

any that are not found.  The question to be answered at this stage is how many and which words 

should be included in the list. The dictionary word lists are prepared from the Amharic corpus that 

are collected from various sources and prepared to increase the performance and accuracy of a spell 

checker for detecting and correcting the typing errors. The lexical dictionary comprised additional 

extra words including the training words in the sentences and integrated together to enhance the 

completeness and comprehensiveness of words of the Amharic words. Appropriate suggestions are 

suggested for non-word errors that are not exist in the dictionary list by comparing the string distance 

similarity between words. 

The HashMap data structure was chosen by the developer because not only were they fast, efficient 

and accurate, the structure suited the suggestion mechanism used. They were also efficient in storage 

space, making it ideal for use in situations where memory was limited. The words were stored in the 

disk and positioned in the hash function for fast retrieving and accessing of data from the lists of 
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words. The invalid words were swiftly compared with the valid dictionary words that could display 

relevant alternative suggestion for correction.  

4.7 Bigram Generation 

In this thesis dictionary lookup and n-gram probabilistic approaches are combined together to detect 

and correct non-word and real word spelling errors in the given sentences. Depending on the size and 

comprehensiveness of training corpus bigram language model were applied for contextual spelling 

errors for this spell checker. Even if the corpus size is less unigram model was not preferable because 

it‟s difficult to get the context of the sentences for neighbor word which is like a normal text to detect 

and correct the contextual errors in the input sentences. Therefore, Bigrams are generated from the 

training data that are appropriate to check and correct real word errors. This method extends the token 

list concept by using a large corpus of text from the desired language. Bigrams are sequences of two 

characters extracted from adjacent characters in a word or sequence two words extracted from 

adjacent words in the given sentences. In this thesis word level bigrams are generated from the texts 

and stored in the memory with its probability information.  A statistical measurement is given to each 

bigram word in the text file being spell checked based on the possibility of the bigrams found in the 

sentences. Bigram words with low probability information are considered as being potentially 

erroneous in the given sentences. 

The relevancy and effectiveness of bigram words are measured by the input sentences to predict best 

suggestion for real word errors. Therefore, before generating bigram words from sentences the corpus 

are segmented in the sentences using Amharic sentence markers. The Amharic sentence markers used 

in this work were Arat netb (::), question mark (?) and exclamation mark (!) which are used to bound 

the end of the sentences in the corpus. Bigrams are generated using Amharic word delimiters from 

segmented sentences and each bigram words separated by comma (,) like (ዔቅዲ, ብቻ) during bigram 

generation. During bigram building the occurrence of each bigram words were counted and stored in 

the hash map with its frequency to increase efficiency of processing and loading bigrams to find 

bigram probability.  

One of the ways to calculate probability of the words or sentence in n-gram model is using Markov 

chain rule. According to Markov assumption, probability of some future word depends only on a 
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limited history of preceding words. The bigram probability of bigram language model for a sentence 

of m words W1, W2, W2, …, Wm can be calculated as 

                       P (W1, W2, W3, …,Wm) = P(W1)P(W2|W1)P(W3|W2)…P(Wm|Wm-1)P(W
m

) 

In our model we do not calculate the sentence probability. We assume bigram model that the 

occurrence of any words depends on its previous and next words only and independent of other 

words in the sentence. The bigram probability of words was calculated by Maximum Likelihood 

Estimation (MLE) based on the sequence of words in the sentence as follows. Let say W1 and W2 

comes sequentially in the sentences and the bigram probability computed as 

                                     P (W2/W1) = Count (W1W2)/Count (W1) 

In addition to this unigrams are generated to from the given corpus and that are used to calculate the 

probability of bigrams. The occurrences of each unigram words were determined and each unigram 

words are associated with its frequency in formation to find bigram probability. Estimated bigram 

probabilities of each bigrams were computed using the given sentences to produce better suggestions 

for spelling errors and ranking the correct suggestion options. 
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                                                           CHAPTER FIVE 

                                   IMPLEMENTATION AND EXPERIMENTION 

5. Introduction  

A series of experiments is conducted in order to assess the quality of the spelling checker 

applications. In this chapter, the tools and environments that are used to implement the designed 

algorithm and the experiment that is conducted to demonstrate the spelling error detection and 

correction accuracy could be presented. The result of the experiment would be interpreted in this 

section and the performance of the spelling error detection and correction application could be 

evaluated using different evaluation method and parameters. Precision and recall were used to 

evaluate the accuracy, effectiveness and validity of detecting and correcting spelling errors based on 

the training and testing texts that have been used in this experiment. 

5.1 Tools and Development Environment 

Developing a prototype to demonstrate the validity and usability of the proposed context based 

spelling checker system is one of the objectives of this work. In order to implement the model and 

make the necessary experiment on the system we have used different tools and development 

environments. This section would talked about the tools and development environments used to 

implement the model and the interfaces used for training and testing purposes. In addition to this the 

users can interact to the interface developed to choose and correct candidate suggestions for spelling 

errors after detecting the invalid words. To take the input texts and display spelling suggestions for 

the user the spell checker prototype interface was developed using Java NetBeans (NetBeans IDE 

8.0.2) coding environment with window 8.1 operating system. 

The second tool used for this research was AntConc which is a freeware multiplatform tool for 

carrying out linguistic research and data driven learning. It runs on any computer running Microsoft 

windows, Macintosh and Linux system environment. It is developed in Perl using various compilers 

to generate executable for different operating system. This tool could be used to generate wordlist 

that are useful as word tokens and types in a spelling application. The tool takes the input sample test 

corpus and produces a list of words as an output for word lists. Lexicons were prepared using 

AntConc tool and handles unnecessary duplicate words, numbers and punctuation marks that are not 

reliable for spell correction and used to reduce storage space of wordlist files. Therefore, the tool can 
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normalize and eliminates any duplicate frequency of words that exists in the dictionary and lists could 

be ordered by the frequency information that each term appears in the input corpus. Not only word 

lists, bigram words with its probabilistic information also generated using this tool and the bigram 

words arranged and ranked using probability of bigrams. This tool used only to prepare and process 

the test dataset for testing purpose that have been taken in the experiment. 

On the other hand, Notepad++ also plays a vital role to develop a good spelling checker by editing 

and changing unnecessary and invalid words during corpus preparation that does not process 

automatically by java programs. Since the collected Amharic texts written in different Amharic 

writing system this tool helps to modify and correct the spelling variation and errors manually. The 

corpus processed and organized manually  in proper manner  with linguistic expert to create clear and 

understandable spelling features words of Amharic language that have been taken as input for 

spelling checking operations. 

5.2 Data Collection and Preparation 

Corpus is a large and structured set of texts. It is used to spell checker, checking occurrences or 

validating linguistic rules on a specific universe. Besides it is a fundamental basis of many researches 

in NLP. Building of the text corpus is very helpful for the development of spell checking. In this 

work, Amharic text corpus is created manually to apply in Amharic spell checker system. It contains 

various sense meanings of ambiguous Amharic words, compound words and training sentences. 

Amharic texts  were collected from various sources to reliability train and test the spell checker 

model that  have been developed depending on the linguistic spelling features of the Amharic 

language. The texts were collected from ENA, WIC and books that have discussed various issues to 

balance the corpus distribution. In addition to the above sources HC corpora was used for this 

research to conduct the experiment which is collected from Ethiopia newspapers like Ethiopian 

reporter, zehabesha.com and amharic.voanews.com, and the blogs such as wordpress.com and 

blogspot.com. The HC Corpora contain text from publicly accessible sources and collected from 

internet by web crawler which was used for any purpose excluding commercial use without prior 

consent. 
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The most important part of any natural language processing task is a proper training corpus 

preparation. To the researcher‟s knowledge, there is no standard established training and testing 

collection texts for Amharic spell checker and corrector testing. The experiment in Amharic spell 

checker and corrector has conducted by a prepared text and the texts were prepared by the researchers 

themselves. The corpus were collected from various sources and manually cleared from any kind of 

unnecessary errors and each word in the corpus were free from spelling errors which is valid to 

represent Amharic vocabulary words. Word tokenization, sentence boundary identification and 

bigram generation were important in training corpus preparation. 

Text preprocessing is very important aspect of corpus preparation to clear unnecessary ambiguity and 

errors before training and testing the spell checker model. Since the data collected from various 

sources and written with their own writing system, preparing complete error-free corpus is a 

challenging task in the text preparation. Even if unsupervised approaches used for this thesis it needs 

more effort to modify and edit that errors corpus manually by linguistic professionals based on the 

spelling nature of the Amharic language. The corpus were prepare with linguistic expert depending 

on spelling features of Amharic to maximize the accuracy and performance of the model by making 

well understandable and pure words of Amharic vocabulary. The training and testing texts were 

prepared manually based on the Amharic spelling error patterns and its writing system before texts 

processing that are used as input for training and testing the spell checker model.  

The validity and relevancy of dictionary words were evaluated by linguistic professionals to check 

whether the words that prepared for correction were valid or not based on the vocabulary of the 

desired language. The training text has included almost all type of spelling alphabets and words 

including its morphological variation of the words in the corpus. It is true that large size corpus has 

produced high accuracy performance than a small collection of corpus and we tried to collect and 

prepared a balanced corpus for training and testing the spell checker model. Punctuation marks, 

numbers, white space and any special characters that appeared were manually and automatically 

processed to reduce the ambiguity and necessity of words in the corpus. 

A sufficiently large corpus is essential for training and testing of any spelling checker and corrector 

application. One of the major problems of building corpus from learners‟ data is that the process is 

very time consuming and requires linguistic knowledge to examine each sentence of learners‟ text to 

determine nature and frequency of errors. To overcome this problem, error sentences that consists 



 

62 
 

non-word and real word error has been collected from different sources considering the performance 

error and language learner‟s error that occurred frequently. 

Amharic language learners often commit spelling mistakes while writing text because of their lack of 

language knowledge (language learning error) and due to oversight, carelessness or tiredness 

(performance error). Performance errors can occur mainly due to four operations: insertion, deletion, 

transposition and substitution. There are two primary concerns at the time of error sentences, first one 

being linguistically realistic and the second one is to mimic the error scenarios that happen normally.  

Real word errors were checked contextually, in which each sentence in the corpus is relevant to 

represent and convey meaningful information for writers. So every sentence in the corpus was 

evaluated along with its meaning and syntactic structure of the language. It means that the input 

sentences should provide clear and understandable ideas for writers.  

Using the model described in the previous chapter, list of words and bigrams along with probabilities 

were generated and stored in tables along with their frequency information. The sample content of 

corpus used to conduct this experiment was described as follows. 

Word Frequency 

ኌው 2362 

ሊያ 1446 

ውስጥ 710 

ግኑ 696 

ወይ 585 

ጋር 540 

ኡ኏ 525 

ኌበር 507 

ኌገር 477 

ይግሞ 460 

                        Table 5.1: Sample Words counts table in the corpus  

The corpus was also used to generate a bigram that used to find the probability of the bigrams in the 

given corpus. The bigrams are generated at word level rather than character level which are used to 

detect and correct the real word errors. 



 

63 
 

 

                             Table 5.2: Sample Bigrams table from the Corpus 

As can be observed, the number of list of word types generated for a word is less than the number of 

bigrams. Because one word may co-occur with many words sequentially in the sentences which 

indicates the total occurrence of words was greater than the bigrams generated from the corpus. As 

the value of n gets higher, so would the number of n-grams generated. For the training set used in 

learning the model, the following table presents a statistics of the counts of words, bigrams and 

sentences in the experiment. 

Terms Frequency of  word 

tokens 

Frequency of word types 

Unigram 342,560 295,527 

Bigram   143, 037 124,862 

.                         Table 5.3:  Count of generated terms (words and bigrams) 

Texts from multiple domains have been collected to a void the skewed distribution of data. In the 

experiments, texts belonging to several domains including technology, computing, economy, 

medicine, engineering, politics, love, health, literature, history, religious, sports and other aspects 

were prepared for testing and training purpose. These corpuses encompass around 47,033 word types 

and 152,423 word tokens which consists regular dictionary words, domain-specific terms, proper 

names, technical terminologies, acronyms, jargons, and expressions. 

The texts used to conduct this experiment were classified into training and testing set. Therefore, 

10,000 sentences were collected and prepared from various sources which are used to train and learn 

Bigram 

word  

Frequency Probability 

ኌገር, ግኑ 112 0.235 

ብቻ, ሳያሆኑ 79 0.385 

ማሇት, ኌው 73 0.369 

ምኑ, ዩህሌ 45 0.152 

ዒሇም, ኜቀፌ 39 0.310 

በኜሁኍ, ወቅት 38 0.559 

ሊያ, ኌው 32 0.022 
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the model.  On the other hand, for testing purpose 500 sentences were prepared and used in the 

experiment to verify the efficiency and accuracy of detecting and correcting the spelling errors. 

5.3  Spelling  Error Detection  

The detector module is responsible for determining if a word is considered misspelled or not with 

respect to the lexicon and bigram analysis. The input for the prototype is a text file. The text file can 

be typed directly into the Text Area.  The system checked the spelling after the space bar is pressed 

or sentence delimiters pressed depend on the spelling errors. Non-word errors were detected using 

space bar where as real word errors detected by using Amharic sentence delimiters. A word that the 

system believes to be misspelled is flagged with color shading red for non-word errors and yellow are 

used for real word errors. Candidate suggested corrections are available in a popup menu after right 

clicking on the erroneous word. 

 

                              Figure 5.1: A prototype system for non-word error detection 

Spelling errors were detected and checked when user types words in the interface by considering 

dictionary lists and bigram words in the given sentences. As already mentioned above, the detection 

of spelling errors was designed in two phases. The first one is dictionary based and the second is for 

bigram words in the input sentences.  

The spelling errors were checked at word level to detect non-word spelling errors through the 

comparison of dictionary lists based on similarity measurement of words using white space and 

punctuation marks. Word boundaries used for this work were used to determine the validity of words 

that exist in the dictionary lists. The word that does not exist in the dictionary is detected and 
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highlighted as error word when we type words in the interface that we are developed. Every non-

word errors that appeared were detected and corrected before the end of sentences. Therefore, each 

single word was marked as error and multiple errors were detected in the given sentences using white 

space rather than Amharic word delimiters.  Punctuation marks, numbers and words with numbers 

such as ኤ1990 were excluded and selected as error by the system. For each input line, a multiple line 

is written to the standard output for each word checked for spelling on the line.     

Whereas, real word errors wear detected after all non-words were corrected and the errors were 

detected and highlighted as real word error at the end of sentences using the sentences markers of 

Amharic language. The real word errors were detected under the consideration of bigram words 

sequences that comes together and sequence of bigram words does not exist in the bigram list, it‟s 

detected as real word errors. The input sentences were breakdown into bigram and bigram words 

were generated along with its probability information which is used to rank the candidate suggestion 

to correct the errors. If the bigram words found in the bigram list, there is no error which is 

considered as valid word but if one of the word does not exist in the bigram word list is considered as 

error and detected to display suggestions alternatives for that bigram. 

Real word detection can be afforded the semantic and syntax level of the words in the sentences 

which is the meaning of sentences was defined by the sequence of words that co-occur in the 

generated bigram words. The syntactic and semantic nature of sentences were not determined by the 

syntax rules of Amharic language but defined by the sequence of bigram words that comes together 

to provide meaningful information for users. Even if words exist in the dictionary words cannot 

become sequentially with others to convey ideas and the meaning of information were distorted for 

users which is difficult to recognize and understand the structure of sentences in the input texts. 

 

                          Figure 5.2: How prototype system detects real word errors 
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In spelling errors detection phase if one word make errors the surrounding left and right neighbors 

words were detected as errors and corrected by providing suggestions for each words that are 

highlighted as errors in the sentences. But this not always true because the errors can be detected and 

colored only for two words including the error one and one of the right or left side of the words.  In 

the case of word level detection and correction the errors were verified and determined at each word 

in the sequence of words that appears errors before ending the sentences. The detection and 

correction word errors were determined at word and sentences level for non-word and real word 

errors. 

5.4   Spelling Error Correction 

The corrector module is responsible for providing a set of possible corrections for a misspelled word. 

After a word is flagged as wrongly spelled, if possible a set of suggestion is availed. Studies point 

that most misspellings involve at most one character change from the intended word [40]. This means 

the distance between the correct word and the misspelled word is the character difference. N-grams 

can also be used for error correction. This is done by assuming certain n-grams within a word are 

correctly spelled and fix the remaining n-grams. A list of words is established as suggestions. It is 

also important to rank the words and lift the closest suggestion to the top of the list and presumably 

trim it. To organize this we need an algorithm that computes the minimum edit distance. A 

Levenshtein edit distance could accomplish this and show the shortest distance between suggested 

words and the word with the shortest distance would be considered as the best suggestion. 

The spelling correction functions enable to create applications that check if words are spelled 

correctly. It uses dictionaries that load into the dictionary list and checks words against a specified 

dictionary. Alternative spelling suggestions were provided for each word errors for correction which 

is ordered based on the type of errors that occurred in the given inputs of words and sentences. The 

errors were corrected and modified through the suggested words that displayed in the popup menu. In 

order to suggest valid words for wrong words two cases were considered depend on the error types.  

The first is performed at word level before checking sentences and each word have suggestions from 

the dictionary words by considering the similarity between the error words with dictionary words. 

The candidate alternatives were ranked based on the similarity distance which is the minimum edit 

distance between words and the smallest distance comes at the top and better for correcting error 
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words. The smallest edit distance could be selected and used to correct non-word errors among the 

suggestion alternatives. Isolated words errors were detected using white space and should be replaced 

by valid words before the end of sentences that the suggestion and correction taken places 

immediately before going to correct real word errors. 

 

                Figure 5.3: A prototype system for generating suggestion for non-word errors   

The suggestion replacements were ranked by Levenshtein minimum edit distance which is computed 

using errors encountered by spell checker with dictionary lexicons. The suggestion popup menus 

displayed during right click at any position of error word and select one of the target words that 

replace the errors and correct it.  

On the other hand, real word errors were checked and corrected using bigram probabilistic 

information with similarity between the words that occur with dictionary words. The errors were 

identified by using sentences boundaries and each words highlighted have its own suggestions. The 

identified errors that have been detected provide bigram suggestions for each word in the bigram by 

computing and comparing the Levenshtein edit distance with dictionary lists. 
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                Figure 5.4: A spell checker prototype system for generating candidate suggestion  

The real word errors problems were resolved by generating bigram words after computing the 

distance between each selected word with dictionary and display candidates which is ranked by the 

probability of the bigrams. Then replace the invalid words by clicking each error words at any 

position and search the alternatives from the bigram based on the shortest edit distance of the two 

words. During candidate suggestions the surrounding words were considered depend on the number 

of errors detected consecutively. If two words detected and clicked on the right side, the suggestion 

displays the left side and right side replacements from the bigram lists by comparing the distance 

between dictionary lists and replaces the two errors sequentially. But if three errors occurred 

sequentially and needed to replace the center of words, the system compares the word with dictionary 

for both right side and left side of sequences that replaces all the three words including the center one. 

Therefore, each detected errors have its own suggestions by considering the distance between errors 

and dictionary lists. In the case of suggestion after comparing the distance erroneous word with 

dictionary, the system retrieves bigrams words which related to distance of that word. 

Appropriate candidates suggestion were necessary to correct the non-target word and the list of 

candidates should be searched either tha dictionary or bigram list grounded on Levenshtein minimum 

edit distance between strings. In this thesis minimum edit distance between strings were supposed to 

less or equal three which indicates the maximum edit operations of strings is three for contextual 

spelling errors. Whereas, for non-word errors we assumed that the distance between the errors and 

dictionary lists were not greater than two which is tha maximum editing operation is only two. The 

majority of the users produce the errors by missing two or three characters of the words and this 

colud considered for choosing of this value of distance. In the case of generating suggestion omission 
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may occur in which the intended word may not explore and displayed in the popup menu.  For this 

reason, we assumed that the minimum edit distance for this spell checker were two because not only 

missing target words but also the suggestion includes needless words to modify the errors. These 

were happened during the experiment and a few words have missed the intended word from 

suggestion list and includes unintended words the displayed popup menu for both type of errors. On 

the other hand, the spell checker system refuses to provide suggestion for a few words particularly for 

real word misspelling since the distance between strings were more than the specified value. 

5.5  Performance of Spell Checker 

Now a days, spelling checkers are widely available as part of word processors or as standalone 

components. But there is still a considerable room for improvement in their error handling abilities. 

In order to quantify any improvement, we need to devise a methodology for evaluating the 

effectiveness and acceptability of a spelling checker. The increase of competitive proofing tools 

market, it is becoming ever more important to find evaluation methods and metrics that provide 

stable and invariable measurements. The performance measure of a particular spelling checker must 

be constant over a number of evaluations, irrespective of the percentage of mistakes in different texts, 

the level of difficulty of the texts and the length of the texts [24]. Evaluating spelling error detection 

and correction system requires various criteria, such as output quality, maintainability and user 

satisfaction.  

The system performance of spelling error detection and correction system is usually measured by 

metrics like Precision, Recall and Accuracy.  These measures generally indicate how often spelling 

incorrectness is rejected and how often spelling correctness is accepted. Standard metrics for the 

evaluation of the linguistic performance of spelling checkers, like lexical and error recall, and 

precision have been widely used for many years [60]. Evaluation methodology and evaluation 

metrics could be modified to render a more accurate representation of actual spelling checker 

performance and accuracy of correcting invalid words. The methods and metric used for evaluating 

the performance prototype system was described as follows. 
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5.6 Evaluation Metrics and Results 

Some experiments were performed in order to quantitatively evaluate our spelling checker 

mechanism. The designed system must be evaluated to test its effectiveness. In the literature, several 

methods for evaluating spell checker system have been proposed. A work done by Kukich [40] 

proposed lexicon size, test set size, correction accuracy for single and multi-error misspellings, and 

type of errors as evaluation criteria for a spell checker tool. A research described by Paggio et al. [57] 

recommend error recall, precision recall, interface and suggestion adequacy for the evaluation of a 

spell checker algorithm. Some of the measurements are subjective and difficult to evaluate. 

Starlander & Popescu-Belis [32] also came up with some refinements on these metrics, as well as 

some new metrics for their evaluation of proofing tools, which can be accurately implemented in the 

evaluation of spelling checkers. The performance of the system was measured using error recall and 

precision, lexical recall and precision and predictive accuracy of the spell checker. For this research, 

we are followed Starlander & Popescu-Belis [32] system performance evaluation metrics and 

suggestion adequacy of the system was not examined and their definitions of the metrics were 

defined below.  

The evaluation technique has four categories: true positive, false positive, false negative and true 

negative. True positives (TP) indicate valid words recognized by the spelling checker, resulting in 

correct non-flags. True negatives (TN) invalid words recognized by the spelling checker, resulting in 

correct flags (Good flags). False negatives (FN) produced when valid words not recognized by the 

spelling checker, resulting in incorrect flags (False flags). False positives (FP) invalid words not 

recognized by the spelling checker, resulting in incorrect non- flags (also called “Missed flags”). 

The efficiency and accuracy of the spell checker and corrector that have been developed were 

evaluated using evaluation metrics for both non-word and real word spelling errors in the written 

texts. Therefore, detection and correction of spelling errors were determine using above metrics 

which are important to measure that actual performance of spell checkers. The following metrics was 

used to evaluate the accuracy and efficiency of the spell checker by considering the detection and 

correction of spelling errors in the texts. 
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EP ER LP LR Accuracy 

TN/TN+FN TN/TN+FP TP/TP+FP TP/TP+FN 
TP+TN 

TN+TP+FN+FP 

                    Table 5.4: Evaluation metrics for spelling error detection and correction  

Recall is a measure of the completeness of the spell checker; it tells how much of the language the 

spell checker covers, the lower the value the more likely it is that the spell checker could complain 

about correct words. It might also be useful to measure the same useful to measure the same metrics 

but for the case where the spell checker identifies the word as incorrect instead of correct. In that case 

recall is called specificity and it tells how likely it is that the spell checker would catch all incorrect 

words. 

Lexical Recall (LR) is defined as the number of valid words in the text that are recognized by the 

spelling checker (i.e. true positives), in relation to the total number of correct words in the text (i.e. 

the sum of all true positives and false negatives).  The second recall measure was Error Recall (ER) 

which is the number of invalid words in the text that are flagged by the spelling checker (i.e. true 

negatives), in relation to the total number of incorrect words in the text (i.e. the sum of all true 

negatives and false positive). 

The ideal for any spelling checker would be to recognize all valid words as valid, and all invalid 

words as invalid, scoring 100% on both LR and ER. The recall scores are mostly an indication of the 

comprehensiveness of the lexicon of the spelling checker (i.e. how representative it is of the 

language), as well as how untainted the lexicon is (i.e. whether the spelling checker lexicon contains 

any erroneous words). 

Precision is a measure of the exactness of the spell checker‟s responses; it basically tells how much 

trust the spell checker when it tells this word is correct. Precision pertains to the flagging accuracy of 

a spelling checker how accurate is the spelling checker in assigning non-flags (i.e. to recognize only 

correct words as correct), and how accurate is the spelling checker in producing good flags (i.e. to 

flag only incorrect words as incorrect).  

Lexical Precision (LP) is computed by dividing all correct non-flags (i.e. true positives) by the total 

number of non-flags (i.e. true positives plus false positives). On the other hand, Error Precision (EP) 
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is the number of correct flags (i.e. true negatives) in relation to the total number of flags assigned by 

the spelling checker (i.e. true negatives plus false negatives) gives an indication of the spelling 

checkers. 

Once again, the ideal for any spelling checker would be to score 100% on both correction and 

detection precision, as the end-user expects of a spelling checker to flag all incorrect words, and only 

incorrect words. This would result in a spelling checker that is 100% accurate in the task at hand. 

We also calculate accuracy which is derived from both precision and recall which measures the 

general quality of the spell checker. Predictive Accuracy is the overall performance of the spell 

checker that have been computed and the likelihood of any given word correct or incorrect being 

handled accurately by the spelling checker. This metric measure the performance of spell checker for 

both spelling error detection and correction of a given words in the input texts. Like all the other 

metrics, this score can also be represented as a percentage value, where 100% would be the ideal. 

In this thesis, the performance and effectiveness of spell checker evaluated into two different 

independent mechanisms manually which is depend on the error types. The frequencies of errors 

encountered by the system are counted manually for both error types and compute the performance 

using different metrics.  Non-word errors were first test and evaluated independently before real word 

errors and then the real word errors were evaluated after the non-word errors corrected and replaced 

by valid words in the sentences. Therefore, each single word checked and corrected using dictionary 

words before detecting and correcting the real word errors in the given sentences. If we were 

considering the performance of a non-word error checker that was dealing with each word in 

isolation, we would only be interested in error types as each occurrence of a particular error would be 

dealt with in the same way. However, a real-word error checker is dealing with each word in the 

context in which it occurs and so may make a different decision for the same confusable word 

appearing in a different context. For this reason, the results reported below use token rather than type 

counts. 

It should be noted that the evaluation methods presented in above works on the dataset that was 

randomly taken from different sources. The test dataset was prepared to evaluate the number of valid 

words correctly accepted by the system and the number of invalid words correctly flagged by the 

system. Since the contextual and non-word errors checked and corrected independently, sentences 
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were prepared for contextual real word errors after checking the invalid words in the dictionary word 

lists.  

Initially, we randomly selected 500 sentences  from  different sources like magazines, books, news 

and  stories which were  belonging  to  several  domains which  produced  9115  words. To trim 

repeated and unnecessary words AntConc text processing tool has been used and reduced to 5350 

unique words. Each word lists and sentences are printed out and then manually spell checked by two 

postgraduate linguistic students. We found that, the data set consists of 5223 correctly spelled words 

and 127 misspelled words. In  this  sample,  out  of  5223  valid Amharic  words, 4989 were accepted 

as a valid word; 234  words  were  flagged  as  misspelled  words  by  the system due to the absence 

of words in the lexicon. On the other hand, all the 127 misspelled words were flagged. 

On the other hand, real word spelling errors were checked and corrected after validating non-word 

errors in the sentences. These errors were checked depend on the sequence of words using bigram 

information in the sentences which are free from any kind of non-word errors and appropriate 

alternative suggestions were displayed depend on the probabilistic information of bigrams. The 

performance of the spell checker is determined at sentence level and we have tested using 500 

sentences which are used for non-word errors and free from errors.  The bigrams were generated to 

examine the coverage of text and we found that, the dataset consist 8631 bigram word types and 9114 

bigram tokens using AntConc data processing tool. Therefore, the test set data covers 6.92 % of the 

total training set used to train the spell checker model system that indicate the coverage set of data in 

training and test set of the text.  

As mentioned above, depending on the experiment there are 361 non-word errors which are replaced 

and corrected by another words for contextual real word spell checking and every real words were 

tested and checked in each sentences weather invalid or not depend on the predecessor and successor 

of the words. The sample data set consist 5350 words and out of these of 5303 correctly spelled real 

words and 47 misspelled real words. According to tested experiment, from the sample 5303 Amharic 

valid real words 3124 were accepted as valid real words and 1876 words were flagged as misspelled 

real words in all sentences by the system. Whereas, from the test data 62 invalid real words errors 

were truly detected this is not the target word in the sentences including 47 invalid errors by the 

system. Therefore, among total 109 misspelled real word errors, 62 errors were flagged as misspelled 
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real words during the non-word correction and absence of word sequences, and 47 invalid errors were 

produced by spell checker system in the sequence of words in the sentences.  

For both type of errors, any invalid words can‟t consider as correct and the spell checker system 

refuses to accept the words. But if the corpus or dictionary contains any errors, the prototype system 

could recognize and accept as valid words. The recall, precision and prediction accuracy were 

calculated depending on the data in the in the following table. 

Error type TP TN FN EP ER LP LR Accuracy 

Non-word error 4989 127 234 35.18 100 100 95.52 95.62 

Contextual/Real 

word error 
3365 109 1876 5.49 100 100 63.45 64.93 

                  Table 5.5: Evaluation results of performance of the prototype system 

According experimental results, the non-word error correct detection and correction by the prototype 

system is 4989 and incorrect prediction is 127 words. This indicates the performance of the system 

scores 95.62% in which the system can identify effectively and efficiently for correct and incorrect 

non-word erors in the given texts. The coverage of the correct words were determined by lexical 

recall that has value of 95.52% and incorrect words that correctly flagged is 100%  by lexical errors 

and all non-words errors in the given texts were perfectly detected with the comparison of dictionary 

words. Therefore, valid errors covered in the sample test dataset was correctly identified and marked 

in the prototype of the system. According to the result showed in the experiment, the lexical coverage 

of words accepted as valid words indicates the most of words were covered by the dictionary words. 

Based on this, even if all words that exist in the language could not include, we can say the training 

texts used in the experiment were almost complete and covers all words used to test the system 

except some words which are exist in the language. 

Lexical and error precision also another metrics to measure the effectiveness of accepting and 

ignoring words in the spell checker. In the result, lexical precision shows that all the valid word 

accepted and recognized by the spell checker scores 100% and no invalid words accepted as correct 

in the system. Any words in the system is recognized and accepted which indicates there is no way of 

considering invalid words as correct word in the texts. The developed spell checker can identify 
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incorrect and valid words effectively and efficiently with respect to the dataset used in the 

experiment. Error precision also have a value 35.18% shows that errors produced by spell checker 

system for valid words from the total flags because of dictionary size covering all words of the 

language. Therefore, in the error precision 35.18% of words were valid words which are not 

recognized by the spell checker system since the words do not exist in the training set used to train 

the model. 

On the other hand, the performances of prototype for recognizing real word errors using bigram 

words in the sentences were measure using the above metrics. The overall performance of spell 

checker for real word error is 64.93% due to the size of corpus in training text. This result shows that 

the corpus size used for training the model is not cover all the words in the sentences. Therefore, the 

sequence of words in the sentences is depends on the bigram generated and needs more lexical and 

sentences to increase the efficiency and effectiveness of checking the spelling errors. 

The lexical coverage of words was determined by lexical recall has a value 63.45% of from the 

sample training set used to learn the model. This shows that based on the sample test used for testing 

the prototype system needs improvement because the real word errors were marked based on 

consecutive sensitive of words in the sentences. The errors that exist in the sentences were 100% 

checked and the system was sensitive to detect all errors in which were not included in the bigram 

lists.   

According to the result, the lexical precision shows that 100% distinguished all valid real words from 

the errors accepted as correct and invalid real words are not accepted and assumed as correct real 

words in the sentences. The spell checker system can catch real words exactly and accepts the valid 

one with respect to the training texts. In the experimental result, 5.4% words were truly recognized by 

the spell checker system and linguistic judgment was applied for each invalid real word errors to 

determine the context of words in the sequence of words. From this, when the test texts compared to 

the bigram words the majority of the errors produced were valid real word which is truly needed by 

the writers but in the corpus excluded and it‟s ignored to accept those words by the system. The 

evaluation of the spelling checker showed us that too many valid real words are not recognized due to 

corpus size of the training set. 
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The challenges behind evaluation performance of prototype system were related to lexicon size for 

both types of errors. The success of the spelling checker is directly related to the completeness of the 

lexicon. If not enough words are contained in the lexicon, too many valid words are flagged as in 

valid. This means that in theory all morphologically complex words and compounds of the Amharic 

language should be added to the lexicon. Out of vocabulary occurs due to the problem of 

incorporating all words of the language in the training data which reduces the performance 

effectiveness of the spell checker.  

Furthermore, the other difficulty for performance evaluation of the spell checker prototype was the 

Amharic language character features such as redundancy alphabets. In this case the similar word can 

be written more than once with different alphabets like ሰማያ and ሠማያ. In data preparation, we tried 

to cover and include repeated alphabets, morphological complex and compound words in the training 

data to solve morphological variation and completeness of words but it‟s difficult to incorporate all 

words of Amharic language.  

Ultimately any approach to Amharic spelling correction is limited by the reliability of the reference 

used for canonical formations. The establishment of a comprehensive and authoritative lexicon for 

written Amharic would be the single most valuable resource towards the realization of this eventual 

goal. There are a number of linguistic complexities specific to non-native learners that a spell-checker 

would need to handle in order to be successful. 
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                                           CHAPTER SIX 

                                  CONCLUSION AND RECOMMENDATION 

6.1 Conclusions 

The advancements of industry and information technology are necessary to produce electronic 

documents that have considerable benefits such as easy organizing and understanding information. 

The dynamic nature of computer technology increase in the amounts of electronic information and 

diversity of languages were used to produce and processed to solve recognizing and understanding 

problems for language users. Spell checking is the one that detect and provide spelling suggestions 

for incorrectly spelled words in a text. The major objective of this thesis is to develop and design 

context dependent spelling checker and corrector for Amharic text that detect and correct human 

generated spelling errors. Since Amharic does not have any spell checker and corrector that can 

detect and correct real word errors contextually, it plays an important role to edit Amharic texts in 

different sectors like offices and other areas. The design of the type of spelling checker techniques is 

heavily influenced by the type of spelling errors patterns. Real word and non-word errors is spelling 

errors that non-word errors does not exist in the dictionary or even Amharic language and real word 

error were found in the texts but semantically, syntactical and structural context invalid in the 

sentences. 

The context dependent spell checker can be combined with dictionary based spelling error detection 

and correction application in order to create an application that is able to detect and correct non-word 

errors and real-word errors in text documents. Dictionary look up techniques are used to compare and 

locate an input string with dictionary words. N-gram based approaches was used to build a language 

model with more complex structure and performing to detect and correct spelling errors in context 

dependent spelling correction. Candidate replacements were generated for spelling erors and users 

can interact to the interface to choose the best ranked alternatives among the suggestion lists based on 

the Levenshtein minimum edit distance and bigram probabilities information.  

As the performance indicates the prototype system registers 95.62% of overall accuracy, 95.62% of 

lexical recall and 35.18% of error recall for non-word errors. This shows that in the study promising 

result was registered. Whereas, the performance result of the system for context sensitive spell 

checker was registered 64.93% of accuracy, 63.45% of lexical recall and 5.49% of error precision. 
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This result indicates improvement will be needed to resolve and enhance the performance the 

consideration of other language models and lexical coverage of words in the Amharic texts. 

 6.2 Recommendations 

The following recommendations were given for further research based on the observed experiment 

and uncover areas. 

o The collection of more sample texts would be a valuable contribution to enhance the 

performance of the spelling checker to provide best candidate suggestions for spelling errors 

especially for real word errors. Thus, preparing adequate and better size corpus must be one 

task in the future and having a standard dictionary with maximum word size is very important 

to increase the accuracy of spell checker. 

o  In this research unsupervised machine learning approaches were used to detect and correct real 

word errors contextually using n-gram probabilistic information. To maximize accuracy of 

detecting and correcting spelling errors supervised approaches should be applied using 

annotated and tagged texts by integrating dictionary based with POS tagging and Morphological 

analysis. 

o Rule based techniques should be incorporated to handle real word errors especially for phonetic 

spelling errors due to multiple redundant characters. For instance, the same word “Tsehaye” 

may be written ጸሀያ ጸኀያ ጸሏያ ፀሏያ ፀኀያ ፀሀያ depending on who write it.  There should be a rule 

that integrate canonical and common Amharic together in the spelling checking application.  

o The distance metrics should be modified and revised to provide best suggestions for correction 

especially with respect to the character features of the language to handle multi errors in the 

text. 
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     APPENDICES 

                              Appendix I: List of Amharic Characters  

  u i a Y e o 

H ሀ ሁ ሂ ሃ ሄ ህ ሆ 

L ሇ ለ ሉ ሊ ላ ሌ ል 

H ኀ ኁ ኂ ኃ ኄ ኅ ኆ 

M መ ሙ ሚ ማ ሜ ም ሞ 

S ሸ ሹ ሺ ሻ ሼ ሽ ሾ 

R ረ ሩ ሪ ራ ሬ ር ሮ 

S ሰ ሱ ሲ ሳ ሴ ስ ሶ 

B በ ቡ ቢ ባ ቤ ብ ቦ 

T ተ ቱ ቲ ታ ቴ ት ቶ 

C ቸ ቹ ቺ ቻ ቼ ች ቾ 

N ኌ ኍ ኎ ኏ ነ ኑ ኒ 

X ኜ ኝ ኞ ኟ አ ኡ ኢ 

K ኤ እ ኦ ኧ ከ ኩ ኪ 

W ወ ው ዊ ዋ ዌ ው ዎ 

Z ዖ ዗ ዘ ዙ ዚ ዛ ዜ 

D ይ ዮ ዯ ደ ዱ ዲ ዳ 

J ጀ ጁ ጂ ጃ ጄ ጅ ጆ 

G ገ ጉ ጊ ጋ ጌ ግ ጎ 

T ጸ ጹ ጺ ጻ ጼ ጽ ጾ 

F ፇ ፈ ፉ ፊ ፋ ፌ ፍ 

P ፏ ፐ ፑ ፒ ፓ ፔ ፕ 

V ቨ ቩ ቪ ቫ ቬ ቭ ቮ 

Q ቀ ቁ ቂ ቃ ቄ ቅ ቆ 
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  u i a Y e o 

Sht+ n ኔ ን ኖ ኗ ኘ ኙ ኚ 

Sht+ z ዞ ዟ ዠ ዡ ዢ ዣ ዤ 

Sht+ y ዦ ዧ የ ዩ ዪ ያ ዬ 

Sht+ s ሠ ሡ ሢ ሣ ሤ ሥ ሦ 

Sht+ h ሏ ሐ ሑ ሒ ሓ ሔ ሕ 

Sht+ p ጰ ጱ ጲ ጳ ጴ ጵ ጶ 

Sht+ t ጠ ጡ ጢ ጣ ጤ ጥ ጦ 

Sht+ T ፀ ፁ ፂ ፃ ፄ ፅ ፆ 

Sht+ x ዏ ዐ ዑ ዒ ዓ ዔ ዕ 

Sht+ c ጨ ጩ ጪ ጫ ጬ ጭ ጮ 

Sht+ H ኰ ኱ ኲ ኳ ኴ ኵ ኶ 

 

Labialized Alphabets 

LWA ሎ NWA ና BWA ቧ CWA ቿ 

MWA ሟ ZWA ዝ Sht+TWA ጧ TSWA ጿ 

RWA ሯ Sht+ZWA ዥ Sht+CWA ጯ FWA ፎ 

SWA ሷ DWA ዴ Sht+NWA ኛ VWA ቯ 

SHWA ሿ JWA ጇ TWA ቷ Sht+2 ኣ 

 

 O I u A e 

KW ካ ኬ ኯ ክ ኮ 

GW ጓ ጐ ጓ ጑ ጒ 

QW ቇ ቈ ቉ ቉ ቈ 

HW ኇ ኈ ኋ ኉ ኊ 
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           Appendix II:  Sample Amharic Text for testing Prototype of Amharic spell checker 

ዦባቡር መስመሩ ኤኞትዬጵዩ ዲኑበር ኜሌፍ በጂቡቲ ዲኑበር ውስጥም ዦሚረዖጋ በመሆኍ ወይፉት ዦሚጀመረውኑ ዦትራኑስፕርት 

ኜገሌግልት በኞትዬጵዩ ብቻ ኡኑዯተደይር ማዲረግ ኡኑይማያቻሌ ምኑጮች ዩስረደለ፡፡ በመሆኍም በሁሇቱ ኜገሮች ሰምምኌት 

መሠረት ኜኑዲ ዦትራኑስፕርት ኜገሇግልት ዦሚሰጥ እባኑዩ መመረት ስሊሇበት ሇዘህም ሰባሌ ውያያት ተጀምሯሌ ብሇዋሌ፡፡ 

በኞትዬጵዩ ዦኑግዲ኏ ዖርፌ ማኅበራት ምኩር ቤት፣ ዦመኑግሥት኏ ዦግለ ዖርፌ ዦምኩኩር መዲረኩ በሌእ፣ ኤመኑግሥት ኜኧሌ ጋር 

ዦተይረገው ውያያት ቱሪዛምኑ በሚመሇኩት ኤዘህ ቀይም ኤተኧሄዮ ውያያቶች በተሻሇ ይረጃ መግባባት ዦተይረሰበት መስሎሌ፡፡ 

ዦጋራ ዦምኩኩር መዲረእ ኤተጀመረበት ጊዚ ወዯህ ኜኑዲኑ ዖርፌ በመኌጠሌ ውያያት ሲኧሄዲ ዦቱርዛም ኞኑዮስትሪው ብቸኗው 

ዖርፌ መሆኍ ኌው፡፡ግብፅ኏ ሱደኑ ኜኑፇርም ዩለት ያኴ ዦትብብር ማዔቀፌ በኜሻጥር኏ ሴራ ኡኑደያይ኏ቀፌ ሌዧ ጥኑቃቄ኏ ትእረት 

ያይረግ፡፡ኤተፊሰሱ ኜገሮች ጋር በመሆኑ ዦ኏ያሌኑ ውኃ በፌትሏዊ መኑገዲ ሇመጠቀም ዦሚይረገውኑ ኡጥረት኏ ዦሚዩጋጥመውኑ 

ፇተ኏ ዒሇም ኜቀፈ ማኅበረሰብ ያገኌዖበው ኜኑዲ ትሌቅ ዖመቻ መይረግ ኜሇበት፡፡ በተሇያ ግብፅ ኞትዬጵዩ ኤላልቹ ኜገሮች 

ሇመኌጠሌ ዦምታይርገው ዖመቻ ኜሁኑም ውስጥ ሇውስጥ ዦተጠ኏ኤረ በመሆኍ፣ ዦኞትዬጵዩ መኑግሥት ኤፌተኗ ዦዯፔልማሲ ሥራ 

ሥራት ኡኑደሇበት ሇይቂቃም ቢሆኑ መዖጋት ዦሇበትም፡፡ ቦርዮ ስሌጣኑ ዦሇውም ዦተባሇው ጉደዧ በር ሊያ በይረሰ ጊዚ ሲሆኑ 

ስሌጣኑኑ ኜመሌኩቶ ኤታች ጀምሮ ዦተኌሳ ኩርኩር ዦሇም ዦትምህርት መረጃ በ቉ኑ቉ ዦመጀመሪዩ ዯግሪ ያሌቁኑም መኑግሥት በሌበ 

ሰፉኌት኏ በታጋሽኌት ኡኌዘህ ዦጠሊት ተሊኦ ሉሆኍ ዦሚችለ ወገኒች በኜስቸክያ ወይ ዲርዲር መጥተው በሰሊማዊ መኑገዲ 

ኡኑዯኑቀሳቀስ መይገፌ ኜሇበት፡፡ ኤጠሊት ጋር ኡዩበሩ ወገኑኑ ኤሚዩቆስለ኏ ኤሚይሙ ሇዯሞኩራሲዩዊ ሥርዒት ግኑባታ 

ዦበእሊቸውኑ ኡኑዯዩይርጉ ቢዩቀርባቸው ያመጣሌ፡፡ መኑግሥት በእለ በሰሊማዊ መኑገዲ ኤሚገለ ዦፕሇቲኧ ዲርጅቶች ጋር በሆኌ 

ባሌሆኌው ኤመኌታረኩ ያሌቅ ሇዯሞኩራሲ ማኑበብ ኜስተዋጽኢ ዩበረኩቱ ዖኑዲ ዲርዲር ማዲረግ ኜሇበት፡፡ በቅዲመ ሁነታዎች 

ዦተጠሩ ኜሇመግባቶች ተፇተው በብሓራዊ ጉደዬች ሊያ ዦጋራ ኜ቉ም ኡኑዯያኒር፣ ኧሌሆኌም ዦተሻሇ መፌትሓ ሇማፇሊሇግ ተገቶ 

መሥራት ኜሇበት፡፡በፕሇቲኧው መቆሇፌ ምኩኑዩት ዦተጠሩ ቅሬታዎች኏ ኜሇመግባባቶች ባለበት ሁነታ ውስጥ ስሇ ብሓራዊ 

ጥቅም኏ ይኅኌት መኌጋገር ፊያደ ዦሇውም፡፡ ሑሳብኑ በኌፃኌት ዦመግሇጽ መብት፣ ዦፔሬስ ኌፃኌት፣ ዦዯሞኩራሲ኏ ዦሰብዒዊ መብቶች፣ 

ዦሔግ ዦበሊያኌት፣ ዦዚጎች ሁሇኑተ኏ዊ ተሳትፍ፣ ወዖተ ሲበሩ ዚጎች በጋራ ሇኜገራቸው ህሌው኏ ያቆማለ፡፡ ያኴ ዖገምተኗ 

ፕሇቲኧችኑ ተኌቃቅቶ ዦሰኤኌ ዲባብ ሲፇጥር ኡኑይ ኜገር ሁሊችኑኑም ሉዩስይስተኑ ያገባሌ፡፡ ዦኜኧባቢው ኌጋዱዎች በኜዯስ ኜበበ 

ኤተማ ኜስተደይር ዦመሬት ሌማት኏ ኜስተደይር ቦርዲ ዦሰጠውኑ ውሳነ በመቃወም ኜቤቱታቸውኑ በተይጋጋሚ ቢዩሰሙም ምሊሽ 

ሉዩገን ኜሇመቻሊቸውኑ኏ ዩሇኜግባብ኏ ዩሇኜኑደች ምትኩ ቦታ ኡደ ሊያ ሉጣለ መሆ኏ቸውኑ ያገሌፃለ፡፡ በኜኑዲ ቤት ውስጥ 

ኜምስትም ኜስር ሃያማኒት ሉኒር ያችሊሌ፡፡ በኜኑዲ ቤት ውስጥ ግኑ ኜምስትም ኜስርም ገር ሉኒር ኜያችሌም፡፡ በኜዯስ ኜበባ 

ዦሚገን ወጣቶች኏ ወጣት ጥኑዳች ኡዦተዙመተ ዦመጣው ዦፌቅረኚች ቀኑ ኜኤባበር ባሇፈት ጥቂት ዒመት ውስጥ ኜገር በቀሌ ባዏሌ 

ዦመሰሇ መጥቷሌ፡፡ ኞትዬጵዩውዩኑ በበርኧታ ባህልቻችኑ኏ ዦኡኗ በምኑሊቸው መገሇጫዎች በዒሇም ሊያ ብታታወቅም ኤኌኖህ 

ዖመኑ኏ ትውሌዲ ተጋሪ ባህልቻችኑ መኧኤሌ ዦተወሰኍት ኤላልች ዦተቀሊቀለ ኡኑይሆኌ ዦሠርግ ሥኌ-ሥርዒታችኑኑ በማኑሳት 

ዦሚ኏ገሩ ኜለ፡፡ በቬል፣ በሱፌ፣ በብሌጭሌጭ኏ በሻምፒኙ ኡዦታጀበ ዦሚሠረገው ዦኗው ዦኤተማ ሠርግ ኜገር በቀሌ ኜሇመሆኍኑ኏ 

ወይ ፇረኑጅ ኜገር ወር ብሇው ዦተመሇሱ ዦኜገር ሌጆች ዦመጡት ዦውጭ ኜገር ዦሠርግ ስኌ-ሥርዒት ኌው፡፡ ዦፌቅረኚች ቀኑም ኡዘሁ 

ኤሠርግ ስኌ-ሥርዒት ጋር ተመሳሳያኌት ዩሇው ኩስተት ኌው፡፡ ዦመጀመሪዩው ምኩኑዩት ዒሇም ኜቀፊዊኌቱ ሲሆኑ፣ ላሊው ይግሞ 

ያህኑኍም ባሌ በኌዙ ዦሠሇጠኍ ኜገራት ሇትምህርት኏ ሇሥራ ተጉዖው ዦተመሇሱት ዦወኑዛ ሌጆች኏ ዦቴኩኒልጂ኏ ዦነትዎርኩ መስፊት 

ወዯህ ኜሻግረውታሌ፡፡ በኡርግጥ ቀኍ ኜጥር ኌበር፡፡ መጀመሪዩ መጥሪዩ ኜዖጋጅተኑ ሇዦትምህርት ቤቱ በተኑ፡፡ ኜኑደኑዲ ትምህርት 

ቤቶች ኤኜኑዲ በሊያ መምር መሊኩ ቢፇሌጉ ዩሇኑ ኜቅም ኤዦትምህርት ቤት ኜኑዲ ኜኑዲ መምህር ዦማሠሌጠኑ ኌበር፡፡ ወቅቱ ሰነ 
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ወርህ ሊያ ኌበር፡፡ ሇጉደዧ ባሇመገኑዖብ ወያም ዦፇተ኏ ጊዚ ስሇኌበረ ሉሆኑ ያችሌ ኜኑደኑዲ ትምህርት ቤቶች መምህር ኜሊእም፡፡

ዦመጡትኑ መምህራኑ ሇስዲስት ቀኑ ኜሠሇጠኑኑ፡፡ ሥሌጠ኏ው በጣም ስከታማ ሆኒ ኌው ዦተጠ኏ቀቀ፡፡ ኜዖጋጆቹ ኡኑይሚዩምኍት 

በተሇዩዧ ዦኦኌ ጥበብ ሥራዎች ማሇትም በግጥም፣ በሥዔሌ፣ በዖፇኑ ዦማኅበረሰቡኑ ሌብ በቀሊለ መግዙት ኡኑይሚቻሌ኏ ዦተሇዧ 

ጉደዬችኑ ሇማስተሊሇፌ኏ ኡኑዯሁም ኜዎኑታዊ ሇውጥ ማጣት ኡኑይሚቻሌ ኌው፡፡ ዲርጅቱ ኡኑይሚሇው ኤኜደዯሶቹ ሇኧኑሰር 

ዦመጋሇጥ ኜጋጣሚዎች ኤሁሇት ሦስተኗ ሊያ ዦሚሆኌው ዦሚኤሰተው በሌማት ወይ኉ሊ በቀሩ ወያም ገ኏ በሌማት ሊያ ባለ ሃገሮች 

ውስጥ ሲሆኑ ኜስይኑ኏ገጭ ኌው ባሇው ሁነታም ኡዦተስፊፊ ኌው፡፡ ሁሇት ኌፌሰጡር ተፇ኏ቃዬች መኦ኏ ሊያ ወሌይዋሌ ያሁኑ 

ኡኑጂ ዦኡኌዘህ ተ቉ማት ኡኑቅስቃሴ ኡኑይሚጠበቀው ዦተ጑ዖ ኌው ወያ፡፡ያህ ማኑኌቴ ማኑኑም ኜያመሇኤተውም፡፡ ምሩቃኍ በተሇዩዦ 

ዦዔዲሜ ኩሌሌ ዦሚገን ወጣት኏ ጎሌማሳ ተማሪዎች ሲሆኍ ዦሰሇጠኍትም በኦቦርዲ኏ በኩራር፣ በማሲኑቆ኏ በጊታር ዦሙዘቃ 

መሣርዩዎች኏ በዲምፅ መሆኍኑ ዦትምህርት ቤቱ ርኡሰ መምህር ኜቶ ብርሃኍ ሳህለ በምረቃው ዔሇት ተ኏ግረዋሌ፡፡ ወይ ሥሌጠ኏ው 

ኤመጡት መኧኤሌም ዩሇሙዩቸው ሥዔሌ ኜስተምሩ ተብል ዦተሰጣቸው ያገንበታሌ፡፡ ሇምሳላ ኤመስቀሌ ኜይባያ ኡስኤ ወል 

ሠፇር ዩሇው መኑገዲ በጥሩ ሁነታ ዦተገኌባ ሲሆኑ፣ ኤመስቀሌ ኜይባባያ ኡስኤ ጎተራ ዩሇው መኑገዲ ይግሞ ሰፊ ብል ተገኑብቶ 

ኜሌ቉ሌ፡፡ሇፌቅር ሲባሌ ኜያይሇም ገኑዖብ ኡ኏ ጉሌበት ቤተ ኩርስቲዩኑ ዦኤፇሇችው ዦኩርስቶስኑ ይም መሆኍኑ መዖኑጋት ኜያገባም፡፡

በመጀመሪዩ ይረጀ ማኑም ሰው በኜኑዲ ኜገር ውስጥ መወሇዮ ወዳት ወያም ኜቅዳት ዦሚዩይርገው ኌገር ኜያይሇም፡፡ በተጨማሪም 

ኤዘህኗው ወያም ኤዘዩኗው ብሄረሰብ ዦወሇዮ ዩጋጣሚ ጉደያ ኡኑጂ ኤመጀመሪዩውኍ ዦሚታቀዲ ኜያይሇም፡፡ ስሇዘህም 

ኜኑይኗው ኜማራ፣ ላሊው ትግሬ፣ ላሊው ይግሞ ኢሮሞ ስሇሆኌ በእራት ወያም በዛቅተኗ ስሜት ራሱኑ ዦሚዩስጨኑቅበት 

ምኩኑዩት ዦሇውም፡፡ ዦዘህ ዏያኌቱ ዦመ኏኏ቅ኏ ዦመጠሊሊት ስሜት ዦሚመኌጨው በመሰረቱ ሰፊ ዩሇ ጭኑቅሊትኑ ብሩህ ዦሚዩይርግ 

ዔውቀት ስሊሌተስፊፊ኏፣ ኤዘህም ሆኌ ኤዘዩኗው ብሄረሰብ ተወሇዲእኙ ዦሚሌ ግሇሰብ ራሱኑ ስሇማያጠያቅ኏ ስሇማያመራመር 

ሁሌጊዚ በመጠራጠር ዒሇም ውስጥ ኡኑዲኑኒር ተገይ኏ሌ፡፡ ዦታኑዙ኎ዩው ፔሬዘደኑት ዳኩተር ጃኧዩ ኦኩዌቴ በበእሊቸው 

ኡኑይተ኏ገሩት በእባ መኑግሥት ዦቴኩኒልጂ ዲጋፌ ዦተገኌባው ዦወባ በሽታ መኤሊኤሊዩ ማምረቻ ፊብሪኧ በኜገሪቱ ብልም በኜፌሪኧ 

ዦወባ በሽታኑ ሇመኤሊኤሌ ዦበእለኑ ኜስተዋጽኢ ዩይርጋሌ፡፡ ዦኜፌሪኧ መኑግሥታት መሪዎች ዦወባ በሽታ መኤሊኤሌ ቅኑጅት ዦወቅቱ 

ሉቀመኑበር ጠቅሊያ ሚ኎ስትር ኃያሇማሪዩም ይሳሇኙ ፊብሪኧውኑ ሇመመረቅ በታኑዙ኎ዩ በመገኔታቸው በኜገሪቱ ሔዛብ኏ 

መኑግሥት ስም ምሥጋ኏ ኜቅርበዋሌ፡፡ ሰፊ ዩሇ በሁለም ኜቅጣጫ ዦሚገሇጽ ዔውቀት ኜሇመደበር ዦግዱታ ኜገር ዦሚሇውኑ ስም 

ወያም ይግሞ ኞትዬጵዩኑ ኡኑዲኑጠሊ ሉዩይርገኑ በቅቷሌ፡፡ ኞትዬጵዩ ዦሚሇው ስም ኤጭቆ኏኏ ኤብዛበዙ ጋር በመዩዩዛ 

ዦህብረተሰብኜችኑኑ ዦተወሳሰበ ዦታሪኩ ሂይት ኡኑደኑረደኑ በማዲረግ ዦሚዩሳፌር ሆናሌ ፡፡ ብሄረተኙኌት ኡኑደያደብር኏ ሇኜገር 

በጋራ ተኌስተኑ ኡኑደኑሰራ ኡኑቅፊት ሆናሌ፡፡ ዦብ዗ዎቻችኑ ችግር፣ በተሇያም በብሄረሰብ መኌፅር ዦታወርኑ ማኑኌታችኑኑ ሇመግሇፅ 

ዦምኑሞኩረው ዦመጣኑበትኑ ኜኧባቢ ኜጉሌቶ በማሳዦት ኡኑጂ፣ ኡዩኑደኑደችኑ በኜኑዲ ትሌቅ ኪስሞስ ውስጥ ተጠቃሇኑ ዦምኑገኙ኏፣ 

ማኑኌታችኑም ሆኌ ምኚታችኑ በጠባቡ ኪስሞስ ውስጥ ሳያሆኑ በሰፉው ኪስሞስ ውስጥ ብቻ ተግባራዊ ማዲረግ ኡኑይምኑችሌ 

ኜያይሇም ዦምኑገኌዖበው ፡፡ ዦብ዗ዎች በብሄረሰብ መኌፅር ዦታወሩ ግሇሰቦችም ሆኌ ቡዲኒች ዋ኏ው ችግር ዦተፇጥሮኑ ህግ በፌጹም 

ዩሇመረደት ችግር ኌው፡፡ ሇምሳላ ኜኑዲ ሌጅ ኤተፀኌሰ በ኉ሊ ኡዘዩው ኡ኏ቱ ማህፀኑ ውስጥ ሇዖሇዒሇም ሉኒር ኜያችሌም፡፡ ኤዖጠኙ 

ወር በ኉ሊ ተረግዜ ሲወሇዲ ሉዩዲግ ዦሚችሇው፣ ሙለ ኜኧሌ ኒሮት ሉዩስብ኏ ዔውኌተኗ ኌፃኌቱኑም ሉቀደጅ ዦሚችሇው኏ ፇጣሪ 

ዦሚሆኌው ሰፊ ባሇው ኪስሞስ ውስጥ ኜዦር መተኑፇስ኏ ሙቀት ማግኔት ሲችሌ ብቻ ኌው፡፡ ያህ ዏያኌቱ ባያልጂኧዊ ኩኑውኑ 

ሇኜገር኏ ሇህብረተሰብ ግኑባታም ዩገሇግሊሌ፡፡ ብሄረሰቦች኏ ጎሳዎች ዦሚባለት ኌገሮች ዔውኌተኗ ኌጻኌታቸውኑ መቀደጀት ዦሚችለት 

በሰፉው ዔውኌተኗ ኌፃኌት኏ ብርሃኑ በሚፇ኏ጣቅበት ኪስሞስ ውስጥ ገብተው መዋኔት ዦቻለ ኡኑይሆኑ ብቻ ኌው፡፡ ያህም ማሇት 

ኤጠባቡ኏ ኤማዩፇ኏ፌኌው ጥቃቅኍ ዦብሄረሰብ ዒሇም ሰፉው ኜገር ሇማኑኗውም ግሇሰብም ሆኌ፣ ዦዘህ ወያም ዦዘዩኗው ብሄረሰብ 
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ኜባሌ ኌኙ ሇሚሌ ዦበሇጠ ሇመደብር ዩመቸዋሌ፡፡ በላሊ ወገኑ ይግሞ በኜኑዲ ትሌቁ ኪስሞስ ውስጥ ዦተጠበቀው ዦፀሀያ ብርሃኑ኏ 

ኌፃኌት መፇ኏ጠቅ ዦማያችሌ ኤሆኌ፣ ሇምኑ ኡኑይዘህ ዏያኌቱ ኌፃኌትኑ ኜፊኗ኏ ዔዲገትኑ ዦሚቀ኏ቀኑ ሁነታ ሉፇጠርቻሇ ብል 

በህብረተሰብ ሳያኑስ ዖዱ኏ በፌሌስፌ኏ መኌፅር መመርመሩ ኡጅግ ኜስፇሊጊ ኌው፡፡ ያህኑ ኤማዲረግ ያሌቅ በጥሊቻ ተኌስቶ ኜኑዲኑ 

ዦህብረተሰብ ሁነታ በጨ቉ኙ኏ በተጨ቉ኙ በመኩፌሌ ኜጉሌ ትግሌ መጀመር኏ ማኧሄዲ ወይ ዔውኌተኗው ኌፃኌት ኤማምራት ያሌቅ 

ትግለኑ ውስብስብ በማዲረግ ዦጭቆ኏ው ዖመኑ ኡኑዯራዖም ዩይርጋሌ፡፡ ኧሉዩም ይግሞ ጥራት ዦጎይሊቸው ኃያልች ስሌጣኑ ሊያ 

በመውጣት ኤኌፃኌት ያሌቅ ላሊ ዦረቀቀ ጭቆ኏ኑ኏ ህብረተሰብኜዊ መመሰቃቀሌኑ ዩስኤትሊለ፡፡ ዦኜባያ ዉሃ ሇግብፅ ዦሞት኏ ህያወት 

ጉደያ መሆኍኑ ኜዲርዉስ ኜታ ኜሳሞዋ ኤሁሇቱ ሃገሮች ጦርኌት ግኑ ማኑም ኡኑይማዩተርፌ ኜጽኑኢት ሰጥተዋሌ፡፡ ዦተፊሰሱ ሃገሮች 

ቀይም ሲሌ ዦተስማሙበትኑ ስምምኌትም ግብፅ ኤሌቧ ዦተቀበሇችዉ ኡኑይማያመስሊቸዉም ኜመሌኩተዋሌ ፡፡ በኜኑፃሩ ዦግብፅ኏ 

ዦኞትዬጵዩ መኑግስታት ያህኑ ዦኜባያኑ ጉደያ ኤፌ ዩይረጉት በወቅቱ በዦበእሊቸዉ በኜገር ዉስጥ ዦገጠማቸዉኑ ዦፕሇቲኧ ጫ኏ 

ሇማስተኑፇስ ኌዉ ዦሚለ ወገኒች ኜለ፡፡ በተኤታታያ በቀረቡት ጽሐፍች ሊያ ሁሇት ኜኑባቢዎች በተቸገሩባቸው ሀሳቦች ሊያ 

ኜስተዩዦቴኑ ሌስጥ፡፡ በመጀመሪዩ ኜርበኗ኏ ባኑደ ዦሚባለትኑ ቃሊት ዦማያወደቸው ኜኑባቢ ችግሩ ኜሌገባኙም፤ ስገምተው ኤቅኑ 

መኑፇስ኏ ኤኞትዬጵዩዊ ያለኙታ ጋር ዦተዩዩዖ ያመስሇኗሌ፤ ኜርበኚች኏ ባኑዳች መኒራቸውኑ ዦኧይ ኜያመስሇኙም፤ ኜርበኚች ኌበሩ፤ 

ኜሁኑም ኜለ፤ ባኑዳችም ኌበሩ፤ ኜሁኑም ኜለ፤ ኜርበኗም ዦሇም፤ ባኑደም ዦሇም ሇማሇት ኜሌችሌም፤ ባኑደኌት ሲኌሣ ኅሉ኏ቸውኑ 

ዦሚቆረቁራቸው኏ ዦሚዩፌሩ ባኑደዎች኏ ዦባኑደ ሌጆች ኤኜለ፣ ያቆርቁራቸው፤ ያፇሩ፤ ዦሚዩሳፌር ሥራ ውጤት ኌው፤ ኜርበኙኌት 

ሲኌሣ ሌባቸው ዦሚዩብጥ኏ ዦሚኪሩ ኧለ፣ ያበጡ፤ ያእሩ፤ ዦሚዩኪራ ሥራ ውጤት ኌው፤ ምኑዲኑ ኌው ስሔተቱ? ዦታሪኧችኑ 

መኩሸፌ ኜኑዮ ምኩኑዩት በያለኙታ ዒያኒችኑ ሸፌኒ ፌሬውኑ኏ ኜኑኩርደዮኑ ሇመሇዦት ኜሇመፇሇግ ኌው፤ (በኜሥራ ዖጠኙ መቶ 

ኜርባዎቹ ኜጋማሽ ሊያ በጾም ጊዚ በምግብ ቤቶች ዦሚቀርብ ዦፌስኩ ወጥ ኌበረ፤ ሽፌኑፌኑ ያባሌ ኌበር፤ ሳያጾሙ ዦሚጾሙ መስል 

ሇመታዦት፤) ኡኑኩርደዮኑ኏ ፌሬውኑ ኡእሌ ኜዲርጎ ሇማዦት኏ ሇማሳዦት መ ፇሇግ ኌው፤ ዦኞትዬጵዩ ኜርበኚች ታሪኩ ተደፌኒ 

ዦቀረው በኜጤ ኃያሇሥሊሴ መኑግሥት ውስጥ ባኑዳች ተሰግስገውበት ስሇኌበረ ኌው፤ በዘህም ምኩኑዩት ፌሬ኏ ኡኑኩርደዮ ሳያሇያ 

ኜኑዮ ትውሌዲ ሇሚቀጥሇው ትውሌዲ ኡዩስተሊሇፇ መማር኏ መሻሻሌ ዩቅተ኏ሌ፤ ኜኑባቢው ያህኑኑ ያመኗሌ ብዪ ኜሌገምትም፤

ኡውኌትኑ ዦሚገፊ፣ ኡውኌትኑ ዦሚዩይበዛዛ፣ ኡውኌትኑ ዦሚዩጨሌም ኌገር ሁለ በኜገርም ሆኌ በግሇሰብ ይረጃ መጨረሻው ገይሌ 

ኌው፡፡ 
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Appendix III:  Sample Code of a Prototype Context based spell checker for Amharic 

package amharictexteditor; 

import java.awt.BorderLayout; 

import java.awt.Color; 

import java.awt.Dimension; 

import javax.swing.*; 

import java.awt.event.*; 

import java.io.*; 

import java.awt.Font; 

import java.awt.event.KeyEvent; 

import java.io.BufferedReader; 

import java.util.HashMap; 

import java.util.StringTokenizer; 

import javax.swing.JFrame; 

import javax.swing.JPanel; 

import javax.swing.text.MutableAttributeSet; 

import javax.swing.text.SimpleAttributeSet; 

import javax.swing.text.StyleConstants; 

import javax.swing.text.StyledDocument; 

import unicodewriting.GeezInPlainText; 

public class spellChecker extends JFrame { 
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    Dictionary1 dictionary; 

    ContextChecker contextcheck; 

    Suggestion suggestion; 

    Suggestion2 suggestion1; 

    KeyboardEvent keyevent; 

    public JFrame frame; 

    private JPanel panel1, panel3; 

    public JTextPane fileArea; 

    public Font textFont; 

    public static HashMap stringTokens = new HashMap(); 

    public spellChecker() { 

        contextcheck = new ContextChecker(spellChecker.this); 

        dictionary = new Dictionary1(spellChecker.this); 

        AmharicSpeller(); 

        keyevent = new KeyboardEvent(); 

        keyevent.setFontSize(16); 

        fileArea.addKeyListener(keyevent); 

        suggestion = new Suggestion(spellChecker.this); 

        suggestion1 = new Suggestion2(spellChecker.this); 

        fileArea.addMouseListener(suggestion.mac);      

    } 
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    public void AmharicSpeller() { 

        frame = new JFrame("AMHASPELL"); 

        panel1 = new JPanel(); 

        panel3 = new JPanel(); 

        fileArea = new JTextPane(); 

        textFont = new Font("Nyala", 2, 16); 

        fileArea.setFont(textFont); 

        fileArea.setText(""); 

        fileArea.setEditable(true); 

        fileArea.requestFocus(); 

        JScrollPane scroller = new JScrollPane(fileArea); 

        scroller.setPreferredSize(new Dimension(800, 375)); 

        JSeparator separator = new JSeparator(SwingConstants.HORIZONTAL); 

        separator.setForeground(Color.red); 

        JMenuBar menuBar = new JMenuBar(); 

        JMenu fileMenu = new JMenu("File"); 

        JMenu editMenu = new JMenu("   Edit"); 

        JMenu helpMenu = new JMenu("  Help"); 

        JMenuItem newMenuItem = new JMenuItem("New", KeyEvent.VK_N); 

        JMenuItem openMenuItem = new JMenuItem("Open...", KeyEvent.VK_O); 

        JMenuItem saveMenuItem = new JMenuItem("Save", KeyEvent.VK_S); 
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        JMenuItem saveAsMenuItem = new JMenuItem("SaveAs", KeyEvent.VK_A); 

        JMenuItem exitMenuItem = new JMenuItem("Exit", KeyEvent.VK_X); 

        JMenuItem cutMenuItem = new JMenuItem("Cut"); 

        JMenuItem copyMenuItem = new JMenuItem("Copy"); 

        JMenuItem pasteMenuItem = new JMenuItem("Paste"); 

        JMenuItem helpMenuItem = new JMenuItem("Help"); 

        JMenuItem aboutMenuItem = new JMenuItem("About"); 

        fileMenu.add(newMenuItem); 

        fileMenu.addSeparator(); 

        fileMenu.add(openMenuItem); 

        fileMenu.addSeparator(); 

        fileMenu.add(saveMenuItem); 

        fileMenu.addSeparator(); 

        fileMenu.add(saveAsMenuItem); 

        fileMenu.addSeparator(); 

        fileMenu.add(exitMenuItem); 

        editMenu.addSeparator(); 

        editMenu.add(cutMenuItem); 

        editMenu.addSeparator(); 

        editMenu.add(copyMenuItem); 

        editMenu.addSeparator(); 
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        editMenu.add(pasteMenuItem); 

        helpMenu.add(helpMenuItem); 

        helpMenu.addSeparator(); 

        helpMenu.add(aboutMenuItem); 

        menuBar.add(fileMenu); 

        menuBar.add(editMenu); 

        menuBar.add(helpMenu); 

        frame.setJMenuBar(menuBar); 

        panel1.add(scroller); 

        panel3.add(BorderLayout.CENTER, separator); 

        frame.getContentPane().setLayout(new BoxLayout(frame.getContentPane(), 

BoxLayout.Y_AXIS)); 

        frame.getContentPane().add(panel3); 

        frame.getContentPane().add(panel1); 

        newMenuItem.addActionListener(new newMenuItemListener()); 

        openMenuItem.addActionListener(new openMenuItemListener()); 

        saveMenuItem.addActionListener(new saveMenuItemListener()); 

        saveAsMenuItem.addActionListener(new saveMenuItemListener()); 

        exitMenuItem.addActionListener(new exitMenuItemListener()); 

        cutMenuItem.addActionListener(new cutMenuItemListener()); 

        copyMenuItem.addActionListener(new copyMenuItemListener()); 
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        pasteMenuItem.addActionListener(new pasteMenuItemListener()); 

        helpMenuItem.addActionListener(new helpMenuItemListener()); 

        aboutMenuItem.addActionListener(new aboutMenuItemListener()); 

        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        frame.setSize(950, 550); 

        frame.setVisible(true); 

        frame.setTitle("AMHASPELL"); 

    } 

    public static void main(String[] args) { 

        new spellChecker(); 

    } 

    private void clearArea() { 

        fileArea.setText(""); 

    } 

    private void openFile(File file) { 

        frame.setTitle(file.getName()); 

        clearArea(); 

        try { 

            try (BufferedReader reader = new BufferedReader(new FileReader(file))) { 

                String line = null, content = ""; 

                while ((line = reader.readLine()) != null) { 
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                    content += line; 

                    content += "\n"; 

                } 

                fileArea.setText(content); 

            } 

        } catch (IOException ex) { 

            System.out.println("cannot open file"); 

            ex.printStackTrace(); 

        } 

    } 

    private void saveFile(File file) { 

        frame.setTitle(file.getName()); 

        try { 

            try (FileWriter writer = new FileWriter(file)) { 

                writer.write(fileArea.getText()); 

            } 

        } catch (IOException ex) { 

            System.out.println("cannot save file"); 

            ex.printStackTrace(); 

        } 

    } 
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    public void highlightContextualError(int sp, int len) { 

        MutableAttributeSet attr = new SimpleAttributeSet(); 

        StyleConstants.setBackground(attr, Color.yellow); 

 

        StyledDocument doc = (StyledDocument) fileArea.getDocument(); 

        doc.setCharacterAttributes(sp, len, attr, false); 

    } 

    public void highlightDictionaryError(int spd, int len) { 

        MutableAttributeSet attr = new SimpleAttributeSet(); 

        StyleConstants.setBackground(attr, Color.red); 

        StyledDocument doc = (StyledDocument) fileArea.getDocument(); 

        doc.setCharacterAttributes(spd, len, attr, false); 

    } 

    public class newMenuItemListener implements ActionListener { 

        @Override 

        public void actionPerformed(ActionEvent event) { 

            clearArea(); 

        } 

    } 

    public class openMenuItemListener implements ActionListener { 

        @Override 
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        public void actionPerformed(ActionEvent event) { 

            JFileChooser fileOpen = new JFileChooser(); 

            fileOpen.showOpenDialog(frame); 

            openFile(fileOpen.getSelectedFile()); 

        } 

    } 

    public class exitMenuItemListener implements ActionListener { 

        @Override 

        public void actionPerformed(ActionEvent event) { 

            try { 

                System.exit(0); 

            } catch (Exception ex) { 

                ex.printStackTrace(); 

            } } 

    } 

    public class saveMenuItemListener implements ActionListener { 

        @Override 

        public void actionPerformed(ActionEvent event) { 

            JFileChooser fileSave = new JFileChooser(); 

            fileSave.showSaveDialog(frame); 

            saveFile(fileSave.getSelectedFile()); 
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        } 

    } 

    public class cutMenuItemListener implements ActionListener { 

        @Override 

        public void actionPerformed(ActionEvent event) { 

            fileArea.cut(); 

        } 

    } 

    public class copyMenuItemListener implements ActionListener { 

        @Override 

        public void actionPerformed(ActionEvent event) { 

            fileArea.copy(); 

        } 

    } 

    public class pasteMenuItemListener implements ActionListener { 

        @Override 

        public void actionPerformed(ActionEvent event) { 

            fileArea.paste(); 

        } 

    } 

    public class helpMenuItemListener implements ActionListener { 
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        @Override 

        public void actionPerformed(ActionEvent event) { 

        } 

    } 

    public class aboutMenuItemListener implements ActionListener { 

        @Override 

        public void actionPerformed(ActionEvent event) { 

        } 

    } 

    class KeyboardEvent extends GeezInPlainText { 

        String delimiter = " !?\u1362"; 

        public KeyboardEvent() { 

            super(fileArea);    } 

        @Override 

        public void keyTyped(KeyEvent key) { 

            if (key.getKeyChar() == ' ') { 

                String newword = ""; 

                int position = fileArea.getCaretPosition(); 

                int start = position - 1; 

                String content = fileArea.getText(); 

                while (true) { 
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                    //first word 

                    if (start < 0) { 

                        start = 0; 

                        newword = content.substring(start, position).trim(); 

                        break; 

                    } 

                    char ch = content.charAt(start); 

                    if (delimiter.contains("" + ch)) { 

                        newword = content.substring(start, position).trim(); 

                        break; 

                    } 

                    start--; 

                } 

                boolean correct = dictionary.isCorrectWord(newword); 

                if (correct == false) { 

                    highlightDictionaryError(start + 1, newword.length()); 

                } 

            } else if (key.getKeyChar() == '.' || key.getKeyChar() == '?' || key.getKeyChar() == '!') { 

                checkContext(); 

            } 

            super.keyTyped(key); 
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        } 

        @Override 

        public void keyReleased(KeyEvent e) { 

        }    } 

    public void checkContext() { 

        int sentstart = -1; 

        String content = fileArea.getText(); 

        int loc = fileArea.getCaretPosition(); 

        int punc1 = content.lastIndexOf("\u1362", loc - 1); 

        int punc2 = content.lastIndexOf("!", loc - 1); 

        int punc3 = content.lastIndexOf("?", loc - 1); 

        if (punc1 > punc2 && punc1 > punc3) { 

            sentstart = punc1; 

        } else if (punc2 > punc1 && punc2 > punc3) { 

            sentstart = punc2; 

        } else if (punc3 > punc1 && punc3 > punc2) { 

            sentstart = punc3;  } 

        //check if there is space before the current sentence or after the previous sentence 

        if (sentstart == -1) { 

            sentstart = 0; 

        } else if (content.charAt(sentstart + 1) == ' ') { 
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            sentstart = sentstart + 2; 

        } else { 

            sentstart = sentstart + 1; 

        }       

        String sentence = content.substring(sentstart, loc); 

        StringTokenizer tokenizer = new StringTokenizer(sentence, " ()[]\u1061"); 

        boolean nonworderror = false; 

        while(tokenizer.hasMoreTokens()) { 

            String temp = tokenizer.nextToken().trim(); 

            if(!dictionary.words.containsKey(temp)){ 

                nonworderror=true; 

                break; 

            } } 

        if(!nonworderror) { 

            contextcheck.checkContext(sentence, sentstart); 

        }  

    } 

} 

// 

 

 

 


